OSDN Git Service

1ac1531dcfef60f866926fe84b2be2d6211ecb62
[uclinux-h8/linux.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11  * code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23 #include <linux/pm_runtime.h>
24
25 #include <asm/cputype.h>
26 #include <asm/irq.h>
27 #include <asm/irq_regs.h>
28 #include <asm/pmu.h>
29 #include <asm/stacktrace.h>
30
31 /*
32  * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
33  * another platform that supports more, we need to increase this to be the
34  * largest of all platforms.
35  *
36  * ARMv7 supports up to 32 events:
37  *  cycle counter CCNT + 31 events counters CNT0..30.
38  *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
39  */
40 #define ARMPMU_MAX_HWEVENTS             32
41
42 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
43 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
44 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
45
46 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
47
48 /* Set at runtime when we know what CPU type we are. */
49 static struct arm_pmu *cpu_pmu;
50
51 const char *perf_pmu_name(void)
52 {
53         if (!cpu_pmu)
54                 return NULL;
55
56         return cpu_pmu->pmu.name;
57 }
58 EXPORT_SYMBOL_GPL(perf_pmu_name);
59
60 int perf_num_counters(void)
61 {
62         int max_events = 0;
63
64         if (cpu_pmu != NULL)
65                 max_events = cpu_pmu->num_events;
66
67         return max_events;
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED               0xFFFF
72
73 #define C(_x) \
74         PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED            0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80                                       [PERF_COUNT_HW_CACHE_MAX]
81                                       [PERF_COUNT_HW_CACHE_OP_MAX]
82                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                        u64 config)
84 {
85         unsigned int cache_type, cache_op, cache_result, ret;
86
87         cache_type = (config >>  0) & 0xff;
88         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89                 return -EINVAL;
90
91         cache_op = (config >>  8) & 0xff;
92         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93                 return -EINVAL;
94
95         cache_result = (config >> 16) & 0xff;
96         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97                 return -EINVAL;
98
99         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101         if (ret == CACHE_OP_UNSUPPORTED)
102                 return -ENOENT;
103
104         return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110         int mapping = (*event_map)[config];
111         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
112 }
113
114 static int
115 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
116 {
117         return (int)(config & raw_event_mask);
118 }
119
120 static int map_cpu_event(struct perf_event *event,
121                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
122                          const unsigned (*cache_map)
123                                         [PERF_COUNT_HW_CACHE_MAX]
124                                         [PERF_COUNT_HW_CACHE_OP_MAX]
125                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
126                          u32 raw_event_mask)
127 {
128         u64 config = event->attr.config;
129
130         switch (event->attr.type) {
131         case PERF_TYPE_HARDWARE:
132                 return armpmu_map_event(event_map, config);
133         case PERF_TYPE_HW_CACHE:
134                 return armpmu_map_cache_event(cache_map, config);
135         case PERF_TYPE_RAW:
136                 return armpmu_map_raw_event(raw_event_mask, config);
137         }
138
139         return -ENOENT;
140 }
141
142 int
143 armpmu_event_set_period(struct perf_event *event,
144                         struct hw_perf_event *hwc,
145                         int idx)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         s64 left = local64_read(&hwc->period_left);
149         s64 period = hwc->sample_period;
150         int ret = 0;
151
152         if (unlikely(left <= -period)) {
153                 left = period;
154                 local64_set(&hwc->period_left, left);
155                 hwc->last_period = period;
156                 ret = 1;
157         }
158
159         if (unlikely(left <= 0)) {
160                 left += period;
161                 local64_set(&hwc->period_left, left);
162                 hwc->last_period = period;
163                 ret = 1;
164         }
165
166         if (left > (s64)armpmu->max_period)
167                 left = armpmu->max_period;
168
169         local64_set(&hwc->prev_count, (u64)-left);
170
171         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
172
173         perf_event_update_userpage(event);
174
175         return ret;
176 }
177
178 u64
179 armpmu_event_update(struct perf_event *event,
180                     struct hw_perf_event *hwc,
181                     int idx)
182 {
183         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
184         u64 delta, prev_raw_count, new_raw_count;
185
186 again:
187         prev_raw_count = local64_read(&hwc->prev_count);
188         new_raw_count = armpmu->read_counter(idx);
189
190         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
191                              new_raw_count) != prev_raw_count)
192                 goto again;
193
194         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
195
196         local64_add(delta, &event->count);
197         local64_sub(delta, &hwc->period_left);
198
199         return new_raw_count;
200 }
201
202 static void
203 armpmu_read(struct perf_event *event)
204 {
205         struct hw_perf_event *hwc = &event->hw;
206
207         /* Don't read disabled counters! */
208         if (hwc->idx < 0)
209                 return;
210
211         armpmu_event_update(event, hwc, hwc->idx);
212 }
213
214 static void
215 armpmu_stop(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct hw_perf_event *hwc = &event->hw;
219
220         /*
221          * ARM pmu always has to update the counter, so ignore
222          * PERF_EF_UPDATE, see comments in armpmu_start().
223          */
224         if (!(hwc->state & PERF_HES_STOPPED)) {
225                 armpmu->disable(hwc, hwc->idx);
226                 barrier(); /* why? */
227                 armpmu_event_update(event, hwc, hwc->idx);
228                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
229         }
230 }
231
232 static void
233 armpmu_start(struct perf_event *event, int flags)
234 {
235         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236         struct hw_perf_event *hwc = &event->hw;
237
238         /*
239          * ARM pmu always has to reprogram the period, so ignore
240          * PERF_EF_RELOAD, see the comment below.
241          */
242         if (flags & PERF_EF_RELOAD)
243                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
244
245         hwc->state = 0;
246         /*
247          * Set the period again. Some counters can't be stopped, so when we
248          * were stopped we simply disabled the IRQ source and the counter
249          * may have been left counting. If we don't do this step then we may
250          * get an interrupt too soon or *way* too late if the overflow has
251          * happened since disabling.
252          */
253         armpmu_event_set_period(event, hwc, hwc->idx);
254         armpmu->enable(hwc, hwc->idx);
255 }
256
257 static void
258 armpmu_del(struct perf_event *event, int flags)
259 {
260         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
261         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
262         struct hw_perf_event *hwc = &event->hw;
263         int idx = hwc->idx;
264
265         WARN_ON(idx < 0);
266
267         armpmu_stop(event, PERF_EF_UPDATE);
268         hw_events->events[idx] = NULL;
269         clear_bit(idx, hw_events->used_mask);
270
271         perf_event_update_userpage(event);
272 }
273
274 static int
275 armpmu_add(struct perf_event *event, int flags)
276 {
277         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
278         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
279         struct hw_perf_event *hwc = &event->hw;
280         int idx;
281         int err = 0;
282
283         perf_pmu_disable(event->pmu);
284
285         /* If we don't have a space for the counter then finish early. */
286         idx = armpmu->get_event_idx(hw_events, hwc);
287         if (idx < 0) {
288                 err = idx;
289                 goto out;
290         }
291
292         /*
293          * If there is an event in the counter we are going to use then make
294          * sure it is disabled.
295          */
296         event->hw.idx = idx;
297         armpmu->disable(hwc, idx);
298         hw_events->events[idx] = event;
299
300         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
301         if (flags & PERF_EF_START)
302                 armpmu_start(event, PERF_EF_RELOAD);
303
304         /* Propagate our changes to the userspace mapping. */
305         perf_event_update_userpage(event);
306
307 out:
308         perf_pmu_enable(event->pmu);
309         return err;
310 }
311
312 static int
313 validate_event(struct pmu_hw_events *hw_events,
314                struct perf_event *event)
315 {
316         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
317         struct hw_perf_event fake_event = event->hw;
318         struct pmu *leader_pmu = event->group_leader->pmu;
319
320         if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
321                 return 1;
322
323         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
324 }
325
326 static int
327 validate_group(struct perf_event *event)
328 {
329         struct perf_event *sibling, *leader = event->group_leader;
330         struct pmu_hw_events fake_pmu;
331         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
332
333         /*
334          * Initialise the fake PMU. We only need to populate the
335          * used_mask for the purposes of validation.
336          */
337         memset(fake_used_mask, 0, sizeof(fake_used_mask));
338         fake_pmu.used_mask = fake_used_mask;
339
340         if (!validate_event(&fake_pmu, leader))
341                 return -EINVAL;
342
343         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
344                 if (!validate_event(&fake_pmu, sibling))
345                         return -EINVAL;
346         }
347
348         if (!validate_event(&fake_pmu, event))
349                 return -EINVAL;
350
351         return 0;
352 }
353
354 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
355 {
356         struct arm_pmu *armpmu = (struct arm_pmu *) dev;
357         struct platform_device *plat_device = armpmu->plat_device;
358         struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
359
360         return plat->handle_irq(irq, dev, armpmu->handle_irq);
361 }
362
363 static void
364 armpmu_release_hardware(struct arm_pmu *armpmu)
365 {
366         int i, irq, irqs;
367         struct platform_device *pmu_device = armpmu->plat_device;
368
369         irqs = min(pmu_device->num_resources, num_possible_cpus());
370
371         for (i = 0; i < irqs; ++i) {
372                 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
373                         continue;
374                 irq = platform_get_irq(pmu_device, i);
375                 if (irq >= 0)
376                         free_irq(irq, armpmu);
377         }
378
379         pm_runtime_put_sync(&pmu_device->dev);
380 }
381
382 static int
383 armpmu_reserve_hardware(struct arm_pmu *armpmu)
384 {
385         struct arm_pmu_platdata *plat;
386         irq_handler_t handle_irq;
387         int i, err, irq, irqs;
388         struct platform_device *pmu_device = armpmu->plat_device;
389
390         if (!pmu_device)
391                 return -ENODEV;
392
393         plat = dev_get_platdata(&pmu_device->dev);
394         if (plat && plat->handle_irq)
395                 handle_irq = armpmu_platform_irq;
396         else
397                 handle_irq = armpmu->handle_irq;
398
399         irqs = min(pmu_device->num_resources, num_possible_cpus());
400         if (irqs < 1) {
401                 pr_err("no irqs for PMUs defined\n");
402                 return -ENODEV;
403         }
404
405         pm_runtime_get_sync(&pmu_device->dev);
406
407         for (i = 0; i < irqs; ++i) {
408                 err = 0;
409                 irq = platform_get_irq(pmu_device, i);
410                 if (irq < 0)
411                         continue;
412
413                 /*
414                  * If we have a single PMU interrupt that we can't shift,
415                  * assume that we're running on a uniprocessor machine and
416                  * continue. Otherwise, continue without this interrupt.
417                  */
418                 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
419                         pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
420                                     irq, i);
421                         continue;
422                 }
423
424                 err = request_irq(irq, handle_irq,
425                                   IRQF_DISABLED | IRQF_NOBALANCING,
426                                   "arm-pmu", armpmu);
427                 if (err) {
428                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
429                                 irq);
430                         armpmu_release_hardware(armpmu);
431                         return err;
432                 }
433
434                 cpumask_set_cpu(i, &armpmu->active_irqs);
435         }
436
437         return 0;
438 }
439
440 static void
441 hw_perf_event_destroy(struct perf_event *event)
442 {
443         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
444         atomic_t *active_events  = &armpmu->active_events;
445         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
446
447         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
448                 armpmu_release_hardware(armpmu);
449                 mutex_unlock(pmu_reserve_mutex);
450         }
451 }
452
453 static int
454 event_requires_mode_exclusion(struct perf_event_attr *attr)
455 {
456         return attr->exclude_idle || attr->exclude_user ||
457                attr->exclude_kernel || attr->exclude_hv;
458 }
459
460 static int
461 __hw_perf_event_init(struct perf_event *event)
462 {
463         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
464         struct hw_perf_event *hwc = &event->hw;
465         int mapping, err;
466
467         mapping = armpmu->map_event(event);
468
469         if (mapping < 0) {
470                 pr_debug("event %x:%llx not supported\n", event->attr.type,
471                          event->attr.config);
472                 return mapping;
473         }
474
475         /*
476          * We don't assign an index until we actually place the event onto
477          * hardware. Use -1 to signify that we haven't decided where to put it
478          * yet. For SMP systems, each core has it's own PMU so we can't do any
479          * clever allocation or constraints checking at this point.
480          */
481         hwc->idx                = -1;
482         hwc->config_base        = 0;
483         hwc->config             = 0;
484         hwc->event_base         = 0;
485
486         /*
487          * Check whether we need to exclude the counter from certain modes.
488          */
489         if ((!armpmu->set_event_filter ||
490              armpmu->set_event_filter(hwc, &event->attr)) &&
491              event_requires_mode_exclusion(&event->attr)) {
492                 pr_debug("ARM performance counters do not support "
493                          "mode exclusion\n");
494                 return -EOPNOTSUPP;
495         }
496
497         /*
498          * Store the event encoding into the config_base field.
499          */
500         hwc->config_base            |= (unsigned long)mapping;
501
502         if (!hwc->sample_period) {
503                 /*
504                  * For non-sampling runs, limit the sample_period to half
505                  * of the counter width. That way, the new counter value
506                  * is far less likely to overtake the previous one unless
507                  * you have some serious IRQ latency issues.
508                  */
509                 hwc->sample_period  = armpmu->max_period >> 1;
510                 hwc->last_period    = hwc->sample_period;
511                 local64_set(&hwc->period_left, hwc->sample_period);
512         }
513
514         err = 0;
515         if (event->group_leader != event) {
516                 err = validate_group(event);
517                 if (err)
518                         return -EINVAL;
519         }
520
521         return err;
522 }
523
524 static int armpmu_event_init(struct perf_event *event)
525 {
526         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
527         int err = 0;
528         atomic_t *active_events = &armpmu->active_events;
529
530         /* does not support taken branch sampling */
531         if (has_branch_stack(event))
532                 return -EOPNOTSUPP;
533
534         if (armpmu->map_event(event) == -ENOENT)
535                 return -ENOENT;
536
537         event->destroy = hw_perf_event_destroy;
538
539         if (!atomic_inc_not_zero(active_events)) {
540                 mutex_lock(&armpmu->reserve_mutex);
541                 if (atomic_read(active_events) == 0)
542                         err = armpmu_reserve_hardware(armpmu);
543
544                 if (!err)
545                         atomic_inc(active_events);
546                 mutex_unlock(&armpmu->reserve_mutex);
547         }
548
549         if (err)
550                 return err;
551
552         err = __hw_perf_event_init(event);
553         if (err)
554                 hw_perf_event_destroy(event);
555
556         return err;
557 }
558
559 static void armpmu_enable(struct pmu *pmu)
560 {
561         struct arm_pmu *armpmu = to_arm_pmu(pmu);
562         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
563         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
564
565         if (enabled)
566                 armpmu->start();
567 }
568
569 static void armpmu_disable(struct pmu *pmu)
570 {
571         struct arm_pmu *armpmu = to_arm_pmu(pmu);
572         armpmu->stop();
573 }
574
575 #ifdef CONFIG_PM_RUNTIME
576 static int armpmu_runtime_resume(struct device *dev)
577 {
578         struct arm_pmu_platdata *plat = dev_get_platdata(dev);
579
580         if (plat && plat->runtime_resume)
581                 return plat->runtime_resume(dev);
582
583         return 0;
584 }
585
586 static int armpmu_runtime_suspend(struct device *dev)
587 {
588         struct arm_pmu_platdata *plat = dev_get_platdata(dev);
589
590         if (plat && plat->runtime_suspend)
591                 return plat->runtime_suspend(dev);
592
593         return 0;
594 }
595 #endif
596
597 static void __init armpmu_init(struct arm_pmu *armpmu)
598 {
599         atomic_set(&armpmu->active_events, 0);
600         mutex_init(&armpmu->reserve_mutex);
601
602         armpmu->pmu = (struct pmu) {
603                 .pmu_enable     = armpmu_enable,
604                 .pmu_disable    = armpmu_disable,
605                 .event_init     = armpmu_event_init,
606                 .add            = armpmu_add,
607                 .del            = armpmu_del,
608                 .start          = armpmu_start,
609                 .stop           = armpmu_stop,
610                 .read           = armpmu_read,
611         };
612 }
613
614 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
615 {
616         armpmu_init(armpmu);
617         return perf_pmu_register(&armpmu->pmu, name, type);
618 }
619
620 /* Include the PMU-specific implementations. */
621 #include "perf_event_xscale.c"
622 #include "perf_event_v6.c"
623 #include "perf_event_v7.c"
624
625 /*
626  * Ensure the PMU has sane values out of reset.
627  * This requires SMP to be available, so exists as a separate initcall.
628  */
629 static int __init
630 cpu_pmu_reset(void)
631 {
632         if (cpu_pmu && cpu_pmu->reset)
633                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
634         return 0;
635 }
636 arch_initcall(cpu_pmu_reset);
637
638 /*
639  * PMU platform driver and devicetree bindings.
640  */
641 static struct of_device_id armpmu_of_device_ids[] = {
642         {.compatible = "arm,cortex-a15-pmu"},
643         {.compatible = "arm,cortex-a9-pmu"},
644         {.compatible = "arm,cortex-a8-pmu"},
645         {.compatible = "arm,cortex-a7-pmu"},
646         {.compatible = "arm,cortex-a5-pmu"},
647         {.compatible = "arm,arm11mpcore-pmu"},
648         {.compatible = "arm,arm1176-pmu"},
649         {.compatible = "arm,arm1136-pmu"},
650         {},
651 };
652
653 static struct platform_device_id armpmu_plat_device_ids[] = {
654         {.name = "arm-pmu"},
655         {},
656 };
657
658 static int __devinit armpmu_device_probe(struct platform_device *pdev)
659 {
660         if (!cpu_pmu)
661                 return -ENODEV;
662
663         cpu_pmu->plat_device = pdev;
664         return 0;
665 }
666
667 static const struct dev_pm_ops armpmu_dev_pm_ops = {
668         SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
669 };
670
671 static struct platform_driver armpmu_driver = {
672         .driver         = {
673                 .name   = "arm-pmu",
674                 .pm     = &armpmu_dev_pm_ops,
675                 .of_match_table = armpmu_of_device_ids,
676         },
677         .probe          = armpmu_device_probe,
678         .id_table       = armpmu_plat_device_ids,
679 };
680
681 static int __init register_pmu_driver(void)
682 {
683         return platform_driver_register(&armpmu_driver);
684 }
685 device_initcall(register_pmu_driver);
686
687 static struct pmu_hw_events *armpmu_get_cpu_events(void)
688 {
689         return &__get_cpu_var(cpu_hw_events);
690 }
691
692 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
693 {
694         int cpu;
695         for_each_possible_cpu(cpu) {
696                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
697                 events->events = per_cpu(hw_events, cpu);
698                 events->used_mask = per_cpu(used_mask, cpu);
699                 raw_spin_lock_init(&events->pmu_lock);
700         }
701         armpmu->get_hw_events = armpmu_get_cpu_events;
702 }
703
704 /*
705  * PMU hardware loses all context when a CPU goes offline.
706  * When a CPU is hotplugged back in, since some hardware registers are
707  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
708  * junk values out of them.
709  */
710 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
711                                         unsigned long action, void *hcpu)
712 {
713         if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
714                 return NOTIFY_DONE;
715
716         if (cpu_pmu && cpu_pmu->reset)
717                 cpu_pmu->reset(NULL);
718
719         return NOTIFY_OK;
720 }
721
722 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
723         .notifier_call = pmu_cpu_notify,
724 };
725
726 /*
727  * CPU PMU identification and registration.
728  */
729 static int __init
730 init_hw_perf_events(void)
731 {
732         unsigned long cpuid = read_cpuid_id();
733         unsigned long implementor = (cpuid & 0xFF000000) >> 24;
734         unsigned long part_number = (cpuid & 0xFFF0);
735
736         /* ARM Ltd CPUs. */
737         if (0x41 == implementor) {
738                 switch (part_number) {
739                 case 0xB360:    /* ARM1136 */
740                 case 0xB560:    /* ARM1156 */
741                 case 0xB760:    /* ARM1176 */
742                         cpu_pmu = armv6pmu_init();
743                         break;
744                 case 0xB020:    /* ARM11mpcore */
745                         cpu_pmu = armv6mpcore_pmu_init();
746                         break;
747                 case 0xC080:    /* Cortex-A8 */
748                         cpu_pmu = armv7_a8_pmu_init();
749                         break;
750                 case 0xC090:    /* Cortex-A9 */
751                         cpu_pmu = armv7_a9_pmu_init();
752                         break;
753                 case 0xC050:    /* Cortex-A5 */
754                         cpu_pmu = armv7_a5_pmu_init();
755                         break;
756                 case 0xC0F0:    /* Cortex-A15 */
757                         cpu_pmu = armv7_a15_pmu_init();
758                         break;
759                 case 0xC070:    /* Cortex-A7 */
760                         cpu_pmu = armv7_a7_pmu_init();
761                         break;
762                 }
763         /* Intel CPUs [xscale]. */
764         } else if (0x69 == implementor) {
765                 part_number = (cpuid >> 13) & 0x7;
766                 switch (part_number) {
767                 case 1:
768                         cpu_pmu = xscale1pmu_init();
769                         break;
770                 case 2:
771                         cpu_pmu = xscale2pmu_init();
772                         break;
773                 }
774         }
775
776         if (cpu_pmu) {
777                 pr_info("enabled with %s PMU driver, %d counters available\n",
778                         cpu_pmu->name, cpu_pmu->num_events);
779                 cpu_pmu_init(cpu_pmu);
780                 register_cpu_notifier(&pmu_cpu_notifier);
781                 armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
782         } else {
783                 pr_info("no hardware support available\n");
784         }
785
786         return 0;
787 }
788 early_initcall(init_hw_perf_events);
789
790 /*
791  * Callchain handling code.
792  */
793
794 /*
795  * The registers we're interested in are at the end of the variable
796  * length saved register structure. The fp points at the end of this
797  * structure so the address of this struct is:
798  * (struct frame_tail *)(xxx->fp)-1
799  *
800  * This code has been adapted from the ARM OProfile support.
801  */
802 struct frame_tail {
803         struct frame_tail __user *fp;
804         unsigned long sp;
805         unsigned long lr;
806 } __attribute__((packed));
807
808 /*
809  * Get the return address for a single stackframe and return a pointer to the
810  * next frame tail.
811  */
812 static struct frame_tail __user *
813 user_backtrace(struct frame_tail __user *tail,
814                struct perf_callchain_entry *entry)
815 {
816         struct frame_tail buftail;
817
818         /* Also check accessibility of one struct frame_tail beyond */
819         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
820                 return NULL;
821         if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
822                 return NULL;
823
824         perf_callchain_store(entry, buftail.lr);
825
826         /*
827          * Frame pointers should strictly progress back up the stack
828          * (towards higher addresses).
829          */
830         if (tail + 1 >= buftail.fp)
831                 return NULL;
832
833         return buftail.fp - 1;
834 }
835
836 void
837 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
838 {
839         struct frame_tail __user *tail;
840
841
842         tail = (struct frame_tail __user *)regs->ARM_fp - 1;
843
844         while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
845                tail && !((unsigned long)tail & 0x3))
846                 tail = user_backtrace(tail, entry);
847 }
848
849 /*
850  * Gets called by walk_stackframe() for every stackframe. This will be called
851  * whist unwinding the stackframe and is like a subroutine return so we use
852  * the PC.
853  */
854 static int
855 callchain_trace(struct stackframe *fr,
856                 void *data)
857 {
858         struct perf_callchain_entry *entry = data;
859         perf_callchain_store(entry, fr->pc);
860         return 0;
861 }
862
863 void
864 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
865 {
866         struct stackframe fr;
867
868         fr.fp = regs->ARM_fp;
869         fr.sp = regs->ARM_sp;
870         fr.lr = regs->ARM_lr;
871         fr.pc = regs->ARM_pc;
872         walk_stackframe(&fr, callchain_trace, entry);
873 }