OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
43
44 #define KVM_REQ_SLEEP \
45         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
52
53 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
54                                      KVM_DIRTY_LOG_INITIALLY_SET)
55
56 #define KVM_HAVE_MMU_RWLOCK
57
58 /*
59  * Mode of operation configurable with kvm-arm.mode early param.
60  * See Documentation/admin-guide/kernel-parameters.txt for more information.
61  */
62 enum kvm_mode {
63         KVM_MODE_DEFAULT,
64         KVM_MODE_PROTECTED,
65         KVM_MODE_NV,
66         KVM_MODE_NONE,
67 };
68 #ifdef CONFIG_KVM
69 enum kvm_mode kvm_get_mode(void);
70 #else
71 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
72 #endif
73
74 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
75
76 extern unsigned int __ro_after_init kvm_sve_max_vl;
77 int __init kvm_arm_init_sve(void);
78
79 u32 __attribute_const__ kvm_target_cpu(void);
80 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
81 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
82
83 struct kvm_hyp_memcache {
84         phys_addr_t head;
85         unsigned long nr_pages;
86 };
87
88 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
89                                      phys_addr_t *p,
90                                      phys_addr_t (*to_pa)(void *virt))
91 {
92         *p = mc->head;
93         mc->head = to_pa(p);
94         mc->nr_pages++;
95 }
96
97 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
98                                      void *(*to_va)(phys_addr_t phys))
99 {
100         phys_addr_t *p = to_va(mc->head);
101
102         if (!mc->nr_pages)
103                 return NULL;
104
105         mc->head = *p;
106         mc->nr_pages--;
107
108         return p;
109 }
110
111 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
112                                        unsigned long min_pages,
113                                        void *(*alloc_fn)(void *arg),
114                                        phys_addr_t (*to_pa)(void *virt),
115                                        void *arg)
116 {
117         while (mc->nr_pages < min_pages) {
118                 phys_addr_t *p = alloc_fn(arg);
119
120                 if (!p)
121                         return -ENOMEM;
122                 push_hyp_memcache(mc, p, to_pa);
123         }
124
125         return 0;
126 }
127
128 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
129                                        void (*free_fn)(void *virt, void *arg),
130                                        void *(*to_va)(phys_addr_t phys),
131                                        void *arg)
132 {
133         while (mc->nr_pages)
134                 free_fn(pop_hyp_memcache(mc, to_va), arg);
135 }
136
137 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
138 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
139
140 struct kvm_vmid {
141         atomic64_t id;
142 };
143
144 struct kvm_s2_mmu {
145         struct kvm_vmid vmid;
146
147         /*
148          * stage2 entry level table
149          *
150          * Two kvm_s2_mmu structures in the same VM can point to the same
151          * pgd here.  This happens when running a guest using a
152          * translation regime that isn't affected by its own stage-2
153          * translation, such as a non-VHE hypervisor running at vEL2, or
154          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
155          * canonical stage-2 page tables.
156          */
157         phys_addr_t     pgd_phys;
158         struct kvm_pgtable *pgt;
159
160         /* The last vcpu id that ran on each physical CPU */
161         int __percpu *last_vcpu_ran;
162
163 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
164         /*
165          * Memory cache used to split
166          * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
167          * is used to allocate stage2 page tables while splitting huge
168          * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
169          * influences both the capacity of the split page cache, and
170          * how often KVM reschedules. Be wary of raising CHUNK_SIZE
171          * too high.
172          *
173          * Protected by kvm->slots_lock.
174          */
175         struct kvm_mmu_memory_cache split_page_cache;
176         uint64_t split_page_chunk_size;
177
178         struct kvm_arch *arch;
179 };
180
181 struct kvm_arch_memory_slot {
182 };
183
184 /**
185  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
186  *
187  * @std_bmap: Bitmap of standard secure service calls
188  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
189  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
190  */
191 struct kvm_smccc_features {
192         unsigned long std_bmap;
193         unsigned long std_hyp_bmap;
194         unsigned long vendor_hyp_bmap;
195 };
196
197 typedef unsigned int pkvm_handle_t;
198
199 struct kvm_protected_vm {
200         pkvm_handle_t handle;
201         struct kvm_hyp_memcache teardown_mc;
202 };
203
204 struct kvm_arch {
205         struct kvm_s2_mmu mmu;
206
207         /* VTCR_EL2 value for this VM */
208         u64    vtcr;
209
210         /* Interrupt controller */
211         struct vgic_dist        vgic;
212
213         /* Timers */
214         struct arch_timer_vm_data timer_data;
215
216         /* Mandated version of PSCI */
217         u32 psci_version;
218
219         /* Protects VM-scoped configuration data */
220         struct mutex config_lock;
221
222         /*
223          * If we encounter a data abort without valid instruction syndrome
224          * information, report this to user space.  User space can (and
225          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
226          * supported.
227          */
228 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
229         /* Memory Tagging Extension enabled for the guest */
230 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
231         /* At least one vCPU has ran in the VM */
232 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
233         /* The vCPU feature set for the VM is configured */
234 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED          3
235         /* PSCI SYSTEM_SUSPEND enabled for the guest */
236 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            4
237         /* VM counter offset */
238 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 5
239         /* Timer PPIs made immutable */
240 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              6
241         /* SMCCC filter initialized for the VM */
242 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           7
243         /* Initial ID reg values loaded */
244 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED               8
245         unsigned long flags;
246
247         /* VM-wide vCPU feature set */
248         DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
249
250         /*
251          * VM-wide PMU filter, implemented as a bitmap and big enough for
252          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
253          */
254         unsigned long *pmu_filter;
255         struct arm_pmu *arm_pmu;
256
257         cpumask_var_t supported_cpus;
258
259         /* Hypercall features firmware registers' descriptor */
260         struct kvm_smccc_features smccc_feat;
261         struct maple_tree smccc_filter;
262
263         /*
264          * Emulated CPU ID registers per VM
265          * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
266          * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
267          *
268          * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
269          * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
270          */
271 #define IDREG_IDX(id)           (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
272 #define IDREG(kvm, id)          ((kvm)->arch.id_regs[IDREG_IDX(id)])
273 #define KVM_ARM_ID_REG_NUM      (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
274         u64 id_regs[KVM_ARM_ID_REG_NUM];
275
276         /*
277          * For an untrusted host VM, 'pkvm.handle' is used to lookup
278          * the associated pKVM instance in the hypervisor.
279          */
280         struct kvm_protected_vm pkvm;
281 };
282
283 struct kvm_vcpu_fault_info {
284         u64 esr_el2;            /* Hyp Syndrom Register */
285         u64 far_el2;            /* Hyp Fault Address Register */
286         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
287         u64 disr_el1;           /* Deferred [SError] Status Register */
288 };
289
290 enum vcpu_sysreg {
291         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
292         MPIDR_EL1,      /* MultiProcessor Affinity Register */
293         CLIDR_EL1,      /* Cache Level ID Register */
294         CSSELR_EL1,     /* Cache Size Selection Register */
295         SCTLR_EL1,      /* System Control Register */
296         ACTLR_EL1,      /* Auxiliary Control Register */
297         CPACR_EL1,      /* Coprocessor Access Control */
298         ZCR_EL1,        /* SVE Control */
299         TTBR0_EL1,      /* Translation Table Base Register 0 */
300         TTBR1_EL1,      /* Translation Table Base Register 1 */
301         TCR_EL1,        /* Translation Control Register */
302         TCR2_EL1,       /* Extended Translation Control Register */
303         ESR_EL1,        /* Exception Syndrome Register */
304         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
305         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
306         FAR_EL1,        /* Fault Address Register */
307         MAIR_EL1,       /* Memory Attribute Indirection Register */
308         VBAR_EL1,       /* Vector Base Address Register */
309         CONTEXTIDR_EL1, /* Context ID Register */
310         TPIDR_EL0,      /* Thread ID, User R/W */
311         TPIDRRO_EL0,    /* Thread ID, User R/O */
312         TPIDR_EL1,      /* Thread ID, Privileged */
313         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
314         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
315         PAR_EL1,        /* Physical Address Register */
316         MDSCR_EL1,      /* Monitor Debug System Control Register */
317         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
318         OSLSR_EL1,      /* OS Lock Status Register */
319         DISR_EL1,       /* Deferred Interrupt Status Register */
320
321         /* Performance Monitors Registers */
322         PMCR_EL0,       /* Control Register */
323         PMSELR_EL0,     /* Event Counter Selection Register */
324         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
325         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
326         PMCCNTR_EL0,    /* Cycle Counter Register */
327         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
328         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
329         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
330         PMCNTENSET_EL0, /* Count Enable Set Register */
331         PMINTENSET_EL1, /* Interrupt Enable Set Register */
332         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
333         PMUSERENR_EL0,  /* User Enable Register */
334
335         /* Pointer Authentication Registers in a strict increasing order. */
336         APIAKEYLO_EL1,
337         APIAKEYHI_EL1,
338         APIBKEYLO_EL1,
339         APIBKEYHI_EL1,
340         APDAKEYLO_EL1,
341         APDAKEYHI_EL1,
342         APDBKEYLO_EL1,
343         APDBKEYHI_EL1,
344         APGAKEYLO_EL1,
345         APGAKEYHI_EL1,
346
347         ELR_EL1,
348         SP_EL1,
349         SPSR_EL1,
350
351         CNTVOFF_EL2,
352         CNTV_CVAL_EL0,
353         CNTV_CTL_EL0,
354         CNTP_CVAL_EL0,
355         CNTP_CTL_EL0,
356
357         /* Memory Tagging Extension registers */
358         RGSR_EL1,       /* Random Allocation Tag Seed Register */
359         GCR_EL1,        /* Tag Control Register */
360         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
361         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
362
363         /* Permission Indirection Extension registers */
364         PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
365         PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
366
367         /* 32bit specific registers. */
368         DACR32_EL2,     /* Domain Access Control Register */
369         IFSR32_EL2,     /* Instruction Fault Status Register */
370         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
371         DBGVCR32_EL2,   /* Debug Vector Catch Register */
372
373         /* EL2 registers */
374         VPIDR_EL2,      /* Virtualization Processor ID Register */
375         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
376         SCTLR_EL2,      /* System Control Register (EL2) */
377         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
378         HCR_EL2,        /* Hypervisor Configuration Register */
379         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
380         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
381         HSTR_EL2,       /* Hypervisor System Trap Register */
382         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
383         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
384         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
385         TCR_EL2,        /* Translation Control Register (EL2) */
386         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
387         VTCR_EL2,       /* Virtualization Translation Control Register */
388         SPSR_EL2,       /* EL2 saved program status register */
389         ELR_EL2,        /* EL2 exception link register */
390         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
391         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
392         ESR_EL2,        /* Exception Syndrome Register (EL2) */
393         FAR_EL2,        /* Fault Address Register (EL2) */
394         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
395         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
396         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
397         VBAR_EL2,       /* Vector Base Address Register (EL2) */
398         RVBAR_EL2,      /* Reset Vector Base Address Register */
399         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
400         TPIDR_EL2,      /* EL2 Software Thread ID Register */
401         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
402         SP_EL2,         /* EL2 Stack Pointer */
403         CNTHP_CTL_EL2,
404         CNTHP_CVAL_EL2,
405         CNTHV_CTL_EL2,
406         CNTHV_CVAL_EL2,
407
408         NR_SYS_REGS     /* Nothing after this line! */
409 };
410
411 struct kvm_cpu_context {
412         struct user_pt_regs regs;       /* sp = sp_el0 */
413
414         u64     spsr_abt;
415         u64     spsr_und;
416         u64     spsr_irq;
417         u64     spsr_fiq;
418
419         struct user_fpsimd_state fp_regs;
420
421         u64 sys_regs[NR_SYS_REGS];
422
423         struct kvm_vcpu *__hyp_running_vcpu;
424 };
425
426 struct kvm_host_data {
427         struct kvm_cpu_context host_ctxt;
428 };
429
430 struct kvm_host_psci_config {
431         /* PSCI version used by host. */
432         u32 version;
433         u32 smccc_version;
434
435         /* Function IDs used by host if version is v0.1. */
436         struct psci_0_1_function_ids function_ids_0_1;
437
438         bool psci_0_1_cpu_suspend_implemented;
439         bool psci_0_1_cpu_on_implemented;
440         bool psci_0_1_cpu_off_implemented;
441         bool psci_0_1_migrate_implemented;
442 };
443
444 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
445 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
446
447 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
448 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
449
450 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
451 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
452
453 struct vcpu_reset_state {
454         unsigned long   pc;
455         unsigned long   r0;
456         bool            be;
457         bool            reset;
458 };
459
460 struct kvm_vcpu_arch {
461         struct kvm_cpu_context ctxt;
462
463         /*
464          * Guest floating point state
465          *
466          * The architecture has two main floating point extensions,
467          * the original FPSIMD and SVE.  These have overlapping
468          * register views, with the FPSIMD V registers occupying the
469          * low 128 bits of the SVE Z registers.  When the core
470          * floating point code saves the register state of a task it
471          * records which view it saved in fp_type.
472          */
473         void *sve_state;
474         enum fp_type fp_type;
475         unsigned int sve_max_vl;
476         u64 svcr;
477
478         /* Stage 2 paging state used by the hardware on next switch */
479         struct kvm_s2_mmu *hw_mmu;
480
481         /* Values of trap registers for the guest. */
482         u64 hcr_el2;
483         u64 mdcr_el2;
484         u64 cptr_el2;
485
486         /* Values of trap registers for the host before guest entry. */
487         u64 mdcr_el2_host;
488
489         /* Exception Information */
490         struct kvm_vcpu_fault_info fault;
491
492         /* Ownership of the FP regs */
493         enum {
494                 FP_STATE_FREE,
495                 FP_STATE_HOST_OWNED,
496                 FP_STATE_GUEST_OWNED,
497         } fp_state;
498
499         /* Configuration flags, set once and for all before the vcpu can run */
500         u8 cflags;
501
502         /* Input flags to the hypervisor code, potentially cleared after use */
503         u8 iflags;
504
505         /* State flags for kernel bookkeeping, unused by the hypervisor code */
506         u8 sflags;
507
508         /*
509          * Don't run the guest (internal implementation need).
510          *
511          * Contrary to the flags above, this is set/cleared outside of
512          * a vcpu context, and thus cannot be mixed with the flags
513          * themselves (or the flag accesses need to be made atomic).
514          */
515         bool pause;
516
517         /*
518          * We maintain more than a single set of debug registers to support
519          * debugging the guest from the host and to maintain separate host and
520          * guest state during world switches. vcpu_debug_state are the debug
521          * registers of the vcpu as the guest sees them.  host_debug_state are
522          * the host registers which are saved and restored during
523          * world switches. external_debug_state contains the debug
524          * values we want to debug the guest. This is set via the
525          * KVM_SET_GUEST_DEBUG ioctl.
526          *
527          * debug_ptr points to the set of debug registers that should be loaded
528          * onto the hardware when running the guest.
529          */
530         struct kvm_guest_debug_arch *debug_ptr;
531         struct kvm_guest_debug_arch vcpu_debug_state;
532         struct kvm_guest_debug_arch external_debug_state;
533
534         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
535         struct task_struct *parent_task;
536
537         struct {
538                 /* {Break,watch}point registers */
539                 struct kvm_guest_debug_arch regs;
540                 /* Statistical profiling extension */
541                 u64 pmscr_el1;
542                 /* Self-hosted trace */
543                 u64 trfcr_el1;
544         } host_debug_state;
545
546         /* VGIC state */
547         struct vgic_cpu vgic_cpu;
548         struct arch_timer_cpu timer_cpu;
549         struct kvm_pmu pmu;
550
551         /*
552          * Guest registers we preserve during guest debugging.
553          *
554          * These shadow registers are updated by the kvm_handle_sys_reg
555          * trap handler if the guest accesses or updates them while we
556          * are using guest debug.
557          */
558         struct {
559                 u32     mdscr_el1;
560                 bool    pstate_ss;
561         } guest_debug_preserved;
562
563         /* vcpu power state */
564         struct kvm_mp_state mp_state;
565         spinlock_t mp_state_lock;
566
567         /* Cache some mmu pages needed inside spinlock regions */
568         struct kvm_mmu_memory_cache mmu_page_cache;
569
570         /* Target CPU and feature flags */
571         int target;
572         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
573
574         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
575         u64 vsesr_el2;
576
577         /* Additional reset state */
578         struct vcpu_reset_state reset_state;
579
580         /* Guest PV state */
581         struct {
582                 u64 last_steal;
583                 gpa_t base;
584         } steal;
585
586         /* Per-vcpu CCSIDR override or NULL */
587         u32 *ccsidr;
588 };
589
590 /*
591  * Each 'flag' is composed of a comma-separated triplet:
592  *
593  * - the flag-set it belongs to in the vcpu->arch structure
594  * - the value for that flag
595  * - the mask for that flag
596  *
597  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
598  * unpack_vcpu_flag() extract the flag value from the triplet for
599  * direct use outside of the flag accessors.
600  */
601 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
602
603 #define __unpack_flag(_set, _f, _m)     _f
604 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
605
606 #define __build_check_flag(v, flagset, f, m)                    \
607         do {                                                    \
608                 typeof(v->arch.flagset) *_fset;                 \
609                                                                 \
610                 /* Check that the flags fit in the mask */      \
611                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
612                 /* Check that the flags fit in the type */      \
613                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
614         } while (0)
615
616 #define __vcpu_get_flag(v, flagset, f, m)                       \
617         ({                                                      \
618                 __build_check_flag(v, flagset, f, m);           \
619                                                                 \
620                 READ_ONCE(v->arch.flagset) & (m);               \
621         })
622
623 /*
624  * Note that the set/clear accessors must be preempt-safe in order to
625  * avoid nesting them with load/put which also manipulate flags...
626  */
627 #ifdef __KVM_NVHE_HYPERVISOR__
628 /* the nVHE hypervisor is always non-preemptible */
629 #define __vcpu_flags_preempt_disable()
630 #define __vcpu_flags_preempt_enable()
631 #else
632 #define __vcpu_flags_preempt_disable()  preempt_disable()
633 #define __vcpu_flags_preempt_enable()   preempt_enable()
634 #endif
635
636 #define __vcpu_set_flag(v, flagset, f, m)                       \
637         do {                                                    \
638                 typeof(v->arch.flagset) *fset;                  \
639                                                                 \
640                 __build_check_flag(v, flagset, f, m);           \
641                                                                 \
642                 fset = &v->arch.flagset;                        \
643                 __vcpu_flags_preempt_disable();                 \
644                 if (HWEIGHT(m) > 1)                             \
645                         *fset &= ~(m);                          \
646                 *fset |= (f);                                   \
647                 __vcpu_flags_preempt_enable();                  \
648         } while (0)
649
650 #define __vcpu_clear_flag(v, flagset, f, m)                     \
651         do {                                                    \
652                 typeof(v->arch.flagset) *fset;                  \
653                                                                 \
654                 __build_check_flag(v, flagset, f, m);           \
655                                                                 \
656                 fset = &v->arch.flagset;                        \
657                 __vcpu_flags_preempt_disable();                 \
658                 *fset &= ~(m);                                  \
659                 __vcpu_flags_preempt_enable();                  \
660         } while (0)
661
662 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
663 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
664 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
665
666 /* SVE exposed to guest */
667 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
668 /* SVE config completed */
669 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
670 /* PTRAUTH exposed to guest */
671 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
672
673 /* Exception pending */
674 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
675 /*
676  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
677  * be set together with an exception...
678  */
679 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
680 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
681 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
682
683 /* Helpers to encode exceptions with minimum fuss */
684 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
685 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
686 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
687
688 /*
689  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
690  * values:
691  *
692  * For AArch32 EL1:
693  */
694 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
695 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
696 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
697 /* For AArch64: */
698 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
699 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
700 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
701 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
702 /* For AArch64 with NV: */
703 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
704 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
705 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
706 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
707 /* Guest debug is live */
708 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
709 /* Save SPE context if active  */
710 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
711 /* Save TRBE context if active  */
712 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
713 /* vcpu running in HYP context */
714 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
715
716 /* SVE enabled for host EL0 */
717 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
718 /* SME enabled for EL0 */
719 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
720 /* Physical CPU not in supported_cpus */
721 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
722 /* WFIT instruction trapped */
723 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
724 /* vcpu system registers loaded on physical CPU */
725 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
726 /* Software step state is Active-pending */
727 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
728 /* PMUSERENR for the guest EL0 is on physical CPU */
729 #define PMUSERENR_ON_CPU        __vcpu_single_flag(sflags, BIT(6))
730 /* WFI instruction trapped */
731 #define IN_WFI                  __vcpu_single_flag(sflags, BIT(7))
732
733
734 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
735 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
736                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
737
738 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
739
740 #define vcpu_sve_state_size(vcpu) ({                                    \
741         size_t __size_ret;                                              \
742         unsigned int __vcpu_vq;                                         \
743                                                                         \
744         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
745                 __size_ret = 0;                                         \
746         } else {                                                        \
747                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
748                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
749         }                                                               \
750                                                                         \
751         __size_ret;                                                     \
752 })
753
754 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
755                                  KVM_GUESTDBG_USE_SW_BP | \
756                                  KVM_GUESTDBG_USE_HW | \
757                                  KVM_GUESTDBG_SINGLESTEP)
758
759 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
760                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
761
762 #ifdef CONFIG_ARM64_PTR_AUTH
763 #define vcpu_has_ptrauth(vcpu)                                          \
764         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
765           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
766           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
767 #else
768 #define vcpu_has_ptrauth(vcpu)          false
769 #endif
770
771 #define vcpu_on_unsupported_cpu(vcpu)                                   \
772         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
773
774 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
775         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
776
777 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
778         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
779
780 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
781
782 /*
783  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
784  * memory backed version of a register, and not the one most recently
785  * accessed by a running VCPU.  For example, for userspace access or
786  * for system registers that are never context switched, but only
787  * emulated.
788  */
789 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
790
791 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
792
793 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
794
795 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
796 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
797
798 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
799 {
800         /*
801          * *** VHE ONLY ***
802          *
803          * System registers listed in the switch are not saved on every
804          * exit from the guest but are only saved on vcpu_put.
805          *
806          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
807          * should never be listed below, because the guest cannot modify its
808          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
809          * thread when emulating cross-VCPU communication.
810          */
811         if (!has_vhe())
812                 return false;
813
814         switch (reg) {
815         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
816         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
817         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
818         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
819         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
820         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
821         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
822         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
823         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
824         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
825         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
826         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
827         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
828         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
829         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
830         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
831         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
832         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
833         case PAR_EL1:           *val = read_sysreg_par();               break;
834         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
835         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
836         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
837         default:                return false;
838         }
839
840         return true;
841 }
842
843 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
844 {
845         /*
846          * *** VHE ONLY ***
847          *
848          * System registers listed in the switch are not restored on every
849          * entry to the guest but are only restored on vcpu_load.
850          *
851          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
852          * should never be listed below, because the MPIDR should only be set
853          * once, before running the VCPU, and never changed later.
854          */
855         if (!has_vhe())
856                 return false;
857
858         switch (reg) {
859         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
860         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
861         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
862         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
863         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
864         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
865         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
866         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
867         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
868         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
869         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
870         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
871         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
872         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
873         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
874         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
875         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
876         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
877         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
878         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
879         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
880         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
881         default:                return false;
882         }
883
884         return true;
885 }
886
887 struct kvm_vm_stat {
888         struct kvm_vm_stat_generic generic;
889 };
890
891 struct kvm_vcpu_stat {
892         struct kvm_vcpu_stat_generic generic;
893         u64 hvc_exit_stat;
894         u64 wfe_exit_stat;
895         u64 wfi_exit_stat;
896         u64 mmio_exit_user;
897         u64 mmio_exit_kernel;
898         u64 signal_exits;
899         u64 exits;
900 };
901
902 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
903 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
904 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
905 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
906 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
907
908 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
909 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
910
911 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
912                               struct kvm_vcpu_events *events);
913
914 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
915                               struct kvm_vcpu_events *events);
916
917 #define KVM_ARCH_WANT_MMU_NOTIFIER
918
919 void kvm_arm_halt_guest(struct kvm *kvm);
920 void kvm_arm_resume_guest(struct kvm *kvm);
921
922 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
923
924 #ifndef __KVM_NVHE_HYPERVISOR__
925 #define kvm_call_hyp_nvhe(f, ...)                                               \
926         ({                                                              \
927                 struct arm_smccc_res res;                               \
928                                                                         \
929                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
930                                   ##__VA_ARGS__, &res);                 \
931                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
932                                                                         \
933                 res.a1;                                                 \
934         })
935
936 /*
937  * The couple of isb() below are there to guarantee the same behaviour
938  * on VHE as on !VHE, where the eret to EL1 acts as a context
939  * synchronization event.
940  */
941 #define kvm_call_hyp(f, ...)                                            \
942         do {                                                            \
943                 if (has_vhe()) {                                        \
944                         f(__VA_ARGS__);                                 \
945                         isb();                                          \
946                 } else {                                                \
947                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
948                 }                                                       \
949         } while(0)
950
951 #define kvm_call_hyp_ret(f, ...)                                        \
952         ({                                                              \
953                 typeof(f(__VA_ARGS__)) ret;                             \
954                                                                         \
955                 if (has_vhe()) {                                        \
956                         ret = f(__VA_ARGS__);                           \
957                         isb();                                          \
958                 } else {                                                \
959                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
960                 }                                                       \
961                                                                         \
962                 ret;                                                    \
963         })
964 #else /* __KVM_NVHE_HYPERVISOR__ */
965 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
966 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
967 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
968 #endif /* __KVM_NVHE_HYPERVISOR__ */
969
970 void force_vm_exit(const cpumask_t *mask);
971
972 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
973 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
974
975 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
976 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
977 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
978 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
979 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
980 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
981 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
982
983 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
984
985 int __init kvm_sys_reg_table_init(void);
986
987 bool lock_all_vcpus(struct kvm *kvm);
988 void unlock_all_vcpus(struct kvm *kvm);
989
990 /* MMIO helpers */
991 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
992 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
993
994 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
995 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
996
997 /*
998  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
999  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1000  * loaded is considered to be "in guest".
1001  */
1002 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1003 {
1004         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1005 }
1006
1007 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1008 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1009 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1010
1011 bool kvm_arm_pvtime_supported(void);
1012 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1013                             struct kvm_device_attr *attr);
1014 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1015                             struct kvm_device_attr *attr);
1016 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1017                             struct kvm_device_attr *attr);
1018
1019 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1020 int __init kvm_arm_vmid_alloc_init(void);
1021 void __init kvm_arm_vmid_alloc_free(void);
1022 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1023 void kvm_arm_vmid_clear_active(void);
1024
1025 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1026 {
1027         vcpu_arch->steal.base = INVALID_GPA;
1028 }
1029
1030 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1031 {
1032         return (vcpu_arch->steal.base != INVALID_GPA);
1033 }
1034
1035 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1036
1037 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1038
1039 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1040
1041 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1042 {
1043         /* The host's MPIDR is immutable, so let's set it up at boot time */
1044         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1045 }
1046
1047 static inline bool kvm_system_needs_idmapped_vectors(void)
1048 {
1049         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1050 }
1051
1052 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1053
1054 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1055 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1056
1057 void kvm_arm_init_debug(void);
1058 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1059 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1060 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1061 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1062
1063 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1064         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1065
1066 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1067                                struct kvm_device_attr *attr);
1068 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1069                                struct kvm_device_attr *attr);
1070 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1071                                struct kvm_device_attr *attr);
1072
1073 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1074                                struct kvm_arm_copy_mte_tags *copy_tags);
1075 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1076                                     struct kvm_arm_counter_offset *offset);
1077
1078 /* Guest/host FPSIMD coordination helpers */
1079 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1080 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1081 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1082 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1083 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1084 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1085
1086 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1087 {
1088         return (!has_vhe() && attr->exclude_host);
1089 }
1090
1091 /* Flags for host debug state */
1092 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1093 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1094
1095 #ifdef CONFIG_KVM
1096 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1097 void kvm_clr_pmu_events(u32 clr);
1098 bool kvm_set_pmuserenr(u64 val);
1099 #else
1100 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1101 static inline void kvm_clr_pmu_events(u32 clr) {}
1102 static inline bool kvm_set_pmuserenr(u64 val)
1103 {
1104         return false;
1105 }
1106 #endif
1107
1108 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1109 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1110
1111 int __init kvm_set_ipa_limit(void);
1112
1113 #define __KVM_HAVE_ARCH_VM_ALLOC
1114 struct kvm *kvm_arch_alloc_vm(void);
1115
1116 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1117 {
1118         return false;
1119 }
1120
1121 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1122
1123 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1124 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1125
1126 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1127
1128 #define kvm_has_mte(kvm)                                        \
1129         (system_supports_mte() &&                               \
1130          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1131
1132 #define kvm_supports_32bit_el0()                                \
1133         (system_supports_32bit_el0() &&                         \
1134          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1135
1136 #define kvm_vm_has_ran_once(kvm)                                        \
1137         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1138
1139 int kvm_trng_call(struct kvm_vcpu *vcpu);
1140 #ifdef CONFIG_KVM
1141 extern phys_addr_t hyp_mem_base;
1142 extern phys_addr_t hyp_mem_size;
1143 void __init kvm_hyp_reserve(void);
1144 #else
1145 static inline void kvm_hyp_reserve(void) { }
1146 #endif
1147
1148 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1149 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1150
1151 #endif /* __ARM64_KVM_HOST_H__ */