4 this_cpu operations are a way of optimizing access to per cpu
5 variables associated with the *currently* executing processor. This is
6 done through the use of segment registers (or a dedicated register where
7 the cpu permanently stored the beginning of the per cpu area for a
10 this_cpu operations add a per cpu variable offset to the processor
11 specific per cpu base and encode that operation in the instruction
12 operating on the per cpu variable.
14 This means that there are no atomicity issues between the calculation of
15 the offset and the operation on the data. Therefore it is not
16 necessary to disable preemption or interrupts to ensure that the
17 processor is not changed between the calculation of the address and
18 the operation on the data.
20 Read-modify-write operations are of particular interest. Frequently
21 processors have special lower latency instructions that can operate
22 without the typical synchronization overhead, but still provide some
23 sort of relaxed atomicity guarantees. The x86, for example, can execute
24 RMW (Read Modify Write) instructions like inc/dec/cmpxchg without the
25 lock prefix and the associated latency penalty.
27 Access to the variable without the lock prefix is not synchronized but
28 synchronization is not necessary since we are dealing with per cpu
29 data specific to the currently executing processor. Only the current
30 processor should be accessing that variable and therefore there are no
31 concurrency issues with other processors in the system.
33 Please note that accesses by remote processors to a per cpu area are
34 exceptional situations and may impact performance and/or correctness
35 (remote write operations) of local RMW operations via this_cpu_*.
37 The main use of the this_cpu operations has been to optimize counter
40 The following this_cpu() operations with implied preemption protection
41 are defined. These operations can be used without worrying about
42 preemption and interrupts.
45 this_cpu_write(pcp, val)
46 this_cpu_add(pcp, val)
47 this_cpu_and(pcp, val)
49 this_cpu_add_return(pcp, val)
50 this_cpu_xchg(pcp, nval)
51 this_cpu_cmpxchg(pcp, oval, nval)
52 this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
53 this_cpu_sub(pcp, val)
56 this_cpu_sub_return(pcp, val)
57 this_cpu_inc_return(pcp)
58 this_cpu_dec_return(pcp)
61 Inner working of this_cpu operations
62 ------------------------------------
64 On x86 the fs: or the gs: segment registers contain the base of the
65 per cpu area. It is then possible to simply use the segment override
66 to relocate a per cpu relative address to the proper per cpu area for
67 the processor. So the relocation to the per cpu base is encoded in the
68 instruction via a segment register prefix.
72 DEFINE_PER_CPU(int, x);
77 results in a single instruction
81 instead of a sequence of calculation of the address and then a fetch
82 from that address which occurs with the per cpu operations. Before
83 this_cpu_ops such sequence also required preempt disable/enable to
84 prevent the kernel from moving the thread to a different processor
85 while the calculation is performed.
87 Consider the following this_cpu operation:
91 The above results in the following single instruction (no lock prefix!)
95 instead of the following operations required if there is no segment
102 y = per_cpu_ptr(&x, cpu);
106 Note that these operations can only be used on per cpu data that is
107 reserved for a specific processor. Without disabling preemption in the
108 surrounding code this_cpu_inc() will only guarantee that one of the
109 per cpu counters is correctly incremented. However, there is no
110 guarantee that the OS will not move the process directly before or
111 after the this_cpu instruction is executed. In general this means that
112 the value of the individual counters for each processor are
113 meaningless. The sum of all the per cpu counters is the only value
116 Per cpu variables are used for performance reasons. Bouncing cache
117 lines can be avoided if multiple processors concurrently go through
118 the same code paths. Since each processor has its own per cpu
119 variables no concurrent cache line updates take place. The price that
120 has to be paid for this optimization is the need to add up the per cpu
121 counters when the value of a counter is needed.
129 Takes the offset of a per cpu variable (&x !) and returns the address
130 of the per cpu variable that belongs to the currently executing
131 processor. this_cpu_ptr avoids multiple steps that the common
132 get_cpu/put_cpu sequence requires. No processor number is
133 available. Instead, the offset of the local per cpu area is simply
134 added to the per cpu offset.
136 Note that this operation is usually used in a code segment when
137 preemption has been disabled. The pointer is then used to
138 access local per cpu data in a critical section. When preemption
139 is re-enabled this pointer is usually no longer useful since it may
140 no longer point to per cpu data of the current processor.
143 Per cpu variables and offsets
144 -----------------------------
146 Per cpu variables have *offsets* to the beginning of the per cpu
147 area. They do not have addresses although they look like that in the
148 code. Offsets cannot be directly dereferenced. The offset must be
149 added to a base pointer of a per cpu area of a processor in order to
150 form a valid address.
152 Therefore the use of x or &x outside of the context of per cpu
153 operations is invalid and will generally be treated like a NULL
156 DEFINE_PER_CPU(int, x);
158 In the context of per cpu operations the above implies that x is a per
159 cpu variable. Most this_cpu operations take a cpu variable.
161 int __percpu *p = &x;
163 &x and hence p is the *offset* of a per cpu variable. this_cpu_ptr()
164 takes the offset of a per cpu variable which makes this look a bit
168 Operations on a field of a per cpu structure
169 --------------------------------------------
171 Let's say we have a percpu structure
177 DEFINE_PER_CPU(struct s, p);
180 Operations on these fields are straightforward
184 z = this_cpu_cmpxchg(p.m, 0, 1);
187 If we have an offset to struct s:
189 struct s __percpu *ps = &p;
193 z = this_cpu_inc_return(ps->n);
196 The calculation of the pointer may require the use of this_cpu_ptr()
197 if we do not make use of this_cpu ops later to manipulate fields:
201 pp = this_cpu_ptr(&p);
208 Variants of this_cpu ops
209 -------------------------
211 this_cpu ops are interrupt safe. Some architectures do not support
212 these per cpu local operations. In that case the operation must be
213 replaced by code that disables interrupts, then does the operations
214 that are guaranteed to be atomic and then re-enable interrupts. Doing
215 so is expensive. If there are other reasons why the scheduler cannot
216 change the processor we are executing on then there is no reason to
217 disable interrupts. For that purpose the following __this_cpu operations
220 These operations have no guarantee against concurrent interrupts or
221 preemption. If a per cpu variable is not used in an interrupt context
222 and the scheduler cannot preempt, then they are safe. If any interrupts
223 still occur while an operation is in progress and if the interrupt too
224 modifies the variable, then RMW actions can not be guaranteed to be
228 __this_cpu_write(pcp, val)
229 __this_cpu_add(pcp, val)
230 __this_cpu_and(pcp, val)
231 __this_cpu_or(pcp, val)
232 __this_cpu_add_return(pcp, val)
233 __this_cpu_xchg(pcp, nval)
234 __this_cpu_cmpxchg(pcp, oval, nval)
235 __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
236 __this_cpu_sub(pcp, val)
239 __this_cpu_sub_return(pcp, val)
240 __this_cpu_inc_return(pcp)
241 __this_cpu_dec_return(pcp)
244 Will increment x and will not fall-back to code that disables
245 interrupts on platforms that cannot accomplish atomicity through
246 address relocation and a Read-Modify-Write operation in the same
250 &this_cpu_ptr(pp)->n vs this_cpu_ptr(&pp->n)
251 --------------------------------------------
253 The first operation takes the offset and forms an address and then
254 adds the offset of the n field. This may result in two add
255 instructions emitted by the compiler.
257 The second one first adds the two offsets and then does the
258 relocation. IMHO the second form looks cleaner and has an easier time
259 with (). The second form also is consistent with the way
260 this_cpu_read() and friends are used.
263 Remote access to per cpu data
264 ------------------------------
266 Per cpu data structures are designed to be used by one cpu exclusively.
267 If you use the variables as intended, this_cpu_ops() are guaranteed to
268 be "atomic" as no other CPU has access to these data structures.
270 There are special cases where you might need to access per cpu data
271 structures remotely. It is usually safe to do a remote read access
272 and that is frequently done to summarize counters. Remote write access
273 something which could be problematic because this_cpu ops do not
274 have lock semantics. A remote write may interfere with a this_cpu
277 Remote write accesses to percpu data structures are highly discouraged
278 unless absolutely necessary. Please consider using an IPI to wake up
279 the remote CPU and perform the update to its per cpu area.
281 To access per-cpu data structure remotely, typically the per_cpu_ptr()
285 DEFINE_PER_CPU(struct data, datap);
287 struct data *p = per_cpu_ptr(&datap, cpu);
289 This makes it explicit that we are getting ready to access a percpu
292 You can also do the following to convert the datap offset to an address
294 struct data *p = this_cpu_ptr(&datap);
296 but, passing of pointers calculated via this_cpu_ptr to other cpus is
297 unusual and should be avoided.
299 Remote access are typically only for reading the status of another cpus
300 per cpu data. Write accesses can cause unique problems due to the
301 relaxed synchronization requirements for this_cpu operations.
303 One example that illustrates some concerns with write operations is
304 the following scenario that occurs because two per cpu variables
305 share a cache-line but the relaxed synchronization is applied to
306 only one process updating the cache-line.
308 Consider the following example
316 DEFINE_PER_CPU(struct test, onecacheline);
318 There is some concern about what would happen if the field 'a' is updated
319 remotely from one processor and the local processor would use this_cpu ops
320 to update field b. Care should be taken that such simultaneous accesses to
321 data within the same cache line are avoided. Also costly synchronization
322 may be necessary. IPIs are generally recommended in such scenarios instead
323 of a remote write to the per cpu area of another processor.
325 Even in cases where the remote writes are rare, please bear in
326 mind that a remote write will evict the cache line from the processor
327 that most likely will access it. If the processor wakes up and finds a
328 missing local cache line of a per cpu area, its performance and hence
329 the wake up times will be affected.
331 Christoph Lameter, August 4th, 2014
332 Pranith Kumar, Aug 2nd, 2014