OSDN Git Service

Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[uclinux-h8/linux.git] / arch / arm / kvm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/irqchip/arm-gic.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 /*
35  * How the whole thing works (courtesy of Christoffer Dall):
36  *
37  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38  *   something is pending
39  * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40  *   bitmap (this bitmap is updated by both user land ioctls and guest
41  *   mmio ops, and other in-kernel peripherals such as the
42  *   arch. timers) and indicate the 'wire' state.
43  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44  *   recalculated
45  * - To calculate the oracle, we need info for each cpu from
46  *   compute_pending_for_cpu, which considers:
47  *   - PPI: dist->irq_state & dist->irq_enable
48  *   - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49  *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50  *     registers, stored on each vcpu. We only keep one bit of
51  *     information per interrupt, making sure that only one vcpu can
52  *     accept the interrupt.
53  * - The same is true when injecting an interrupt, except that we only
54  *   consider a single interrupt at a time. The irq_spi_cpu array
55  *   contains the target CPU for each SPI.
56  *
57  * The handling of level interrupts adds some extra complexity. We
58  * need to track when the interrupt has been EOIed, so we can sample
59  * the 'line' again. This is achieved as such:
60  *
61  * - When a level interrupt is moved onto a vcpu, the corresponding
62  *   bit in irq_active is set. As long as this bit is set, the line
63  *   will be ignored for further interrupts. The interrupt is injected
64  *   into the vcpu with the GICH_LR_EOI bit set (generate a
65  *   maintenance interrupt on EOI).
66  * - When the interrupt is EOIed, the maintenance interrupt fires,
67  *   and clears the corresponding bit in irq_active. This allow the
68  *   interrupt line to be sampled again.
69  */
70
71 #define VGIC_ADDR_UNDEF         (-1)
72 #define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)
73
74 /* Physical address of vgic virtual cpu interface */
75 static phys_addr_t vgic_vcpu_base;
76
77 /* Virtual control interface base address */
78 static void __iomem *vgic_vctrl_base;
79
80 static struct device_node *vgic_node;
81
82 #define ACCESS_READ_VALUE       (1 << 0)
83 #define ACCESS_READ_RAZ         (0 << 0)
84 #define ACCESS_READ_MASK(x)     ((x) & (1 << 0))
85 #define ACCESS_WRITE_IGNORED    (0 << 1)
86 #define ACCESS_WRITE_SETBIT     (1 << 1)
87 #define ACCESS_WRITE_CLEARBIT   (2 << 1)
88 #define ACCESS_WRITE_VALUE      (3 << 1)
89 #define ACCESS_WRITE_MASK(x)    ((x) & (3 << 1))
90
91 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
92 static void vgic_update_state(struct kvm *kvm);
93 static void vgic_kick_vcpus(struct kvm *kvm);
94 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
95 static u32 vgic_nr_lr;
96
97 static unsigned int vgic_maint_irq;
98
99 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100                                 int cpuid, u32 offset)
101 {
102         offset >>= 2;
103         if (!offset)
104                 return x->percpu[cpuid].reg;
105         else
106                 return x->shared.reg + offset - 1;
107 }
108
109 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110                                    int cpuid, int irq)
111 {
112         if (irq < VGIC_NR_PRIVATE_IRQS)
113                 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116 }
117
118 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119                                     int irq, int val)
120 {
121         unsigned long *reg;
122
123         if (irq < VGIC_NR_PRIVATE_IRQS) {
124                 reg = x->percpu[cpuid].reg_ul;
125         } else {
126                 reg =  x->shared.reg_ul;
127                 irq -= VGIC_NR_PRIVATE_IRQS;
128         }
129
130         if (val)
131                 set_bit(irq, reg);
132         else
133                 clear_bit(irq, reg);
134 }
135
136 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137 {
138         if (unlikely(cpuid >= VGIC_MAX_CPUS))
139                 return NULL;
140         return x->percpu[cpuid].reg_ul;
141 }
142
143 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144 {
145         return x->shared.reg_ul;
146 }
147
148 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149 {
150         offset >>= 2;
151         BUG_ON(offset > (VGIC_NR_IRQS / 4));
152         if (offset < 4)
153                 return x->percpu[cpuid] + offset;
154         else
155                 return x->shared + offset - 8;
156 }
157
158 #define VGIC_CFG_LEVEL  0
159 #define VGIC_CFG_EDGE   1
160
161 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162 {
163         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164         int irq_val;
165
166         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167         return irq_val == VGIC_CFG_EDGE;
168 }
169
170 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171 {
172         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175 }
176
177 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178 {
179         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182 }
183
184 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185 {
186         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189 }
190
191 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192 {
193         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196 }
197
198 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199 {
200         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202         return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203 }
204
205 static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206 {
207         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209         vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210 }
211
212 static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213 {
214         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216         vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217 }
218
219 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220 {
221         if (irq < VGIC_NR_PRIVATE_IRQS)
222                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223         else
224                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225                         vcpu->arch.vgic_cpu.pending_shared);
226 }
227
228 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229 {
230         if (irq < VGIC_NR_PRIVATE_IRQS)
231                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232         else
233                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234                           vcpu->arch.vgic_cpu.pending_shared);
235 }
236
237 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238 {
239         return *((u32 *)mmio->data) & mask;
240 }
241
242 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243 {
244         *((u32 *)mmio->data) = value & mask;
245 }
246
247 /**
248  * vgic_reg_access - access vgic register
249  * @mmio:   pointer to the data describing the mmio access
250  * @reg:    pointer to the virtual backing of vgic distributor data
251  * @offset: least significant 2 bits used for word offset
252  * @mode:   ACCESS_ mode (see defines above)
253  *
254  * Helper to make vgic register access easier using one of the access
255  * modes defined for vgic register access
256  * (read,raz,write-ignored,setbit,clearbit,write)
257  */
258 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259                             phys_addr_t offset, int mode)
260 {
261         int word_offset = (offset & 3) * 8;
262         u32 mask = (1UL << (mmio->len * 8)) - 1;
263         u32 regval;
264
265         /*
266          * Any alignment fault should have been delivered to the guest
267          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268          */
269
270         if (reg) {
271                 regval = *reg;
272         } else {
273                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274                 regval = 0;
275         }
276
277         if (mmio->is_write) {
278                 u32 data = mmio_data_read(mmio, mask) << word_offset;
279                 switch (ACCESS_WRITE_MASK(mode)) {
280                 case ACCESS_WRITE_IGNORED:
281                         return;
282
283                 case ACCESS_WRITE_SETBIT:
284                         regval |= data;
285                         break;
286
287                 case ACCESS_WRITE_CLEARBIT:
288                         regval &= ~data;
289                         break;
290
291                 case ACCESS_WRITE_VALUE:
292                         regval = (regval & ~(mask << word_offset)) | data;
293                         break;
294                 }
295                 *reg = regval;
296         } else {
297                 switch (ACCESS_READ_MASK(mode)) {
298                 case ACCESS_READ_RAZ:
299                         regval = 0;
300                         /* fall through */
301
302                 case ACCESS_READ_VALUE:
303                         mmio_data_write(mmio, mask, regval >> word_offset);
304                 }
305         }
306 }
307
308 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309                              struct kvm_exit_mmio *mmio, phys_addr_t offset)
310 {
311         u32 reg;
312         u32 word_offset = offset & 3;
313
314         switch (offset & ~3) {
315         case 0:                 /* CTLR */
316                 reg = vcpu->kvm->arch.vgic.enabled;
317                 vgic_reg_access(mmio, &reg, word_offset,
318                                 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319                 if (mmio->is_write) {
320                         vcpu->kvm->arch.vgic.enabled = reg & 1;
321                         vgic_update_state(vcpu->kvm);
322                         return true;
323                 }
324                 break;
325
326         case 4:                 /* TYPER */
327                 reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328                 reg |= (VGIC_NR_IRQS >> 5) - 1;
329                 vgic_reg_access(mmio, &reg, word_offset,
330                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331                 break;
332
333         case 8:                 /* IIDR */
334                 reg = 0x4B00043B;
335                 vgic_reg_access(mmio, &reg, word_offset,
336                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337                 break;
338         }
339
340         return false;
341 }
342
343 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344                                struct kvm_exit_mmio *mmio, phys_addr_t offset)
345 {
346         vgic_reg_access(mmio, NULL, offset,
347                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348         return false;
349 }
350
351 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352                                        struct kvm_exit_mmio *mmio,
353                                        phys_addr_t offset)
354 {
355         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356                                        vcpu->vcpu_id, offset);
357         vgic_reg_access(mmio, reg, offset,
358                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359         if (mmio->is_write) {
360                 vgic_update_state(vcpu->kvm);
361                 return true;
362         }
363
364         return false;
365 }
366
367 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368                                          struct kvm_exit_mmio *mmio,
369                                          phys_addr_t offset)
370 {
371         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372                                        vcpu->vcpu_id, offset);
373         vgic_reg_access(mmio, reg, offset,
374                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375         if (mmio->is_write) {
376                 if (offset < 4) /* Force SGI enabled */
377                         *reg |= 0xffff;
378                 vgic_retire_disabled_irqs(vcpu);
379                 vgic_update_state(vcpu->kvm);
380                 return true;
381         }
382
383         return false;
384 }
385
386 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387                                         struct kvm_exit_mmio *mmio,
388                                         phys_addr_t offset)
389 {
390         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391                                        vcpu->vcpu_id, offset);
392         vgic_reg_access(mmio, reg, offset,
393                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394         if (mmio->is_write) {
395                 vgic_update_state(vcpu->kvm);
396                 return true;
397         }
398
399         return false;
400 }
401
402 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403                                           struct kvm_exit_mmio *mmio,
404                                           phys_addr_t offset)
405 {
406         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407                                        vcpu->vcpu_id, offset);
408         vgic_reg_access(mmio, reg, offset,
409                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410         if (mmio->is_write) {
411                 vgic_update_state(vcpu->kvm);
412                 return true;
413         }
414
415         return false;
416 }
417
418 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419                                      struct kvm_exit_mmio *mmio,
420                                      phys_addr_t offset)
421 {
422         u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423                                         vcpu->vcpu_id, offset);
424         vgic_reg_access(mmio, reg, offset,
425                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426         return false;
427 }
428
429 #define GICD_ITARGETSR_SIZE     32
430 #define GICD_CPUTARGETS_BITS    8
431 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433 {
434         struct vgic_dist *dist = &kvm->arch.vgic;
435         struct kvm_vcpu *vcpu;
436         int i, c;
437         unsigned long *bmap;
438         u32 val = 0;
439
440         irq -= VGIC_NR_PRIVATE_IRQS;
441
442         kvm_for_each_vcpu(c, vcpu, kvm) {
443                 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
444                 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
445                         if (test_bit(irq + i, bmap))
446                                 val |= 1 << (c + i * 8);
447         }
448
449         return val;
450 }
451
452 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
453 {
454         struct vgic_dist *dist = &kvm->arch.vgic;
455         struct kvm_vcpu *vcpu;
456         int i, c;
457         unsigned long *bmap;
458         u32 target;
459
460         irq -= VGIC_NR_PRIVATE_IRQS;
461
462         /*
463          * Pick the LSB in each byte. This ensures we target exactly
464          * one vcpu per IRQ. If the byte is null, assume we target
465          * CPU0.
466          */
467         for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
468                 int shift = i * GICD_CPUTARGETS_BITS;
469                 target = ffs((val >> shift) & 0xffU);
470                 target = target ? (target - 1) : 0;
471                 dist->irq_spi_cpu[irq + i] = target;
472                 kvm_for_each_vcpu(c, vcpu, kvm) {
473                         bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
474                         if (c == target)
475                                 set_bit(irq + i, bmap);
476                         else
477                                 clear_bit(irq + i, bmap);
478                 }
479         }
480 }
481
482 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
483                                    struct kvm_exit_mmio *mmio,
484                                    phys_addr_t offset)
485 {
486         u32 reg;
487
488         /* We treat the banked interrupts targets as read-only */
489         if (offset < 32) {
490                 u32 roreg = 1 << vcpu->vcpu_id;
491                 roreg |= roreg << 8;
492                 roreg |= roreg << 16;
493
494                 vgic_reg_access(mmio, &roreg, offset,
495                                 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
496                 return false;
497         }
498
499         reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
500         vgic_reg_access(mmio, &reg, offset,
501                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
502         if (mmio->is_write) {
503                 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
504                 vgic_update_state(vcpu->kvm);
505                 return true;
506         }
507
508         return false;
509 }
510
511 static u32 vgic_cfg_expand(u16 val)
512 {
513         u32 res = 0;
514         int i;
515
516         /*
517          * Turn a 16bit value like abcd...mnop into a 32bit word
518          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
519          */
520         for (i = 0; i < 16; i++)
521                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
522
523         return res;
524 }
525
526 static u16 vgic_cfg_compress(u32 val)
527 {
528         u16 res = 0;
529         int i;
530
531         /*
532          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
533          * abcd...mnop which is what we really care about.
534          */
535         for (i = 0; i < 16; i++)
536                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
537
538         return res;
539 }
540
541 /*
542  * The distributor uses 2 bits per IRQ for the CFG register, but the
543  * LSB is always 0. As such, we only keep the upper bit, and use the
544  * two above functions to compress/expand the bits
545  */
546 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
547                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
548 {
549         u32 val;
550         u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
551                                        vcpu->vcpu_id, offset >> 1);
552         if (offset & 2)
553                 val = *reg >> 16;
554         else
555                 val = *reg & 0xffff;
556
557         val = vgic_cfg_expand(val);
558         vgic_reg_access(mmio, &val, offset,
559                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
560         if (mmio->is_write) {
561                 if (offset < 4) {
562                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
563                         return false;
564                 }
565
566                 val = vgic_cfg_compress(val);
567                 if (offset & 2) {
568                         *reg &= 0xffff;
569                         *reg |= val << 16;
570                 } else {
571                         *reg &= 0xffff << 16;
572                         *reg |= val;
573                 }
574         }
575
576         return false;
577 }
578
579 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
580                                 struct kvm_exit_mmio *mmio, phys_addr_t offset)
581 {
582         u32 reg;
583         vgic_reg_access(mmio, &reg, offset,
584                         ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
585         if (mmio->is_write) {
586                 vgic_dispatch_sgi(vcpu, reg);
587                 vgic_update_state(vcpu->kvm);
588                 return true;
589         }
590
591         return false;
592 }
593
594 /*
595  * I would have liked to use the kvm_bus_io_*() API instead, but it
596  * cannot cope with banked registers (only the VM pointer is passed
597  * around, and we need the vcpu). One of these days, someone please
598  * fix it!
599  */
600 struct mmio_range {
601         phys_addr_t base;
602         unsigned long len;
603         bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
604                             phys_addr_t offset);
605 };
606
607 static const struct mmio_range vgic_ranges[] = {
608         {
609                 .base           = GIC_DIST_CTRL,
610                 .len            = 12,
611                 .handle_mmio    = handle_mmio_misc,
612         },
613         {
614                 .base           = GIC_DIST_IGROUP,
615                 .len            = VGIC_NR_IRQS / 8,
616                 .handle_mmio    = handle_mmio_raz_wi,
617         },
618         {
619                 .base           = GIC_DIST_ENABLE_SET,
620                 .len            = VGIC_NR_IRQS / 8,
621                 .handle_mmio    = handle_mmio_set_enable_reg,
622         },
623         {
624                 .base           = GIC_DIST_ENABLE_CLEAR,
625                 .len            = VGIC_NR_IRQS / 8,
626                 .handle_mmio    = handle_mmio_clear_enable_reg,
627         },
628         {
629                 .base           = GIC_DIST_PENDING_SET,
630                 .len            = VGIC_NR_IRQS / 8,
631                 .handle_mmio    = handle_mmio_set_pending_reg,
632         },
633         {
634                 .base           = GIC_DIST_PENDING_CLEAR,
635                 .len            = VGIC_NR_IRQS / 8,
636                 .handle_mmio    = handle_mmio_clear_pending_reg,
637         },
638         {
639                 .base           = GIC_DIST_ACTIVE_SET,
640                 .len            = VGIC_NR_IRQS / 8,
641                 .handle_mmio    = handle_mmio_raz_wi,
642         },
643         {
644                 .base           = GIC_DIST_ACTIVE_CLEAR,
645                 .len            = VGIC_NR_IRQS / 8,
646                 .handle_mmio    = handle_mmio_raz_wi,
647         },
648         {
649                 .base           = GIC_DIST_PRI,
650                 .len            = VGIC_NR_IRQS,
651                 .handle_mmio    = handle_mmio_priority_reg,
652         },
653         {
654                 .base           = GIC_DIST_TARGET,
655                 .len            = VGIC_NR_IRQS,
656                 .handle_mmio    = handle_mmio_target_reg,
657         },
658         {
659                 .base           = GIC_DIST_CONFIG,
660                 .len            = VGIC_NR_IRQS / 4,
661                 .handle_mmio    = handle_mmio_cfg_reg,
662         },
663         {
664                 .base           = GIC_DIST_SOFTINT,
665                 .len            = 4,
666                 .handle_mmio    = handle_mmio_sgi_reg,
667         },
668         {}
669 };
670
671 static const
672 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
673                                        struct kvm_exit_mmio *mmio,
674                                        phys_addr_t base)
675 {
676         const struct mmio_range *r = ranges;
677         phys_addr_t addr = mmio->phys_addr - base;
678
679         while (r->len) {
680                 if (addr >= r->base &&
681                     (addr + mmio->len) <= (r->base + r->len))
682                         return r;
683                 r++;
684         }
685
686         return NULL;
687 }
688
689 /**
690  * vgic_handle_mmio - handle an in-kernel MMIO access
691  * @vcpu:       pointer to the vcpu performing the access
692  * @run:        pointer to the kvm_run structure
693  * @mmio:       pointer to the data describing the access
694  *
695  * returns true if the MMIO access has been performed in kernel space,
696  * and false if it needs to be emulated in user space.
697  */
698 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
699                       struct kvm_exit_mmio *mmio)
700 {
701         const struct mmio_range *range;
702         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
703         unsigned long base = dist->vgic_dist_base;
704         bool updated_state;
705         unsigned long offset;
706
707         if (!irqchip_in_kernel(vcpu->kvm) ||
708             mmio->phys_addr < base ||
709             (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
710                 return false;
711
712         /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
713         if (mmio->len > 4) {
714                 kvm_inject_dabt(vcpu, mmio->phys_addr);
715                 return true;
716         }
717
718         range = find_matching_range(vgic_ranges, mmio, base);
719         if (unlikely(!range || !range->handle_mmio)) {
720                 pr_warn("Unhandled access %d %08llx %d\n",
721                         mmio->is_write, mmio->phys_addr, mmio->len);
722                 return false;
723         }
724
725         spin_lock(&vcpu->kvm->arch.vgic.lock);
726         offset = mmio->phys_addr - range->base - base;
727         updated_state = range->handle_mmio(vcpu, mmio, offset);
728         spin_unlock(&vcpu->kvm->arch.vgic.lock);
729         kvm_prepare_mmio(run, mmio);
730         kvm_handle_mmio_return(vcpu, run);
731
732         if (updated_state)
733                 vgic_kick_vcpus(vcpu->kvm);
734
735         return true;
736 }
737
738 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
739 {
740         struct kvm *kvm = vcpu->kvm;
741         struct vgic_dist *dist = &kvm->arch.vgic;
742         int nrcpus = atomic_read(&kvm->online_vcpus);
743         u8 target_cpus;
744         int sgi, mode, c, vcpu_id;
745
746         vcpu_id = vcpu->vcpu_id;
747
748         sgi = reg & 0xf;
749         target_cpus = (reg >> 16) & 0xff;
750         mode = (reg >> 24) & 3;
751
752         switch (mode) {
753         case 0:
754                 if (!target_cpus)
755                         return;
756
757         case 1:
758                 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
759                 break;
760
761         case 2:
762                 target_cpus = 1 << vcpu_id;
763                 break;
764         }
765
766         kvm_for_each_vcpu(c, vcpu, kvm) {
767                 if (target_cpus & 1) {
768                         /* Flag the SGI as pending */
769                         vgic_dist_irq_set(vcpu, sgi);
770                         dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
771                         kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
772                 }
773
774                 target_cpus >>= 1;
775         }
776 }
777
778 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
779 {
780         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
781         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
782         unsigned long pending_private, pending_shared;
783         int vcpu_id;
784
785         vcpu_id = vcpu->vcpu_id;
786         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
787         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
788
789         pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
790         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
791         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
792
793         pending = vgic_bitmap_get_shared_map(&dist->irq_state);
794         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
795         bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
796         bitmap_and(pend_shared, pend_shared,
797                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
798                    VGIC_NR_SHARED_IRQS);
799
800         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
801         pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
802         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
803                 pending_shared < VGIC_NR_SHARED_IRQS);
804 }
805
806 /*
807  * Update the interrupt state and determine which CPUs have pending
808  * interrupts. Must be called with distributor lock held.
809  */
810 static void vgic_update_state(struct kvm *kvm)
811 {
812         struct vgic_dist *dist = &kvm->arch.vgic;
813         struct kvm_vcpu *vcpu;
814         int c;
815
816         if (!dist->enabled) {
817                 set_bit(0, &dist->irq_pending_on_cpu);
818                 return;
819         }
820
821         kvm_for_each_vcpu(c, vcpu, kvm) {
822                 if (compute_pending_for_cpu(vcpu)) {
823                         pr_debug("CPU%d has pending interrupts\n", c);
824                         set_bit(c, &dist->irq_pending_on_cpu);
825                 }
826         }
827 }
828
829 #define LR_CPUID(lr)    \
830         (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
831 #define MK_LR_PEND(src, irq)    \
832         (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
833
834 /*
835  * An interrupt may have been disabled after being made pending on the
836  * CPU interface (the classic case is a timer running while we're
837  * rebooting the guest - the interrupt would kick as soon as the CPU
838  * interface gets enabled, with deadly consequences).
839  *
840  * The solution is to examine already active LRs, and check the
841  * interrupt is still enabled. If not, just retire it.
842  */
843 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
844 {
845         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
846         int lr;
847
848         for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
849                 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
850
851                 if (!vgic_irq_is_enabled(vcpu, irq)) {
852                         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
853                         clear_bit(lr, vgic_cpu->lr_used);
854                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
855                         if (vgic_irq_is_active(vcpu, irq))
856                                 vgic_irq_clear_active(vcpu, irq);
857                 }
858         }
859 }
860
861 /*
862  * Queue an interrupt to a CPU virtual interface. Return true on success,
863  * or false if it wasn't possible to queue it.
864  */
865 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
866 {
867         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
868         int lr;
869
870         /* Sanitize the input... */
871         BUG_ON(sgi_source_id & ~7);
872         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
873         BUG_ON(irq >= VGIC_NR_IRQS);
874
875         kvm_debug("Queue IRQ%d\n", irq);
876
877         lr = vgic_cpu->vgic_irq_lr_map[irq];
878
879         /* Do we have an active interrupt for the same CPUID? */
880         if (lr != LR_EMPTY &&
881             (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
882                 kvm_debug("LR%d piggyback for IRQ%d %x\n",
883                           lr, irq, vgic_cpu->vgic_lr[lr]);
884                 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
885                 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
886                 return true;
887         }
888
889         /* Try to use another LR for this interrupt */
890         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
891                                vgic_cpu->nr_lr);
892         if (lr >= vgic_cpu->nr_lr)
893                 return false;
894
895         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
896         vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
897         vgic_cpu->vgic_irq_lr_map[irq] = lr;
898         set_bit(lr, vgic_cpu->lr_used);
899
900         if (!vgic_irq_is_edge(vcpu, irq))
901                 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
902
903         return true;
904 }
905
906 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
907 {
908         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
909         unsigned long sources;
910         int vcpu_id = vcpu->vcpu_id;
911         int c;
912
913         sources = dist->irq_sgi_sources[vcpu_id][irq];
914
915         for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
916                 if (vgic_queue_irq(vcpu, c, irq))
917                         clear_bit(c, &sources);
918         }
919
920         dist->irq_sgi_sources[vcpu_id][irq] = sources;
921
922         /*
923          * If the sources bitmap has been cleared it means that we
924          * could queue all the SGIs onto link registers (see the
925          * clear_bit above), and therefore we are done with them in
926          * our emulated gic and can get rid of them.
927          */
928         if (!sources) {
929                 vgic_dist_irq_clear(vcpu, irq);
930                 vgic_cpu_irq_clear(vcpu, irq);
931                 return true;
932         }
933
934         return false;
935 }
936
937 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
938 {
939         if (vgic_irq_is_active(vcpu, irq))
940                 return true; /* level interrupt, already queued */
941
942         if (vgic_queue_irq(vcpu, 0, irq)) {
943                 if (vgic_irq_is_edge(vcpu, irq)) {
944                         vgic_dist_irq_clear(vcpu, irq);
945                         vgic_cpu_irq_clear(vcpu, irq);
946                 } else {
947                         vgic_irq_set_active(vcpu, irq);
948                 }
949
950                 return true;
951         }
952
953         return false;
954 }
955
956 /*
957  * Fill the list registers with pending interrupts before running the
958  * guest.
959  */
960 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
961 {
962         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
963         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
964         int i, vcpu_id;
965         int overflow = 0;
966
967         vcpu_id = vcpu->vcpu_id;
968
969         /*
970          * We may not have any pending interrupt, or the interrupts
971          * may have been serviced from another vcpu. In all cases,
972          * move along.
973          */
974         if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
975                 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
976                 goto epilog;
977         }
978
979         /* SGIs */
980         for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
981                 if (!vgic_queue_sgi(vcpu, i))
982                         overflow = 1;
983         }
984
985         /* PPIs */
986         for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
987                 if (!vgic_queue_hwirq(vcpu, i))
988                         overflow = 1;
989         }
990
991         /* SPIs */
992         for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
993                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
994                         overflow = 1;
995         }
996
997 epilog:
998         if (overflow) {
999                 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1000         } else {
1001                 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1002                 /*
1003                  * We're about to run this VCPU, and we've consumed
1004                  * everything the distributor had in store for
1005                  * us. Claim we don't have anything pending. We'll
1006                  * adjust that if needed while exiting.
1007                  */
1008                 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1009         }
1010 }
1011
1012 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1013 {
1014         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1015         bool level_pending = false;
1016
1017         kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1018
1019         if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1020                 /*
1021                  * Some level interrupts have been EOIed. Clear their
1022                  * active bit.
1023                  */
1024                 int lr, irq;
1025
1026                 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1027                                  vgic_cpu->nr_lr) {
1028                         irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1029
1030                         vgic_irq_clear_active(vcpu, irq);
1031                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1032
1033                         /* Any additional pending interrupt? */
1034                         if (vgic_dist_irq_is_pending(vcpu, irq)) {
1035                                 vgic_cpu_irq_set(vcpu, irq);
1036                                 level_pending = true;
1037                         } else {
1038                                 vgic_cpu_irq_clear(vcpu, irq);
1039                         }
1040
1041                         /*
1042                          * Despite being EOIed, the LR may not have
1043                          * been marked as empty.
1044                          */
1045                         set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1046                         vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
1047                 }
1048         }
1049
1050         if (vgic_cpu->vgic_misr & GICH_MISR_U)
1051                 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1052
1053         return level_pending;
1054 }
1055
1056 /*
1057  * Sync back the VGIC state after a guest run. The distributor lock is
1058  * needed so we don't get preempted in the middle of the state processing.
1059  */
1060 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1061 {
1062         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1063         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1064         int lr, pending;
1065         bool level_pending;
1066
1067         level_pending = vgic_process_maintenance(vcpu);
1068
1069         /* Clear mappings for empty LRs */
1070         for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1071                          vgic_cpu->nr_lr) {
1072                 int irq;
1073
1074                 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1075                         continue;
1076
1077                 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1078
1079                 BUG_ON(irq >= VGIC_NR_IRQS);
1080                 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1081         }
1082
1083         /* Check if we still have something up our sleeve... */
1084         pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1085                                       vgic_cpu->nr_lr);
1086         if (level_pending || pending < vgic_cpu->nr_lr)
1087                 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1088 }
1089
1090 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1091 {
1092         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1093
1094         if (!irqchip_in_kernel(vcpu->kvm))
1095                 return;
1096
1097         spin_lock(&dist->lock);
1098         __kvm_vgic_flush_hwstate(vcpu);
1099         spin_unlock(&dist->lock);
1100 }
1101
1102 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1103 {
1104         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1105
1106         if (!irqchip_in_kernel(vcpu->kvm))
1107                 return;
1108
1109         spin_lock(&dist->lock);
1110         __kvm_vgic_sync_hwstate(vcpu);
1111         spin_unlock(&dist->lock);
1112 }
1113
1114 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1115 {
1116         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1117
1118         if (!irqchip_in_kernel(vcpu->kvm))
1119                 return 0;
1120
1121         return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1122 }
1123
1124 static void vgic_kick_vcpus(struct kvm *kvm)
1125 {
1126         struct kvm_vcpu *vcpu;
1127         int c;
1128
1129         /*
1130          * We've injected an interrupt, time to find out who deserves
1131          * a good kick...
1132          */
1133         kvm_for_each_vcpu(c, vcpu, kvm) {
1134                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1135                         kvm_vcpu_kick(vcpu);
1136         }
1137 }
1138
1139 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1140 {
1141         int is_edge = vgic_irq_is_edge(vcpu, irq);
1142         int state = vgic_dist_irq_is_pending(vcpu, irq);
1143
1144         /*
1145          * Only inject an interrupt if:
1146          * - edge triggered and we have a rising edge
1147          * - level triggered and we change level
1148          */
1149         if (is_edge)
1150                 return level > state;
1151         else
1152                 return level != state;
1153 }
1154
1155 static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1156                                   unsigned int irq_num, bool level)
1157 {
1158         struct vgic_dist *dist = &kvm->arch.vgic;
1159         struct kvm_vcpu *vcpu;
1160         int is_edge, is_level;
1161         int enabled;
1162         bool ret = true;
1163
1164         spin_lock(&dist->lock);
1165
1166         vcpu = kvm_get_vcpu(kvm, cpuid);
1167         is_edge = vgic_irq_is_edge(vcpu, irq_num);
1168         is_level = !is_edge;
1169
1170         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1171                 ret = false;
1172                 goto out;
1173         }
1174
1175         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1176                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1177                 vcpu = kvm_get_vcpu(kvm, cpuid);
1178         }
1179
1180         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1181
1182         if (level)
1183                 vgic_dist_irq_set(vcpu, irq_num);
1184         else
1185                 vgic_dist_irq_clear(vcpu, irq_num);
1186
1187         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1188
1189         if (!enabled) {
1190                 ret = false;
1191                 goto out;
1192         }
1193
1194         if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1195                 /*
1196                  * Level interrupt in progress, will be picked up
1197                  * when EOId.
1198                  */
1199                 ret = false;
1200                 goto out;
1201         }
1202
1203         if (level) {
1204                 vgic_cpu_irq_set(vcpu, irq_num);
1205                 set_bit(cpuid, &dist->irq_pending_on_cpu);
1206         }
1207
1208 out:
1209         spin_unlock(&dist->lock);
1210
1211         return ret;
1212 }
1213
1214 /**
1215  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1216  * @kvm:     The VM structure pointer
1217  * @cpuid:   The CPU for PPIs
1218  * @irq_num: The IRQ number that is assigned to the device
1219  * @level:   Edge-triggered:  true:  to trigger the interrupt
1220  *                            false: to ignore the call
1221  *           Level-sensitive  true:  activates an interrupt
1222  *                            false: deactivates an interrupt
1223  *
1224  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1225  * level-sensitive interrupts.  You can think of the level parameter as 1
1226  * being HIGH and 0 being LOW and all devices being active-HIGH.
1227  */
1228 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1229                         bool level)
1230 {
1231         if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1232                 vgic_kick_vcpus(kvm);
1233
1234         return 0;
1235 }
1236
1237 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1238 {
1239         /*
1240          * We cannot rely on the vgic maintenance interrupt to be
1241          * delivered synchronously. This means we can only use it to
1242          * exit the VM, and we perform the handling of EOIed
1243          * interrupts on the exit path (see vgic_process_maintenance).
1244          */
1245         return IRQ_HANDLED;
1246 }
1247
1248 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1249 {
1250         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1251         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1252         int i;
1253
1254         if (!irqchip_in_kernel(vcpu->kvm))
1255                 return 0;
1256
1257         if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1258                 return -EBUSY;
1259
1260         for (i = 0; i < VGIC_NR_IRQS; i++) {
1261                 if (i < VGIC_NR_PPIS)
1262                         vgic_bitmap_set_irq_val(&dist->irq_enabled,
1263                                                 vcpu->vcpu_id, i, 1);
1264                 if (i < VGIC_NR_PRIVATE_IRQS)
1265                         vgic_bitmap_set_irq_val(&dist->irq_cfg,
1266                                                 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1267
1268                 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1269         }
1270
1271         /*
1272          * By forcing VMCR to zero, the GIC will restore the binary
1273          * points to their reset values. Anything else resets to zero
1274          * anyway.
1275          */
1276         vgic_cpu->vgic_vmcr = 0;
1277
1278         vgic_cpu->nr_lr = vgic_nr_lr;
1279         vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1280
1281         return 0;
1282 }
1283
1284 static void vgic_init_maintenance_interrupt(void *info)
1285 {
1286         enable_percpu_irq(vgic_maint_irq, 0);
1287 }
1288
1289 static int vgic_cpu_notify(struct notifier_block *self,
1290                            unsigned long action, void *cpu)
1291 {
1292         switch (action) {
1293         case CPU_STARTING:
1294         case CPU_STARTING_FROZEN:
1295                 vgic_init_maintenance_interrupt(NULL);
1296                 break;
1297         case CPU_DYING:
1298         case CPU_DYING_FROZEN:
1299                 disable_percpu_irq(vgic_maint_irq);
1300                 break;
1301         }
1302
1303         return NOTIFY_OK;
1304 }
1305
1306 static struct notifier_block vgic_cpu_nb = {
1307         .notifier_call = vgic_cpu_notify,
1308 };
1309
1310 int kvm_vgic_hyp_init(void)
1311 {
1312         int ret;
1313         struct resource vctrl_res;
1314         struct resource vcpu_res;
1315
1316         vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1317         if (!vgic_node) {
1318                 kvm_err("error: no compatible vgic node in DT\n");
1319                 return -ENODEV;
1320         }
1321
1322         vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1323         if (!vgic_maint_irq) {
1324                 kvm_err("error getting vgic maintenance irq from DT\n");
1325                 ret = -ENXIO;
1326                 goto out;
1327         }
1328
1329         ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1330                                  "vgic", kvm_get_running_vcpus());
1331         if (ret) {
1332                 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1333                 goto out;
1334         }
1335
1336         ret = register_cpu_notifier(&vgic_cpu_nb);
1337         if (ret) {
1338                 kvm_err("Cannot register vgic CPU notifier\n");
1339                 goto out_free_irq;
1340         }
1341
1342         ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1343         if (ret) {
1344                 kvm_err("Cannot obtain VCTRL resource\n");
1345                 goto out_free_irq;
1346         }
1347
1348         vgic_vctrl_base = of_iomap(vgic_node, 2);
1349         if (!vgic_vctrl_base) {
1350                 kvm_err("Cannot ioremap VCTRL\n");
1351                 ret = -ENOMEM;
1352                 goto out_free_irq;
1353         }
1354
1355         vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1356         vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1357
1358         ret = create_hyp_io_mappings(vgic_vctrl_base,
1359                                      vgic_vctrl_base + resource_size(&vctrl_res),
1360                                      vctrl_res.start);
1361         if (ret) {
1362                 kvm_err("Cannot map VCTRL into hyp\n");
1363                 goto out_unmap;
1364         }
1365
1366         kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1367                  vctrl_res.start, vgic_maint_irq);
1368         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1369
1370         if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1371                 kvm_err("Cannot obtain VCPU resource\n");
1372                 ret = -ENXIO;
1373                 goto out_unmap;
1374         }
1375         vgic_vcpu_base = vcpu_res.start;
1376
1377         goto out;
1378
1379 out_unmap:
1380         iounmap(vgic_vctrl_base);
1381 out_free_irq:
1382         free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1383 out:
1384         of_node_put(vgic_node);
1385         return ret;
1386 }
1387
1388 int kvm_vgic_init(struct kvm *kvm)
1389 {
1390         int ret = 0, i;
1391
1392         mutex_lock(&kvm->lock);
1393
1394         if (vgic_initialized(kvm))
1395                 goto out;
1396
1397         if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1398             IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1399                 kvm_err("Need to set vgic cpu and dist addresses first\n");
1400                 ret = -ENXIO;
1401                 goto out;
1402         }
1403
1404         ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1405                                     vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1406         if (ret) {
1407                 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1408                 goto out;
1409         }
1410
1411         for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1412                 vgic_set_target_reg(kvm, 0, i);
1413
1414         kvm_timer_init(kvm);
1415         kvm->arch.vgic.ready = true;
1416 out:
1417         mutex_unlock(&kvm->lock);
1418         return ret;
1419 }
1420
1421 int kvm_vgic_create(struct kvm *kvm)
1422 {
1423         int ret = 0;
1424
1425         mutex_lock(&kvm->lock);
1426
1427         if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
1428                 ret = -EEXIST;
1429                 goto out;
1430         }
1431
1432         spin_lock_init(&kvm->arch.vgic.lock);
1433         kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1434         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1435         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1436
1437 out:
1438         mutex_unlock(&kvm->lock);
1439         return ret;
1440 }
1441
1442 static bool vgic_ioaddr_overlap(struct kvm *kvm)
1443 {
1444         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1445         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1446
1447         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1448                 return 0;
1449         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1450             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1451                 return -EBUSY;
1452         return 0;
1453 }
1454
1455 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1456                               phys_addr_t addr, phys_addr_t size)
1457 {
1458         int ret;
1459
1460         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1461                 return -EEXIST;
1462         if (addr + size < addr)
1463                 return -EINVAL;
1464
1465         ret = vgic_ioaddr_overlap(kvm);
1466         if (ret)
1467                 return ret;
1468         *ioaddr = addr;
1469         return ret;
1470 }
1471
1472 int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
1473 {
1474         int r = 0;
1475         struct vgic_dist *vgic = &kvm->arch.vgic;
1476
1477         if (addr & ~KVM_PHYS_MASK)
1478                 return -E2BIG;
1479
1480         if (addr & (SZ_4K - 1))
1481                 return -EINVAL;
1482
1483         mutex_lock(&kvm->lock);
1484         switch (type) {
1485         case KVM_VGIC_V2_ADDR_TYPE_DIST:
1486                 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1487                                        addr, KVM_VGIC_V2_DIST_SIZE);
1488                 break;
1489         case KVM_VGIC_V2_ADDR_TYPE_CPU:
1490                 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1491                                        addr, KVM_VGIC_V2_CPU_SIZE);
1492                 break;
1493         default:
1494                 r = -ENODEV;
1495         }
1496
1497         mutex_unlock(&kvm->lock);
1498         return r;
1499 }