OSDN Git Service

1ad48f93abdd59b4c60d819d6426a5f3a61db99a
[tomoyo/tomoyo-test1.git] / arch / arm64 / kernel / process.c
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 #include <trace/events/power.h>
48 #include <linux/percpu.h>
49
50 #include <asm/alternative.h>
51 #include <asm/compat.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/processor.h>
57 #include <asm/stacktrace.h>
58
59 #ifdef CONFIG_CC_STACKPROTECTOR
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64
65 /*
66  * Function pointers to optional machine specific functions
67  */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70
71 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
72
73 /*
74  * This is our default idle handler.
75  */
76 void arch_cpu_idle(void)
77 {
78         /*
79          * This should do all the clock switching and wait for interrupt
80          * tricks
81          */
82         trace_cpu_idle_rcuidle(1, smp_processor_id());
83         cpu_do_idle();
84         local_irq_enable();
85         trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
86 }
87
88 #ifdef CONFIG_HOTPLUG_CPU
89 void arch_cpu_idle_dead(void)
90 {
91        cpu_die();
92 }
93 #endif
94
95 /*
96  * Called by kexec, immediately prior to machine_kexec().
97  *
98  * This must completely disable all secondary CPUs; simply causing those CPUs
99  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
100  * kexec'd kernel to use any and all RAM as it sees fit, without having to
101  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
102  * functionality embodied in disable_nonboot_cpus() to achieve this.
103  */
104 void machine_shutdown(void)
105 {
106         disable_nonboot_cpus();
107 }
108
109 /*
110  * Halting simply requires that the secondary CPUs stop performing any
111  * activity (executing tasks, handling interrupts). smp_send_stop()
112  * achieves this.
113  */
114 void machine_halt(void)
115 {
116         local_irq_disable();
117         smp_send_stop();
118         while (1);
119 }
120
121 /*
122  * Power-off simply requires that the secondary CPUs stop performing any
123  * activity (executing tasks, handling interrupts). smp_send_stop()
124  * achieves this. When the system power is turned off, it will take all CPUs
125  * with it.
126  */
127 void machine_power_off(void)
128 {
129         local_irq_disable();
130         smp_send_stop();
131         if (pm_power_off)
132                 pm_power_off();
133 }
134
135 /*
136  * Restart requires that the secondary CPUs stop performing any activity
137  * while the primary CPU resets the system. Systems with multiple CPUs must
138  * provide a HW restart implementation, to ensure that all CPUs reset at once.
139  * This is required so that any code running after reset on the primary CPU
140  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
141  * executing pre-reset code, and using RAM that the primary CPU's code wishes
142  * to use. Implementing such co-ordination would be essentially impossible.
143  */
144 void machine_restart(char *cmd)
145 {
146         /* Disable interrupts first */
147         local_irq_disable();
148         smp_send_stop();
149
150         /*
151          * UpdateCapsule() depends on the system being reset via
152          * ResetSystem().
153          */
154         if (efi_enabled(EFI_RUNTIME_SERVICES))
155                 efi_reboot(reboot_mode, NULL);
156
157         /* Now call the architecture specific reboot code. */
158         if (arm_pm_restart)
159                 arm_pm_restart(reboot_mode, cmd);
160         else
161                 do_kernel_restart(cmd);
162
163         /*
164          * Whoops - the architecture was unable to reboot.
165          */
166         printk("Reboot failed -- System halted\n");
167         while (1);
168 }
169
170 void __show_regs(struct pt_regs *regs)
171 {
172         int i, top_reg;
173         u64 lr, sp;
174
175         if (compat_user_mode(regs)) {
176                 lr = regs->compat_lr;
177                 sp = regs->compat_sp;
178                 top_reg = 12;
179         } else {
180                 lr = regs->regs[30];
181                 sp = regs->sp;
182                 top_reg = 29;
183         }
184
185         show_regs_print_info(KERN_DEFAULT);
186         print_symbol("PC is at %s\n", instruction_pointer(regs));
187         print_symbol("LR is at %s\n", lr);
188         printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
189                regs->pc, lr, regs->pstate);
190         printk("sp : %016llx\n", sp);
191
192         i = top_reg;
193
194         while (i >= 0) {
195                 printk("x%-2d: %016llx ", i, regs->regs[i]);
196                 i--;
197
198                 if (i % 2 == 0) {
199                         pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
200                         i--;
201                 }
202
203                 pr_cont("\n");
204         }
205         printk("\n");
206 }
207
208 void show_regs(struct pt_regs * regs)
209 {
210         printk("\n");
211         __show_regs(regs);
212 }
213
214 static void tls_thread_flush(void)
215 {
216         write_sysreg(0, tpidr_el0);
217
218         if (is_compat_task()) {
219                 current->thread.tp_value = 0;
220
221                 /*
222                  * We need to ensure ordering between the shadow state and the
223                  * hardware state, so that we don't corrupt the hardware state
224                  * with a stale shadow state during context switch.
225                  */
226                 barrier();
227                 write_sysreg(0, tpidrro_el0);
228         }
229 }
230
231 void flush_thread(void)
232 {
233         fpsimd_flush_thread();
234         tls_thread_flush();
235         flush_ptrace_hw_breakpoint(current);
236 }
237
238 void release_thread(struct task_struct *dead_task)
239 {
240 }
241
242 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
243 {
244         if (current->mm)
245                 fpsimd_preserve_current_state();
246         *dst = *src;
247         return 0;
248 }
249
250 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
251
252 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
253                 unsigned long stk_sz, struct task_struct *p)
254 {
255         struct pt_regs *childregs = task_pt_regs(p);
256
257         memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
258
259         if (likely(!(p->flags & PF_KTHREAD))) {
260                 *childregs = *current_pt_regs();
261                 childregs->regs[0] = 0;
262
263                 /*
264                  * Read the current TLS pointer from tpidr_el0 as it may be
265                  * out-of-sync with the saved value.
266                  */
267                 *task_user_tls(p) = read_sysreg(tpidr_el0);
268
269                 if (stack_start) {
270                         if (is_compat_thread(task_thread_info(p)))
271                                 childregs->compat_sp = stack_start;
272                         else
273                                 childregs->sp = stack_start;
274                 }
275
276                 /*
277                  * If a TLS pointer was passed to clone (4th argument), use it
278                  * for the new thread.
279                  */
280                 if (clone_flags & CLONE_SETTLS)
281                         p->thread.tp_value = childregs->regs[3];
282         } else {
283                 memset(childregs, 0, sizeof(struct pt_regs));
284                 childregs->pstate = PSR_MODE_EL1h;
285                 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
286                     cpus_have_const_cap(ARM64_HAS_UAO))
287                         childregs->pstate |= PSR_UAO_BIT;
288                 p->thread.cpu_context.x19 = stack_start;
289                 p->thread.cpu_context.x20 = stk_sz;
290         }
291         p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
292         p->thread.cpu_context.sp = (unsigned long)childregs;
293
294         ptrace_hw_copy_thread(p);
295
296         return 0;
297 }
298
299 static void tls_thread_switch(struct task_struct *next)
300 {
301         unsigned long tpidr, tpidrro;
302
303         tpidr = read_sysreg(tpidr_el0);
304         *task_user_tls(current) = tpidr;
305
306         tpidr = *task_user_tls(next);
307         tpidrro = is_compat_thread(task_thread_info(next)) ?
308                   next->thread.tp_value : 0;
309
310         write_sysreg(tpidr, tpidr_el0);
311         write_sysreg(tpidrro, tpidrro_el0);
312 }
313
314 /* Restore the UAO state depending on next's addr_limit */
315 void uao_thread_switch(struct task_struct *next)
316 {
317         if (IS_ENABLED(CONFIG_ARM64_UAO)) {
318                 if (task_thread_info(next)->addr_limit == KERNEL_DS)
319                         asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
320                 else
321                         asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
322         }
323 }
324
325 /*
326  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
327  * shadow copy so that we can restore this upon entry from userspace.
328  *
329  * This is *only* for exception entry from EL0, and is not valid until we
330  * __switch_to() a user task.
331  */
332 DEFINE_PER_CPU(struct task_struct *, __entry_task);
333
334 static void entry_task_switch(struct task_struct *next)
335 {
336         __this_cpu_write(__entry_task, next);
337 }
338
339 /*
340  * Thread switching.
341  */
342 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
343                                 struct task_struct *next)
344 {
345         struct task_struct *last;
346
347         fpsimd_thread_switch(next);
348         tls_thread_switch(next);
349         hw_breakpoint_thread_switch(next);
350         contextidr_thread_switch(next);
351         entry_task_switch(next);
352         uao_thread_switch(next);
353
354         /*
355          * Complete any pending TLB or cache maintenance on this CPU in case
356          * the thread migrates to a different CPU.
357          */
358         dsb(ish);
359
360         /* the actual thread switch */
361         last = cpu_switch_to(prev, next);
362
363         return last;
364 }
365
366 unsigned long get_wchan(struct task_struct *p)
367 {
368         struct stackframe frame;
369         unsigned long stack_page, ret = 0;
370         int count = 0;
371         if (!p || p == current || p->state == TASK_RUNNING)
372                 return 0;
373
374         stack_page = (unsigned long)try_get_task_stack(p);
375         if (!stack_page)
376                 return 0;
377
378         frame.fp = thread_saved_fp(p);
379         frame.sp = thread_saved_sp(p);
380         frame.pc = thread_saved_pc(p);
381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
382         frame.graph = p->curr_ret_stack;
383 #endif
384         do {
385                 if (frame.sp < stack_page ||
386                     frame.sp >= stack_page + THREAD_SIZE ||
387                     unwind_frame(p, &frame))
388                         goto out;
389                 if (!in_sched_functions(frame.pc)) {
390                         ret = frame.pc;
391                         goto out;
392                 }
393         } while (count ++ < 16);
394
395 out:
396         put_task_stack(p);
397         return ret;
398 }
399
400 unsigned long arch_align_stack(unsigned long sp)
401 {
402         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
403                 sp -= get_random_int() & ~PAGE_MASK;
404         return sp & ~0xf;
405 }
406
407 unsigned long arch_randomize_brk(struct mm_struct *mm)
408 {
409         if (is_compat_task())
410                 return randomize_page(mm->brk, SZ_32M);
411         else
412                 return randomize_page(mm->brk, SZ_1G);
413 }