OSDN Git Service

0358b62038d8a623de48027b9d52200abfb46d22
[android-x86/system-core.git] / adb / usb_linux.cpp
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #define TRACE_TAG USB
18
19 #include "sysdeps.h"
20
21 #include <ctype.h>
22 #include <dirent.h>
23 #include <errno.h>
24 #include <fcntl.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usbdevice_fs.h>
27 #include <linux/version.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <sys/ioctl.h>
32 #include <sys/time.h>
33 #include <sys/types.h>
34 #include <unistd.h>
35
36 #include <chrono>
37 #include <condition_variable>
38 #include <list>
39 #include <mutex>
40 #include <string>
41
42 #include <base/file.h>
43 #include <base/stringprintf.h>
44 #include <base/strings.h>
45
46 #include "adb.h"
47 #include "transport.h"
48
49 using namespace std::literals;
50
51 /* usb scan debugging is waaaay too verbose */
52 #define DBGX(x...)
53
54 struct usb_handle {
55     ~usb_handle() {
56       if (fd != -1) unix_close(fd);
57     }
58
59     std::string path;
60     int fd = -1;
61     unsigned char ep_in;
62     unsigned char ep_out;
63
64     unsigned zero_mask;
65     unsigned writeable = 1;
66
67     usbdevfs_urb urb_in;
68     usbdevfs_urb urb_out;
69
70     bool urb_in_busy = false;
71     bool urb_out_busy = false;
72     bool dead = false;
73
74     std::condition_variable cv;
75     std::mutex mutex;
76
77     // for garbage collecting disconnected devices
78     bool mark;
79
80     // ID of thread currently in REAPURB
81     pthread_t reaper_thread = 0;
82 };
83
84 static auto& g_usb_handles_mutex = *new std::mutex();
85 static auto& g_usb_handles = *new std::list<usb_handle*>();
86
87 static int is_known_device(const char* dev_name) {
88     std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
89     for (usb_handle* usb : g_usb_handles) {
90         if (usb->path == dev_name) {
91             // set mark flag to indicate this device is still alive
92             usb->mark = true;
93             return 1;
94         }
95     }
96     return 0;
97 }
98
99 static void kick_disconnected_devices() {
100     std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
101     // kick any devices in the device list that were not found in the device scan
102     for (usb_handle* usb : g_usb_handles) {
103         if (!usb->mark) {
104             usb_kick(usb);
105         } else {
106             usb->mark = false;
107         }
108     }
109 }
110
111 static inline bool contains_non_digit(const char* name) {
112     while (*name) {
113         if (!isdigit(*name++)) return true;
114     }
115     return false;
116 }
117
118 static void find_usb_device(const std::string& base,
119         void (*register_device_callback)
120                 (const char*, const char*, unsigned char, unsigned char, int, int, unsigned))
121 {
122     std::unique_ptr<DIR, int(*)(DIR*)> bus_dir(opendir(base.c_str()), closedir);
123     if (!bus_dir) return;
124
125     dirent* de;
126     while ((de = readdir(bus_dir.get())) != 0) {
127         if (contains_non_digit(de->d_name)) continue;
128
129         std::string bus_name = base + "/" + de->d_name;
130
131         std::unique_ptr<DIR, int(*)(DIR*)> dev_dir(opendir(bus_name.c_str()), closedir);
132         if (!dev_dir) continue;
133
134         while ((de = readdir(dev_dir.get()))) {
135             unsigned char devdesc[4096];
136             unsigned char* bufptr = devdesc;
137             unsigned char* bufend;
138             struct usb_device_descriptor* device;
139             struct usb_config_descriptor* config;
140             struct usb_interface_descriptor* interface;
141             struct usb_endpoint_descriptor *ep1, *ep2;
142             unsigned zero_mask = 0;
143             unsigned vid, pid;
144
145             if (contains_non_digit(de->d_name)) continue;
146
147             std::string dev_name = bus_name + "/" + de->d_name;
148             if (is_known_device(dev_name.c_str())) {
149                 continue;
150             }
151
152             int fd = unix_open(dev_name.c_str(), O_RDONLY | O_CLOEXEC);
153             if (fd == -1) {
154                 continue;
155             }
156
157             size_t desclength = unix_read(fd, devdesc, sizeof(devdesc));
158             bufend = bufptr + desclength;
159
160                 // should have device and configuration descriptors, and atleast two endpoints
161             if (desclength < USB_DT_DEVICE_SIZE + USB_DT_CONFIG_SIZE) {
162                 D("desclength %zu is too small", desclength);
163                 unix_close(fd);
164                 continue;
165             }
166
167             device = (struct usb_device_descriptor*)bufptr;
168             bufptr += USB_DT_DEVICE_SIZE;
169
170             if((device->bLength != USB_DT_DEVICE_SIZE) || (device->bDescriptorType != USB_DT_DEVICE)) {
171                 unix_close(fd);
172                 continue;
173             }
174
175             vid = device->idVendor;
176             pid = device->idProduct;
177             DBGX("[ %s is V:%04x P:%04x ]\n", dev_name.c_str(), vid, pid);
178
179                 // should have config descriptor next
180             config = (struct usb_config_descriptor *)bufptr;
181             bufptr += USB_DT_CONFIG_SIZE;
182             if (config->bLength != USB_DT_CONFIG_SIZE || config->bDescriptorType != USB_DT_CONFIG) {
183                 D("usb_config_descriptor not found");
184                 unix_close(fd);
185                 continue;
186             }
187
188                 // loop through all the descriptors and look for the ADB interface
189             while (bufptr < bufend) {
190                 unsigned char length = bufptr[0];
191                 unsigned char type = bufptr[1];
192
193                 if (type == USB_DT_INTERFACE) {
194                     interface = (struct usb_interface_descriptor *)bufptr;
195                     bufptr += length;
196
197                     if (length != USB_DT_INTERFACE_SIZE) {
198                         D("interface descriptor has wrong size");
199                         break;
200                     }
201
202                     DBGX("bInterfaceClass: %d,  bInterfaceSubClass: %d,"
203                          "bInterfaceProtocol: %d, bNumEndpoints: %d\n",
204                          interface->bInterfaceClass, interface->bInterfaceSubClass,
205                          interface->bInterfaceProtocol, interface->bNumEndpoints);
206
207                     if (interface->bNumEndpoints == 2 &&
208                             is_adb_interface(vid, pid, interface->bInterfaceClass,
209                             interface->bInterfaceSubClass, interface->bInterfaceProtocol))  {
210
211                         struct stat st;
212                         char pathbuf[128];
213                         char link[256];
214                         char *devpath = nullptr;
215
216                         DBGX("looking for bulk endpoints\n");
217                             // looks like ADB...
218                         ep1 = (struct usb_endpoint_descriptor *)bufptr;
219                         bufptr += USB_DT_ENDPOINT_SIZE;
220                             // For USB 3.0 SuperSpeed devices, skip potential
221                             // USB 3.0 SuperSpeed Endpoint Companion descriptor
222                         if (bufptr+2 <= devdesc + desclength &&
223                             bufptr[0] == USB_DT_SS_EP_COMP_SIZE &&
224                             bufptr[1] == USB_DT_SS_ENDPOINT_COMP) {
225                             bufptr += USB_DT_SS_EP_COMP_SIZE;
226                         }
227                         ep2 = (struct usb_endpoint_descriptor *)bufptr;
228                         bufptr += USB_DT_ENDPOINT_SIZE;
229                         if (bufptr+2 <= devdesc + desclength &&
230                             bufptr[0] == USB_DT_SS_EP_COMP_SIZE &&
231                             bufptr[1] == USB_DT_SS_ENDPOINT_COMP) {
232                             bufptr += USB_DT_SS_EP_COMP_SIZE;
233                         }
234
235                         if (bufptr > devdesc + desclength ||
236                             ep1->bLength != USB_DT_ENDPOINT_SIZE ||
237                             ep1->bDescriptorType != USB_DT_ENDPOINT ||
238                             ep2->bLength != USB_DT_ENDPOINT_SIZE ||
239                             ep2->bDescriptorType != USB_DT_ENDPOINT) {
240                             D("endpoints not found");
241                             break;
242                         }
243
244                             // both endpoints should be bulk
245                         if (ep1->bmAttributes != USB_ENDPOINT_XFER_BULK ||
246                             ep2->bmAttributes != USB_ENDPOINT_XFER_BULK) {
247                             D("bulk endpoints not found");
248                             continue;
249                         }
250                             /* aproto 01 needs 0 termination */
251                         if(interface->bInterfaceProtocol == 0x01) {
252                             zero_mask = ep1->wMaxPacketSize - 1;
253                         }
254
255                             // we have a match.  now we just need to figure out which is in and which is out.
256                         unsigned char local_ep_in, local_ep_out;
257                         if (ep1->bEndpointAddress & USB_ENDPOINT_DIR_MASK) {
258                             local_ep_in = ep1->bEndpointAddress;
259                             local_ep_out = ep2->bEndpointAddress;
260                         } else {
261                             local_ep_in = ep2->bEndpointAddress;
262                             local_ep_out = ep1->bEndpointAddress;
263                         }
264
265                             // Determine the device path
266                         if (!fstat(fd, &st) && S_ISCHR(st.st_mode)) {
267                             snprintf(pathbuf, sizeof(pathbuf), "/sys/dev/char/%d:%d",
268                                      major(st.st_rdev), minor(st.st_rdev));
269                             ssize_t link_len = readlink(pathbuf, link, sizeof(link) - 1);
270                             if (link_len > 0) {
271                                 link[link_len] = '\0';
272                                 const char* slash = strrchr(link, '/');
273                                 if (slash) {
274                                     snprintf(pathbuf, sizeof(pathbuf),
275                                              "usb:%s", slash + 1);
276                                     devpath = pathbuf;
277                                 }
278                             }
279                         }
280
281                         register_device_callback(dev_name.c_str(), devpath,
282                                 local_ep_in, local_ep_out,
283                                 interface->bInterfaceNumber, device->iSerialNumber, zero_mask);
284                         break;
285                     }
286                 } else {
287                     bufptr += length;
288                 }
289             } // end of while
290
291             unix_close(fd);
292         }
293     }
294 }
295
296 static int usb_bulk_write(usb_handle* h, const void* data, int len) {
297     std::unique_lock<std::mutex> lock(h->mutex);
298     D("++ usb_bulk_write ++");
299
300     usbdevfs_urb* urb = &h->urb_out;
301     memset(urb, 0, sizeof(*urb));
302     urb->type = USBDEVFS_URB_TYPE_BULK;
303     urb->endpoint = h->ep_out;
304     urb->status = -1;
305     urb->buffer = const_cast<void*>(data);
306     urb->buffer_length = len;
307
308     if (h->dead) {
309         errno = EINVAL;
310         return -1;
311     }
312
313     if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) {
314         return -1;
315     }
316
317     h->urb_out_busy = true;
318     while (true) {
319         auto now = std::chrono::system_clock::now();
320         if (h->cv.wait_until(lock, now + 5s) == std::cv_status::timeout || h->dead) {
321             // TODO: call USBDEVFS_DISCARDURB?
322             errno = ETIMEDOUT;
323             return -1;
324         }
325         if (!h->urb_out_busy) {
326             if (urb->status != 0) {
327                 errno = -urb->status;
328                 return -1;
329             }
330             return urb->actual_length;
331         }
332     }
333 }
334
335 static int usb_bulk_read(usb_handle* h, void* data, int len) {
336     std::unique_lock<std::mutex> lock(h->mutex);
337     D("++ usb_bulk_read ++");
338
339     usbdevfs_urb* urb = &h->urb_in;
340     memset(urb, 0, sizeof(*urb));
341     urb->type = USBDEVFS_URB_TYPE_BULK;
342     urb->endpoint = h->ep_in;
343     urb->status = -1;
344     urb->buffer = data;
345     urb->buffer_length = len;
346
347     if (h->dead) {
348         errno = EINVAL;
349         return -1;
350     }
351
352     if (TEMP_FAILURE_RETRY(ioctl(h->fd, USBDEVFS_SUBMITURB, urb)) == -1) {
353         return -1;
354     }
355
356     h->urb_in_busy = true;
357     while (true) {
358         D("[ reap urb - wait ]");
359         h->reaper_thread = pthread_self();
360         int fd = h->fd;
361         lock.unlock();
362
363         // This ioctl must not have TEMP_FAILURE_RETRY because we send SIGALRM to break out.
364         usbdevfs_urb* out = nullptr;
365         int res = ioctl(fd, USBDEVFS_REAPURB, &out);
366         int saved_errno = errno;
367
368         lock.lock();
369         h->reaper_thread = 0;
370         if (h->dead) {
371             errno = EINVAL;
372             return -1;
373         }
374         if (res < 0) {
375             if (saved_errno == EINTR) {
376                 continue;
377             }
378             D("[ reap urb - error ]");
379             errno = saved_errno;
380             return -1;
381         }
382         D("[ urb @%p status = %d, actual = %d ]", out, out->status, out->actual_length);
383
384         if (out == &h->urb_in) {
385             D("[ reap urb - IN complete ]");
386             h->urb_in_busy = false;
387             if (urb->status != 0) {
388                 errno = -urb->status;
389                 return -1;
390             }
391             return urb->actual_length;
392         }
393         if (out == &h->urb_out) {
394             D("[ reap urb - OUT compelete ]");
395             h->urb_out_busy = false;
396             h->cv.notify_all();
397         }
398     }
399 }
400
401
402 int usb_write(usb_handle *h, const void *_data, int len)
403 {
404     D("++ usb_write ++");
405
406     unsigned char *data = (unsigned char*) _data;
407     int n = usb_bulk_write(h, data, len);
408     if (n != len) {
409         D("ERROR: n = %d, errno = %d (%s)", n, errno, strerror(errno));
410         return -1;
411     }
412
413     if (h->zero_mask && !(len & h->zero_mask)) {
414         // If we need 0-markers and our transfer is an even multiple of the packet size,
415         // then send a zero marker.
416         return usb_bulk_write(h, _data, 0);
417     }
418
419     D("-- usb_write --");
420     return 0;
421 }
422
423 int usb_read(usb_handle *h, void *_data, int len)
424 {
425     unsigned char *data = (unsigned char*) _data;
426     int n;
427
428     D("++ usb_read ++");
429     while(len > 0) {
430         int xfer = len;
431
432         D("[ usb read %d fd = %d], path=%s", xfer, h->fd, h->path.c_str());
433         n = usb_bulk_read(h, data, xfer);
434         D("[ usb read %d ] = %d, path=%s", xfer, n, h->path.c_str());
435         if(n != xfer) {
436             if((errno == ETIMEDOUT) && (h->fd != -1)) {
437                 D("[ timeout ]");
438                 if(n > 0){
439                     data += n;
440                     len -= n;
441                 }
442                 continue;
443             }
444             D("ERROR: n = %d, errno = %d (%s)",
445                 n, errno, strerror(errno));
446             return -1;
447         }
448
449         len -= xfer;
450         data += xfer;
451     }
452
453     D("-- usb_read --");
454     return 0;
455 }
456
457 void usb_kick(usb_handle* h) {
458     std::lock_guard<std::mutex> lock(h->mutex);
459     D("[ kicking %p (fd = %d) ]", h, h->fd);
460     if (!h->dead) {
461         h->dead = true;
462
463         if (h->writeable) {
464             /* HACK ALERT!
465             ** Sometimes we get stuck in ioctl(USBDEVFS_REAPURB).
466             ** This is a workaround for that problem.
467             */
468             if (h->reaper_thread) {
469                 pthread_kill(h->reaper_thread, SIGALRM);
470             }
471
472             /* cancel any pending transactions
473             ** these will quietly fail if the txns are not active,
474             ** but this ensures that a reader blocked on REAPURB
475             ** will get unblocked
476             */
477             ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_in);
478             ioctl(h->fd, USBDEVFS_DISCARDURB, &h->urb_out);
479             h->urb_in.status = -ENODEV;
480             h->urb_out.status = -ENODEV;
481             h->urb_in_busy = false;
482             h->urb_out_busy = false;
483             h->cv.notify_all();
484         } else {
485             unregister_usb_transport(h);
486         }
487     }
488 }
489
490 int usb_close(usb_handle* h) {
491     std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
492     g_usb_handles.remove(h);
493
494     D("-- usb close %p (fd = %d) --", h, h->fd);
495
496     delete h;
497
498     return 0;
499 }
500
501 static void register_device(const char* dev_name, const char* dev_path,
502                             unsigned char ep_in, unsigned char ep_out,
503                             int interface, int serial_index,
504                             unsigned zero_mask) {
505     // Since Linux will not reassign the device ID (and dev_name) as long as the
506     // device is open, we can add to the list here once we open it and remove
507     // from the list when we're finally closed and everything will work out
508     // fine.
509     //
510     // If we have a usb_handle on the list of handles with a matching name, we
511     // have no further work to do.
512     {
513         std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
514         for (usb_handle* usb: g_usb_handles) {
515             if (usb->path == dev_name) {
516                 return;
517             }
518         }
519     }
520
521     D("[ usb located new device %s (%d/%d/%d) ]", dev_name, ep_in, ep_out, interface);
522     std::unique_ptr<usb_handle> usb(new usb_handle);
523     usb->path = dev_name;
524     usb->ep_in = ep_in;
525     usb->ep_out = ep_out;
526     usb->zero_mask = zero_mask;
527
528     // Initialize mark so we don't get garbage collected after the device scan.
529     usb->mark = true;
530
531     usb->fd = unix_open(usb->path.c_str(), O_RDWR | O_CLOEXEC);
532     if (usb->fd == -1) {
533         // Opening RW failed, so see if we have RO access.
534         usb->fd = unix_open(usb->path.c_str(), O_RDONLY | O_CLOEXEC);
535         if (usb->fd == -1) {
536             D("[ usb open %s failed: %s]", usb->path.c_str(), strerror(errno));
537             return;
538         }
539         usb->writeable = 0;
540     }
541
542     D("[ usb opened %s%s, fd=%d]",
543       usb->path.c_str(), (usb->writeable ? "" : " (read-only)"), usb->fd);
544
545     if (usb->writeable) {
546         if (ioctl(usb->fd, USBDEVFS_CLAIMINTERFACE, &interface) != 0) {
547             D("[ usb ioctl(%d, USBDEVFS_CLAIMINTERFACE) failed: %s]", usb->fd, strerror(errno));
548             return;
549         }
550     }
551
552     // Read the device's serial number.
553     std::string serial_path = android::base::StringPrintf(
554         "/sys/bus/usb/devices/%s/serial", dev_path + 4);
555     std::string serial;
556     if (!android::base::ReadFileToString(serial_path, &serial)) {
557         D("[ usb read %s failed: %s ]", serial_path.c_str(), strerror(errno));
558         // We don't actually want to treat an unknown serial as an error because
559         // devices aren't able to communicate a serial number in early bringup.
560         // http://b/20883914
561         serial = "";
562     }
563     serial = android::base::Trim(serial);
564
565     // Add to the end of the active handles.
566     usb_handle* done_usb = usb.release();
567     {
568         std::lock_guard<std::mutex> lock(g_usb_handles_mutex);
569         g_usb_handles.push_back(done_usb);
570     }
571     register_usb_transport(done_usb, serial.c_str(), dev_path, done_usb->writeable);
572 }
573
574 static void* device_poll_thread(void* unused) {
575     adb_thread_setname("device poll");
576     D("Created device thread");
577     while (true) {
578         // TODO: Use inotify.
579         find_usb_device("/dev/bus/usb", register_device);
580         kick_disconnected_devices();
581         sleep(1);
582     }
583     return nullptr;
584 }
585
586 void usb_init() {
587     struct sigaction actions;
588     memset(&actions, 0, sizeof(actions));
589     sigemptyset(&actions.sa_mask);
590     actions.sa_flags = 0;
591     actions.sa_handler = [](int) {};
592     sigaction(SIGALRM, &actions, nullptr);
593
594     if (!adb_thread_create(device_poll_thread, nullptr)) {
595         fatal_errno("cannot create device_poll thread");
596     }
597 }