OSDN Git Service

Merge "merge from honeycomb mr2"
[android-x86/external-webkit.git] / Source / JavaScriptCore / wtf / FastMalloc.cpp
1 // Copyright (c) 2005, 2007, Google Inc.
2 // All rights reserved.
3 // Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
4 // 
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 // 
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 // 
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // ---
32 // Author: Sanjay Ghemawat <opensource@google.com>
33 //
34 // A malloc that uses a per-thread cache to satisfy small malloc requests.
35 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36 //
37 // See doc/tcmalloc.html for a high-level
38 // description of how this malloc works.
39 //
40 // SYNCHRONIZATION
41 //  1. The thread-specific lists are accessed without acquiring any locks.
42 //     This is safe because each such list is only accessed by one thread.
43 //  2. We have a lock per central free-list, and hold it while manipulating
44 //     the central free list for a particular size.
45 //  3. The central page allocator is protected by "pageheap_lock".
46 //  4. The pagemap (which maps from page-number to descriptor),
47 //     can be read without holding any locks, and written while holding
48 //     the "pageheap_lock".
49 //  5. To improve performance, a subset of the information one can get
50 //     from the pagemap is cached in a data structure, pagemap_cache_,
51 //     that atomically reads and writes its entries.  This cache can be
52 //     read and written without locking.
53 //
54 //     This multi-threaded access to the pagemap is safe for fairly
55 //     subtle reasons.  We basically assume that when an object X is
56 //     allocated by thread A and deallocated by thread B, there must
57 //     have been appropriate synchronization in the handoff of object
58 //     X from thread A to thread B.  The same logic applies to pagemap_cache_.
59 //
60 // THE PAGEID-TO-SIZECLASS CACHE
61 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
62 // returns 0 for a particular PageID then that means "no information," not that
63 // the sizeclass is 0.  The cache may have stale information for pages that do
64 // not hold the beginning of any free()'able object.  Staleness is eliminated
65 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66 // do_memalign() for all other relevant pages.
67 //
68 // TODO: Bias reclamation to larger addresses
69 // TODO: implement mallinfo/mallopt
70 // TODO: Better testing
71 //
72 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
73 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
74 // * allocation of a reasonably complicated struct
75 //   goes from about 1100 ns to about 300 ns.
76
77 #include "config.h"
78 #include "FastMalloc.h"
79
80 #include "Assertions.h"
81 #include <limits>
82 #if ENABLE(JSC_MULTIPLE_THREADS)
83 #include <pthread.h>
84 #endif
85 #include <wtf/StdLibExtras.h>
86
87 #ifndef NO_TCMALLOC_SAMPLES
88 #ifdef WTF_CHANGES
89 #define NO_TCMALLOC_SAMPLES
90 #endif
91 #endif
92
93 #if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG)
94 #define FORCE_SYSTEM_MALLOC 0
95 #else
96 #define FORCE_SYSTEM_MALLOC 1
97 #endif
98
99 // Use a background thread to periodically scavenge memory to release back to the system
100 // https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash.
101 #if defined(BUILDING_ON_TIGER)
102 #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0
103 #else
104 #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
105 #endif
106
107 #ifndef NDEBUG
108 namespace WTF {
109
110 #if ENABLE(JSC_MULTIPLE_THREADS)
111 static pthread_key_t isForbiddenKey;
112 static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
113 static void initializeIsForbiddenKey()
114 {
115   pthread_key_create(&isForbiddenKey, 0);
116 }
117
118 #if !ASSERT_DISABLED
119 static bool isForbidden()
120 {
121     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
122     return !!pthread_getspecific(isForbiddenKey);
123 }
124 #endif
125
126 void fastMallocForbid()
127 {
128     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
129     pthread_setspecific(isForbiddenKey, &isForbiddenKey);
130 }
131
132 void fastMallocAllow()
133 {
134     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
135     pthread_setspecific(isForbiddenKey, 0);
136 }
137
138 #else
139
140 static bool staticIsForbidden;
141 static bool isForbidden()
142 {
143     return staticIsForbidden;
144 }
145
146 void fastMallocForbid()
147 {
148     staticIsForbidden = true;
149 }
150
151 void fastMallocAllow()
152 {
153     staticIsForbidden = false;
154 }
155 #endif // ENABLE(JSC_MULTIPLE_THREADS)
156
157 } // namespace WTF
158 #endif // NDEBUG
159
160 #include <string.h>
161
162 namespace WTF {
163
164 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
165
166 namespace Internal {
167
168 void fastMallocMatchFailed(void*)
169 {
170     CRASH();
171 }
172
173 } // namespace Internal
174
175 #endif
176
177 void* fastZeroedMalloc(size_t n) 
178 {
179     void* result = fastMalloc(n);
180     memset(result, 0, n);
181     return result;
182 }
183
184 char* fastStrDup(const char* src)
185 {
186     int len = strlen(src) + 1;
187     char* dup = static_cast<char*>(fastMalloc(len));
188
189     if (dup)
190         memcpy(dup, src, len);
191
192     return dup;
193 }
194     
195 TryMallocReturnValue tryFastZeroedMalloc(size_t n) 
196 {
197     void* result;
198     if (!tryFastMalloc(n).getValue(result))
199         return 0;
200     memset(result, 0, n);
201     return result;
202 }
203
204 } // namespace WTF
205
206 #if FORCE_SYSTEM_MALLOC
207
208 #if PLATFORM(BREWMP)
209 #include "brew/SystemMallocBrew.h"
210 #endif
211
212 #if OS(DARWIN)
213 #include <malloc/malloc.h>
214 #elif OS(WINDOWS)
215 #include <malloc.h>
216 #endif
217
218 namespace WTF {
219
220 TryMallocReturnValue tryFastMalloc(size_t n) 
221 {
222     ASSERT(!isForbidden());
223
224 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
225     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
226         return 0;
227
228     void* result = malloc(n + sizeof(AllocAlignmentInteger));
229     if (!result)
230         return 0;
231
232     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
233     result = static_cast<AllocAlignmentInteger*>(result) + 1;
234
235     return result;
236 #else
237     return malloc(n);
238 #endif
239 }
240
241 void* fastMalloc(size_t n) 
242 {
243     ASSERT(!isForbidden());
244
245 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
246     TryMallocReturnValue returnValue = tryFastMalloc(n);
247     void* result;
248     returnValue.getValue(result);
249 #else
250     void* result = malloc(n);
251 #endif
252
253     if (!result) {
254 #if PLATFORM(BREWMP)
255         // The behavior of malloc(0) is implementation defined.
256         // To make sure that fastMalloc never returns 0, retry with fastMalloc(1).
257         if (!n)
258             return fastMalloc(1);
259 #endif
260         CRASH();
261     }
262
263     return result;
264 }
265
266 TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size)
267 {
268     ASSERT(!isForbidden());
269
270 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
271     size_t totalBytes = n_elements * element_size;
272     if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
273         return 0;
274
275     totalBytes += sizeof(AllocAlignmentInteger);
276     void* result = malloc(totalBytes);
277     if (!result)
278         return 0;
279
280     memset(result, 0, totalBytes);
281     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
282     result = static_cast<AllocAlignmentInteger*>(result) + 1;
283     return result;
284 #else
285     return calloc(n_elements, element_size);
286 #endif
287 }
288
289 void* fastCalloc(size_t n_elements, size_t element_size)
290 {
291     ASSERT(!isForbidden());
292
293 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
294     TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size);
295     void* result;
296     returnValue.getValue(result);
297 #else
298     void* result = calloc(n_elements, element_size);
299 #endif
300
301     if (!result) {
302 #if PLATFORM(BREWMP)
303         // If either n_elements or element_size is 0, the behavior of calloc is implementation defined.
304         // To make sure that fastCalloc never returns 0, retry with fastCalloc(1, 1).
305         if (!n_elements || !element_size)
306             return fastCalloc(1, 1);
307 #endif
308         CRASH();
309     }
310
311     return result;
312 }
313
314 void fastFree(void* p)
315 {
316     ASSERT(!isForbidden());
317
318 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
319     if (!p)
320         return;
321
322     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
323     if (*header != Internal::AllocTypeMalloc)
324         Internal::fastMallocMatchFailed(p);
325     free(header);
326 #else
327     free(p);
328 #endif
329 }
330
331 TryMallocReturnValue tryFastRealloc(void* p, size_t n)
332 {
333     ASSERT(!isForbidden());
334
335 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
336     if (p) {
337         if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
338             return 0;
339         AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
340         if (*header != Internal::AllocTypeMalloc)
341             Internal::fastMallocMatchFailed(p);
342         void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
343         if (!result)
344             return 0;
345
346         // This should not be needed because the value is already there:
347         // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
348         result = static_cast<AllocAlignmentInteger*>(result) + 1;
349         return result;
350     } else {
351         return fastMalloc(n);
352     }
353 #else
354     return realloc(p, n);
355 #endif
356 }
357
358 void* fastRealloc(void* p, size_t n)
359 {
360     ASSERT(!isForbidden());
361
362 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
363     TryMallocReturnValue returnValue = tryFastRealloc(p, n);
364     void* result;
365     returnValue.getValue(result);
366 #else
367     void* result = realloc(p, n);
368 #endif
369
370     if (!result)
371         CRASH();
372     return result;
373 }
374
375 void releaseFastMallocFreeMemory() { }
376     
377 FastMallocStatistics fastMallocStatistics()
378 {
379     FastMallocStatistics statistics = { 0, 0, 0 };
380     return statistics;
381 }
382
383 size_t fastMallocSize(const void* p)
384 {
385 #if OS(DARWIN)
386     return malloc_size(p);
387 #elif OS(WINDOWS) && !PLATFORM(BREWMP)
388     // Brew MP uses its own memory allocator, so _msize does not work on the Brew MP simulator.
389     return _msize(const_cast<void*>(p));
390 #else
391     return 1;
392 #endif
393 }
394
395 } // namespace WTF
396
397 #if OS(DARWIN)
398 // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
399 // It will never be used in this case, so it's type and value are less interesting than its presence.
400 extern "C" const int jscore_fastmalloc_introspection = 0;
401 #endif
402
403 #else // FORCE_SYSTEM_MALLOC
404
405 #if HAVE(STDINT_H)
406 #include <stdint.h>
407 #elif HAVE(INTTYPES_H)
408 #include <inttypes.h>
409 #else
410 #include <sys/types.h>
411 #endif
412
413 #include "AlwaysInline.h"
414 #include "Assertions.h"
415 #include "TCPackedCache.h"
416 #include "TCPageMap.h"
417 #include "TCSpinLock.h"
418 #include "TCSystemAlloc.h"
419 #include <algorithm>
420 #include <limits>
421 #include <pthread.h>
422 #include <stdarg.h>
423 #include <stddef.h>
424 #include <stdio.h>
425 #if HAVE(ERRNO_H)
426 #include <errno.h>
427 #endif
428 #if OS(UNIX)
429 #include <unistd.h>
430 #endif
431 #if OS(WINDOWS)
432 #ifndef WIN32_LEAN_AND_MEAN
433 #define WIN32_LEAN_AND_MEAN
434 #endif
435 #include <windows.h>
436 #endif
437
438 #ifdef WTF_CHANGES
439
440 #if OS(DARWIN)
441 #include "MallocZoneSupport.h"
442 #include <wtf/HashSet.h>
443 #include <wtf/Vector.h>
444 #endif
445
446 #if HAVE(HEADER_DETECTION_H)
447 #include "HeaderDetection.h"
448 #endif
449
450 #if HAVE(DISPATCH_H)
451 #include <dispatch/dispatch.h>
452 #endif
453
454 #if HAVE(PTHREAD_MACHDEP_H)
455 #include <System/pthread_machdep.h>
456
457 #if defined(__PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0)
458 #define WTF_USE_PTHREAD_GETSPECIFIC_DIRECT 1
459 #endif
460 #endif
461
462 #ifndef PRIuS
463 #define PRIuS "zu"
464 #endif
465
466 // Calling pthread_getspecific through a global function pointer is faster than a normal
467 // call to the function on Mac OS X, and it's used in performance-critical code. So we
468 // use a function pointer. But that's not necessarily faster on other platforms, and we had
469 // problems with this technique on Windows, so we'll do this only on Mac OS X.
470 #if OS(DARWIN)
471 #if !USE(PTHREAD_GETSPECIFIC_DIRECT)
472 static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
473 #define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
474 #else
475 #define pthread_getspecific(key) _pthread_getspecific_direct(key)
476 #define pthread_setspecific(key, val) _pthread_setspecific_direct(key, (val))
477 #endif
478 #endif
479
480 #define DEFINE_VARIABLE(type, name, value, meaning) \
481   namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead {  \
482   type FLAGS_##name(value);                                \
483   char FLAGS_no##name;                                                        \
484   }                                                                           \
485   using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
486   
487 #define DEFINE_int64(name, value, meaning) \
488   DEFINE_VARIABLE(int64_t, name, value, meaning)
489   
490 #define DEFINE_double(name, value, meaning) \
491   DEFINE_VARIABLE(double, name, value, meaning)
492
493 namespace WTF {
494
495 #define malloc fastMalloc
496 #define calloc fastCalloc
497 #define free fastFree
498 #define realloc fastRealloc
499
500 #define MESSAGE LOG_ERROR
501 #define CHECK_CONDITION ASSERT
502
503 #if OS(DARWIN)
504 struct Span;
505 class TCMalloc_Central_FreeListPadded;
506 class TCMalloc_PageHeap;
507 class TCMalloc_ThreadCache;
508 template <typename T> class PageHeapAllocator;
509
510 class FastMallocZone {
511 public:
512     static void init();
513
514     static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
515     static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
516     static boolean_t check(malloc_zone_t*) { return true; }
517     static void  print(malloc_zone_t*, boolean_t) { }
518     static void log(malloc_zone_t*, void*) { }
519     static void forceLock(malloc_zone_t*) { }
520     static void forceUnlock(malloc_zone_t*) { }
521     static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
522
523 private:
524     FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
525     static size_t size(malloc_zone_t*, const void*);
526     static void* zoneMalloc(malloc_zone_t*, size_t);
527     static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
528     static void zoneFree(malloc_zone_t*, void*);
529     static void* zoneRealloc(malloc_zone_t*, void*, size_t);
530     static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
531     static void zoneDestroy(malloc_zone_t*) { }
532
533     malloc_zone_t m_zone;
534     TCMalloc_PageHeap* m_pageHeap;
535     TCMalloc_ThreadCache** m_threadHeaps;
536     TCMalloc_Central_FreeListPadded* m_centralCaches;
537     PageHeapAllocator<Span>* m_spanAllocator;
538     PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
539 };
540
541 #endif
542
543 #endif
544
545 #ifndef WTF_CHANGES
546 // This #ifdef should almost never be set.  Set NO_TCMALLOC_SAMPLES if
547 // you're porting to a system where you really can't get a stacktrace.
548 #ifdef NO_TCMALLOC_SAMPLES
549 // We use #define so code compiles even if you #include stacktrace.h somehow.
550 # define GetStackTrace(stack, depth, skip)  (0)
551 #else
552 # include <google/stacktrace.h>
553 #endif
554 #endif
555
556 // Even if we have support for thread-local storage in the compiler
557 // and linker, the OS may not support it.  We need to check that at
558 // runtime.  Right now, we have to keep a manual set of "bad" OSes.
559 #if defined(HAVE_TLS)
560   static bool kernel_supports_tls = false;      // be conservative
561   static inline bool KernelSupportsTLS() {
562     return kernel_supports_tls;
563   }
564 # if !HAVE_DECL_UNAME   // if too old for uname, probably too old for TLS
565     static void CheckIfKernelSupportsTLS() {
566       kernel_supports_tls = false;
567     }
568 # else
569 #   include <sys/utsname.h>    // DECL_UNAME checked for <sys/utsname.h> too
570     static void CheckIfKernelSupportsTLS() {
571       struct utsname buf;
572       if (uname(&buf) != 0) {   // should be impossible
573         MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
574         kernel_supports_tls = false;
575       } else if (strcasecmp(buf.sysname, "linux") == 0) {
576         // The linux case: the first kernel to support TLS was 2.6.0
577         if (buf.release[0] < '2' && buf.release[1] == '.')    // 0.x or 1.x
578           kernel_supports_tls = false;
579         else if (buf.release[0] == '2' && buf.release[1] == '.' &&
580                  buf.release[2] >= '0' && buf.release[2] < '6' &&
581                  buf.release[3] == '.')                       // 2.0 - 2.5
582           kernel_supports_tls = false;
583         else
584           kernel_supports_tls = true;
585       } else {        // some other kernel, we'll be optimisitic
586         kernel_supports_tls = true;
587       }
588       // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
589     }
590 #  endif  // HAVE_DECL_UNAME
591 #endif    // HAVE_TLS
592
593 // __THROW is defined in glibc systems.  It means, counter-intuitively,
594 // "This function will never throw an exception."  It's an optional
595 // optimization tool, but we may need to use it to match glibc prototypes.
596 #ifndef __THROW    // I guess we're not on a glibc system
597 # define __THROW   // __THROW is just an optimization, so ok to make it ""
598 #endif
599
600 //-------------------------------------------------------------------
601 // Configuration
602 //-------------------------------------------------------------------
603
604 // Not all possible combinations of the following parameters make
605 // sense.  In particular, if kMaxSize increases, you may have to
606 // increase kNumClasses as well.
607 static const size_t kPageShift  = 12;
608 static const size_t kPageSize   = 1 << kPageShift;
609 static const size_t kMaxSize    = 8u * kPageSize;
610 static const size_t kAlignShift = 3;
611 static const size_t kAlignment  = 1 << kAlignShift;
612 static const size_t kNumClasses = 68;
613
614 // Allocates a big block of memory for the pagemap once we reach more than
615 // 128MB
616 static const size_t kPageMapBigAllocationThreshold = 128 << 20;
617
618 // Minimum number of pages to fetch from system at a time.  Must be
619 // significantly bigger than kPageSize to amortize system-call
620 // overhead, and also to reduce external fragementation.  Also, we
621 // should keep this value big because various incarnations of Linux
622 // have small limits on the number of mmap() regions per
623 // address-space.
624 static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
625
626 // Number of objects to move between a per-thread list and a central
627 // list in one shot.  We want this to be not too small so we can
628 // amortize the lock overhead for accessing the central list.  Making
629 // it too big may temporarily cause unnecessary memory wastage in the
630 // per-thread free list until the scavenger cleans up the list.
631 static int num_objects_to_move[kNumClasses];
632
633 // Maximum length we allow a per-thread free-list to have before we
634 // move objects from it into the corresponding central free-list.  We
635 // want this big to avoid locking the central free-list too often.  It
636 // should not hurt to make this list somewhat big because the
637 // scavenging code will shrink it down when its contents are not in use.
638 static const int kMaxFreeListLength = 256;
639
640 // Lower and upper bounds on the per-thread cache sizes
641 static const size_t kMinThreadCacheSize = kMaxSize * 2;
642 static const size_t kMaxThreadCacheSize = 2 << 20;
643
644 // Default bound on the total amount of thread caches
645 static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
646
647 // For all span-lengths < kMaxPages we keep an exact-size list.
648 // REQUIRED: kMaxPages >= kMinSystemAlloc;
649 static const size_t kMaxPages = kMinSystemAlloc;
650
651 /* The smallest prime > 2^n */
652 static int primes_list[] = {
653     // Small values might cause high rates of sampling
654     // and hence commented out.
655     // 2, 5, 11, 17, 37, 67, 131, 257,
656     // 521, 1031, 2053, 4099, 8209, 16411,
657     32771, 65537, 131101, 262147, 524309, 1048583,
658     2097169, 4194319, 8388617, 16777259, 33554467 };
659
660 // Twice the approximate gap between sampling actions.
661 // I.e., we take one sample approximately once every
662 //      tcmalloc_sample_parameter/2
663 // bytes of allocation, i.e., ~ once every 128KB.
664 // Must be a prime number.
665 #ifdef NO_TCMALLOC_SAMPLES
666 DEFINE_int64(tcmalloc_sample_parameter, 0,
667              "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
668 static size_t sample_period = 0;
669 #else
670 DEFINE_int64(tcmalloc_sample_parameter, 262147,
671          "Twice the approximate gap between sampling actions."
672          " Must be a prime number. Otherwise will be rounded up to a "
673          " larger prime number");
674 static size_t sample_period = 262147;
675 #endif
676
677 // Protects sample_period above
678 static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
679
680 // Parameters for controlling how fast memory is returned to the OS.
681
682 DEFINE_double(tcmalloc_release_rate, 1,
683               "Rate at which we release unused memory to the system.  "
684               "Zero means we never release memory back to the system.  "
685               "Increase this flag to return memory faster; decrease it "
686               "to return memory slower.  Reasonable rates are in the "
687               "range [0,10]");
688
689 //-------------------------------------------------------------------
690 // Mapping from size to size_class and vice versa
691 //-------------------------------------------------------------------
692
693 // Sizes <= 1024 have an alignment >= 8.  So for such sizes we have an
694 // array indexed by ceil(size/8).  Sizes > 1024 have an alignment >= 128.
695 // So for these larger sizes we have an array indexed by ceil(size/128).
696 //
697 // We flatten both logical arrays into one physical array and use
698 // arithmetic to compute an appropriate index.  The constants used by
699 // ClassIndex() were selected to make the flattening work.
700 //
701 // Examples:
702 //   Size       Expression                      Index
703 //   -------------------------------------------------------
704 //   0          (0 + 7) / 8                     0
705 //   1          (1 + 7) / 8                     1
706 //   ...
707 //   1024       (1024 + 7) / 8                  128
708 //   1025       (1025 + 127 + (120<<7)) / 128   129
709 //   ...
710 //   32768      (32768 + 127 + (120<<7)) / 128  376
711 static const size_t kMaxSmallSize = 1024;
712 static const int shift_amount[2] = { 3, 7 };  // For divides by 8 or 128
713 static const int add_amount[2] = { 7, 127 + (120 << 7) };
714 static unsigned char class_array[377];
715
716 // Compute index of the class_array[] entry for a given size
717 static inline int ClassIndex(size_t s) {
718   const int i = (s > kMaxSmallSize);
719   return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
720 }
721
722 // Mapping from size class to max size storable in that class
723 static size_t class_to_size[kNumClasses];
724
725 // Mapping from size class to number of pages to allocate at a time
726 static size_t class_to_pages[kNumClasses];
727
728 // TransferCache is used to cache transfers of num_objects_to_move[size_class]
729 // back and forth between thread caches and the central cache for a given size
730 // class.
731 struct TCEntry {
732   void *head;  // Head of chain of objects.
733   void *tail;  // Tail of chain of objects.
734 };
735 // A central cache freelist can have anywhere from 0 to kNumTransferEntries
736 // slots to put link list chains into.  To keep memory usage bounded the total
737 // number of TCEntries across size classes is fixed.  Currently each size
738 // class is initially given one TCEntry which also means that the maximum any
739 // one class can have is kNumClasses.
740 static const int kNumTransferEntries = kNumClasses;
741
742 // Note: the following only works for "n"s that fit in 32-bits, but
743 // that is fine since we only use it for small sizes.
744 static inline int LgFloor(size_t n) {
745   int log = 0;
746   for (int i = 4; i >= 0; --i) {
747     int shift = (1 << i);
748     size_t x = n >> shift;
749     if (x != 0) {
750       n = x;
751       log += shift;
752     }
753   }
754   ASSERT(n == 1);
755   return log;
756 }
757
758 // Some very basic linked list functions for dealing with using void * as
759 // storage.
760
761 static inline void *SLL_Next(void *t) {
762   return *(reinterpret_cast<void**>(t));
763 }
764
765 static inline void SLL_SetNext(void *t, void *n) {
766   *(reinterpret_cast<void**>(t)) = n;
767 }
768
769 static inline void SLL_Push(void **list, void *element) {
770   SLL_SetNext(element, *list);
771   *list = element;
772 }
773
774 static inline void *SLL_Pop(void **list) {
775   void *result = *list;
776   *list = SLL_Next(*list);
777   return result;
778 }
779
780
781 // Remove N elements from a linked list to which head points.  head will be
782 // modified to point to the new head.  start and end will point to the first
783 // and last nodes of the range.  Note that end will point to NULL after this
784 // function is called.
785 static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
786   if (N == 0) {
787     *start = NULL;
788     *end = NULL;
789     return;
790   }
791
792   void *tmp = *head;
793   for (int i = 1; i < N; ++i) {
794     tmp = SLL_Next(tmp);
795   }
796
797   *start = *head;
798   *end = tmp;
799   *head = SLL_Next(tmp);
800   // Unlink range from list.
801   SLL_SetNext(tmp, NULL);
802 }
803
804 static inline void SLL_PushRange(void **head, void *start, void *end) {
805   if (!start) return;
806   SLL_SetNext(end, *head);
807   *head = start;
808 }
809
810 static inline size_t SLL_Size(void *head) {
811   int count = 0;
812   while (head) {
813     count++;
814     head = SLL_Next(head);
815   }
816   return count;
817 }
818
819 // Setup helper functions.
820
821 static ALWAYS_INLINE size_t SizeClass(size_t size) {
822   return class_array[ClassIndex(size)];
823 }
824
825 // Get the byte-size for a specified class
826 static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
827   return class_to_size[cl];
828 }
829 static int NumMoveSize(size_t size) {
830   if (size == 0) return 0;
831   // Use approx 64k transfers between thread and central caches.
832   int num = static_cast<int>(64.0 * 1024.0 / size);
833   if (num < 2) num = 2;
834   // Clamp well below kMaxFreeListLength to avoid ping pong between central
835   // and thread caches.
836   if (num > static_cast<int>(0.8 * kMaxFreeListLength))
837     num = static_cast<int>(0.8 * kMaxFreeListLength);
838
839   // Also, avoid bringing in too many objects into small object free
840   // lists.  There are lots of such lists, and if we allow each one to
841   // fetch too many at a time, we end up having to scavenge too often
842   // (especially when there are lots of threads and each thread gets a
843   // small allowance for its thread cache).
844   //
845   // TODO: Make thread cache free list sizes dynamic so that we do not
846   // have to equally divide a fixed resource amongst lots of threads.
847   if (num > 32) num = 32;
848
849   return num;
850 }
851
852 // Initialize the mapping arrays
853 static void InitSizeClasses() {
854   // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
855   if (ClassIndex(0) < 0) {
856     MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
857     CRASH();
858   }
859   if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
860     MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
861     CRASH();
862   }
863
864   // Compute the size classes we want to use
865   size_t sc = 1;   // Next size class to assign
866   unsigned char alignshift = kAlignShift;
867   int last_lg = -1;
868   for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
869     int lg = LgFloor(size);
870     if (lg > last_lg) {
871       // Increase alignment every so often.
872       //
873       // Since we double the alignment every time size doubles and
874       // size >= 128, this means that space wasted due to alignment is
875       // at most 16/128 i.e., 12.5%.  Plus we cap the alignment at 256
876       // bytes, so the space wasted as a percentage starts falling for
877       // sizes > 2K.
878       if ((lg >= 7) && (alignshift < 8)) {
879         alignshift++;
880       }
881       last_lg = lg;
882     }
883
884     // Allocate enough pages so leftover is less than 1/8 of total.
885     // This bounds wasted space to at most 12.5%.
886     size_t psize = kPageSize;
887     while ((psize % size) > (psize >> 3)) {
888       psize += kPageSize;
889     }
890     const size_t my_pages = psize >> kPageShift;
891
892     if (sc > 1 && my_pages == class_to_pages[sc-1]) {
893       // See if we can merge this into the previous class without
894       // increasing the fragmentation of the previous class.
895       const size_t my_objects = (my_pages << kPageShift) / size;
896       const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
897                                   / class_to_size[sc-1];
898       if (my_objects == prev_objects) {
899         // Adjust last class to include this size
900         class_to_size[sc-1] = size;
901         continue;
902       }
903     }
904
905     // Add new class
906     class_to_pages[sc] = my_pages;
907     class_to_size[sc] = size;
908     sc++;
909   }
910   if (sc != kNumClasses) {
911     MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
912             sc, int(kNumClasses));
913     CRASH();
914   }
915
916   // Initialize the mapping arrays
917   int next_size = 0;
918   for (unsigned char c = 1; c < kNumClasses; c++) {
919     const size_t max_size_in_class = class_to_size[c];
920     for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
921       class_array[ClassIndex(s)] = c;
922     }
923     next_size = static_cast<int>(max_size_in_class + kAlignment);
924   }
925
926   // Double-check sizes just to be safe
927   for (size_t size = 0; size <= kMaxSize; size++) {
928     const size_t sc = SizeClass(size);
929     if (sc == 0) {
930       MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
931       CRASH();
932     }
933     if (sc > 1 && size <= class_to_size[sc-1]) {
934       MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
935               "\n", sc, size);
936       CRASH();
937     }
938     if (sc >= kNumClasses) {
939       MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
940       CRASH();
941     }
942     const size_t s = class_to_size[sc];
943     if (size > s) {
944      MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
945       CRASH();
946     }
947     if (s == 0) {
948       MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
949       CRASH();
950     }
951   }
952
953   // Initialize the num_objects_to_move array.
954   for (size_t cl = 1; cl  < kNumClasses; ++cl) {
955     num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
956   }
957
958 #ifndef WTF_CHANGES
959   if (false) {
960     // Dump class sizes and maximum external wastage per size class
961     for (size_t cl = 1; cl  < kNumClasses; ++cl) {
962       const int alloc_size = class_to_pages[cl] << kPageShift;
963       const int alloc_objs = alloc_size / class_to_size[cl];
964       const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
965       const int max_waste = alloc_size - min_used;
966       MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
967               int(cl),
968               int(class_to_size[cl-1] + 1),
969               int(class_to_size[cl]),
970               int(class_to_pages[cl] << kPageShift),
971               max_waste * 100.0 / alloc_size
972               );
973     }
974   }
975 #endif
976 }
977
978 // -------------------------------------------------------------------------
979 // Simple allocator for objects of a specified type.  External locking
980 // is required before accessing one of these objects.
981 // -------------------------------------------------------------------------
982
983 // Metadata allocator -- keeps stats about how many bytes allocated
984 static uint64_t metadata_system_bytes = 0;
985 static void* MetaDataAlloc(size_t bytes) {
986   void* result = TCMalloc_SystemAlloc(bytes, 0);
987   if (result != NULL) {
988     metadata_system_bytes += bytes;
989   }
990   return result;
991 }
992
993 template <class T>
994 class PageHeapAllocator {
995  private:
996   // How much to allocate from system at a time
997   static const size_t kAllocIncrement = 32 << 10;
998
999   // Aligned size of T
1000   static const size_t kAlignedSize
1001   = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
1002
1003   // Free area from which to carve new objects
1004   char* free_area_;
1005   size_t free_avail_;
1006
1007   // Linked list of all regions allocated by this allocator
1008   void* allocated_regions_;
1009
1010   // Free list of already carved objects
1011   void* free_list_;
1012
1013   // Number of allocated but unfreed objects
1014   int inuse_;
1015
1016  public:
1017   void Init() {
1018     ASSERT(kAlignedSize <= kAllocIncrement);
1019     inuse_ = 0;
1020     allocated_regions_ = 0;
1021     free_area_ = NULL;
1022     free_avail_ = 0;
1023     free_list_ = NULL;
1024   }
1025
1026   T* New() {
1027     // Consult free list
1028     void* result;
1029     if (free_list_ != NULL) {
1030       result = free_list_;
1031       free_list_ = *(reinterpret_cast<void**>(result));
1032     } else {
1033       if (free_avail_ < kAlignedSize) {
1034         // Need more room
1035         char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
1036         if (!new_allocation)
1037           CRASH();
1038
1039         *reinterpret_cast_ptr<void**>(new_allocation) = allocated_regions_;
1040         allocated_regions_ = new_allocation;
1041         free_area_ = new_allocation + kAlignedSize;
1042         free_avail_ = kAllocIncrement - kAlignedSize;
1043       }
1044       result = free_area_;
1045       free_area_ += kAlignedSize;
1046       free_avail_ -= kAlignedSize;
1047     }
1048     inuse_++;
1049     return reinterpret_cast<T*>(result);
1050   }
1051
1052   void Delete(T* p) {
1053     *(reinterpret_cast<void**>(p)) = free_list_;
1054     free_list_ = p;
1055     inuse_--;
1056   }
1057
1058   int inuse() const { return inuse_; }
1059
1060 #if defined(WTF_CHANGES) && OS(DARWIN)
1061   template <class Recorder>
1062   void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
1063   {
1064       for (void* adminAllocation = allocated_regions_; adminAllocation; adminAllocation = reader.nextEntryInLinkedList(reinterpret_cast<void**>(adminAllocation)))
1065           recorder.recordRegion(reinterpret_cast<vm_address_t>(adminAllocation), kAllocIncrement);
1066   }
1067 #endif
1068 };
1069
1070 // -------------------------------------------------------------------------
1071 // Span - a contiguous run of pages
1072 // -------------------------------------------------------------------------
1073
1074 // Type that can hold a page number
1075 typedef uintptr_t PageID;
1076
1077 // Type that can hold the length of a run of pages
1078 typedef uintptr_t Length;
1079
1080 static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
1081
1082 // Convert byte size into pages.  This won't overflow, but may return
1083 // an unreasonably large value if bytes is huge enough.
1084 static inline Length pages(size_t bytes) {
1085   return (bytes >> kPageShift) +
1086       ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
1087 }
1088
1089 // Convert a user size into the number of bytes that will actually be
1090 // allocated
1091 static size_t AllocationSize(size_t bytes) {
1092   if (bytes > kMaxSize) {
1093     // Large object: we allocate an integral number of pages
1094     ASSERT(bytes <= (kMaxValidPages << kPageShift));
1095     return pages(bytes) << kPageShift;
1096   } else {
1097     // Small object: find the size class to which it belongs
1098     return ByteSizeForClass(SizeClass(bytes));
1099   }
1100 }
1101
1102 // Information kept for a span (a contiguous run of pages).
1103 struct Span {
1104   PageID        start;          // Starting page number
1105   Length        length;         // Number of pages in span
1106   Span*         next;           // Used when in link list
1107   Span*         prev;           // Used when in link list
1108   void*         objects;        // Linked list of free objects
1109   unsigned int  free : 1;       // Is the span free
1110 #ifndef NO_TCMALLOC_SAMPLES
1111   unsigned int  sample : 1;     // Sampled object?
1112 #endif
1113   unsigned int  sizeclass : 8;  // Size-class for small objects (or 0)
1114   unsigned int  refcount : 11;  // Number of non-free objects
1115   bool decommitted : 1;
1116
1117 #undef SPAN_HISTORY
1118 #ifdef SPAN_HISTORY
1119   // For debugging, we can keep a log events per span
1120   int nexthistory;
1121   char history[64];
1122   int value[64];
1123 #endif
1124 };
1125
1126 #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
1127
1128 #ifdef SPAN_HISTORY
1129 void Event(Span* span, char op, int v = 0) {
1130   span->history[span->nexthistory] = op;
1131   span->value[span->nexthistory] = v;
1132   span->nexthistory++;
1133   if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
1134 }
1135 #else
1136 #define Event(s,o,v) ((void) 0)
1137 #endif
1138
1139 // Allocator/deallocator for spans
1140 static PageHeapAllocator<Span> span_allocator;
1141 static Span* NewSpan(PageID p, Length len) {
1142   Span* result = span_allocator.New();
1143   memset(result, 0, sizeof(*result));
1144   result->start = p;
1145   result->length = len;
1146 #ifdef SPAN_HISTORY
1147   result->nexthistory = 0;
1148 #endif
1149   return result;
1150 }
1151
1152 static inline void DeleteSpan(Span* span) {
1153 #ifndef NDEBUG
1154   // In debug mode, trash the contents of deleted Spans
1155   memset(span, 0x3f, sizeof(*span));
1156 #endif
1157   span_allocator.Delete(span);
1158 }
1159
1160 // -------------------------------------------------------------------------
1161 // Doubly linked list of spans.
1162 // -------------------------------------------------------------------------
1163
1164 static inline void DLL_Init(Span* list) {
1165   list->next = list;
1166   list->prev = list;
1167 }
1168
1169 static inline void DLL_Remove(Span* span) {
1170   span->prev->next = span->next;
1171   span->next->prev = span->prev;
1172   span->prev = NULL;
1173   span->next = NULL;
1174 }
1175
1176 static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
1177   return list->next == list;
1178 }
1179
1180 static int DLL_Length(const Span* list) {
1181   int result = 0;
1182   for (Span* s = list->next; s != list; s = s->next) {
1183     result++;
1184   }
1185   return result;
1186 }
1187
1188 #if 0 /* Not needed at the moment -- causes compiler warnings if not used */
1189 static void DLL_Print(const char* label, const Span* list) {
1190   MESSAGE("%-10s %p:", label, list);
1191   for (const Span* s = list->next; s != list; s = s->next) {
1192     MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
1193   }
1194   MESSAGE("\n");
1195 }
1196 #endif
1197
1198 static inline void DLL_Prepend(Span* list, Span* span) {
1199   ASSERT(span->next == NULL);
1200   ASSERT(span->prev == NULL);
1201   span->next = list->next;
1202   span->prev = list;
1203   list->next->prev = span;
1204   list->next = span;
1205 }
1206
1207 // -------------------------------------------------------------------------
1208 // Stack traces kept for sampled allocations
1209 //   The following state is protected by pageheap_lock_.
1210 // -------------------------------------------------------------------------
1211
1212 // size/depth are made the same size as a pointer so that some generic
1213 // code below can conveniently cast them back and forth to void*.
1214 static const int kMaxStackDepth = 31;
1215 struct StackTrace {
1216   uintptr_t size;          // Size of object
1217   uintptr_t depth;         // Number of PC values stored in array below
1218   void*     stack[kMaxStackDepth];
1219 };
1220 static PageHeapAllocator<StackTrace> stacktrace_allocator;
1221 static Span sampled_objects;
1222
1223 // -------------------------------------------------------------------------
1224 // Map from page-id to per-page data
1225 // -------------------------------------------------------------------------
1226
1227 // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
1228 // We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
1229 // because sometimes the sizeclass is all the information we need.
1230
1231 // Selector class -- general selector uses 3-level map
1232 template <int BITS> class MapSelector {
1233  public:
1234   typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
1235   typedef PackedCache<BITS, uint64_t> CacheType;
1236 };
1237
1238 #if defined(WTF_CHANGES)
1239 #if CPU(X86_64)
1240 // On all known X86-64 platforms, the upper 16 bits are always unused and therefore 
1241 // can be excluded from the PageMap key.
1242 // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
1243
1244 static const size_t kBitsUnusedOn64Bit = 16;
1245 #else
1246 static const size_t kBitsUnusedOn64Bit = 0;
1247 #endif
1248
1249 // A three-level map for 64-bit machines
1250 template <> class MapSelector<64> {
1251  public:
1252   typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
1253   typedef PackedCache<64, uint64_t> CacheType;
1254 };
1255 #endif
1256
1257 // A two-level map for 32-bit machines
1258 template <> class MapSelector<32> {
1259  public:
1260   typedef TCMalloc_PageMap2<32 - kPageShift> Type;
1261   typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
1262 };
1263
1264 // -------------------------------------------------------------------------
1265 // Page-level allocator
1266 //  * Eager coalescing
1267 //
1268 // Heap for page-level allocation.  We allow allocating and freeing a
1269 // contiguous runs of pages (called a "span").
1270 // -------------------------------------------------------------------------
1271
1272 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1273 // The page heap maintains a free list for spans that are no longer in use by
1274 // the central cache or any thread caches. We use a background thread to
1275 // periodically scan the free list and release a percentage of it back to the OS.
1276
1277 // If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the
1278 // background thread:
1279 //     - wakes up
1280 //     - pauses for kScavengeDelayInSeconds
1281 //     - returns to the OS a percentage of the memory that remained unused during
1282 //       that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_)
1283 // The goal of this strategy is to reduce memory pressure in a timely fashion
1284 // while avoiding thrashing the OS allocator.
1285
1286 // Time delay before the page heap scavenger will consider returning pages to
1287 // the OS.
1288 static const int kScavengeDelayInSeconds = 2;
1289
1290 // Approximate percentage of free committed pages to return to the OS in one
1291 // scavenge.
1292 static const float kScavengePercentage = .5f;
1293
1294 // number of span lists to keep spans in when memory is returned.
1295 static const int kMinSpanListsWithSpans = 32;
1296
1297 // Number of free committed pages that we want to keep around.  The minimum number of pages used when there
1298 // is 1 span in each of the first kMinSpanListsWithSpans spanlists.  Currently 528 pages.
1299 static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f);
1300
1301 #endif
1302
1303 class TCMalloc_PageHeap {
1304  public:
1305   void init();
1306
1307   // Allocate a run of "n" pages.  Returns zero if out of memory.
1308   Span* New(Length n);
1309
1310   // Delete the span "[p, p+n-1]".
1311   // REQUIRES: span was returned by earlier call to New() and
1312   //           has not yet been deleted.
1313   void Delete(Span* span);
1314
1315   // Mark an allocated span as being used for small objects of the
1316   // specified size-class.
1317   // REQUIRES: span was returned by an earlier call to New()
1318   //           and has not yet been deleted.
1319   void RegisterSizeClass(Span* span, size_t sc);
1320
1321   // Split an allocated span into two spans: one of length "n" pages
1322   // followed by another span of length "span->length - n" pages.
1323   // Modifies "*span" to point to the first span of length "n" pages.
1324   // Returns a pointer to the second span.
1325   //
1326   // REQUIRES: "0 < n < span->length"
1327   // REQUIRES: !span->free
1328   // REQUIRES: span->sizeclass == 0
1329   Span* Split(Span* span, Length n);
1330
1331   // Return the descriptor for the specified page.
1332   inline Span* GetDescriptor(PageID p) const {
1333     return reinterpret_cast<Span*>(pagemap_.get(p));
1334   }
1335
1336 #ifdef WTF_CHANGES
1337   inline Span* GetDescriptorEnsureSafe(PageID p)
1338   {
1339       pagemap_.Ensure(p, 1);
1340       return GetDescriptor(p);
1341   }
1342     
1343   size_t ReturnedBytes() const;
1344 #endif
1345
1346   // Dump state to stderr
1347 #ifndef WTF_CHANGES
1348   void Dump(TCMalloc_Printer* out);
1349 #endif
1350
1351   // Return number of bytes allocated from system
1352   inline uint64_t SystemBytes() const { return system_bytes_; }
1353
1354   // Return number of free bytes in heap
1355   uint64_t FreeBytes() const {
1356     return (static_cast<uint64_t>(free_pages_) << kPageShift);
1357   }
1358
1359   bool Check();
1360   bool CheckList(Span* list, Length min_pages, Length max_pages);
1361
1362   // Release all pages on the free list for reuse by the OS:
1363   void ReleaseFreePages();
1364
1365   // Return 0 if we have no information, or else the correct sizeclass for p.
1366   // Reads and writes to pagemap_cache_ do not require locking.
1367   // The entries are 64 bits on 64-bit hardware and 16 bits on
1368   // 32-bit hardware, and we don't mind raciness as long as each read of
1369   // an entry yields a valid entry, not a partially updated entry.
1370   size_t GetSizeClassIfCached(PageID p) const {
1371     return pagemap_cache_.GetOrDefault(p, 0);
1372   }
1373   void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1374
1375  private:
1376   // Pick the appropriate map and cache types based on pointer size
1377   typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1378   typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1379   PageMap pagemap_;
1380   mutable PageMapCache pagemap_cache_;
1381
1382   // We segregate spans of a given size into two circular linked
1383   // lists: one for normal spans, and one for spans whose memory
1384   // has been returned to the system.
1385   struct SpanList {
1386     Span        normal;
1387     Span        returned;
1388   };
1389
1390   // List of free spans of length >= kMaxPages
1391   SpanList large_;
1392
1393   // Array mapping from span length to a doubly linked list of free spans
1394   SpanList free_[kMaxPages];
1395
1396   // Number of pages kept in free lists
1397   uintptr_t free_pages_;
1398
1399   // Bytes allocated from system
1400   uint64_t system_bytes_;
1401
1402 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1403   // Number of pages kept in free lists that are still committed.
1404   Length free_committed_pages_;
1405
1406   // Minimum number of free committed pages since last scavenge. (Can be 0 if
1407   // we've committed new pages since the last scavenge.)
1408   Length min_free_committed_pages_since_last_scavenge_;
1409 #endif
1410
1411   bool GrowHeap(Length n);
1412
1413   // REQUIRES   span->length >= n
1414   // Remove span from its free list, and move any leftover part of
1415   // span into appropriate free lists.  Also update "span" to have
1416   // length exactly "n" and mark it as non-free so it can be returned
1417   // to the client.
1418   //
1419   // "released" is true iff "span" was found on a "returned" list.
1420   void Carve(Span* span, Length n, bool released);
1421
1422   void RecordSpan(Span* span) {
1423     pagemap_.set(span->start, span);
1424     if (span->length > 1) {
1425       pagemap_.set(span->start + span->length - 1, span);
1426     }
1427   }
1428   
1429     // Allocate a large span of length == n.  If successful, returns a
1430   // span of exactly the specified length.  Else, returns NULL.
1431   Span* AllocLarge(Length n);
1432
1433 #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1434   // Incrementally release some memory to the system.
1435   // IncrementalScavenge(n) is called whenever n pages are freed.
1436   void IncrementalScavenge(Length n);
1437 #endif
1438
1439   // Number of pages to deallocate before doing more scavenging
1440   int64_t scavenge_counter_;
1441
1442   // Index of last free list we scavenged
1443   size_t scavenge_index_;
1444   
1445 #if defined(WTF_CHANGES) && OS(DARWIN)
1446   friend class FastMallocZone;
1447 #endif
1448
1449 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1450   void initializeScavenger();
1451   ALWAYS_INLINE void signalScavenger();
1452   void scavenge();
1453   ALWAYS_INLINE bool shouldScavenge() const;
1454
1455 #if HAVE(DISPATCH_H) || OS(WINDOWS)
1456   void periodicScavenge();
1457   ALWAYS_INLINE bool isScavengerSuspended();
1458   ALWAYS_INLINE void scheduleScavenger();
1459   ALWAYS_INLINE void rescheduleScavenger();
1460   ALWAYS_INLINE void suspendScavenger();
1461 #endif
1462
1463 #if HAVE(DISPATCH_H)
1464   dispatch_queue_t m_scavengeQueue;
1465   dispatch_source_t m_scavengeTimer;
1466   bool m_scavengingSuspended;
1467 #elif OS(WINDOWS)
1468   static void CALLBACK scavengerTimerFired(void*, BOOLEAN);
1469   HANDLE m_scavengeQueueTimer;
1470 #else 
1471   static NO_RETURN_WITH_VALUE void* runScavengerThread(void*);
1472   NO_RETURN void scavengerThread();
1473
1474   // Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or
1475   // it's blocked waiting for more pages to be deleted.
1476   bool m_scavengeThreadActive;
1477
1478   pthread_mutex_t m_scavengeMutex;
1479   pthread_cond_t m_scavengeCondition;
1480 #endif
1481
1482 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1483 };
1484
1485 void TCMalloc_PageHeap::init()
1486 {
1487   pagemap_.init(MetaDataAlloc);
1488   pagemap_cache_ = PageMapCache(0);
1489   free_pages_ = 0;
1490   system_bytes_ = 0;
1491
1492 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1493   free_committed_pages_ = 0;
1494   min_free_committed_pages_since_last_scavenge_ = 0;
1495 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1496
1497   scavenge_counter_ = 0;
1498   // Start scavenging at kMaxPages list
1499   scavenge_index_ = kMaxPages-1;
1500   COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1501   DLL_Init(&large_.normal);
1502   DLL_Init(&large_.returned);
1503   for (size_t i = 0; i < kMaxPages; i++) {
1504     DLL_Init(&free_[i].normal);
1505     DLL_Init(&free_[i].returned);
1506   }
1507
1508 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1509   initializeScavenger();
1510 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1511 }
1512
1513 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1514
1515 #if HAVE(DISPATCH_H)
1516
1517 void TCMalloc_PageHeap::initializeScavenger()
1518 {
1519     m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL);
1520     m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue);
1521     dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeDelayInSeconds * NSEC_PER_SEC);
1522     dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC);
1523     dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); });
1524     m_scavengingSuspended = true;
1525 }
1526
1527 ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1528 {
1529     ASSERT(IsHeld(pageheap_lock));
1530     return m_scavengingSuspended;
1531 }
1532
1533 ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1534 {
1535     ASSERT(IsHeld(pageheap_lock));
1536     m_scavengingSuspended = false;
1537     dispatch_resume(m_scavengeTimer);
1538 }
1539
1540 ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1541 {
1542     // Nothing to do here for libdispatch.
1543 }
1544
1545 ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1546 {
1547     ASSERT(IsHeld(pageheap_lock));
1548     m_scavengingSuspended = true;
1549     dispatch_suspend(m_scavengeTimer);
1550 }
1551
1552 #elif OS(WINDOWS)
1553
1554 void TCMalloc_PageHeap::scavengerTimerFired(void* context, BOOLEAN)
1555 {
1556     static_cast<TCMalloc_PageHeap*>(context)->periodicScavenge();
1557 }
1558
1559 void TCMalloc_PageHeap::initializeScavenger()
1560 {
1561     m_scavengeQueueTimer = 0;
1562 }
1563
1564 ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1565 {
1566     ASSERT(IsHeld(pageheap_lock));
1567     return !m_scavengeQueueTimer;
1568 }
1569
1570 ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1571 {
1572     // We need to use WT_EXECUTEONLYONCE here and reschedule the timer, because
1573     // Windows will fire the timer event even when the function is already running.
1574     ASSERT(IsHeld(pageheap_lock));
1575     CreateTimerQueueTimer(&m_scavengeQueueTimer, 0, scavengerTimerFired, this, kScavengeDelayInSeconds * 1000, 0, WT_EXECUTEONLYONCE);
1576 }
1577
1578 ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1579 {
1580     // We must delete the timer and create it again, because it is not possible to retrigger a timer on Windows.
1581     suspendScavenger();
1582     scheduleScavenger();
1583 }
1584
1585 ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1586 {
1587     ASSERT(IsHeld(pageheap_lock));
1588     HANDLE scavengeQueueTimer = m_scavengeQueueTimer;
1589     m_scavengeQueueTimer = 0;
1590     DeleteTimerQueueTimer(0, scavengeQueueTimer, 0);
1591 }
1592
1593 #else
1594
1595 void TCMalloc_PageHeap::initializeScavenger()
1596 {
1597     // Create a non-recursive mutex.
1598 #if !defined(PTHREAD_MUTEX_NORMAL) || PTHREAD_MUTEX_NORMAL == PTHREAD_MUTEX_DEFAULT
1599     pthread_mutex_init(&m_scavengeMutex, 0);
1600 #else
1601     pthread_mutexattr_t attr;
1602     pthread_mutexattr_init(&attr);
1603     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1604
1605     pthread_mutex_init(&m_scavengeMutex, &attr);
1606
1607     pthread_mutexattr_destroy(&attr);
1608 #endif
1609
1610     pthread_cond_init(&m_scavengeCondition, 0);
1611     m_scavengeThreadActive = true;
1612     pthread_t thread;
1613     pthread_create(&thread, 0, runScavengerThread, this);
1614 }
1615
1616 void* TCMalloc_PageHeap::runScavengerThread(void* context)
1617 {
1618   static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
1619 #if COMPILER(MSVC)
1620   // Without this, Visual Studio will complain that this method does not return a value.
1621   return 0;
1622 #endif
1623 }
1624
1625 ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
1626 {
1627     // m_scavengeMutex should be held before accessing m_scavengeThreadActive.
1628     ASSERT(pthread_mutex_trylock(m_scavengeMutex));
1629     if (!m_scavengeThreadActive && shouldScavenge())
1630         pthread_cond_signal(&m_scavengeCondition);
1631 }
1632
1633 #endif
1634
1635 void TCMalloc_PageHeap::scavenge()
1636 {
1637     size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage;
1638     size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease);
1639
1640     while (free_committed_pages_ > targetPageCount) {
1641         for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) {
1642             SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
1643             // If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span.  
1644             // Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left.
1645             size_t length = DLL_Length(&slist->normal);
1646             size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? length : length / 2;
1647             for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal) && free_committed_pages_ > targetPageCount; j++) {
1648                 Span* s = slist->normal.prev; 
1649                 DLL_Remove(s);
1650                 ASSERT(!s->decommitted);
1651                 if (!s->decommitted) {
1652                     TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1653                                            static_cast<size_t>(s->length << kPageShift));
1654                     ASSERT(free_committed_pages_ >= s->length);
1655                     free_committed_pages_ -= s->length;
1656                     s->decommitted = true;
1657                 }
1658                 DLL_Prepend(&slist->returned, s);
1659             }
1660         }
1661     }
1662
1663     min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1664 }
1665
1666 ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const 
1667 {
1668     return free_committed_pages_ > kMinimumFreeCommittedPageCount; 
1669 }
1670
1671 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1672
1673 inline Span* TCMalloc_PageHeap::New(Length n) {
1674   ASSERT(Check());
1675   ASSERT(n > 0);
1676
1677   // Find first size >= n that has a non-empty list
1678   for (Length s = n; s < kMaxPages; s++) {
1679     Span* ll = NULL;
1680     bool released = false;
1681     if (!DLL_IsEmpty(&free_[s].normal)) {
1682       // Found normal span
1683       ll = &free_[s].normal;
1684     } else if (!DLL_IsEmpty(&free_[s].returned)) {
1685       // Found returned span; reallocate it
1686       ll = &free_[s].returned;
1687       released = true;
1688     } else {
1689       // Keep looking in larger classes
1690       continue;
1691     }
1692
1693     Span* result = ll->next;
1694     Carve(result, n, released);
1695 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1696     // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1697     // free committed pages count.
1698     ASSERT(free_committed_pages_ >= n);
1699     free_committed_pages_ -= n;
1700     if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_) 
1701       min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1702 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1703     ASSERT(Check());
1704     free_pages_ -= n;
1705     return result;
1706   }
1707
1708   Span* result = AllocLarge(n);
1709   if (result != NULL) {
1710       ASSERT_SPAN_COMMITTED(result);
1711       return result;
1712   }
1713
1714   // Grow the heap and try again
1715   if (!GrowHeap(n)) {
1716     ASSERT(Check());
1717     return NULL;
1718   }
1719
1720   return AllocLarge(n);
1721 }
1722
1723 Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1724   // find the best span (closest to n in size).
1725   // The following loops implements address-ordered best-fit.
1726   bool from_released = false;
1727   Span *best = NULL;
1728
1729   // Search through normal list
1730   for (Span* span = large_.normal.next;
1731        span != &large_.normal;
1732        span = span->next) {
1733     if (span->length >= n) {
1734       if ((best == NULL)
1735           || (span->length < best->length)
1736           || ((span->length == best->length) && (span->start < best->start))) {
1737         best = span;
1738         from_released = false;
1739       }
1740     }
1741   }
1742
1743   // Search through released list in case it has a better fit
1744   for (Span* span = large_.returned.next;
1745        span != &large_.returned;
1746        span = span->next) {
1747     if (span->length >= n) {
1748       if ((best == NULL)
1749           || (span->length < best->length)
1750           || ((span->length == best->length) && (span->start < best->start))) {
1751         best = span;
1752         from_released = true;
1753       }
1754     }
1755   }
1756
1757   if (best != NULL) {
1758     Carve(best, n, from_released);
1759 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1760     // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1761     // free committed pages count.
1762     ASSERT(free_committed_pages_ >= n);
1763     free_committed_pages_ -= n;
1764     if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1765       min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1766 #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1767     ASSERT(Check());
1768     free_pages_ -= n;
1769     return best;
1770   }
1771   return NULL;
1772 }
1773
1774 Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1775   ASSERT(0 < n);
1776   ASSERT(n < span->length);
1777   ASSERT(!span->free);
1778   ASSERT(span->sizeclass == 0);
1779   Event(span, 'T', n);
1780
1781   const Length extra = span->length - n;
1782   Span* leftover = NewSpan(span->start + n, extra);
1783   Event(leftover, 'U', extra);
1784   RecordSpan(leftover);
1785   pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1786   span->length = n;
1787
1788   return leftover;
1789 }
1790
1791 inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1792   ASSERT(n > 0);
1793   DLL_Remove(span);
1794   span->free = 0;
1795   Event(span, 'A', n);
1796
1797   if (released) {
1798     // If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time.
1799     ASSERT(span->decommitted);
1800     TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift));
1801     span->decommitted = false;
1802 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1803     free_committed_pages_ += span->length;
1804 #endif
1805   }
1806   
1807   const int extra = static_cast<int>(span->length - n);
1808   ASSERT(extra >= 0);
1809   if (extra > 0) {
1810     Span* leftover = NewSpan(span->start + n, extra);
1811     leftover->free = 1;
1812     leftover->decommitted = false;
1813     Event(leftover, 'S', extra);
1814     RecordSpan(leftover);
1815
1816     // Place leftover span on appropriate free list
1817     SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1818     Span* dst = &listpair->normal;
1819     DLL_Prepend(dst, leftover);
1820
1821     span->length = n;
1822     pagemap_.set(span->start + n - 1, span);
1823   }
1824 }
1825
1826 static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
1827 {
1828     if (destination->decommitted && !other->decommitted) {
1829         TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
1830                                static_cast<size_t>(other->length << kPageShift));
1831     } else if (other->decommitted && !destination->decommitted) {
1832         TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
1833                                static_cast<size_t>(destination->length << kPageShift));
1834         destination->decommitted = true;
1835     }
1836 }
1837
1838 inline void TCMalloc_PageHeap::Delete(Span* span) {
1839   ASSERT(Check());
1840   ASSERT(!span->free);
1841   ASSERT(span->length > 0);
1842   ASSERT(GetDescriptor(span->start) == span);
1843   ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1844   span->sizeclass = 0;
1845 #ifndef NO_TCMALLOC_SAMPLES
1846   span->sample = 0;
1847 #endif
1848
1849   // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1850   // necessary.  We do not bother resetting the stale pagemap
1851   // entries for the pieces we are merging together because we only
1852   // care about the pagemap entries for the boundaries.
1853 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1854   // Track the total size of the neighboring free spans that are committed.
1855   Length neighboringCommittedSpansLength = 0;
1856 #endif
1857   const PageID p = span->start;
1858   const Length n = span->length;
1859   Span* prev = GetDescriptor(p-1);
1860   if (prev != NULL && prev->free) {
1861     // Merge preceding span into this span
1862     ASSERT(prev->start + prev->length == p);
1863     const Length len = prev->length;
1864 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1865     if (!prev->decommitted)
1866         neighboringCommittedSpansLength += len;
1867 #endif
1868     mergeDecommittedStates(span, prev);
1869     DLL_Remove(prev);
1870     DeleteSpan(prev);
1871     span->start -= len;
1872     span->length += len;
1873     pagemap_.set(span->start, span);
1874     Event(span, 'L', len);
1875   }
1876   Span* next = GetDescriptor(p+n);
1877   if (next != NULL && next->free) {
1878     // Merge next span into this span
1879     ASSERT(next->start == p+n);
1880     const Length len = next->length;
1881 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1882     if (!next->decommitted)
1883         neighboringCommittedSpansLength += len;
1884 #endif
1885     mergeDecommittedStates(span, next);
1886     DLL_Remove(next);
1887     DeleteSpan(next);
1888     span->length += len;
1889     pagemap_.set(span->start + span->length - 1, span);
1890     Event(span, 'R', len);
1891   }
1892
1893   Event(span, 'D', span->length);
1894   span->free = 1;
1895   if (span->decommitted) {
1896     if (span->length < kMaxPages)
1897       DLL_Prepend(&free_[span->length].returned, span);
1898     else
1899       DLL_Prepend(&large_.returned, span);
1900   } else {
1901     if (span->length < kMaxPages)
1902       DLL_Prepend(&free_[span->length].normal, span);
1903     else
1904       DLL_Prepend(&large_.normal, span);
1905   }
1906   free_pages_ += n;
1907
1908 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1909   if (span->decommitted) {
1910       // If the merged span is decommitted, that means we decommitted any neighboring spans that were
1911       // committed.  Update the free committed pages count.
1912       free_committed_pages_ -= neighboringCommittedSpansLength;
1913       if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1914             min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1915   } else {
1916       // If the merged span remains committed, add the deleted span's size to the free committed pages count.
1917       free_committed_pages_ += n;
1918   }
1919
1920   // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
1921   signalScavenger();
1922 #else
1923   IncrementalScavenge(n);
1924 #endif
1925
1926   ASSERT(Check());
1927 }
1928
1929 #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1930 void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
1931   // Fast path; not yet time to release memory
1932   scavenge_counter_ -= n;
1933   if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge
1934
1935   // If there is nothing to release, wait for so many pages before
1936   // scavenging again.  With 4K pages, this comes to 16MB of memory.
1937   static const size_t kDefaultReleaseDelay = 1 << 8;
1938
1939   // Find index of free list to scavenge
1940   size_t index = scavenge_index_ + 1;
1941   for (size_t i = 0; i < kMaxPages+1; i++) {
1942     if (index > kMaxPages) index = 0;
1943     SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
1944     if (!DLL_IsEmpty(&slist->normal)) {
1945       // Release the last span on the normal portion of this list
1946       Span* s = slist->normal.prev;
1947       DLL_Remove(s);
1948       TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1949                              static_cast<size_t>(s->length << kPageShift));
1950       s->decommitted = true;
1951       DLL_Prepend(&slist->returned, s);
1952
1953       scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
1954
1955       if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
1956         scavenge_index_ = index - 1;
1957       else
1958         scavenge_index_ = index;
1959       return;
1960     }
1961     index++;
1962   }
1963
1964   // Nothing to scavenge, delay for a while
1965   scavenge_counter_ = kDefaultReleaseDelay;
1966 }
1967 #endif
1968
1969 void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
1970   // Associate span object with all interior pages as well
1971   ASSERT(!span->free);
1972   ASSERT(GetDescriptor(span->start) == span);
1973   ASSERT(GetDescriptor(span->start+span->length-1) == span);
1974   Event(span, 'C', sc);
1975   span->sizeclass = static_cast<unsigned int>(sc);
1976   for (Length i = 1; i < span->length-1; i++) {
1977     pagemap_.set(span->start+i, span);
1978   }
1979 }
1980     
1981 #ifdef WTF_CHANGES
1982 size_t TCMalloc_PageHeap::ReturnedBytes() const {
1983     size_t result = 0;
1984     for (unsigned s = 0; s < kMaxPages; s++) {
1985         const int r_length = DLL_Length(&free_[s].returned);
1986         unsigned r_pages = s * r_length;
1987         result += r_pages << kPageShift;
1988     }
1989     
1990     for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
1991         result += s->length << kPageShift;
1992     return result;
1993 }
1994 #endif
1995
1996 #ifndef WTF_CHANGES
1997 static double PagesToMB(uint64_t pages) {
1998   return (pages << kPageShift) / 1048576.0;
1999 }
2000
2001 void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
2002   int nonempty_sizes = 0;
2003   for (int s = 0; s < kMaxPages; s++) {
2004     if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
2005       nonempty_sizes++;
2006     }
2007   }
2008   out->printf("------------------------------------------------\n");
2009   out->printf("PageHeap: %d sizes; %6.1f MB free\n",
2010               nonempty_sizes, PagesToMB(free_pages_));
2011   out->printf("------------------------------------------------\n");
2012   uint64_t total_normal = 0;
2013   uint64_t total_returned = 0;
2014   for (int s = 0; s < kMaxPages; s++) {
2015     const int n_length = DLL_Length(&free_[s].normal);
2016     const int r_length = DLL_Length(&free_[s].returned);
2017     if (n_length + r_length > 0) {
2018       uint64_t n_pages = s * n_length;
2019       uint64_t r_pages = s * r_length;
2020       total_normal += n_pages;
2021       total_returned += r_pages;
2022       out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
2023                   "; unmapped: %6.1f MB; %6.1f MB cum\n",
2024                   s,
2025                   (n_length + r_length),
2026                   PagesToMB(n_pages + r_pages),
2027                   PagesToMB(total_normal + total_returned),
2028                   PagesToMB(r_pages),
2029                   PagesToMB(total_returned));
2030     }
2031   }
2032
2033   uint64_t n_pages = 0;
2034   uint64_t r_pages = 0;
2035   int n_spans = 0;
2036   int r_spans = 0;
2037   out->printf("Normal large spans:\n");
2038   for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
2039     out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
2040                 s->length, PagesToMB(s->length));
2041     n_pages += s->length;
2042     n_spans++;
2043   }
2044   out->printf("Unmapped large spans:\n");
2045   for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
2046     out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
2047                 s->length, PagesToMB(s->length));
2048     r_pages += s->length;
2049     r_spans++;
2050   }
2051   total_normal += n_pages;
2052   total_returned += r_pages;
2053   out->printf(">255   large * %6u spans ~ %6.1f MB; %6.1f MB cum"
2054               "; unmapped: %6.1f MB; %6.1f MB cum\n",
2055               (n_spans + r_spans),
2056               PagesToMB(n_pages + r_pages),
2057               PagesToMB(total_normal + total_returned),
2058               PagesToMB(r_pages),
2059               PagesToMB(total_returned));
2060 }
2061 #endif
2062
2063 bool TCMalloc_PageHeap::GrowHeap(Length n) {
2064   ASSERT(kMaxPages >= kMinSystemAlloc);
2065   if (n > kMaxValidPages) return false;
2066   Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
2067   size_t actual_size;
2068   void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2069   if (ptr == NULL) {
2070     if (n < ask) {
2071       // Try growing just "n" pages
2072       ask = n;
2073       ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2074     }
2075     if (ptr == NULL) return false;
2076   }
2077   ask = actual_size >> kPageShift;
2078
2079   uint64_t old_system_bytes = system_bytes_;
2080   system_bytes_ += (ask << kPageShift);
2081   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2082   ASSERT(p > 0);
2083
2084   // If we have already a lot of pages allocated, just pre allocate a bunch of
2085   // memory for the page map. This prevents fragmentation by pagemap metadata
2086   // when a program keeps allocating and freeing large blocks.
2087
2088   if (old_system_bytes < kPageMapBigAllocationThreshold
2089       && system_bytes_ >= kPageMapBigAllocationThreshold) {
2090     pagemap_.PreallocateMoreMemory();
2091   }
2092
2093   // Make sure pagemap_ has entries for all of the new pages.
2094   // Plus ensure one before and one after so coalescing code
2095   // does not need bounds-checking.
2096   if (pagemap_.Ensure(p-1, ask+2)) {
2097     // Pretend the new area is allocated and then Delete() it to
2098     // cause any necessary coalescing to occur.
2099     //
2100     // We do not adjust free_pages_ here since Delete() will do it for us.
2101     Span* span = NewSpan(p, ask);
2102     RecordSpan(span);
2103     Delete(span);
2104     ASSERT(Check());
2105     return true;
2106   } else {
2107     // We could not allocate memory within "pagemap_"
2108     // TODO: Once we can return memory to the system, return the new span
2109     return false;
2110   }
2111 }
2112
2113 bool TCMalloc_PageHeap::Check() {
2114   ASSERT(free_[0].normal.next == &free_[0].normal);
2115   ASSERT(free_[0].returned.next == &free_[0].returned);
2116   CheckList(&large_.normal, kMaxPages, 1000000000);
2117   CheckList(&large_.returned, kMaxPages, 1000000000);
2118   for (Length s = 1; s < kMaxPages; s++) {
2119     CheckList(&free_[s].normal, s, s);
2120     CheckList(&free_[s].returned, s, s);
2121   }
2122   return true;
2123 }
2124
2125 #if ASSERT_DISABLED
2126 bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
2127   return true;
2128 }
2129 #else
2130 bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
2131   for (Span* s = list->next; s != list; s = s->next) {
2132     CHECK_CONDITION(s->free);
2133     CHECK_CONDITION(s->length >= min_pages);
2134     CHECK_CONDITION(s->length <= max_pages);
2135     CHECK_CONDITION(GetDescriptor(s->start) == s);
2136     CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
2137   }
2138   return true;
2139 }
2140 #endif
2141
2142 static void ReleaseFreeList(Span* list, Span* returned) {
2143   // Walk backwards through list so that when we push these
2144   // spans on the "returned" list, we preserve the order.
2145   while (!DLL_IsEmpty(list)) {
2146     Span* s = list->prev;
2147     DLL_Remove(s);
2148     DLL_Prepend(returned, s);
2149     TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
2150                            static_cast<size_t>(s->length << kPageShift));
2151   }
2152 }
2153
2154 void TCMalloc_PageHeap::ReleaseFreePages() {
2155   for (Length s = 0; s < kMaxPages; s++) {
2156     ReleaseFreeList(&free_[s].normal, &free_[s].returned);
2157   }
2158   ReleaseFreeList(&large_.normal, &large_.returned);
2159   ASSERT(Check());
2160 }
2161
2162 //-------------------------------------------------------------------
2163 // Free list
2164 //-------------------------------------------------------------------
2165
2166 class TCMalloc_ThreadCache_FreeList {
2167  private:
2168   void*    list_;       // Linked list of nodes
2169   uint16_t length_;     // Current length
2170   uint16_t lowater_;    // Low water mark for list length
2171
2172  public:
2173   void Init() {
2174     list_ = NULL;
2175     length_ = 0;
2176     lowater_ = 0;
2177   }
2178
2179   // Return current length of list
2180   int length() const {
2181     return length_;
2182   }
2183
2184   // Is list empty?
2185   bool empty() const {
2186     return list_ == NULL;
2187   }
2188
2189   // Low-water mark management
2190   int lowwatermark() const { return lowater_; }
2191   void clear_lowwatermark() { lowater_ = length_; }
2192
2193   ALWAYS_INLINE void Push(void* ptr) {
2194     SLL_Push(&list_, ptr);
2195     length_++;
2196   }
2197
2198   void PushRange(int N, void *start, void *end) {
2199     SLL_PushRange(&list_, start, end);
2200     length_ = length_ + static_cast<uint16_t>(N);
2201   }
2202
2203   void PopRange(int N, void **start, void **end) {
2204     SLL_PopRange(&list_, N, start, end);
2205     ASSERT(length_ >= N);
2206     length_ = length_ - static_cast<uint16_t>(N);
2207     if (length_ < lowater_) lowater_ = length_;
2208   }
2209
2210   ALWAYS_INLINE void* Pop() {
2211     ASSERT(list_ != NULL);
2212     length_--;
2213     if (length_ < lowater_) lowater_ = length_;
2214     return SLL_Pop(&list_);
2215   }
2216
2217 #ifdef WTF_CHANGES
2218   template <class Finder, class Reader>
2219   void enumerateFreeObjects(Finder& finder, const Reader& reader)
2220   {
2221       for (void* nextObject = list_; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
2222           finder.visit(nextObject);
2223   }
2224 #endif
2225 };
2226
2227 //-------------------------------------------------------------------
2228 // Data kept per thread
2229 //-------------------------------------------------------------------
2230
2231 class TCMalloc_ThreadCache {
2232  private:
2233   typedef TCMalloc_ThreadCache_FreeList FreeList;
2234 #if OS(WINDOWS)
2235   typedef DWORD ThreadIdentifier;
2236 #else
2237   typedef pthread_t ThreadIdentifier;
2238 #endif
2239
2240   size_t        size_;                  // Combined size of data
2241   ThreadIdentifier tid_;                // Which thread owns it
2242   bool          in_setspecific_;           // Called pthread_setspecific?
2243   FreeList      list_[kNumClasses];     // Array indexed by size-class
2244
2245   // We sample allocations, biased by the size of the allocation
2246   uint32_t      rnd_;                   // Cheap random number generator
2247   size_t        bytes_until_sample_;    // Bytes until we sample next
2248
2249   // Allocate a new heap. REQUIRES: pageheap_lock is held.
2250   static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
2251
2252   // Use only as pthread thread-specific destructor function.
2253   static void DestroyThreadCache(void* ptr);
2254  public:
2255   // All ThreadCache objects are kept in a linked list (for stats collection)
2256   TCMalloc_ThreadCache* next_;
2257   TCMalloc_ThreadCache* prev_;
2258
2259   void Init(ThreadIdentifier tid);
2260   void Cleanup();
2261
2262   // Accessors (mostly just for printing stats)
2263   int freelist_length(size_t cl) const { return list_[cl].length(); }
2264
2265   // Total byte size in cache
2266   size_t Size() const { return size_; }
2267
2268   ALWAYS_INLINE void* Allocate(size_t size);
2269   void Deallocate(void* ptr, size_t size_class);
2270
2271   ALWAYS_INLINE void FetchFromCentralCache(size_t cl, size_t allocationSize);
2272   void ReleaseToCentralCache(size_t cl, int N);
2273   void Scavenge();
2274   void Print() const;
2275
2276   // Record allocation of "k" bytes.  Return true iff allocation
2277   // should be sampled
2278   bool SampleAllocation(size_t k);
2279
2280   // Pick next sampling point
2281   void PickNextSample(size_t k);
2282
2283   static void                  InitModule();
2284   static void                  InitTSD();
2285   static TCMalloc_ThreadCache* GetThreadHeap();
2286   static TCMalloc_ThreadCache* GetCache();
2287   static TCMalloc_ThreadCache* GetCacheIfPresent();
2288   static TCMalloc_ThreadCache* CreateCacheIfNecessary();
2289   static void                  DeleteCache(TCMalloc_ThreadCache* heap);
2290   static void                  BecomeIdle();
2291   static void                  RecomputeThreadCacheSize();
2292
2293 #ifdef WTF_CHANGES
2294   template <class Finder, class Reader>
2295   void enumerateFreeObjects(Finder& finder, const Reader& reader)
2296   {
2297       for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
2298           list_[sizeClass].enumerateFreeObjects(finder, reader);
2299   }
2300 #endif
2301 };
2302
2303 //-------------------------------------------------------------------
2304 // Data kept per size-class in central cache
2305 //-------------------------------------------------------------------
2306
2307 class TCMalloc_Central_FreeList {
2308  public:
2309   void Init(size_t cl);
2310
2311   // These methods all do internal locking.
2312
2313   // Insert the specified range into the central freelist.  N is the number of
2314   // elements in the range.
2315   void InsertRange(void *start, void *end, int N);
2316
2317   // Returns the actual number of fetched elements into N.
2318   void RemoveRange(void **start, void **end, int *N);
2319
2320   // Returns the number of free objects in cache.
2321   size_t length() {
2322     SpinLockHolder h(&lock_);
2323     return counter_;
2324   }
2325
2326   // Returns the number of free objects in the transfer cache.
2327   int tc_length() {
2328     SpinLockHolder h(&lock_);
2329     return used_slots_ * num_objects_to_move[size_class_];
2330   }
2331
2332 #ifdef WTF_CHANGES
2333   template <class Finder, class Reader>
2334   void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
2335   {
2336     for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
2337       ASSERT(!span->objects);
2338
2339     ASSERT(!nonempty_.objects);
2340     static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
2341
2342     Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
2343     Span* remoteSpan = nonempty_.next;
2344
2345     for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
2346       for (void* nextObject = span->objects; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
2347         finder.visit(nextObject);
2348     }
2349   }
2350 #endif
2351
2352  private:
2353   // REQUIRES: lock_ is held
2354   // Remove object from cache and return.
2355   // Return NULL if no free entries in cache.
2356   void* FetchFromSpans();
2357
2358   // REQUIRES: lock_ is held
2359   // Remove object from cache and return.  Fetches
2360   // from pageheap if cache is empty.  Only returns
2361   // NULL on allocation failure.
2362   void* FetchFromSpansSafe();
2363
2364   // REQUIRES: lock_ is held
2365   // Release a linked list of objects to spans.
2366   // May temporarily release lock_.
2367   void ReleaseListToSpans(void *start);
2368
2369   // REQUIRES: lock_ is held
2370   // Release an object to spans.
2371   // May temporarily release lock_.
2372   ALWAYS_INLINE void ReleaseToSpans(void* object);
2373
2374   // REQUIRES: lock_ is held
2375   // Populate cache by fetching from the page heap.
2376   // May temporarily release lock_.
2377   ALWAYS_INLINE void Populate();
2378
2379   // REQUIRES: lock is held.
2380   // Tries to make room for a TCEntry.  If the cache is full it will try to
2381   // expand it at the cost of some other cache size.  Return false if there is
2382   // no space.
2383   bool MakeCacheSpace();
2384
2385   // REQUIRES: lock_ for locked_size_class is held.
2386   // Picks a "random" size class to steal TCEntry slot from.  In reality it
2387   // just iterates over the sizeclasses but does so without taking a lock.
2388   // Returns true on success.
2389   // May temporarily lock a "random" size class.
2390   static ALWAYS_INLINE bool EvictRandomSizeClass(size_t locked_size_class, bool force);
2391
2392   // REQUIRES: lock_ is *not* held.
2393   // Tries to shrink the Cache.  If force is true it will relase objects to
2394   // spans if it allows it to shrink the cache.  Return false if it failed to
2395   // shrink the cache.  Decrements cache_size_ on succeess.
2396   // May temporarily take lock_.  If it takes lock_, the locked_size_class
2397   // lock is released to the thread from holding two size class locks
2398   // concurrently which could lead to a deadlock.
2399   bool ShrinkCache(int locked_size_class, bool force);
2400
2401   // This lock protects all the data members.  cached_entries and cache_size_
2402   // may be looked at without holding the lock.
2403   SpinLock lock_;
2404
2405   // We keep linked lists of empty and non-empty spans.
2406   size_t   size_class_;     // My size class
2407   Span     empty_;          // Dummy header for list of empty spans
2408   Span     nonempty_;       // Dummy header for list of non-empty spans
2409   size_t   counter_;        // Number of free objects in cache entry
2410
2411   // Here we reserve space for TCEntry cache slots.  Since one size class can
2412   // end up getting all the TCEntries quota in the system we just preallocate
2413   // sufficient number of entries here.
2414   TCEntry tc_slots_[kNumTransferEntries];
2415
2416   // Number of currently used cached entries in tc_slots_.  This variable is
2417   // updated under a lock but can be read without one.
2418   int32_t used_slots_;
2419   // The current number of slots for this size class.  This is an
2420   // adaptive value that is increased if there is lots of traffic
2421   // on a given size class.
2422   int32_t cache_size_;
2423 };
2424
2425 // Pad each CentralCache object to multiple of 64 bytes
2426 class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
2427  private:
2428   char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
2429 };
2430
2431 //-------------------------------------------------------------------
2432 // Global variables
2433 //-------------------------------------------------------------------
2434
2435 // Central cache -- a collection of free-lists, one per size-class.
2436 // We have a separate lock per free-list to reduce contention.
2437 static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
2438
2439 // Page-level allocator
2440 static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
2441 static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)];
2442 static bool phinited = false;
2443
2444 // Avoid extra level of indirection by making "pageheap" be just an alias
2445 // of pageheap_memory.
2446 typedef union {
2447     void* m_memory;
2448     TCMalloc_PageHeap* m_pageHeap;
2449 } PageHeapUnion;
2450
2451 static inline TCMalloc_PageHeap* getPageHeap()
2452 {
2453     PageHeapUnion u = { &pageheap_memory[0] };
2454     return u.m_pageHeap;
2455 }
2456
2457 #define pageheap getPageHeap()
2458
2459 #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2460
2461 #if HAVE(DISPATCH_H) || OS(WINDOWS)
2462
2463 void TCMalloc_PageHeap::periodicScavenge()
2464 {
2465     SpinLockHolder h(&pageheap_lock);
2466     pageheap->scavenge();
2467
2468     if (shouldScavenge()) {
2469         rescheduleScavenger();
2470         return;
2471     }
2472
2473     suspendScavenger();
2474 }
2475
2476 ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
2477 {
2478     ASSERT(IsHeld(pageheap_lock));
2479     if (isScavengerSuspended() && shouldScavenge())
2480         scheduleScavenger();
2481 }
2482
2483 #else
2484
2485 void TCMalloc_PageHeap::scavengerThread()
2486 {
2487 #if HAVE(PTHREAD_SETNAME_NP)
2488   pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
2489 #endif
2490
2491   while (1) {
2492       if (!shouldScavenge()) {
2493           pthread_mutex_lock(&m_scavengeMutex);
2494           m_scavengeThreadActive = false;
2495           // Block until there are enough free committed pages to release back to the system.
2496           pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
2497           m_scavengeThreadActive = true;
2498           pthread_mutex_unlock(&m_scavengeMutex);
2499       }
2500       sleep(kScavengeDelayInSeconds);
2501       {
2502           SpinLockHolder h(&pageheap_lock);
2503           pageheap->scavenge();
2504       }
2505   }
2506 }
2507
2508 #endif
2509
2510 #endif
2511
2512 // If TLS is available, we also store a copy
2513 // of the per-thread object in a __thread variable
2514 // since __thread variables are faster to read
2515 // than pthread_getspecific().  We still need
2516 // pthread_setspecific() because __thread
2517 // variables provide no way to run cleanup
2518 // code when a thread is destroyed.
2519 #ifdef HAVE_TLS
2520 static __thread TCMalloc_ThreadCache *threadlocal_heap;
2521 #endif
2522 // Thread-specific key.  Initialization here is somewhat tricky
2523 // because some Linux startup code invokes malloc() before it
2524 // is in a good enough state to handle pthread_keycreate().
2525 // Therefore, we use TSD keys only after tsd_inited is set to true.
2526 // Until then, we use a slow path to get the heap object.
2527 static bool tsd_inited = false;
2528 #if USE(PTHREAD_GETSPECIFIC_DIRECT)
2529 static const pthread_key_t heap_key = __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0;
2530 #else
2531 static pthread_key_t heap_key;
2532 #endif
2533 #if OS(WINDOWS)
2534 DWORD tlsIndex = TLS_OUT_OF_INDEXES;
2535 #endif
2536
2537 static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
2538 {
2539 #if USE(PTHREAD_GETSPECIFIC_DIRECT)
2540     // Can't have two libraries both doing this in the same process,
2541     // so check and make this crash right away.
2542     if (pthread_getspecific(heap_key))
2543         CRASH();
2544 #endif
2545
2546     // Still do pthread_setspecific even if there's an alternate form
2547     // of thread-local storage in use, to benefit from the delete callback.
2548     pthread_setspecific(heap_key, heap);
2549
2550 #if OS(WINDOWS)
2551     TlsSetValue(tlsIndex, heap);
2552 #endif
2553 }
2554
2555 // Allocator for thread heaps
2556 static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
2557
2558 // Linked list of heap objects.  Protected by pageheap_lock.
2559 static TCMalloc_ThreadCache* thread_heaps = NULL;
2560 static int thread_heap_count = 0;
2561
2562 // Overall thread cache size.  Protected by pageheap_lock.
2563 static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
2564
2565 // Global per-thread cache size.  Writes are protected by
2566 // pageheap_lock.  Reads are done without any locking, which should be
2567 // fine as long as size_t can be written atomically and we don't place
2568 // invariants between this variable and other pieces of state.
2569 static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
2570
2571 //-------------------------------------------------------------------
2572 // Central cache implementation
2573 //-------------------------------------------------------------------
2574
2575 void TCMalloc_Central_FreeList::Init(size_t cl) {
2576   lock_.Init();
2577   size_class_ = cl;
2578   DLL_Init(&empty_);
2579   DLL_Init(&nonempty_);
2580   counter_ = 0;
2581
2582   cache_size_ = 1;
2583   used_slots_ = 0;
2584   ASSERT(cache_size_ <= kNumTransferEntries);
2585 }
2586
2587 void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
2588   while (start) {
2589     void *next = SLL_Next(start);
2590     ReleaseToSpans(start);
2591     start = next;
2592   }
2593 }
2594
2595 ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
2596   const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
2597   Span* span = pageheap->GetDescriptor(p);
2598   ASSERT(span != NULL);
2599   ASSERT(span->refcount > 0);
2600
2601   // If span is empty, move it to non-empty list
2602   if (span->objects == NULL) {
2603     DLL_Remove(span);
2604     DLL_Prepend(&nonempty_, span);
2605     Event(span, 'N', 0);
2606   }
2607
2608   // The following check is expensive, so it is disabled by default
2609   if (false) {
2610     // Check that object does not occur in list
2611     unsigned got = 0;
2612     for (void* p = span->objects; p != NULL; p = *((void**) p)) {
2613       ASSERT(p != object);
2614       got++;
2615     }
2616     ASSERT(got + span->refcount ==
2617            (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
2618   }
2619
2620   counter_++;
2621   span->refcount--;
2622   if (span->refcount == 0) {
2623     Event(span, '#', 0);
2624     counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
2625     DLL_Remove(span);
2626
2627     // Release central list lock while operating on pageheap
2628     lock_.Unlock();
2629     {
2630       SpinLockHolder h(&pageheap_lock);
2631       pageheap->Delete(span);
2632     }
2633     lock_.Lock();
2634   } else {
2635     *(reinterpret_cast<void**>(object)) = span->objects;
2636     span->objects = object;
2637   }
2638 }
2639
2640 ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
2641     size_t locked_size_class, bool force) {
2642   static int race_counter = 0;
2643   int t = race_counter++;  // Updated without a lock, but who cares.
2644   if (t >= static_cast<int>(kNumClasses)) {
2645     while (t >= static_cast<int>(kNumClasses)) {
2646       t -= kNumClasses;
2647     }
2648     race_counter = t;
2649   }
2650   ASSERT(t >= 0);
2651   ASSERT(t < static_cast<int>(kNumClasses));
2652   if (t == static_cast<int>(locked_size_class)) return false;
2653   return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
2654 }
2655
2656 bool TCMalloc_Central_FreeList::MakeCacheSpace() {
2657   // Is there room in the cache?
2658   if (used_slots_ < cache_size_) return true;
2659   // Check if we can expand this cache?
2660   if (cache_size_ == kNumTransferEntries) return false;
2661   // Ok, we'll try to grab an entry from some other size class.
2662   if (EvictRandomSizeClass(size_class_, false) ||
2663       EvictRandomSizeClass(size_class_, true)) {
2664     // Succeeded in evicting, we're going to make our cache larger.
2665     cache_size_++;
2666     return true;
2667   }
2668   return false;
2669 }
2670
2671
2672 namespace {
2673 class LockInverter {
2674  private:
2675   SpinLock *held_, *temp_;
2676  public:
2677   inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2678     : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
2679   inline ~LockInverter() { temp_->Unlock(); held_->Lock();  }
2680 };
2681 }
2682
2683 bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2684   // Start with a quick check without taking a lock.
2685   if (cache_size_ == 0) return false;
2686   // We don't evict from a full cache unless we are 'forcing'.
2687   if (force == false && used_slots_ == cache_size_) return false;
2688
2689   // Grab lock, but first release the other lock held by this thread.  We use
2690   // the lock inverter to ensure that we never hold two size class locks
2691   // concurrently.  That can create a deadlock because there is no well
2692   // defined nesting order.
2693   LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
2694   ASSERT(used_slots_ <= cache_size_);
2695   ASSERT(0 <= cache_size_);
2696   if (cache_size_ == 0) return false;
2697   if (used_slots_ == cache_size_) {
2698     if (force == false) return false;
2699     // ReleaseListToSpans releases the lock, so we have to make all the
2700     // updates to the central list before calling it.
2701     cache_size_--;
2702     used_slots_--;
2703     ReleaseListToSpans(tc_slots_[used_slots_].head);
2704     return true;
2705   }
2706   cache_size_--;
2707   return true;
2708 }
2709
2710 void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
2711   SpinLockHolder h(&lock_);
2712   if (N == num_objects_to_move[size_class_] &&
2713     MakeCacheSpace()) {
2714     int slot = used_slots_++;
2715     ASSERT(slot >=0);
2716     ASSERT(slot < kNumTransferEntries);
2717     TCEntry *entry = &tc_slots_[slot];
2718     entry->head = start;
2719     entry->tail = end;
2720     return;
2721   }
2722   ReleaseListToSpans(start);
2723 }
2724
2725 void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
2726   int num = *N;
2727   ASSERT(num > 0);
2728
2729   SpinLockHolder h(&lock_);
2730   if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2731     int slot = --used_slots_;
2732     ASSERT(slot >= 0);
2733     TCEntry *entry = &tc_slots_[slot];
2734     *start = entry->head;
2735     *end = entry->tail;
2736     return;
2737   }
2738
2739   // TODO: Prefetch multiple TCEntries?
2740   void *tail = FetchFromSpansSafe();
2741   if (!tail) {
2742     // We are completely out of memory.
2743     *start = *end = NULL;
2744     *N = 0;
2745     return;
2746   }
2747
2748   SLL_SetNext(tail, NULL);
2749   void *head = tail;
2750   int count = 1;
2751   while (count < num) {
2752     void *t = FetchFromSpans();
2753     if (!t) break;
2754     SLL_Push(&head, t);
2755     count++;
2756   }
2757   *start = head;
2758   *end = tail;
2759   *N = count;
2760 }
2761
2762
2763 void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2764   void *t = FetchFromSpans();
2765   if (!t) {
2766     Populate();
2767     t = FetchFromSpans();
2768   }
2769   return t;
2770 }
2771
2772 void* TCMalloc_Central_FreeList::FetchFromSpans() {
2773   if (DLL_IsEmpty(&nonempty_)) return NULL;
2774   Span* span = nonempty_.next;
2775
2776   ASSERT(span->objects != NULL);
2777   ASSERT_SPAN_COMMITTED(span);
2778   span->refcount++;
2779   void* result = span->objects;
2780   span->objects = *(reinterpret_cast<void**>(result));
2781   if (span->objects == NULL) {
2782     // Move to empty list
2783     DLL_Remove(span);
2784     DLL_Prepend(&empty_, span);
2785     Event(span, 'E', 0);
2786   }
2787   counter_--;
2788   return result;
2789 }
2790
2791 // Fetch memory from the system and add to the central cache freelist.
2792 ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2793   // Release central list lock while operating on pageheap
2794   lock_.Unlock();
2795   const size_t npages = class_to_pages[size_class_];
2796
2797   Span* span;
2798   {
2799     SpinLockHolder h(&pageheap_lock);
2800     span = pageheap->New(npages);
2801     if (span) pageheap->RegisterSizeClass(span, size_class_);
2802   }
2803   if (span == NULL) {
2804 #if HAVE(ERRNO_H)
2805     MESSAGE("allocation failed: %d\n", errno);
2806 #elif OS(WINDOWS)
2807     MESSAGE("allocation failed: %d\n", ::GetLastError());
2808 #else
2809     MESSAGE("allocation failed\n");
2810 #endif
2811     lock_.Lock();
2812     return;
2813   }
2814   ASSERT_SPAN_COMMITTED(span);
2815   ASSERT(span->length == npages);
2816   // Cache sizeclass info eagerly.  Locking is not necessary.
2817   // (Instead of being eager, we could just replace any stale info
2818   // about this span, but that seems to be no better in practice.)
2819   for (size_t i = 0; i < npages; i++) {
2820     pageheap->CacheSizeClass(span->start + i, size_class_);
2821   }
2822
2823   // Split the block into pieces and add to the free-list
2824   // TODO: coloring of objects to avoid cache conflicts?
2825   void** tail = &span->objects;
2826   char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2827   char* limit = ptr + (npages << kPageShift);
2828   const size_t size = ByteSizeForClass(size_class_);
2829   int num = 0;
2830   char* nptr;
2831   while ((nptr = ptr + size) <= limit) {
2832     *tail = ptr;
2833     tail = reinterpret_cast_ptr<void**>(ptr);
2834     ptr = nptr;
2835     num++;
2836   }
2837   ASSERT(ptr <= limit);
2838   *tail = NULL;
2839   span->refcount = 0; // No sub-object in use yet
2840
2841   // Add span to list of non-empty spans
2842   lock_.Lock();
2843   DLL_Prepend(&nonempty_, span);
2844   counter_ += num;
2845 }
2846
2847 //-------------------------------------------------------------------
2848 // TCMalloc_ThreadCache implementation
2849 //-------------------------------------------------------------------
2850
2851 inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2852   if (bytes_until_sample_ < k) {
2853     PickNextSample(k);
2854     return true;
2855   } else {
2856     bytes_until_sample_ -= k;
2857     return false;
2858   }
2859 }
2860
2861 void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
2862   size_ = 0;
2863   next_ = NULL;
2864   prev_ = NULL;
2865   tid_  = tid;
2866   in_setspecific_ = false;
2867   for (size_t cl = 0; cl < kNumClasses; ++cl) {
2868     list_[cl].Init();
2869   }
2870
2871   // Initialize RNG -- run it for a bit to get to good values
2872   bytes_until_sample_ = 0;
2873   rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2874   for (int i = 0; i < 100; i++) {
2875     PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2876   }
2877 }
2878
2879 void TCMalloc_ThreadCache::Cleanup() {
2880   // Put unused memory back into central cache
2881   for (size_t cl = 0; cl < kNumClasses; ++cl) {
2882     if (list_[cl].length() > 0) {
2883       ReleaseToCentralCache(cl, list_[cl].length());
2884     }
2885   }
2886 }
2887
2888 ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2889   ASSERT(size <= kMaxSize);
2890   const size_t cl = SizeClass(size);
2891   FreeList* list = &list_[cl];
2892   size_t allocationSize = ByteSizeForClass(cl);
2893   if (list->empty()) {
2894     FetchFromCentralCache(cl, allocationSize);
2895     if (list->empty()) return NULL;
2896   }
2897   size_ -= allocationSize;
2898   return list->Pop();
2899 }
2900
2901 inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
2902   size_ += ByteSizeForClass(cl);
2903   FreeList* list = &list_[cl];
2904   list->Push(ptr);
2905   // If enough data is free, put back into central cache
2906   if (list->length() > kMaxFreeListLength) {
2907     ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2908   }
2909   if (size_ >= per_thread_cache_size) Scavenge();
2910 }
2911
2912 // Remove some objects of class "cl" from central cache and add to thread heap
2913 ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2914   int fetch_count = num_objects_to_move[cl];
2915   void *start, *end;
2916   central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2917   list_[cl].PushRange(fetch_count, start, end);
2918   size_ += allocationSize * fetch_count;
2919 }
2920
2921 // Remove some objects of class "cl" from thread heap and add to central cache
2922 inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2923   ASSERT(N > 0);
2924   FreeList* src = &list_[cl];
2925   if (N > src->length()) N = src->length();
2926   size_ -= N*ByteSizeForClass(cl);
2927
2928   // We return prepackaged chains of the correct size to the central cache.
2929   // TODO: Use the same format internally in the thread caches?
2930   int batch_size = num_objects_to_move[cl];
2931   while (N > batch_size) {
2932     void *tail, *head;
2933     src->PopRange(batch_size, &head, &tail);
2934     central_cache[cl].InsertRange(head, tail, batch_size);
2935     N -= batch_size;
2936   }
2937   void *tail, *head;
2938   src->PopRange(N, &head, &tail);
2939   central_cache[cl].InsertRange(head, tail, N);
2940 }
2941
2942 // Release idle memory to the central cache
2943 inline void TCMalloc_ThreadCache::Scavenge() {
2944   // If the low-water mark for the free list is L, it means we would
2945   // not have had to allocate anything from the central cache even if
2946   // we had reduced the free list size by L.  We aim to get closer to
2947   // that situation by dropping L/2 nodes from the free list.  This
2948   // may not release much memory, but if so we will call scavenge again
2949   // pretty soon and the low-water marks will be high on that call.
2950   //int64 start = CycleClock::Now();
2951
2952   for (size_t cl = 0; cl < kNumClasses; cl++) {
2953     FreeList* list = &list_[cl];
2954     const int lowmark = list->lowwatermark();
2955     if (lowmark > 0) {
2956       const int drop = (lowmark > 1) ? lowmark/2 : 1;
2957       ReleaseToCentralCache(cl, drop);
2958     }
2959     list->clear_lowwatermark();
2960   }
2961
2962   //int64 finish = CycleClock::Now();
2963   //CycleTimer ct;
2964   //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2965 }
2966
2967 void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2968   // Make next "random" number
2969   // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2970   static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2971   uint32_t r = rnd_;
2972   rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2973
2974   // Next point is "rnd_ % (sample_period)".  I.e., average
2975   // increment is "sample_period/2".
2976   const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2977   static int last_flag_value = -1;
2978
2979   if (flag_value != last_flag_value) {
2980     SpinLockHolder h(&sample_period_lock);
2981     int i;
2982     for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2983       if (primes_list[i] >= flag_value) {
2984         break;
2985       }
2986     }
2987     sample_period = primes_list[i];
2988     last_flag_value = flag_value;
2989   }
2990
2991   bytes_until_sample_ += rnd_ % sample_period;
2992
2993   if (k > (static_cast<size_t>(-1) >> 2)) {
2994     // If the user has asked for a huge allocation then it is possible
2995     // for the code below to loop infinitely.  Just return (note that
2996     // this throws off the sampling accuracy somewhat, but a user who
2997     // is allocating more than 1G of memory at a time can live with a
2998     // minor inaccuracy in profiling of small allocations, and also
2999     // would rather not wait for the loop below to terminate).
3000     return;
3001   }
3002
3003   while (bytes_until_sample_ < k) {
3004     // Increase bytes_until_sample_ by enough average sampling periods
3005     // (sample_period >> 1) to allow us to sample past the current
3006     // allocation.
3007     bytes_until_sample_ += (sample_period >> 1);
3008   }
3009
3010   bytes_until_sample_ -= k;
3011 }
3012
3013 void TCMalloc_ThreadCache::InitModule() {
3014   // There is a slight potential race here because of double-checked
3015   // locking idiom.  However, as long as the program does a small
3016   // allocation before switching to multi-threaded mode, we will be
3017   // fine.  We increase the chances of doing such a small allocation
3018   // by doing one in the constructor of the module_enter_exit_hook
3019   // object declared below.
3020   SpinLockHolder h(&pageheap_lock);
3021   if (!phinited) {
3022 #ifdef WTF_CHANGES
3023     InitTSD();
3024 #endif
3025     InitSizeClasses();
3026     threadheap_allocator.Init();
3027     span_allocator.Init();
3028     span_allocator.New(); // Reduce cache conflicts
3029     span_allocator.New(); // Reduce cache conflicts
3030     stacktrace_allocator.Init();
3031     DLL_Init(&sampled_objects);
3032     for (size_t i = 0; i < kNumClasses; ++i) {
3033       central_cache[i].Init(i);
3034     }
3035     pageheap->init();
3036     phinited = 1;
3037 #if defined(WTF_CHANGES) && OS(DARWIN)
3038     FastMallocZone::init();
3039 #endif
3040   }
3041 }
3042
3043 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
3044   // Create the heap and add it to the linked list
3045   TCMalloc_ThreadCache *heap = threadheap_allocator.New();
3046   heap->Init(tid);
3047   heap->next_ = thread_heaps;
3048   heap->prev_ = NULL;
3049   if (thread_heaps != NULL) thread_heaps->prev_ = heap;
3050   thread_heaps = heap;
3051   thread_heap_count++;
3052   RecomputeThreadCacheSize();
3053   return heap;
3054 }
3055
3056 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
3057 #ifdef HAVE_TLS
3058     // __thread is faster, but only when the kernel supports it
3059   if (KernelSupportsTLS())
3060     return threadlocal_heap;
3061 #elif OS(WINDOWS)
3062     return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
3063 #else
3064     return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
3065 #endif
3066 }
3067
3068 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
3069   TCMalloc_ThreadCache* ptr = NULL;
3070   if (!tsd_inited) {
3071     InitModule();
3072   } else {
3073     ptr = GetThreadHeap();
3074   }
3075   if (ptr == NULL) ptr = CreateCacheIfNecessary();
3076   return ptr;
3077 }
3078
3079 // In deletion paths, we do not try to create a thread-cache.  This is
3080 // because we may be in the thread destruction code and may have
3081 // already cleaned up the cache for this thread.
3082 inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
3083   if (!tsd_inited) return NULL;
3084   void* const p = GetThreadHeap();
3085   return reinterpret_cast<TCMalloc_ThreadCache*>(p);
3086 }
3087
3088 void TCMalloc_ThreadCache::InitTSD() {
3089   ASSERT(!tsd_inited);
3090 #if USE(PTHREAD_GETSPECIFIC_DIRECT)
3091   pthread_key_init_np(heap_key, DestroyThreadCache);
3092 #else
3093   pthread_key_create(&heap_key, DestroyThreadCache);
3094 #endif
3095 #if OS(WINDOWS)
3096   tlsIndex = TlsAlloc();
3097 #endif
3098   tsd_inited = true;
3099     
3100 #if !OS(WINDOWS)
3101   // We may have used a fake pthread_t for the main thread.  Fix it.
3102   pthread_t zero;
3103   memset(&zero, 0, sizeof(zero));
3104 #endif
3105 #ifndef WTF_CHANGES
3106   SpinLockHolder h(&pageheap_lock);
3107 #else
3108   ASSERT(pageheap_lock.IsHeld());
3109 #endif
3110   for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3111 #if OS(WINDOWS)
3112     if (h->tid_ == 0) {
3113       h->tid_ = GetCurrentThreadId();
3114     }
3115 #else
3116     if (pthread_equal(h->tid_, zero)) {
3117       h->tid_ = pthread_self();
3118     }
3119 #endif
3120   }
3121 }
3122
3123 TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
3124   // Initialize per-thread data if necessary
3125   TCMalloc_ThreadCache* heap = NULL;
3126   {
3127     SpinLockHolder h(&pageheap_lock);
3128
3129 #if OS(WINDOWS)
3130     DWORD me;
3131     if (!tsd_inited) {
3132       me = 0;
3133     } else {
3134       me = GetCurrentThreadId();
3135     }
3136 #else
3137     // Early on in glibc's life, we cannot even call pthread_self()
3138     pthread_t me;
3139     if (!tsd_inited) {
3140       memset(&me, 0, sizeof(me));
3141     } else {
3142       me = pthread_self();
3143     }
3144 #endif
3145
3146     // This may be a recursive malloc call from pthread_setspecific()
3147     // In that case, the heap for this thread has already been created
3148     // and added to the linked list.  So we search for that first.
3149     for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3150 #if OS(WINDOWS)
3151       if (h->tid_ == me) {
3152 #else
3153       if (pthread_equal(h->tid_, me)) {
3154 #endif
3155         heap = h;
3156         break;
3157       }
3158     }
3159
3160     if (heap == NULL) heap = NewHeap(me);
3161   }
3162
3163   // We call pthread_setspecific() outside the lock because it may
3164   // call malloc() recursively.  The recursive call will never get
3165   // here again because it will find the already allocated heap in the
3166   // linked list of heaps.
3167   if (!heap->in_setspecific_ && tsd_inited) {
3168     heap->in_setspecific_ = true;
3169     setThreadHeap(heap);
3170   }
3171   return heap;
3172 }
3173
3174 void TCMalloc_ThreadCache::BecomeIdle() {
3175   if (!tsd_inited) return;              // No caches yet
3176   TCMalloc_ThreadCache* heap = GetThreadHeap();
3177   if (heap == NULL) return;             // No thread cache to remove
3178   if (heap->in_setspecific_) return;    // Do not disturb the active caller
3179
3180   heap->in_setspecific_ = true;
3181   setThreadHeap(NULL);
3182 #ifdef HAVE_TLS
3183   // Also update the copy in __thread
3184   threadlocal_heap = NULL;
3185 #endif
3186   heap->in_setspecific_ = false;
3187   if (GetThreadHeap() == heap) {
3188     // Somehow heap got reinstated by a recursive call to malloc
3189     // from pthread_setspecific.  We give up in this case.
3190     return;
3191   }
3192
3193   // We can now get rid of the heap
3194   DeleteCache(heap);
3195 }
3196
3197 void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
3198   // Note that "ptr" cannot be NULL since pthread promises not
3199   // to invoke the destructor on NULL values, but for safety,
3200   // we check anyway.
3201   if (ptr == NULL) return;
3202 #ifdef HAVE_TLS
3203   // Prevent fast path of GetThreadHeap() from returning heap.
3204   threadlocal_heap = NULL;
3205 #endif
3206   DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
3207 }
3208
3209 void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
3210   // Remove all memory from heap
3211   heap->Cleanup();
3212
3213   // Remove from linked list
3214   SpinLockHolder h(&pageheap_lock);
3215   if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
3216   if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
3217   if (thread_heaps == heap) thread_heaps = heap->next_;
3218   thread_heap_count--;
3219   RecomputeThreadCacheSize();
3220
3221   threadheap_allocator.Delete(heap);
3222 }
3223
3224 void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
3225   // Divide available space across threads
3226   int n = thread_heap_count > 0 ? thread_heap_count : 1;
3227   size_t space = overall_thread_cache_size / n;
3228
3229   // Limit to allowed range
3230   if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
3231   if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
3232
3233   per_thread_cache_size = space;
3234 }
3235
3236 void TCMalloc_ThreadCache::Print() const {
3237   for (size_t cl = 0; cl < kNumClasses; ++cl) {
3238     MESSAGE("      %5" PRIuS " : %4d len; %4d lo\n",
3239             ByteSizeForClass(cl),
3240             list_[cl].length(),
3241             list_[cl].lowwatermark());
3242   }
3243 }
3244
3245 // Extract interesting stats
3246 struct TCMallocStats {
3247   uint64_t system_bytes;        // Bytes alloced from system
3248   uint64_t thread_bytes;        // Bytes in thread caches
3249   uint64_t central_bytes;       // Bytes in central cache
3250   uint64_t transfer_bytes;      // Bytes in central transfer cache
3251   uint64_t pageheap_bytes;      // Bytes in page heap
3252   uint64_t metadata_bytes;      // Bytes alloced for metadata
3253 };
3254
3255 #ifndef WTF_CHANGES
3256 // Get stats into "r".  Also get per-size-class counts if class_count != NULL
3257 static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
3258   r->central_bytes = 0;
3259   r->transfer_bytes = 0;
3260   for (int cl = 0; cl < kNumClasses; ++cl) {
3261     const int length = central_cache[cl].length();
3262     const int tc_length = central_cache[cl].tc_length();
3263     r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
3264     r->transfer_bytes +=
3265       static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
3266     if (class_count) class_count[cl] = length + tc_length;
3267   }
3268
3269   // Add stats from per-thread heaps
3270   r->thread_bytes = 0;
3271   { // scope
3272     SpinLockHolder h(&pageheap_lock);
3273     for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3274       r->thread_bytes += h->Size();
3275       if (class_count) {
3276         for (size_t cl = 0; cl < kNumClasses; ++cl) {
3277           class_count[cl] += h->freelist_length(cl);
3278         }
3279       }
3280     }
3281   }
3282
3283   { //scope
3284     SpinLockHolder h(&pageheap_lock);
3285     r->system_bytes = pageheap->SystemBytes();
3286     r->metadata_bytes = metadata_system_bytes;
3287     r->pageheap_bytes = pageheap->FreeBytes();
3288   }
3289 }
3290 #endif
3291
3292 #ifndef WTF_CHANGES
3293 // WRITE stats to "out"
3294 static void DumpStats(TCMalloc_Printer* out, int level) {
3295   TCMallocStats stats;
3296   uint64_t class_count[kNumClasses];
3297   ExtractStats(&stats, (level >= 2 ? class_count : NULL));
3298
3299   if (level >= 2) {
3300     out->printf("------------------------------------------------\n");
3301     uint64_t cumulative = 0;
3302     for (int cl = 0; cl < kNumClasses; ++cl) {
3303       if (class_count[cl] > 0) {
3304         uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
3305         cumulative += class_bytes;
3306         out->printf("class %3d [ %8" PRIuS " bytes ] : "
3307                 "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
3308                 cl, ByteSizeForClass(cl),
3309                 class_count[cl],
3310                 class_bytes / 1048576.0,
3311                 cumulative / 1048576.0);
3312       }
3313     }
3314
3315     SpinLockHolder h(&pageheap_lock);
3316     pageheap->Dump(out);
3317   }
3318
3319   const uint64_t bytes_in_use = stats.system_bytes
3320                                 - stats.pageheap_bytes
3321                                 - stats.central_bytes
3322                                 - stats.transfer_bytes
3323                                 - stats.thread_bytes;
3324
3325   out->printf("------------------------------------------------\n"
3326               "MALLOC: %12" PRIu64 " Heap size\n"
3327               "MALLOC: %12" PRIu64 " Bytes in use by application\n"
3328               "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
3329               "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
3330               "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
3331               "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
3332               "MALLOC: %12" PRIu64 " Spans in use\n"
3333               "MALLOC: %12" PRIu64 " Thread heaps in use\n"
3334               "MALLOC: %12" PRIu64 " Metadata allocated\n"
3335               "------------------------------------------------\n",
3336               stats.system_bytes,
3337               bytes_in_use,
3338               stats.pageheap_bytes,
3339               stats.central_bytes,
3340               stats.transfer_bytes,
3341               stats.thread_bytes,
3342               uint64_t(span_allocator.inuse()),
3343               uint64_t(threadheap_allocator.inuse()),
3344               stats.metadata_bytes);
3345 }
3346
3347 static void PrintStats(int level) {
3348   const int kBufferSize = 16 << 10;
3349   char* buffer = new char[kBufferSize];
3350   TCMalloc_Printer printer(buffer, kBufferSize);
3351   DumpStats(&printer, level);
3352   write(STDERR_FILENO, buffer, strlen(buffer));
3353   delete[] buffer;
3354 }
3355
3356 static void** DumpStackTraces() {
3357   // Count how much space we need
3358   int needed_slots = 0;
3359   {
3360     SpinLockHolder h(&pageheap_lock);
3361     for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3362       StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3363       needed_slots += 3 + stack->depth;
3364     }
3365     needed_slots += 100;            // Slop in case sample grows
3366     needed_slots += needed_slots/8; // An extra 12.5% slop
3367   }
3368
3369   void** result = new void*[needed_slots];
3370   if (result == NULL) {
3371     MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
3372             needed_slots);
3373     return NULL;
3374   }
3375
3376   SpinLockHolder h(&pageheap_lock);
3377   int used_slots = 0;
3378   for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3379     ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
3380     StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3381     if (used_slots + 3 + stack->depth >= needed_slots) {
3382       // No more room
3383       break;
3384     }
3385
3386     result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
3387     result[used_slots+1] = reinterpret_cast<void*>(stack->size);
3388     result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
3389     for (int d = 0; d < stack->depth; d++) {
3390       result[used_slots+3+d] = stack->stack[d];
3391     }
3392     used_slots += 3 + stack->depth;
3393   }
3394   result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
3395   return result;
3396 }
3397 #endif
3398
3399 #ifndef WTF_CHANGES
3400
3401 // TCMalloc's support for extra malloc interfaces
3402 class TCMallocImplementation : public MallocExtension {
3403  public:
3404   virtual void GetStats(char* buffer, int buffer_length) {
3405     ASSERT(buffer_length > 0);
3406     TCMalloc_Printer printer(buffer, buffer_length);
3407
3408     // Print level one stats unless lots of space is available
3409     if (buffer_length < 10000) {
3410       DumpStats(&printer, 1);
3411     } else {
3412       DumpStats(&printer, 2);
3413     }
3414   }
3415
3416   virtual void** ReadStackTraces() {
3417     return DumpStackTraces();
3418   }
3419
3420   virtual bool GetNumericProperty(const char* name, size_t* value) {
3421     ASSERT(name != NULL);
3422
3423     if (strcmp(name, "generic.current_allocated_bytes") == 0) {
3424       TCMallocStats stats;
3425       ExtractStats(&stats, NULL);
3426       *value = stats.system_bytes
3427                - stats.thread_bytes
3428                - stats.central_bytes
3429                - stats.pageheap_bytes;
3430       return true;
3431     }
3432
3433     if (strcmp(name, "generic.heap_size") == 0) {
3434       TCMallocStats stats;
3435       ExtractStats(&stats, NULL);
3436       *value = stats.system_bytes;
3437       return true;
3438     }
3439
3440     if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
3441       // We assume that bytes in the page heap are not fragmented too
3442       // badly, and are therefore available for allocation.
3443       SpinLockHolder l(&pageheap_lock);
3444       *value = pageheap->FreeBytes();
3445       return true;
3446     }
3447
3448     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3449       SpinLockHolder l(&pageheap_lock);
3450       *value = overall_thread_cache_size;
3451       return true;
3452     }
3453
3454     if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
3455       TCMallocStats stats;
3456       ExtractStats(&stats, NULL);
3457       *value = stats.thread_bytes;
3458       return true;
3459     }
3460
3461     return false;
3462   }
3463
3464   virtual bool SetNumericProperty(const char* name, size_t value) {
3465     ASSERT(name != NULL);
3466
3467     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3468       // Clip the value to a reasonable range
3469       if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
3470       if (value > (1<<30)) value = (1<<30);     // Limit to 1GB
3471
3472       SpinLockHolder l(&pageheap_lock);
3473       overall_thread_cache_size = static_cast<size_t>(value);
3474       TCMalloc_ThreadCache::RecomputeThreadCacheSize();
3475       return true;
3476     }
3477
3478     return false;
3479   }
3480
3481   virtual void MarkThreadIdle() {
3482     TCMalloc_ThreadCache::BecomeIdle();
3483   }
3484
3485   virtual void ReleaseFreeMemory() {
3486     SpinLockHolder h(&pageheap_lock);
3487     pageheap->ReleaseFreePages();
3488   }
3489 };
3490 #endif
3491
3492 // The constructor allocates an object to ensure that initialization
3493 // runs before main(), and therefore we do not have a chance to become
3494 // multi-threaded before initialization.  We also create the TSD key
3495 // here.  Presumably by the time this constructor runs, glibc is in
3496 // good enough shape to handle pthread_key_create().
3497 //
3498 // The constructor also takes the opportunity to tell STL to use
3499 // tcmalloc.  We want to do this early, before construct time, so
3500 // all user STL allocations go through tcmalloc (which works really
3501 // well for STL).
3502 //
3503 // The destructor prints stats when the program exits.
3504 class TCMallocGuard {
3505  public:
3506
3507   TCMallocGuard() {
3508 #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
3509     // Check whether the kernel also supports TLS (needs to happen at runtime)
3510     CheckIfKernelSupportsTLS();
3511 #endif
3512 #ifndef WTF_CHANGES
3513 #ifdef WIN32                    // patch the windows VirtualAlloc, etc.
3514     PatchWindowsFunctions();    // defined in windows/patch_functions.cc
3515 #endif
3516 #endif
3517     free(malloc(1));
3518     TCMalloc_ThreadCache::InitTSD();
3519     free(malloc(1));
3520 #ifndef WTF_CHANGES
3521     MallocExtension::Register(new TCMallocImplementation);
3522 #endif
3523   }
3524
3525 #ifndef WTF_CHANGES
3526   ~TCMallocGuard() {
3527     const char* env = getenv("MALLOCSTATS");
3528     if (env != NULL) {
3529       int level = atoi(env);
3530       if (level < 1) level = 1;
3531       PrintStats(level);
3532     }
3533 #ifdef WIN32
3534     UnpatchWindowsFunctions();
3535 #endif
3536   }
3537 #endif
3538 };
3539
3540 #ifndef WTF_CHANGES
3541 static TCMallocGuard module_enter_exit_hook;
3542 #endif
3543
3544
3545 //-------------------------------------------------------------------
3546 // Helpers for the exported routines below
3547 //-------------------------------------------------------------------
3548
3549 #ifndef WTF_CHANGES
3550
3551 static Span* DoSampledAllocation(size_t size) {
3552
3553   // Grab the stack trace outside the heap lock
3554   StackTrace tmp;
3555   tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
3556   tmp.size = size;
3557
3558   SpinLockHolder h(&pageheap_lock);
3559   // Allocate span
3560   Span *span = pageheap->New(pages(size == 0 ? 1 : size));
3561   if (span == NULL) {
3562     return NULL;
3563   }
3564
3565   // Allocate stack trace
3566   StackTrace *stack = stacktrace_allocator.New();
3567   if (stack == NULL) {
3568     // Sampling failed because of lack of memory
3569     return span;
3570   }
3571
3572   *stack = tmp;
3573   span->sample = 1;
3574   span->objects = stack;
3575   DLL_Prepend(&sampled_objects, span);
3576
3577   return span;
3578 }
3579 #endif
3580
3581 static inline bool CheckCachedSizeClass(void *ptr) {
3582   PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3583   size_t cached_value = pageheap->GetSizeClassIfCached(p);
3584   return cached_value == 0 ||
3585       cached_value == pageheap->GetDescriptor(p)->sizeclass;
3586 }
3587
3588 static inline void* CheckedMallocResult(void *result)
3589 {
3590   ASSERT(result == 0 || CheckCachedSizeClass(result));
3591   return result;
3592 }
3593
3594 static inline void* SpanToMallocResult(Span *span) {
3595   ASSERT_SPAN_COMMITTED(span);
3596   pageheap->CacheSizeClass(span->start, 0);
3597   return
3598       CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
3599 }
3600
3601 #ifdef WTF_CHANGES
3602 template <bool crashOnFailure>
3603 #endif
3604 static ALWAYS_INLINE void* do_malloc(size_t size) {
3605   void* ret = NULL;
3606
3607 #ifdef WTF_CHANGES
3608     ASSERT(!isForbidden());
3609 #endif
3610
3611   // The following call forces module initialization
3612   TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3613 #ifndef WTF_CHANGES
3614   if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
3615     Span* span = DoSampledAllocation(size);
3616     if (span != NULL) {
3617       ret = SpanToMallocResult(span);
3618     }
3619   } else
3620 #endif
3621   if (size > kMaxSize) {
3622     // Use page-level allocator
3623     SpinLockHolder h(&pageheap_lock);
3624     Span* span = pageheap->New(pages(size));
3625     if (span != NULL) {
3626       ret = SpanToMallocResult(span);
3627     }
3628   } else {
3629     // The common case, and also the simplest.  This just pops the
3630     // size-appropriate freelist, afer replenishing it if it's empty.
3631     ret = CheckedMallocResult(heap->Allocate(size));
3632   }
3633   if (!ret) {
3634 #ifdef WTF_CHANGES
3635     if (crashOnFailure) // This branch should be optimized out by the compiler.
3636         CRASH();
3637 #else
3638     errno = ENOMEM;
3639 #endif
3640   }
3641   return ret;
3642 }
3643
3644 static ALWAYS_INLINE void do_free(void* ptr) {
3645   if (ptr == NULL) return;
3646   ASSERT(pageheap != NULL);  // Should not call free() before malloc()
3647   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3648   Span* span = NULL;
3649   size_t cl = pageheap->GetSizeClassIfCached(p);
3650
3651   if (cl == 0) {
3652     span = pageheap->GetDescriptor(p);
3653     cl = span->sizeclass;
3654     pageheap->CacheSizeClass(p, cl);
3655   }
3656   if (cl != 0) {
3657 #ifndef NO_TCMALLOC_SAMPLES
3658     ASSERT(!pageheap->GetDescriptor(p)->sample);
3659 #endif
3660     TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
3661     if (heap != NULL) {
3662       heap->Deallocate(ptr, cl);
3663     } else {
3664       // Delete directly into central cache
3665       SLL_SetNext(ptr, NULL);
3666       central_cache[cl].InsertRange(ptr, ptr, 1);
3667     }
3668   } else {
3669     SpinLockHolder h(&pageheap_lock);
3670     ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
3671     ASSERT(span != NULL && span->start == p);
3672 #ifndef NO_TCMALLOC_SAMPLES
3673     if (span->sample) {
3674       DLL_Remove(span);
3675       stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
3676       span->objects = NULL;
3677     }
3678 #endif
3679     pageheap->Delete(span);
3680   }
3681 }
3682
3683 #ifndef WTF_CHANGES
3684 // For use by exported routines below that want specific alignments
3685 //
3686 // Note: this code can be slow, and can significantly fragment memory.
3687 // The expectation is that memalign/posix_memalign/valloc/pvalloc will
3688 // not be invoked very often.  This requirement simplifies our
3689 // implementation and allows us to tune for expected allocation
3690 // patterns.
3691 static void* do_memalign(size_t align, size_t size) {
3692   ASSERT((align & (align - 1)) == 0);
3693   ASSERT(align > 0);
3694   if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
3695
3696   // Allocate at least one byte to avoid boundary conditions below
3697   if (size == 0) size = 1;
3698
3699   if (size <= kMaxSize && align < kPageSize) {
3700     // Search through acceptable size classes looking for one with
3701     // enough alignment.  This depends on the fact that
3702     // InitSizeClasses() currently produces several size classes that
3703     // are aligned at powers of two.  We will waste time and space if
3704     // we miss in the size class array, but that is deemed acceptable
3705     // since memalign() should be used rarely.
3706     size_t cl = SizeClass(size);
3707     while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
3708       cl++;
3709     }
3710     if (cl < kNumClasses) {
3711       TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3712       return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
3713     }
3714   }
3715
3716   // We will allocate directly from the page heap
3717   SpinLockHolder h(&pageheap_lock);
3718
3719   if (align <= kPageSize) {
3720     // Any page-level allocation will be fine
3721     // TODO: We could put the rest of this page in the appropriate
3722     // TODO: cache but it does not seem worth it.
3723     Span* span = pageheap->New(pages(size));
3724     return span == NULL ? NULL : SpanToMallocResult(span);
3725   }
3726
3727   // Allocate extra pages and carve off an aligned portion
3728   const Length alloc = pages(size + align);
3729   Span* span = pageheap->New(alloc);
3730   if (span == NULL) return NULL;
3731
3732   // Skip starting portion so that we end up aligned
3733   Length skip = 0;
3734   while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
3735     skip++;
3736   }
3737   ASSERT(skip < alloc);
3738   if (skip > 0) {
3739     Span* rest = pageheap->Split(span, skip);
3740     pageheap->Delete(span);
3741     span = rest;
3742   }
3743
3744   // Skip trailing portion that we do not need to return
3745   const Length needed = pages(size);
3746   ASSERT(span->length >= needed);
3747   if (span->length > needed) {
3748     Span* trailer = pageheap->Split(span, needed);
3749     pageheap->Delete(trailer);
3750   }
3751   return SpanToMallocResult(span);
3752 }
3753 #endif
3754
3755 // Helpers for use by exported routines below:
3756
3757 #ifndef WTF_CHANGES
3758 static inline void do_malloc_stats() {
3759   PrintStats(1);
3760 }
3761 #endif
3762
3763 static inline int do_mallopt(int, int) {
3764   return 1;     // Indicates error
3765 }
3766
3767 #ifdef HAVE_STRUCT_MALLINFO  // mallinfo isn't defined on freebsd, for instance
3768 static inline struct mallinfo do_mallinfo() {
3769   TCMallocStats stats;
3770   ExtractStats(&stats, NULL);
3771
3772   // Just some of the fields are filled in.
3773   struct mallinfo info;
3774   memset(&info, 0, sizeof(info));
3775
3776   // Unfortunately, the struct contains "int" field, so some of the
3777   // size values will be truncated.
3778   info.arena     = static_cast<int>(stats.system_bytes);
3779   info.fsmblks   = static_cast<int>(stats.thread_bytes
3780                                     + stats.central_bytes
3781                                     + stats.transfer_bytes);
3782   info.fordblks  = static_cast<int>(stats.pageheap_bytes);
3783   info.uordblks  = static_cast<int>(stats.system_bytes
3784                                     - stats.thread_bytes
3785                                     - stats.central_bytes
3786                                     - stats.transfer_bytes
3787                                     - stats.pageheap_bytes);
3788
3789   return info;
3790 }
3791 #endif
3792
3793 //-------------------------------------------------------------------
3794 // Exported routines
3795 //-------------------------------------------------------------------
3796
3797 // CAVEAT: The code structure below ensures that MallocHook methods are always
3798 //         called from the stack frame of the invoked allocation function.
3799 //         heap-checker.cc depends on this to start a stack trace from
3800 //         the call to the (de)allocation function.
3801
3802 #ifndef WTF_CHANGES
3803 extern "C" 
3804 #else
3805 #define do_malloc do_malloc<crashOnFailure>
3806
3807 template <bool crashOnFailure>
3808 ALWAYS_INLINE void* malloc(size_t);
3809
3810 void* fastMalloc(size_t size)
3811 {
3812     return malloc<true>(size);
3813 }
3814
3815 TryMallocReturnValue tryFastMalloc(size_t size)
3816 {
3817     return malloc<false>(size);
3818 }
3819
3820 template <bool crashOnFailure>
3821 ALWAYS_INLINE
3822 #endif
3823 void* malloc(size_t size) {
3824 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3825     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size)  // If overflow would occur...
3826         return 0;
3827     size += sizeof(AllocAlignmentInteger);
3828     void* result = do_malloc(size);
3829     if (!result)
3830         return 0;
3831
3832     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3833     result = static_cast<AllocAlignmentInteger*>(result) + 1;
3834 #else
3835     void* result = do_malloc(size);
3836 #endif
3837
3838 #ifndef WTF_CHANGES
3839   MallocHook::InvokeNewHook(result, size);
3840 #endif
3841   return result;
3842 }
3843
3844 #ifndef WTF_CHANGES
3845 extern "C" 
3846 #endif
3847 void free(void* ptr) {
3848 #ifndef WTF_CHANGES
3849   MallocHook::InvokeDeleteHook(ptr);
3850 #endif
3851
3852 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3853     if (!ptr)
3854         return;
3855
3856     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
3857     if (*header != Internal::AllocTypeMalloc)
3858         Internal::fastMallocMatchFailed(ptr);
3859     do_free(header);
3860 #else
3861     do_free(ptr);
3862 #endif
3863 }
3864
3865 #ifndef WTF_CHANGES
3866 extern "C" 
3867 #else
3868 template <bool crashOnFailure>
3869 ALWAYS_INLINE void* calloc(size_t, size_t);
3870
3871 void* fastCalloc(size_t n, size_t elem_size)
3872 {
3873     return calloc<true>(n, elem_size);
3874 }
3875
3876 TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size)
3877 {
3878     return calloc<false>(n, elem_size);
3879 }
3880
3881 template <bool crashOnFailure>
3882 ALWAYS_INLINE
3883 #endif
3884 void* calloc(size_t n, size_t elem_size) {
3885   size_t totalBytes = n * elem_size;
3886     
3887   // Protect against overflow
3888   if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3889     return 0;
3890
3891 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3892     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)  // If overflow would occur...
3893         return 0;
3894
3895     totalBytes += sizeof(AllocAlignmentInteger);
3896     void* result = do_malloc(totalBytes);
3897     if (!result)
3898         return 0;
3899
3900     memset(result, 0, totalBytes);
3901     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3902     result = static_cast<AllocAlignmentInteger*>(result) + 1;
3903 #else
3904     void* result = do_malloc(totalBytes);
3905     if (result != NULL) {
3906         memset(result, 0, totalBytes);
3907     }
3908 #endif
3909
3910 #ifndef WTF_CHANGES
3911   MallocHook::InvokeNewHook(result, totalBytes);
3912 #endif
3913   return result;
3914 }
3915
3916 // Since cfree isn't used anywhere, we don't compile it in.
3917 #ifndef WTF_CHANGES
3918 #ifndef WTF_CHANGES
3919 extern "C" 
3920 #endif
3921 void cfree(void* ptr) {
3922 #ifndef WTF_CHANGES
3923     MallocHook::InvokeDeleteHook(ptr);
3924 #endif
3925   do_free(ptr);
3926 }
3927 #endif
3928
3929 #ifndef WTF_CHANGES
3930 extern "C" 
3931 #else
3932 template <bool crashOnFailure>
3933 ALWAYS_INLINE void* realloc(void*, size_t);
3934
3935 void* fastRealloc(void* old_ptr, size_t new_size)
3936 {
3937     return realloc<true>(old_ptr, new_size);
3938 }
3939
3940 TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size)
3941 {
3942     return realloc<false>(old_ptr, new_size);
3943 }
3944
3945 template <bool crashOnFailure>
3946 ALWAYS_INLINE
3947 #endif
3948 void* realloc(void* old_ptr, size_t new_size) {
3949   if (old_ptr == NULL) {
3950 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3951     void* result = malloc(new_size);
3952 #else
3953     void* result = do_malloc(new_size);
3954 #ifndef WTF_CHANGES
3955     MallocHook::InvokeNewHook(result, new_size);
3956 #endif
3957 #endif
3958     return result;
3959   }
3960   if (new_size == 0) {
3961 #ifndef WTF_CHANGES
3962     MallocHook::InvokeDeleteHook(old_ptr);
3963 #endif
3964     free(old_ptr);
3965     return NULL;
3966   }
3967
3968 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3969     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size)  // If overflow would occur...
3970         return 0;
3971     new_size += sizeof(AllocAlignmentInteger);
3972     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
3973     if (*header != Internal::AllocTypeMalloc)
3974         Internal::fastMallocMatchFailed(old_ptr);
3975     old_ptr = header;
3976 #endif
3977
3978   // Get the size of the old entry
3979   const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3980   size_t cl = pageheap->GetSizeClassIfCached(p);
3981   Span *span = NULL;
3982   size_t old_size;
3983   if (cl == 0) {
3984     span = pageheap->GetDescriptor(p);
3985     cl = span->sizeclass;
3986     pageheap->CacheSizeClass(p, cl);
3987   }
3988   if (cl != 0) {
3989     old_size = ByteSizeForClass(cl);
3990   } else {
3991     ASSERT(span != NULL);
3992     old_size = span->length << kPageShift;
3993   }
3994
3995   // Reallocate if the new size is larger than the old size,
3996   // or if the new size is significantly smaller than the old size.
3997   if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3998     // Need to reallocate
3999     void* new_ptr = do_malloc(new_size);
4000     if (new_ptr == NULL) {
4001       return NULL;
4002     }
4003 #ifndef WTF_CHANGES
4004     MallocHook::InvokeNewHook(new_ptr, new_size);
4005 #endif
4006     memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
4007 #ifndef WTF_CHANGES
4008     MallocHook::InvokeDeleteHook(old_ptr);
4009 #endif
4010     // We could use a variant of do_free() that leverages the fact
4011     // that we already know the sizeclass of old_ptr.  The benefit
4012     // would be small, so don't bother.
4013     do_free(old_ptr);
4014 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
4015     new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
4016 #endif
4017     return new_ptr;
4018   } else {
4019 #if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
4020     old_ptr = static_cast<AllocAlignmentInteger*>(old_ptr) + 1; // Set old_ptr back to the user pointer.
4021 #endif
4022     return old_ptr;
4023   }
4024 }
4025
4026 #ifdef WTF_CHANGES
4027 #undef do_malloc
4028 #else
4029
4030 static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
4031
4032 static inline void* cpp_alloc(size_t size, bool nothrow) {
4033   for (;;) {
4034     void* p = do_malloc(size);
4035 #ifdef PREANSINEW
4036     return p;
4037 #else
4038     if (p == NULL) {  // allocation failed
4039       // Get the current new handler.  NB: this function is not
4040       // thread-safe.  We make a feeble stab at making it so here, but
4041       // this lock only protects against tcmalloc interfering with
4042       // itself, not with other libraries calling set_new_handler.
4043       std::new_handler nh;
4044       {
4045         SpinLockHolder h(&set_new_handler_lock);
4046         nh = std::set_new_handler(0);
4047         (void) std::set_new_handler(nh);
4048       }
4049       // If no new_handler is established, the allocation failed.
4050       if (!nh) {
4051         if (nothrow) return 0;
4052         throw std::bad_alloc();
4053       }
4054       // Otherwise, try the new_handler.  If it returns, retry the
4055       // allocation.  If it throws std::bad_alloc, fail the allocation.
4056       // if it throws something else, don't interfere.
4057       try {
4058         (*nh)();
4059       } catch (const std::bad_alloc&) {
4060         if (!nothrow) throw;
4061         return p;
4062       }
4063     } else {  // allocation success
4064       return p;
4065     }
4066 #endif
4067   }
4068 }
4069
4070 #if ENABLE(GLOBAL_FASTMALLOC_NEW)
4071
4072 void* operator new(size_t size) {
4073   void* p = cpp_alloc(size, false);
4074   // We keep this next instruction out of cpp_alloc for a reason: when
4075   // it's in, and new just calls cpp_alloc, the optimizer may fold the
4076   // new call into cpp_alloc, which messes up our whole section-based
4077   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
4078   // isn't the last thing this fn calls, and prevents the folding.
4079   MallocHook::InvokeNewHook(p, size);
4080   return p;
4081 }
4082
4083 void* operator new(size_t size, const std::nothrow_t&) __THROW {
4084   void* p = cpp_alloc(size, true);
4085   MallocHook::InvokeNewHook(p, size);
4086   return p;
4087 }
4088
4089 void operator delete(void* p) __THROW {
4090   MallocHook::InvokeDeleteHook(p);
4091   do_free(p);
4092 }
4093
4094 void operator delete(void* p, const std::nothrow_t&) __THROW {
4095   MallocHook::InvokeDeleteHook(p);
4096   do_free(p);
4097 }
4098
4099 void* operator new[](size_t size) {
4100   void* p = cpp_alloc(size, false);
4101   // We keep this next instruction out of cpp_alloc for a reason: when
4102   // it's in, and new just calls cpp_alloc, the optimizer may fold the
4103   // new call into cpp_alloc, which messes up our whole section-based
4104   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
4105   // isn't the last thing this fn calls, and prevents the folding.
4106   MallocHook::InvokeNewHook(p, size);
4107   return p;
4108 }
4109
4110 void* operator new[](size_t size, const std::nothrow_t&) __THROW {
4111   void* p = cpp_alloc(size, true);
4112   MallocHook::InvokeNewHook(p, size);
4113   return p;
4114 }
4115
4116 void operator delete[](void* p) __THROW {
4117   MallocHook::InvokeDeleteHook(p);
4118   do_free(p);
4119 }
4120
4121 void operator delete[](void* p, const std::nothrow_t&) __THROW {
4122   MallocHook::InvokeDeleteHook(p);
4123   do_free(p);
4124 }
4125
4126 #endif
4127
4128 extern "C" void* memalign(size_t align, size_t size) __THROW {
4129   void* result = do_memalign(align, size);
4130   MallocHook::InvokeNewHook(result, size);
4131   return result;
4132 }
4133
4134 extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
4135     __THROW {
4136   if (((align % sizeof(void*)) != 0) ||
4137       ((align & (align - 1)) != 0) ||
4138       (align == 0)) {
4139     return EINVAL;
4140   }
4141
4142   void* result = do_memalign(align, size);
4143   MallocHook::InvokeNewHook(result, size);
4144   if (result == NULL) {
4145     return ENOMEM;
4146   } else {
4147     *result_ptr = result;
4148     return 0;
4149   }
4150 }
4151
4152 static size_t pagesize = 0;
4153
4154 extern "C" void* valloc(size_t size) __THROW {
4155   // Allocate page-aligned object of length >= size bytes
4156   if (pagesize == 0) pagesize = getpagesize();
4157   void* result = do_memalign(pagesize, size);
4158   MallocHook::InvokeNewHook(result, size);
4159   return result;
4160 }
4161
4162 extern "C" void* pvalloc(size_t size) __THROW {
4163   // Round up size to a multiple of pagesize
4164   if (pagesize == 0) pagesize = getpagesize();
4165   size = (size + pagesize - 1) & ~(pagesize - 1);
4166   void* result = do_memalign(pagesize, size);
4167   MallocHook::InvokeNewHook(result, size);
4168   return result;
4169 }
4170
4171 extern "C" void malloc_stats(void) {
4172   do_malloc_stats();
4173 }
4174
4175 extern "C" int mallopt(int cmd, int value) {
4176   return do_mallopt(cmd, value);
4177 }
4178
4179 #ifdef HAVE_STRUCT_MALLINFO
4180 extern "C" struct mallinfo mallinfo(void) {
4181   return do_mallinfo();
4182 }
4183 #endif
4184
4185 //-------------------------------------------------------------------
4186 // Some library routines on RedHat 9 allocate memory using malloc()
4187 // and free it using __libc_free() (or vice-versa).  Since we provide
4188 // our own implementations of malloc/free, we need to make sure that
4189 // the __libc_XXX variants (defined as part of glibc) also point to
4190 // the same implementations.
4191 //-------------------------------------------------------------------
4192
4193 #if defined(__GLIBC__)
4194 extern "C" {
4195 #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
4196   // Potentially faster variants that use the gcc alias extension.
4197   // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
4198 # define ALIAS(x) __attribute__ ((weak, alias (x)))
4199   void* __libc_malloc(size_t size)              ALIAS("malloc");
4200   void  __libc_free(void* ptr)                  ALIAS("free");
4201   void* __libc_realloc(void* ptr, size_t size)  ALIAS("realloc");
4202   void* __libc_calloc(size_t n, size_t size)    ALIAS("calloc");
4203   void  __libc_cfree(void* ptr)                 ALIAS("cfree");
4204   void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
4205   void* __libc_valloc(size_t size)              ALIAS("valloc");
4206   void* __libc_pvalloc(size_t size)             ALIAS("pvalloc");
4207   int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
4208 # undef ALIAS
4209 # else   /* not __GNUC__ */
4210   // Portable wrappers
4211   void* __libc_malloc(size_t size)              { return malloc(size);       }
4212   void  __libc_free(void* ptr)                  { free(ptr);                 }
4213   void* __libc_realloc(void* ptr, size_t size)  { return realloc(ptr, size); }
4214   void* __libc_calloc(size_t n, size_t size)    { return calloc(n, size);    }
4215   void  __libc_cfree(void* ptr)                 { cfree(ptr);                }
4216   void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
4217   void* __libc_valloc(size_t size)              { return valloc(size);       }
4218   void* __libc_pvalloc(size_t size)             { return pvalloc(size);      }
4219   int __posix_memalign(void** r, size_t a, size_t s) {
4220     return posix_memalign(r, a, s);
4221   }
4222 # endif  /* __GNUC__ */
4223 }
4224 #endif   /* __GLIBC__ */
4225
4226 // Override __libc_memalign in libc on linux boxes specially.
4227 // They have a bug in libc that causes them to (very rarely) allocate
4228 // with __libc_memalign() yet deallocate with free() and the
4229 // definitions above don't catch it.
4230 // This function is an exception to the rule of calling MallocHook method
4231 // from the stack frame of the allocation function;
4232 // heap-checker handles this special case explicitly.
4233 static void *MemalignOverride(size_t align, size_t size, const void *caller)
4234     __THROW {
4235   void* result = do_memalign(align, size);
4236   MallocHook::InvokeNewHook(result, size);
4237   return result;
4238 }
4239 void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
4240
4241 #endif
4242
4243 #ifdef WTF_CHANGES
4244 void releaseFastMallocFreeMemory()
4245 {
4246     // Flush free pages in the current thread cache back to the page heap.
4247     // Low watermark mechanism in Scavenge() prevents full return on the first pass.
4248     // The second pass flushes everything.
4249     if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
4250         threadCache->Scavenge();
4251         threadCache->Scavenge();
4252     }
4253
4254     SpinLockHolder h(&pageheap_lock);
4255     pageheap->ReleaseFreePages();
4256 }
4257     
4258 FastMallocStatistics fastMallocStatistics()
4259 {
4260     FastMallocStatistics statistics;
4261
4262     SpinLockHolder lockHolder(&pageheap_lock);
4263     statistics.reservedVMBytes = static_cast<size_t>(pageheap->SystemBytes());
4264     statistics.committedVMBytes = statistics.reservedVMBytes - pageheap->ReturnedBytes();
4265
4266     statistics.freeListBytes = 0;
4267     for (unsigned cl = 0; cl < kNumClasses; ++cl) {
4268         const int length = central_cache[cl].length();
4269         const int tc_length = central_cache[cl].tc_length();
4270
4271         statistics.freeListBytes += ByteSizeForClass(cl) * (length + tc_length);
4272     }
4273     for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
4274         statistics.freeListBytes += threadCache->Size();
4275
4276     return statistics;
4277 }
4278
4279 size_t fastMallocSize(const void* ptr)
4280 {
4281     const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
4282     Span* span = pageheap->GetDescriptorEnsureSafe(p);
4283
4284     if (!span || span->free)
4285         return 0;
4286
4287     for (void* free = span->objects; free != NULL; free = *((void**) free)) {
4288         if (ptr == free)
4289             return 0;
4290     }
4291
4292     if (size_t cl = span->sizeclass)
4293         return ByteSizeForClass(cl);
4294
4295     return span->length << kPageShift;
4296 }
4297
4298 #if OS(DARWIN)
4299
4300 class FreeObjectFinder {
4301     const RemoteMemoryReader& m_reader;
4302     HashSet<void*> m_freeObjects;
4303
4304 public:
4305     FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
4306
4307     void visit(void* ptr) { m_freeObjects.add(ptr); }
4308     bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
4309     bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
4310     size_t freeObjectCount() const { return m_freeObjects.size(); }
4311
4312     void findFreeObjects(TCMalloc_ThreadCache* threadCache)
4313     {
4314         for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
4315             threadCache->enumerateFreeObjects(*this, m_reader);
4316     }
4317
4318     void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
4319     {
4320         for (unsigned i = 0; i < numSizes; i++)
4321             centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
4322     }
4323 };
4324
4325 class PageMapFreeObjectFinder {
4326     const RemoteMemoryReader& m_reader;
4327     FreeObjectFinder& m_freeObjectFinder;
4328
4329 public:
4330     PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
4331         : m_reader(reader)
4332         , m_freeObjectFinder(freeObjectFinder)
4333     { }
4334
4335     int visit(void* ptr) const
4336     {
4337         if (!ptr)
4338             return 1;
4339
4340         Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4341         if (!span)
4342             return 1;
4343
4344         if (span->free) {
4345             void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
4346             m_freeObjectFinder.visit(ptr);
4347         } else if (span->sizeclass) {
4348             // Walk the free list of the small-object span, keeping track of each object seen
4349             for (void* nextObject = span->objects; nextObject; nextObject = m_reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
4350                 m_freeObjectFinder.visit(nextObject);
4351         }
4352         return span->length;
4353     }
4354 };
4355
4356 class PageMapMemoryUsageRecorder {
4357     task_t m_task;
4358     void* m_context;
4359     unsigned m_typeMask;
4360     vm_range_recorder_t* m_recorder;
4361     const RemoteMemoryReader& m_reader;
4362     const FreeObjectFinder& m_freeObjectFinder;
4363
4364     HashSet<void*> m_seenPointers;
4365     Vector<Span*> m_coalescedSpans;
4366
4367 public:
4368     PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
4369         : m_task(task)
4370         , m_context(context)
4371         , m_typeMask(typeMask)
4372         , m_recorder(recorder)
4373         , m_reader(reader)
4374         , m_freeObjectFinder(freeObjectFinder)
4375     { }
4376
4377     ~PageMapMemoryUsageRecorder()
4378     {
4379         ASSERT(!m_coalescedSpans.size());
4380     }
4381
4382     void recordPendingRegions()
4383     {
4384         Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4385         vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
4386         ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
4387
4388         // Mark the memory region the spans represent as a candidate for containing pointers
4389         if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
4390             (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
4391
4392         if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
4393             m_coalescedSpans.clear();
4394             return;
4395         }
4396
4397         Vector<vm_range_t, 1024> allocatedPointers;
4398         for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
4399             Span *theSpan = m_coalescedSpans[i];
4400             if (theSpan->free)
4401                 continue;
4402
4403             vm_address_t spanStartAddress = theSpan->start << kPageShift;
4404             vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
4405
4406             if (!theSpan->sizeclass) {
4407                 // If it's an allocated large object span, mark it as in use
4408                 if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
4409                     allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
4410             } else {
4411                 const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
4412
4413                 // Mark each allocated small object within the span as in use
4414                 const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
4415                 for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
4416                     if (!m_freeObjectFinder.isFreeObject(object))
4417                         allocatedPointers.append((vm_range_t){object, objectSize});
4418                 }
4419             }
4420         }
4421
4422         (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
4423
4424         m_coalescedSpans.clear();
4425     }
4426
4427     int visit(void* ptr)
4428     {
4429         if (!ptr)
4430             return 1;
4431
4432         Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4433         if (!span || !span->start)
4434             return 1;
4435
4436         if (m_seenPointers.contains(ptr))
4437             return span->length;
4438         m_seenPointers.add(ptr);
4439
4440         if (!m_coalescedSpans.size()) {
4441             m_coalescedSpans.append(span);
4442             return span->length;
4443         }
4444
4445         Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4446         vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
4447         vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
4448
4449         // If the new span is adjacent to the previous span, do nothing for now.
4450         vm_address_t spanStartAddress = span->start << kPageShift;
4451         if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
4452             m_coalescedSpans.append(span);
4453             return span->length;
4454         }
4455
4456         // New span is not adjacent to previous span, so record the spans coalesced so far.
4457         recordPendingRegions();
4458         m_coalescedSpans.append(span);
4459
4460         return span->length;
4461     }
4462 };
4463
4464 class AdminRegionRecorder {
4465     task_t m_task;
4466     void* m_context;
4467     unsigned m_typeMask;
4468     vm_range_recorder_t* m_recorder;
4469     const RemoteMemoryReader& m_reader;
4470
4471     Vector<vm_range_t, 1024> m_pendingRegions;
4472
4473 public:
4474     AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
4475         : m_task(task)
4476         , m_context(context)
4477         , m_typeMask(typeMask)
4478         , m_recorder(recorder)
4479         , m_reader(reader)
4480     { }
4481
4482     void recordRegion(vm_address_t ptr, size_t size)
4483     {
4484         if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
4485             m_pendingRegions.append((vm_range_t){ ptr, size });
4486     }
4487
4488     void visit(void *ptr, size_t size)
4489     {
4490         recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
4491     }
4492
4493     void recordPendingRegions()
4494     {
4495         if (m_pendingRegions.size()) {
4496             (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
4497             m_pendingRegions.clear();
4498         }
4499     }
4500
4501     ~AdminRegionRecorder()
4502     {
4503         ASSERT(!m_pendingRegions.size());
4504     }
4505 };
4506
4507 kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
4508 {
4509     RemoteMemoryReader memoryReader(task, reader);
4510
4511     InitSizeClasses();
4512
4513     FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
4514     TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
4515     TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
4516     TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
4517
4518     TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
4519
4520     FreeObjectFinder finder(memoryReader);
4521     finder.findFreeObjects(threadHeaps);
4522     finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
4523
4524     TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
4525     PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
4526     pageMap->visitValues(pageMapFinder, memoryReader);
4527
4528     PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
4529     pageMap->visitValues(usageRecorder, memoryReader);
4530     usageRecorder.recordPendingRegions();
4531
4532     AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
4533     pageMap->visitAllocations(adminRegionRecorder, memoryReader);
4534
4535     PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
4536     PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
4537
4538     spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4539     pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4540
4541     adminRegionRecorder.recordPendingRegions();
4542
4543     return 0;
4544 }
4545
4546 size_t FastMallocZone::size(malloc_zone_t*, const void*)
4547 {
4548     return 0;
4549 }
4550
4551 void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
4552 {
4553     return 0;
4554 }
4555
4556 void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
4557 {
4558     return 0;
4559 }
4560
4561 void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
4562 {
4563     // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
4564     // is not in this zone.  When this happens, the pointer being freed was not allocated by any
4565     // zone so we need to print a useful error for the application developer.
4566     malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
4567 }
4568
4569 void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
4570 {
4571     return 0;
4572 }
4573
4574
4575 #undef malloc
4576 #undef free
4577 #undef realloc
4578 #undef calloc
4579
4580 extern "C" {
4581 malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
4582     &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
4583
4584 #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD)
4585     , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
4586 #endif
4587 #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !defined(BUILDING_ON_SNOW_LEOPARD)
4588     , 0, 0, 0, 0 // These members will not be used unless the zone advertises itself as version seven or higher.
4589 #endif
4590
4591     };
4592 }
4593
4594 FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
4595     : m_pageHeap(pageHeap)
4596     , m_threadHeaps(threadHeaps)
4597     , m_centralCaches(centralCaches)
4598     , m_spanAllocator(spanAllocator)
4599     , m_pageHeapAllocator(pageHeapAllocator)
4600 {
4601     memset(&m_zone, 0, sizeof(m_zone));
4602     m_zone.version = 4;
4603     m_zone.zone_name = "JavaScriptCore FastMalloc";
4604     m_zone.size = &FastMallocZone::size;
4605     m_zone.malloc = &FastMallocZone::zoneMalloc;
4606     m_zone.calloc = &FastMallocZone::zoneCalloc;
4607     m_zone.realloc = &FastMallocZone::zoneRealloc;
4608     m_zone.free = &FastMallocZone::zoneFree;
4609     m_zone.valloc = &FastMallocZone::zoneValloc;
4610     m_zone.destroy = &FastMallocZone::zoneDestroy;
4611     m_zone.introspect = &jscore_fastmalloc_introspection;
4612     malloc_zone_register(&m_zone);
4613 }
4614
4615
4616 void FastMallocZone::init()
4617 {
4618     static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
4619 }
4620
4621 #endif // OS(DARWIN)
4622
4623 } // namespace WTF
4624 #endif // WTF_CHANGES
4625
4626 #endif // FORCE_SYSTEM_MALLOC