OSDN Git Service

Merge tag 'trace-v6.3-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[tomoyo/tomoyo-test1.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
50
51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
52
53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 static bool vgic_present;
57
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65
66 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
67                             struct kvm_enable_cap *cap)
68 {
69         int r;
70
71         if (cap->flags)
72                 return -EINVAL;
73
74         switch (cap->cap) {
75         case KVM_CAP_ARM_NISV_TO_USER:
76                 r = 0;
77                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
78                         &kvm->arch.flags);
79                 break;
80         case KVM_CAP_ARM_MTE:
81                 mutex_lock(&kvm->lock);
82                 if (!system_supports_mte() || kvm->created_vcpus) {
83                         r = -EINVAL;
84                 } else {
85                         r = 0;
86                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
87                 }
88                 mutex_unlock(&kvm->lock);
89                 break;
90         case KVM_CAP_ARM_SYSTEM_SUSPEND:
91                 r = 0;
92                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
93                 break;
94         default:
95                 r = -EINVAL;
96                 break;
97         }
98
99         return r;
100 }
101
102 static int kvm_arm_default_max_vcpus(void)
103 {
104         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
105 }
106
107 static void set_default_spectre(struct kvm *kvm)
108 {
109         /*
110          * The default is to expose CSV2 == 1 if the HW isn't affected.
111          * Although this is a per-CPU feature, we make it global because
112          * asymmetric systems are just a nuisance.
113          *
114          * Userspace can override this as long as it doesn't promise
115          * the impossible.
116          */
117         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
118                 kvm->arch.pfr0_csv2 = 1;
119         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv3 = 1;
121 }
122
123 /**
124  * kvm_arch_init_vm - initializes a VM data structure
125  * @kvm:        pointer to the KVM struct
126  */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129         int ret;
130
131         ret = kvm_share_hyp(kvm, kvm + 1);
132         if (ret)
133                 return ret;
134
135         ret = pkvm_init_host_vm(kvm);
136         if (ret)
137                 goto err_unshare_kvm;
138
139         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
140                 ret = -ENOMEM;
141                 goto err_unshare_kvm;
142         }
143         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
146         if (ret)
147                 goto err_free_cpumask;
148
149         kvm_vgic_early_init(kvm);
150
151         /* The maximum number of VCPUs is limited by the host's GIC model */
152         kvm->max_vcpus = kvm_arm_default_max_vcpus();
153
154         set_default_spectre(kvm);
155         kvm_arm_init_hypercalls(kvm);
156
157         /*
158          * Initialise the default PMUver before there is a chance to
159          * create an actual PMU.
160          */
161         kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
162
163         return 0;
164
165 err_free_cpumask:
166         free_cpumask_var(kvm->arch.supported_cpus);
167 err_unshare_kvm:
168         kvm_unshare_hyp(kvm, kvm + 1);
169         return ret;
170 }
171
172 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
173 {
174         return VM_FAULT_SIGBUS;
175 }
176
177
178 /**
179  * kvm_arch_destroy_vm - destroy the VM data structure
180  * @kvm:        pointer to the KVM struct
181  */
182 void kvm_arch_destroy_vm(struct kvm *kvm)
183 {
184         bitmap_free(kvm->arch.pmu_filter);
185         free_cpumask_var(kvm->arch.supported_cpus);
186
187         kvm_vgic_destroy(kvm);
188
189         if (is_protected_kvm_enabled())
190                 pkvm_destroy_hyp_vm(kvm);
191
192         kvm_destroy_vcpus(kvm);
193
194         kvm_unshare_hyp(kvm, kvm + 1);
195 }
196
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199         int r;
200         switch (ext) {
201         case KVM_CAP_IRQCHIP:
202                 r = vgic_present;
203                 break;
204         case KVM_CAP_IOEVENTFD:
205         case KVM_CAP_DEVICE_CTRL:
206         case KVM_CAP_USER_MEMORY:
207         case KVM_CAP_SYNC_MMU:
208         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209         case KVM_CAP_ONE_REG:
210         case KVM_CAP_ARM_PSCI:
211         case KVM_CAP_ARM_PSCI_0_2:
212         case KVM_CAP_READONLY_MEM:
213         case KVM_CAP_MP_STATE:
214         case KVM_CAP_IMMEDIATE_EXIT:
215         case KVM_CAP_VCPU_EVENTS:
216         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
217         case KVM_CAP_ARM_NISV_TO_USER:
218         case KVM_CAP_ARM_INJECT_EXT_DABT:
219         case KVM_CAP_SET_GUEST_DEBUG:
220         case KVM_CAP_VCPU_ATTRIBUTES:
221         case KVM_CAP_PTP_KVM:
222         case KVM_CAP_ARM_SYSTEM_SUSPEND:
223         case KVM_CAP_IRQFD_RESAMPLE:
224                 r = 1;
225                 break;
226         case KVM_CAP_SET_GUEST_DEBUG2:
227                 return KVM_GUESTDBG_VALID_MASK;
228         case KVM_CAP_ARM_SET_DEVICE_ADDR:
229                 r = 1;
230                 break;
231         case KVM_CAP_NR_VCPUS:
232                 /*
233                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
234                  * architectures, as it does not always bound it to
235                  * KVM_CAP_MAX_VCPUS. It should not matter much because
236                  * this is just an advisory value.
237                  */
238                 r = min_t(unsigned int, num_online_cpus(),
239                           kvm_arm_default_max_vcpus());
240                 break;
241         case KVM_CAP_MAX_VCPUS:
242         case KVM_CAP_MAX_VCPU_ID:
243                 if (kvm)
244                         r = kvm->max_vcpus;
245                 else
246                         r = kvm_arm_default_max_vcpus();
247                 break;
248         case KVM_CAP_MSI_DEVID:
249                 if (!kvm)
250                         r = -EINVAL;
251                 else
252                         r = kvm->arch.vgic.msis_require_devid;
253                 break;
254         case KVM_CAP_ARM_USER_IRQ:
255                 /*
256                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
257                  * (bump this number if adding more devices)
258                  */
259                 r = 1;
260                 break;
261         case KVM_CAP_ARM_MTE:
262                 r = system_supports_mte();
263                 break;
264         case KVM_CAP_STEAL_TIME:
265                 r = kvm_arm_pvtime_supported();
266                 break;
267         case KVM_CAP_ARM_EL1_32BIT:
268                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
269                 break;
270         case KVM_CAP_GUEST_DEBUG_HW_BPS:
271                 r = get_num_brps();
272                 break;
273         case KVM_CAP_GUEST_DEBUG_HW_WPS:
274                 r = get_num_wrps();
275                 break;
276         case KVM_CAP_ARM_PMU_V3:
277                 r = kvm_arm_support_pmu_v3();
278                 break;
279         case KVM_CAP_ARM_INJECT_SERROR_ESR:
280                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
281                 break;
282         case KVM_CAP_ARM_VM_IPA_SIZE:
283                 r = get_kvm_ipa_limit();
284                 break;
285         case KVM_CAP_ARM_SVE:
286                 r = system_supports_sve();
287                 break;
288         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
289         case KVM_CAP_ARM_PTRAUTH_GENERIC:
290                 r = system_has_full_ptr_auth();
291                 break;
292         default:
293                 r = 0;
294         }
295
296         return r;
297 }
298
299 long kvm_arch_dev_ioctl(struct file *filp,
300                         unsigned int ioctl, unsigned long arg)
301 {
302         return -EINVAL;
303 }
304
305 struct kvm *kvm_arch_alloc_vm(void)
306 {
307         size_t sz = sizeof(struct kvm);
308
309         if (!has_vhe())
310                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
311
312         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
313 }
314
315 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
316 {
317         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
318                 return -EBUSY;
319
320         if (id >= kvm->max_vcpus)
321                 return -EINVAL;
322
323         return 0;
324 }
325
326 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
327 {
328         int err;
329
330         /* Force users to call KVM_ARM_VCPU_INIT */
331         vcpu->arch.target = -1;
332         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
333
334         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
335
336         /*
337          * Default value for the FP state, will be overloaded at load
338          * time if we support FP (pretty likely)
339          */
340         vcpu->arch.fp_state = FP_STATE_FREE;
341
342         /* Set up the timer */
343         kvm_timer_vcpu_init(vcpu);
344
345         kvm_pmu_vcpu_init(vcpu);
346
347         kvm_arm_reset_debug_ptr(vcpu);
348
349         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
350
351         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
352
353         err = kvm_vgic_vcpu_init(vcpu);
354         if (err)
355                 return err;
356
357         return kvm_share_hyp(vcpu, vcpu + 1);
358 }
359
360 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
361 {
362 }
363
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
367                 static_branch_dec(&userspace_irqchip_in_use);
368
369         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
370         kvm_timer_vcpu_terminate(vcpu);
371         kvm_pmu_vcpu_destroy(vcpu);
372
373         kvm_arm_vcpu_destroy(vcpu);
374 }
375
376 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
377 {
378
379 }
380
381 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
382 {
383
384 }
385
386 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
387 {
388         struct kvm_s2_mmu *mmu;
389         int *last_ran;
390
391         mmu = vcpu->arch.hw_mmu;
392         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
393
394         /*
395          * We guarantee that both TLBs and I-cache are private to each
396          * vcpu. If detecting that a vcpu from the same VM has
397          * previously run on the same physical CPU, call into the
398          * hypervisor code to nuke the relevant contexts.
399          *
400          * We might get preempted before the vCPU actually runs, but
401          * over-invalidation doesn't affect correctness.
402          */
403         if (*last_ran != vcpu->vcpu_id) {
404                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
405                 *last_ran = vcpu->vcpu_id;
406         }
407
408         vcpu->cpu = cpu;
409
410         kvm_vgic_load(vcpu);
411         kvm_timer_vcpu_load(vcpu);
412         if (has_vhe())
413                 kvm_vcpu_load_sysregs_vhe(vcpu);
414         kvm_arch_vcpu_load_fp(vcpu);
415         kvm_vcpu_pmu_restore_guest(vcpu);
416         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
417                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
418
419         if (single_task_running())
420                 vcpu_clear_wfx_traps(vcpu);
421         else
422                 vcpu_set_wfx_traps(vcpu);
423
424         if (vcpu_has_ptrauth(vcpu))
425                 vcpu_ptrauth_disable(vcpu);
426         kvm_arch_vcpu_load_debug_state_flags(vcpu);
427
428         if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
429                 vcpu_set_on_unsupported_cpu(vcpu);
430 }
431
432 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
433 {
434         kvm_arch_vcpu_put_debug_state_flags(vcpu);
435         kvm_arch_vcpu_put_fp(vcpu);
436         if (has_vhe())
437                 kvm_vcpu_put_sysregs_vhe(vcpu);
438         kvm_timer_vcpu_put(vcpu);
439         kvm_vgic_put(vcpu);
440         kvm_vcpu_pmu_restore_host(vcpu);
441         kvm_arm_vmid_clear_active();
442
443         vcpu_clear_on_unsupported_cpu(vcpu);
444         vcpu->cpu = -1;
445 }
446
447 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
448 {
449         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
450         kvm_make_request(KVM_REQ_SLEEP, vcpu);
451         kvm_vcpu_kick(vcpu);
452 }
453
454 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
455 {
456         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
457 }
458
459 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
460 {
461         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
462         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
463         kvm_vcpu_kick(vcpu);
464 }
465
466 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
467 {
468         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
469 }
470
471 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
472                                     struct kvm_mp_state *mp_state)
473 {
474         *mp_state = vcpu->arch.mp_state;
475
476         return 0;
477 }
478
479 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
480                                     struct kvm_mp_state *mp_state)
481 {
482         int ret = 0;
483
484         switch (mp_state->mp_state) {
485         case KVM_MP_STATE_RUNNABLE:
486                 vcpu->arch.mp_state = *mp_state;
487                 break;
488         case KVM_MP_STATE_STOPPED:
489                 kvm_arm_vcpu_power_off(vcpu);
490                 break;
491         case KVM_MP_STATE_SUSPENDED:
492                 kvm_arm_vcpu_suspend(vcpu);
493                 break;
494         default:
495                 ret = -EINVAL;
496         }
497
498         return ret;
499 }
500
501 /**
502  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
503  * @v:          The VCPU pointer
504  *
505  * If the guest CPU is not waiting for interrupts or an interrupt line is
506  * asserted, the CPU is by definition runnable.
507  */
508 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
509 {
510         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
511         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
512                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
513 }
514
515 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
516 {
517         return vcpu_mode_priv(vcpu);
518 }
519
520 #ifdef CONFIG_GUEST_PERF_EVENTS
521 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
522 {
523         return *vcpu_pc(vcpu);
524 }
525 #endif
526
527 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
528 {
529         return vcpu->arch.target >= 0;
530 }
531
532 /*
533  * Handle both the initialisation that is being done when the vcpu is
534  * run for the first time, as well as the updates that must be
535  * performed each time we get a new thread dealing with this vcpu.
536  */
537 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
538 {
539         struct kvm *kvm = vcpu->kvm;
540         int ret;
541
542         if (!kvm_vcpu_initialized(vcpu))
543                 return -ENOEXEC;
544
545         if (!kvm_arm_vcpu_is_finalized(vcpu))
546                 return -EPERM;
547
548         ret = kvm_arch_vcpu_run_map_fp(vcpu);
549         if (ret)
550                 return ret;
551
552         if (likely(vcpu_has_run_once(vcpu)))
553                 return 0;
554
555         kvm_arm_vcpu_init_debug(vcpu);
556
557         if (likely(irqchip_in_kernel(kvm))) {
558                 /*
559                  * Map the VGIC hardware resources before running a vcpu the
560                  * first time on this VM.
561                  */
562                 ret = kvm_vgic_map_resources(kvm);
563                 if (ret)
564                         return ret;
565         }
566
567         ret = kvm_timer_enable(vcpu);
568         if (ret)
569                 return ret;
570
571         ret = kvm_arm_pmu_v3_enable(vcpu);
572         if (ret)
573                 return ret;
574
575         if (is_protected_kvm_enabled()) {
576                 ret = pkvm_create_hyp_vm(kvm);
577                 if (ret)
578                         return ret;
579         }
580
581         if (!irqchip_in_kernel(kvm)) {
582                 /*
583                  * Tell the rest of the code that there are userspace irqchip
584                  * VMs in the wild.
585                  */
586                 static_branch_inc(&userspace_irqchip_in_use);
587         }
588
589         /*
590          * Initialize traps for protected VMs.
591          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
592          * the code is in place for first run initialization at EL2.
593          */
594         if (kvm_vm_is_protected(kvm))
595                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
596
597         mutex_lock(&kvm->lock);
598         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
599         mutex_unlock(&kvm->lock);
600
601         return ret;
602 }
603
604 bool kvm_arch_intc_initialized(struct kvm *kvm)
605 {
606         return vgic_initialized(kvm);
607 }
608
609 void kvm_arm_halt_guest(struct kvm *kvm)
610 {
611         unsigned long i;
612         struct kvm_vcpu *vcpu;
613
614         kvm_for_each_vcpu(i, vcpu, kvm)
615                 vcpu->arch.pause = true;
616         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
617 }
618
619 void kvm_arm_resume_guest(struct kvm *kvm)
620 {
621         unsigned long i;
622         struct kvm_vcpu *vcpu;
623
624         kvm_for_each_vcpu(i, vcpu, kvm) {
625                 vcpu->arch.pause = false;
626                 __kvm_vcpu_wake_up(vcpu);
627         }
628 }
629
630 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
631 {
632         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
633
634         rcuwait_wait_event(wait,
635                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
636                            TASK_INTERRUPTIBLE);
637
638         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
639                 /* Awaken to handle a signal, request we sleep again later. */
640                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
641         }
642
643         /*
644          * Make sure we will observe a potential reset request if we've
645          * observed a change to the power state. Pairs with the smp_wmb() in
646          * kvm_psci_vcpu_on().
647          */
648         smp_rmb();
649 }
650
651 /**
652  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
653  * @vcpu:       The VCPU pointer
654  *
655  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
656  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
657  * on when a wake event arrives, e.g. there may already be a pending wake event.
658  */
659 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
660 {
661         /*
662          * Sync back the state of the GIC CPU interface so that we have
663          * the latest PMR and group enables. This ensures that
664          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
665          * we have pending interrupts, e.g. when determining if the
666          * vCPU should block.
667          *
668          * For the same reason, we want to tell GICv4 that we need
669          * doorbells to be signalled, should an interrupt become pending.
670          */
671         preempt_disable();
672         kvm_vgic_vmcr_sync(vcpu);
673         vgic_v4_put(vcpu, true);
674         preempt_enable();
675
676         kvm_vcpu_halt(vcpu);
677         vcpu_clear_flag(vcpu, IN_WFIT);
678
679         preempt_disable();
680         vgic_v4_load(vcpu);
681         preempt_enable();
682 }
683
684 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
685 {
686         if (!kvm_arm_vcpu_suspended(vcpu))
687                 return 1;
688
689         kvm_vcpu_wfi(vcpu);
690
691         /*
692          * The suspend state is sticky; we do not leave it until userspace
693          * explicitly marks the vCPU as runnable. Request that we suspend again
694          * later.
695          */
696         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
697
698         /*
699          * Check to make sure the vCPU is actually runnable. If so, exit to
700          * userspace informing it of the wakeup condition.
701          */
702         if (kvm_arch_vcpu_runnable(vcpu)) {
703                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
704                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
705                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
706                 return 0;
707         }
708
709         /*
710          * Otherwise, we were unblocked to process a different event, such as a
711          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
712          * process the event.
713          */
714         return 1;
715 }
716
717 /**
718  * check_vcpu_requests - check and handle pending vCPU requests
719  * @vcpu:       the VCPU pointer
720  *
721  * Return: 1 if we should enter the guest
722  *         0 if we should exit to userspace
723  *         < 0 if we should exit to userspace, where the return value indicates
724  *         an error
725  */
726 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
727 {
728         if (kvm_request_pending(vcpu)) {
729                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
730                         kvm_vcpu_sleep(vcpu);
731
732                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
733                         kvm_reset_vcpu(vcpu);
734
735                 /*
736                  * Clear IRQ_PENDING requests that were made to guarantee
737                  * that a VCPU sees new virtual interrupts.
738                  */
739                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
740
741                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
742                         kvm_update_stolen_time(vcpu);
743
744                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
745                         /* The distributor enable bits were changed */
746                         preempt_disable();
747                         vgic_v4_put(vcpu, false);
748                         vgic_v4_load(vcpu);
749                         preempt_enable();
750                 }
751
752                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
753                         kvm_pmu_handle_pmcr(vcpu,
754                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
755
756                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
757                         return kvm_vcpu_suspend(vcpu);
758
759                 if (kvm_dirty_ring_check_request(vcpu))
760                         return 0;
761         }
762
763         return 1;
764 }
765
766 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
767 {
768         if (likely(!vcpu_mode_is_32bit(vcpu)))
769                 return false;
770
771         return !kvm_supports_32bit_el0();
772 }
773
774 /**
775  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
776  * @vcpu:       The VCPU pointer
777  * @ret:        Pointer to write optional return code
778  *
779  * Returns: true if the VCPU needs to return to a preemptible + interruptible
780  *          and skip guest entry.
781  *
782  * This function disambiguates between two different types of exits: exits to a
783  * preemptible + interruptible kernel context and exits to userspace. For an
784  * exit to userspace, this function will write the return code to ret and return
785  * true. For an exit to preemptible + interruptible kernel context (i.e. check
786  * for pending work and re-enter), return true without writing to ret.
787  */
788 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
789 {
790         struct kvm_run *run = vcpu->run;
791
792         /*
793          * If we're using a userspace irqchip, then check if we need
794          * to tell a userspace irqchip about timer or PMU level
795          * changes and if so, exit to userspace (the actual level
796          * state gets updated in kvm_timer_update_run and
797          * kvm_pmu_update_run below).
798          */
799         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
800                 if (kvm_timer_should_notify_user(vcpu) ||
801                     kvm_pmu_should_notify_user(vcpu)) {
802                         *ret = -EINTR;
803                         run->exit_reason = KVM_EXIT_INTR;
804                         return true;
805                 }
806         }
807
808         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
809                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
810                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
811                 run->fail_entry.cpu = smp_processor_id();
812                 *ret = 0;
813                 return true;
814         }
815
816         return kvm_request_pending(vcpu) ||
817                         xfer_to_guest_mode_work_pending();
818 }
819
820 /*
821  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
822  * the vCPU is running.
823  *
824  * This must be noinstr as instrumentation may make use of RCU, and this is not
825  * safe during the EQS.
826  */
827 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
828 {
829         int ret;
830
831         guest_state_enter_irqoff();
832         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
833         guest_state_exit_irqoff();
834
835         return ret;
836 }
837
838 /**
839  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
840  * @vcpu:       The VCPU pointer
841  *
842  * This function is called through the VCPU_RUN ioctl called from user space. It
843  * will execute VM code in a loop until the time slice for the process is used
844  * or some emulation is needed from user space in which case the function will
845  * return with return value 0 and with the kvm_run structure filled in with the
846  * required data for the requested emulation.
847  */
848 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
849 {
850         struct kvm_run *run = vcpu->run;
851         int ret;
852
853         if (run->exit_reason == KVM_EXIT_MMIO) {
854                 ret = kvm_handle_mmio_return(vcpu);
855                 if (ret)
856                         return ret;
857         }
858
859         vcpu_load(vcpu);
860
861         if (run->immediate_exit) {
862                 ret = -EINTR;
863                 goto out;
864         }
865
866         kvm_sigset_activate(vcpu);
867
868         ret = 1;
869         run->exit_reason = KVM_EXIT_UNKNOWN;
870         run->flags = 0;
871         while (ret > 0) {
872                 /*
873                  * Check conditions before entering the guest
874                  */
875                 ret = xfer_to_guest_mode_handle_work(vcpu);
876                 if (!ret)
877                         ret = 1;
878
879                 if (ret > 0)
880                         ret = check_vcpu_requests(vcpu);
881
882                 /*
883                  * Preparing the interrupts to be injected also
884                  * involves poking the GIC, which must be done in a
885                  * non-preemptible context.
886                  */
887                 preempt_disable();
888
889                 /*
890                  * The VMID allocator only tracks active VMIDs per
891                  * physical CPU, and therefore the VMID allocated may not be
892                  * preserved on VMID roll-over if the task was preempted,
893                  * making a thread's VMID inactive. So we need to call
894                  * kvm_arm_vmid_update() in non-premptible context.
895                  */
896                 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
897
898                 kvm_pmu_flush_hwstate(vcpu);
899
900                 local_irq_disable();
901
902                 kvm_vgic_flush_hwstate(vcpu);
903
904                 kvm_pmu_update_vcpu_events(vcpu);
905
906                 /*
907                  * Ensure we set mode to IN_GUEST_MODE after we disable
908                  * interrupts and before the final VCPU requests check.
909                  * See the comment in kvm_vcpu_exiting_guest_mode() and
910                  * Documentation/virt/kvm/vcpu-requests.rst
911                  */
912                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
913
914                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
915                         vcpu->mode = OUTSIDE_GUEST_MODE;
916                         isb(); /* Ensure work in x_flush_hwstate is committed */
917                         kvm_pmu_sync_hwstate(vcpu);
918                         if (static_branch_unlikely(&userspace_irqchip_in_use))
919                                 kvm_timer_sync_user(vcpu);
920                         kvm_vgic_sync_hwstate(vcpu);
921                         local_irq_enable();
922                         preempt_enable();
923                         continue;
924                 }
925
926                 kvm_arm_setup_debug(vcpu);
927                 kvm_arch_vcpu_ctxflush_fp(vcpu);
928
929                 /**************************************************************
930                  * Enter the guest
931                  */
932                 trace_kvm_entry(*vcpu_pc(vcpu));
933                 guest_timing_enter_irqoff();
934
935                 ret = kvm_arm_vcpu_enter_exit(vcpu);
936
937                 vcpu->mode = OUTSIDE_GUEST_MODE;
938                 vcpu->stat.exits++;
939                 /*
940                  * Back from guest
941                  *************************************************************/
942
943                 kvm_arm_clear_debug(vcpu);
944
945                 /*
946                  * We must sync the PMU state before the vgic state so
947                  * that the vgic can properly sample the updated state of the
948                  * interrupt line.
949                  */
950                 kvm_pmu_sync_hwstate(vcpu);
951
952                 /*
953                  * Sync the vgic state before syncing the timer state because
954                  * the timer code needs to know if the virtual timer
955                  * interrupts are active.
956                  */
957                 kvm_vgic_sync_hwstate(vcpu);
958
959                 /*
960                  * Sync the timer hardware state before enabling interrupts as
961                  * we don't want vtimer interrupts to race with syncing the
962                  * timer virtual interrupt state.
963                  */
964                 if (static_branch_unlikely(&userspace_irqchip_in_use))
965                         kvm_timer_sync_user(vcpu);
966
967                 kvm_arch_vcpu_ctxsync_fp(vcpu);
968
969                 /*
970                  * We must ensure that any pending interrupts are taken before
971                  * we exit guest timing so that timer ticks are accounted as
972                  * guest time. Transiently unmask interrupts so that any
973                  * pending interrupts are taken.
974                  *
975                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
976                  * context synchronization event) is necessary to ensure that
977                  * pending interrupts are taken.
978                  */
979                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
980                         local_irq_enable();
981                         isb();
982                         local_irq_disable();
983                 }
984
985                 guest_timing_exit_irqoff();
986
987                 local_irq_enable();
988
989                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
990
991                 /* Exit types that need handling before we can be preempted */
992                 handle_exit_early(vcpu, ret);
993
994                 preempt_enable();
995
996                 /*
997                  * The ARMv8 architecture doesn't give the hypervisor
998                  * a mechanism to prevent a guest from dropping to AArch32 EL0
999                  * if implemented by the CPU. If we spot the guest in such
1000                  * state and that we decided it wasn't supposed to do so (like
1001                  * with the asymmetric AArch32 case), return to userspace with
1002                  * a fatal error.
1003                  */
1004                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1005                         /*
1006                          * As we have caught the guest red-handed, decide that
1007                          * it isn't fit for purpose anymore by making the vcpu
1008                          * invalid. The VMM can try and fix it by issuing  a
1009                          * KVM_ARM_VCPU_INIT if it really wants to.
1010                          */
1011                         vcpu->arch.target = -1;
1012                         ret = ARM_EXCEPTION_IL;
1013                 }
1014
1015                 ret = handle_exit(vcpu, ret);
1016         }
1017
1018         /* Tell userspace about in-kernel device output levels */
1019         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1020                 kvm_timer_update_run(vcpu);
1021                 kvm_pmu_update_run(vcpu);
1022         }
1023
1024         kvm_sigset_deactivate(vcpu);
1025
1026 out:
1027         /*
1028          * In the unlikely event that we are returning to userspace
1029          * with pending exceptions or PC adjustment, commit these
1030          * adjustments in order to give userspace a consistent view of
1031          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1032          * being preempt-safe on VHE.
1033          */
1034         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1035                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1036                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1037
1038         vcpu_put(vcpu);
1039         return ret;
1040 }
1041
1042 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1043 {
1044         int bit_index;
1045         bool set;
1046         unsigned long *hcr;
1047
1048         if (number == KVM_ARM_IRQ_CPU_IRQ)
1049                 bit_index = __ffs(HCR_VI);
1050         else /* KVM_ARM_IRQ_CPU_FIQ */
1051                 bit_index = __ffs(HCR_VF);
1052
1053         hcr = vcpu_hcr(vcpu);
1054         if (level)
1055                 set = test_and_set_bit(bit_index, hcr);
1056         else
1057                 set = test_and_clear_bit(bit_index, hcr);
1058
1059         /*
1060          * If we didn't change anything, no need to wake up or kick other CPUs
1061          */
1062         if (set == level)
1063                 return 0;
1064
1065         /*
1066          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1067          * trigger a world-switch round on the running physical CPU to set the
1068          * virtual IRQ/FIQ fields in the HCR appropriately.
1069          */
1070         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1071         kvm_vcpu_kick(vcpu);
1072
1073         return 0;
1074 }
1075
1076 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1077                           bool line_status)
1078 {
1079         u32 irq = irq_level->irq;
1080         unsigned int irq_type, vcpu_idx, irq_num;
1081         int nrcpus = atomic_read(&kvm->online_vcpus);
1082         struct kvm_vcpu *vcpu = NULL;
1083         bool level = irq_level->level;
1084
1085         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1086         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1087         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1088         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1089
1090         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1091
1092         switch (irq_type) {
1093         case KVM_ARM_IRQ_TYPE_CPU:
1094                 if (irqchip_in_kernel(kvm))
1095                         return -ENXIO;
1096
1097                 if (vcpu_idx >= nrcpus)
1098                         return -EINVAL;
1099
1100                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1101                 if (!vcpu)
1102                         return -EINVAL;
1103
1104                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1105                         return -EINVAL;
1106
1107                 return vcpu_interrupt_line(vcpu, irq_num, level);
1108         case KVM_ARM_IRQ_TYPE_PPI:
1109                 if (!irqchip_in_kernel(kvm))
1110                         return -ENXIO;
1111
1112                 if (vcpu_idx >= nrcpus)
1113                         return -EINVAL;
1114
1115                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1116                 if (!vcpu)
1117                         return -EINVAL;
1118
1119                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1120                         return -EINVAL;
1121
1122                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1123         case KVM_ARM_IRQ_TYPE_SPI:
1124                 if (!irqchip_in_kernel(kvm))
1125                         return -ENXIO;
1126
1127                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1128                         return -EINVAL;
1129
1130                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1131         }
1132
1133         return -EINVAL;
1134 }
1135
1136 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1137                                const struct kvm_vcpu_init *init)
1138 {
1139         unsigned int i, ret;
1140         u32 phys_target = kvm_target_cpu();
1141
1142         if (init->target != phys_target)
1143                 return -EINVAL;
1144
1145         /*
1146          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1147          * use the same target.
1148          */
1149         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1150                 return -EINVAL;
1151
1152         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1153         for (i = 0; i < sizeof(init->features) * 8; i++) {
1154                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1155
1156                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1157                         return -ENOENT;
1158
1159                 /*
1160                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1161                  * use the same feature set.
1162                  */
1163                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1164                     test_bit(i, vcpu->arch.features) != set)
1165                         return -EINVAL;
1166
1167                 if (set)
1168                         set_bit(i, vcpu->arch.features);
1169         }
1170
1171         vcpu->arch.target = phys_target;
1172
1173         /* Now we know what it is, we can reset it. */
1174         ret = kvm_reset_vcpu(vcpu);
1175         if (ret) {
1176                 vcpu->arch.target = -1;
1177                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1178         }
1179
1180         return ret;
1181 }
1182
1183 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1184                                          struct kvm_vcpu_init *init)
1185 {
1186         int ret;
1187
1188         ret = kvm_vcpu_set_target(vcpu, init);
1189         if (ret)
1190                 return ret;
1191
1192         /*
1193          * Ensure a rebooted VM will fault in RAM pages and detect if the
1194          * guest MMU is turned off and flush the caches as needed.
1195          *
1196          * S2FWB enforces all memory accesses to RAM being cacheable,
1197          * ensuring that the data side is always coherent. We still
1198          * need to invalidate the I-cache though, as FWB does *not*
1199          * imply CTR_EL0.DIC.
1200          */
1201         if (vcpu_has_run_once(vcpu)) {
1202                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1203                         stage2_unmap_vm(vcpu->kvm);
1204                 else
1205                         icache_inval_all_pou();
1206         }
1207
1208         vcpu_reset_hcr(vcpu);
1209         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1210
1211         /*
1212          * Handle the "start in power-off" case.
1213          */
1214         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1215                 kvm_arm_vcpu_power_off(vcpu);
1216         else
1217                 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1218
1219         return 0;
1220 }
1221
1222 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1223                                  struct kvm_device_attr *attr)
1224 {
1225         int ret = -ENXIO;
1226
1227         switch (attr->group) {
1228         default:
1229                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1230                 break;
1231         }
1232
1233         return ret;
1234 }
1235
1236 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1237                                  struct kvm_device_attr *attr)
1238 {
1239         int ret = -ENXIO;
1240
1241         switch (attr->group) {
1242         default:
1243                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1244                 break;
1245         }
1246
1247         return ret;
1248 }
1249
1250 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1251                                  struct kvm_device_attr *attr)
1252 {
1253         int ret = -ENXIO;
1254
1255         switch (attr->group) {
1256         default:
1257                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1258                 break;
1259         }
1260
1261         return ret;
1262 }
1263
1264 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1265                                    struct kvm_vcpu_events *events)
1266 {
1267         memset(events, 0, sizeof(*events));
1268
1269         return __kvm_arm_vcpu_get_events(vcpu, events);
1270 }
1271
1272 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1273                                    struct kvm_vcpu_events *events)
1274 {
1275         int i;
1276
1277         /* check whether the reserved field is zero */
1278         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1279                 if (events->reserved[i])
1280                         return -EINVAL;
1281
1282         /* check whether the pad field is zero */
1283         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1284                 if (events->exception.pad[i])
1285                         return -EINVAL;
1286
1287         return __kvm_arm_vcpu_set_events(vcpu, events);
1288 }
1289
1290 long kvm_arch_vcpu_ioctl(struct file *filp,
1291                          unsigned int ioctl, unsigned long arg)
1292 {
1293         struct kvm_vcpu *vcpu = filp->private_data;
1294         void __user *argp = (void __user *)arg;
1295         struct kvm_device_attr attr;
1296         long r;
1297
1298         switch (ioctl) {
1299         case KVM_ARM_VCPU_INIT: {
1300                 struct kvm_vcpu_init init;
1301
1302                 r = -EFAULT;
1303                 if (copy_from_user(&init, argp, sizeof(init)))
1304                         break;
1305
1306                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1307                 break;
1308         }
1309         case KVM_SET_ONE_REG:
1310         case KVM_GET_ONE_REG: {
1311                 struct kvm_one_reg reg;
1312
1313                 r = -ENOEXEC;
1314                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1315                         break;
1316
1317                 r = -EFAULT;
1318                 if (copy_from_user(&reg, argp, sizeof(reg)))
1319                         break;
1320
1321                 /*
1322                  * We could owe a reset due to PSCI. Handle the pending reset
1323                  * here to ensure userspace register accesses are ordered after
1324                  * the reset.
1325                  */
1326                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1327                         kvm_reset_vcpu(vcpu);
1328
1329                 if (ioctl == KVM_SET_ONE_REG)
1330                         r = kvm_arm_set_reg(vcpu, &reg);
1331                 else
1332                         r = kvm_arm_get_reg(vcpu, &reg);
1333                 break;
1334         }
1335         case KVM_GET_REG_LIST: {
1336                 struct kvm_reg_list __user *user_list = argp;
1337                 struct kvm_reg_list reg_list;
1338                 unsigned n;
1339
1340                 r = -ENOEXEC;
1341                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1342                         break;
1343
1344                 r = -EPERM;
1345                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1346                         break;
1347
1348                 r = -EFAULT;
1349                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1350                         break;
1351                 n = reg_list.n;
1352                 reg_list.n = kvm_arm_num_regs(vcpu);
1353                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1354                         break;
1355                 r = -E2BIG;
1356                 if (n < reg_list.n)
1357                         break;
1358                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1359                 break;
1360         }
1361         case KVM_SET_DEVICE_ATTR: {
1362                 r = -EFAULT;
1363                 if (copy_from_user(&attr, argp, sizeof(attr)))
1364                         break;
1365                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1366                 break;
1367         }
1368         case KVM_GET_DEVICE_ATTR: {
1369                 r = -EFAULT;
1370                 if (copy_from_user(&attr, argp, sizeof(attr)))
1371                         break;
1372                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1373                 break;
1374         }
1375         case KVM_HAS_DEVICE_ATTR: {
1376                 r = -EFAULT;
1377                 if (copy_from_user(&attr, argp, sizeof(attr)))
1378                         break;
1379                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1380                 break;
1381         }
1382         case KVM_GET_VCPU_EVENTS: {
1383                 struct kvm_vcpu_events events;
1384
1385                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1386                         return -EINVAL;
1387
1388                 if (copy_to_user(argp, &events, sizeof(events)))
1389                         return -EFAULT;
1390
1391                 return 0;
1392         }
1393         case KVM_SET_VCPU_EVENTS: {
1394                 struct kvm_vcpu_events events;
1395
1396                 if (copy_from_user(&events, argp, sizeof(events)))
1397                         return -EFAULT;
1398
1399                 return kvm_arm_vcpu_set_events(vcpu, &events);
1400         }
1401         case KVM_ARM_VCPU_FINALIZE: {
1402                 int what;
1403
1404                 if (!kvm_vcpu_initialized(vcpu))
1405                         return -ENOEXEC;
1406
1407                 if (get_user(what, (const int __user *)argp))
1408                         return -EFAULT;
1409
1410                 return kvm_arm_vcpu_finalize(vcpu, what);
1411         }
1412         default:
1413                 r = -EINVAL;
1414         }
1415
1416         return r;
1417 }
1418
1419 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1420 {
1421
1422 }
1423
1424 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1425                                         const struct kvm_memory_slot *memslot)
1426 {
1427         kvm_flush_remote_tlbs(kvm);
1428 }
1429
1430 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1431                                         struct kvm_arm_device_addr *dev_addr)
1432 {
1433         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1434         case KVM_ARM_DEVICE_VGIC_V2:
1435                 if (!vgic_present)
1436                         return -ENXIO;
1437                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1438         default:
1439                 return -ENODEV;
1440         }
1441 }
1442
1443 long kvm_arch_vm_ioctl(struct file *filp,
1444                        unsigned int ioctl, unsigned long arg)
1445 {
1446         struct kvm *kvm = filp->private_data;
1447         void __user *argp = (void __user *)arg;
1448
1449         switch (ioctl) {
1450         case KVM_CREATE_IRQCHIP: {
1451                 int ret;
1452                 if (!vgic_present)
1453                         return -ENXIO;
1454                 mutex_lock(&kvm->lock);
1455                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1456                 mutex_unlock(&kvm->lock);
1457                 return ret;
1458         }
1459         case KVM_ARM_SET_DEVICE_ADDR: {
1460                 struct kvm_arm_device_addr dev_addr;
1461
1462                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1463                         return -EFAULT;
1464                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1465         }
1466         case KVM_ARM_PREFERRED_TARGET: {
1467                 struct kvm_vcpu_init init;
1468
1469                 kvm_vcpu_preferred_target(&init);
1470
1471                 if (copy_to_user(argp, &init, sizeof(init)))
1472                         return -EFAULT;
1473
1474                 return 0;
1475         }
1476         case KVM_ARM_MTE_COPY_TAGS: {
1477                 struct kvm_arm_copy_mte_tags copy_tags;
1478
1479                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1480                         return -EFAULT;
1481                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1482         }
1483         default:
1484                 return -EINVAL;
1485         }
1486 }
1487
1488 static unsigned long nvhe_percpu_size(void)
1489 {
1490         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1491                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1492 }
1493
1494 static unsigned long nvhe_percpu_order(void)
1495 {
1496         unsigned long size = nvhe_percpu_size();
1497
1498         return size ? get_order(size) : 0;
1499 }
1500
1501 /* A lookup table holding the hypervisor VA for each vector slot */
1502 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1503
1504 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1505 {
1506         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1507 }
1508
1509 static int kvm_init_vector_slots(void)
1510 {
1511         int err;
1512         void *base;
1513
1514         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1515         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1516
1517         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1518         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1519
1520         if (kvm_system_needs_idmapped_vectors() &&
1521             !is_protected_kvm_enabled()) {
1522                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1523                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1524                 if (err)
1525                         return err;
1526         }
1527
1528         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1529         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1530         return 0;
1531 }
1532
1533 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1534 {
1535         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1536         unsigned long tcr;
1537
1538         /*
1539          * Calculate the raw per-cpu offset without a translation from the
1540          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1541          * so that we can use adr_l to access per-cpu variables in EL2.
1542          * Also drop the KASAN tag which gets in the way...
1543          */
1544         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1545                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1546
1547         params->mair_el2 = read_sysreg(mair_el1);
1548
1549         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1550         tcr &= ~TCR_T0SZ_MASK;
1551         tcr |= TCR_T0SZ(hyp_va_bits);
1552         params->tcr_el2 = tcr;
1553
1554         params->pgd_pa = kvm_mmu_get_httbr();
1555         if (is_protected_kvm_enabled())
1556                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1557         else
1558                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1559         params->vttbr = params->vtcr = 0;
1560
1561         /*
1562          * Flush the init params from the data cache because the struct will
1563          * be read while the MMU is off.
1564          */
1565         kvm_flush_dcache_to_poc(params, sizeof(*params));
1566 }
1567
1568 static void hyp_install_host_vector(void)
1569 {
1570         struct kvm_nvhe_init_params *params;
1571         struct arm_smccc_res res;
1572
1573         /* Switch from the HYP stub to our own HYP init vector */
1574         __hyp_set_vectors(kvm_get_idmap_vector());
1575
1576         /*
1577          * Call initialization code, and switch to the full blown HYP code.
1578          * If the cpucaps haven't been finalized yet, something has gone very
1579          * wrong, and hyp will crash and burn when it uses any
1580          * cpus_have_const_cap() wrapper.
1581          */
1582         BUG_ON(!system_capabilities_finalized());
1583         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1584         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1585         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1586 }
1587
1588 static void cpu_init_hyp_mode(void)
1589 {
1590         hyp_install_host_vector();
1591
1592         /*
1593          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1594          * at EL2.
1595          */
1596         if (this_cpu_has_cap(ARM64_SSBS) &&
1597             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1598                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1599         }
1600 }
1601
1602 static void cpu_hyp_reset(void)
1603 {
1604         if (!is_kernel_in_hyp_mode())
1605                 __hyp_reset_vectors();
1606 }
1607
1608 /*
1609  * EL2 vectors can be mapped and rerouted in a number of ways,
1610  * depending on the kernel configuration and CPU present:
1611  *
1612  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1613  *   placed in one of the vector slots, which is executed before jumping
1614  *   to the real vectors.
1615  *
1616  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1617  *   containing the hardening sequence is mapped next to the idmap page,
1618  *   and executed before jumping to the real vectors.
1619  *
1620  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1621  *   empty slot is selected, mapped next to the idmap page, and
1622  *   executed before jumping to the real vectors.
1623  *
1624  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1625  * VHE, as we don't have hypervisor-specific mappings. If the system
1626  * is VHE and yet selects this capability, it will be ignored.
1627  */
1628 static void cpu_set_hyp_vector(void)
1629 {
1630         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1631         void *vector = hyp_spectre_vector_selector[data->slot];
1632
1633         if (!is_protected_kvm_enabled())
1634                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1635         else
1636                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1637 }
1638
1639 static void cpu_hyp_init_context(void)
1640 {
1641         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1642
1643         if (!is_kernel_in_hyp_mode())
1644                 cpu_init_hyp_mode();
1645 }
1646
1647 static void cpu_hyp_init_features(void)
1648 {
1649         cpu_set_hyp_vector();
1650         kvm_arm_init_debug();
1651
1652         if (is_kernel_in_hyp_mode())
1653                 kvm_timer_init_vhe();
1654
1655         if (vgic_present)
1656                 kvm_vgic_init_cpu_hardware();
1657 }
1658
1659 static void cpu_hyp_reinit(void)
1660 {
1661         cpu_hyp_reset();
1662         cpu_hyp_init_context();
1663         cpu_hyp_init_features();
1664 }
1665
1666 static void _kvm_arch_hardware_enable(void *discard)
1667 {
1668         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1669                 cpu_hyp_reinit();
1670                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1671         }
1672 }
1673
1674 int kvm_arch_hardware_enable(void)
1675 {
1676         int was_enabled = __this_cpu_read(kvm_arm_hardware_enabled);
1677
1678         _kvm_arch_hardware_enable(NULL);
1679
1680         if (!was_enabled) {
1681                 kvm_vgic_cpu_up();
1682                 kvm_timer_cpu_up();
1683         }
1684
1685         return 0;
1686 }
1687
1688 static void _kvm_arch_hardware_disable(void *discard)
1689 {
1690         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1691                 cpu_hyp_reset();
1692                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1693         }
1694 }
1695
1696 void kvm_arch_hardware_disable(void)
1697 {
1698         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1699                 kvm_timer_cpu_down();
1700                 kvm_vgic_cpu_down();
1701         }
1702
1703         if (!is_protected_kvm_enabled())
1704                 _kvm_arch_hardware_disable(NULL);
1705 }
1706
1707 #ifdef CONFIG_CPU_PM
1708 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1709                                     unsigned long cmd,
1710                                     void *v)
1711 {
1712         /*
1713          * kvm_arm_hardware_enabled is left with its old value over
1714          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1715          * re-enable hyp.
1716          */
1717         switch (cmd) {
1718         case CPU_PM_ENTER:
1719                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1720                         /*
1721                          * don't update kvm_arm_hardware_enabled here
1722                          * so that the hardware will be re-enabled
1723                          * when we resume. See below.
1724                          */
1725                         cpu_hyp_reset();
1726
1727                 return NOTIFY_OK;
1728         case CPU_PM_ENTER_FAILED:
1729         case CPU_PM_EXIT:
1730                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1731                         /* The hardware was enabled before suspend. */
1732                         cpu_hyp_reinit();
1733
1734                 return NOTIFY_OK;
1735
1736         default:
1737                 return NOTIFY_DONE;
1738         }
1739 }
1740
1741 static struct notifier_block hyp_init_cpu_pm_nb = {
1742         .notifier_call = hyp_init_cpu_pm_notifier,
1743 };
1744
1745 static void __init hyp_cpu_pm_init(void)
1746 {
1747         if (!is_protected_kvm_enabled())
1748                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1749 }
1750 static void __init hyp_cpu_pm_exit(void)
1751 {
1752         if (!is_protected_kvm_enabled())
1753                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1754 }
1755 #else
1756 static inline void __init hyp_cpu_pm_init(void)
1757 {
1758 }
1759 static inline void __init hyp_cpu_pm_exit(void)
1760 {
1761 }
1762 #endif
1763
1764 static void __init init_cpu_logical_map(void)
1765 {
1766         unsigned int cpu;
1767
1768         /*
1769          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1770          * Only copy the set of online CPUs whose features have been checked
1771          * against the finalized system capabilities. The hypervisor will not
1772          * allow any other CPUs from the `possible` set to boot.
1773          */
1774         for_each_online_cpu(cpu)
1775                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1776 }
1777
1778 #define init_psci_0_1_impl_state(config, what)  \
1779         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1780
1781 static bool __init init_psci_relay(void)
1782 {
1783         /*
1784          * If PSCI has not been initialized, protected KVM cannot install
1785          * itself on newly booted CPUs.
1786          */
1787         if (!psci_ops.get_version) {
1788                 kvm_err("Cannot initialize protected mode without PSCI\n");
1789                 return false;
1790         }
1791
1792         kvm_host_psci_config.version = psci_ops.get_version();
1793
1794         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1795                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1796                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1797                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1798                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1799                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1800         }
1801         return true;
1802 }
1803
1804 static int __init init_subsystems(void)
1805 {
1806         int err = 0;
1807
1808         /*
1809          * Enable hardware so that subsystem initialisation can access EL2.
1810          */
1811         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1812
1813         /*
1814          * Register CPU lower-power notifier
1815          */
1816         hyp_cpu_pm_init();
1817
1818         /*
1819          * Init HYP view of VGIC
1820          */
1821         err = kvm_vgic_hyp_init();
1822         switch (err) {
1823         case 0:
1824                 vgic_present = true;
1825                 break;
1826         case -ENODEV:
1827         case -ENXIO:
1828                 vgic_present = false;
1829                 err = 0;
1830                 break;
1831         default:
1832                 goto out;
1833         }
1834
1835         /*
1836          * Init HYP architected timer support
1837          */
1838         err = kvm_timer_hyp_init(vgic_present);
1839         if (err)
1840                 goto out;
1841
1842         kvm_register_perf_callbacks(NULL);
1843
1844 out:
1845         if (err)
1846                 hyp_cpu_pm_exit();
1847
1848         if (err || !is_protected_kvm_enabled())
1849                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1850
1851         return err;
1852 }
1853
1854 static void __init teardown_subsystems(void)
1855 {
1856         kvm_unregister_perf_callbacks();
1857         hyp_cpu_pm_exit();
1858 }
1859
1860 static void __init teardown_hyp_mode(void)
1861 {
1862         int cpu;
1863
1864         free_hyp_pgds();
1865         for_each_possible_cpu(cpu) {
1866                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1867                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
1868         }
1869 }
1870
1871 static int __init do_pkvm_init(u32 hyp_va_bits)
1872 {
1873         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
1874         int ret;
1875
1876         preempt_disable();
1877         cpu_hyp_init_context();
1878         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1879                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1880                                 hyp_va_bits);
1881         cpu_hyp_init_features();
1882
1883         /*
1884          * The stub hypercalls are now disabled, so set our local flag to
1885          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1886          */
1887         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1888         preempt_enable();
1889
1890         return ret;
1891 }
1892
1893 static void kvm_hyp_init_symbols(void)
1894 {
1895         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1896         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1897         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1898         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1899         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1900         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1901         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1902         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1903         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
1904         kvm_nvhe_sym(__icache_flags) = __icache_flags;
1905         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
1906 }
1907
1908 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
1909 {
1910         void *addr = phys_to_virt(hyp_mem_base);
1911         int ret;
1912
1913         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1914         if (ret)
1915                 return ret;
1916
1917         ret = do_pkvm_init(hyp_va_bits);
1918         if (ret)
1919                 return ret;
1920
1921         free_hyp_pgds();
1922
1923         return 0;
1924 }
1925
1926 /* Inits Hyp-mode on all online CPUs */
1927 static int __init init_hyp_mode(void)
1928 {
1929         u32 hyp_va_bits;
1930         int cpu;
1931         int err = -ENOMEM;
1932
1933         /*
1934          * The protected Hyp-mode cannot be initialized if the memory pool
1935          * allocation has failed.
1936          */
1937         if (is_protected_kvm_enabled() && !hyp_mem_base)
1938                 goto out_err;
1939
1940         /*
1941          * Allocate Hyp PGD and setup Hyp identity mapping
1942          */
1943         err = kvm_mmu_init(&hyp_va_bits);
1944         if (err)
1945                 goto out_err;
1946
1947         /*
1948          * Allocate stack pages for Hypervisor-mode
1949          */
1950         for_each_possible_cpu(cpu) {
1951                 unsigned long stack_page;
1952
1953                 stack_page = __get_free_page(GFP_KERNEL);
1954                 if (!stack_page) {
1955                         err = -ENOMEM;
1956                         goto out_err;
1957                 }
1958
1959                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1960         }
1961
1962         /*
1963          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1964          */
1965         for_each_possible_cpu(cpu) {
1966                 struct page *page;
1967                 void *page_addr;
1968
1969                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1970                 if (!page) {
1971                         err = -ENOMEM;
1972                         goto out_err;
1973                 }
1974
1975                 page_addr = page_address(page);
1976                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1977                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
1978         }
1979
1980         /*
1981          * Map the Hyp-code called directly from the host
1982          */
1983         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1984                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1985         if (err) {
1986                 kvm_err("Cannot map world-switch code\n");
1987                 goto out_err;
1988         }
1989
1990         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1991                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1992         if (err) {
1993                 kvm_err("Cannot map .hyp.rodata section\n");
1994                 goto out_err;
1995         }
1996
1997         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1998                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1999         if (err) {
2000                 kvm_err("Cannot map rodata section\n");
2001                 goto out_err;
2002         }
2003
2004         /*
2005          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2006          * section thanks to an assertion in the linker script. Map it RW and
2007          * the rest of .bss RO.
2008          */
2009         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2010                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2011         if (err) {
2012                 kvm_err("Cannot map hyp bss section: %d\n", err);
2013                 goto out_err;
2014         }
2015
2016         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2017                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2018         if (err) {
2019                 kvm_err("Cannot map bss section\n");
2020                 goto out_err;
2021         }
2022
2023         /*
2024          * Map the Hyp stack pages
2025          */
2026         for_each_possible_cpu(cpu) {
2027                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2028                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2029                 unsigned long hyp_addr;
2030
2031                 /*
2032                  * Allocate a contiguous HYP private VA range for the stack
2033                  * and guard page. The allocation is also aligned based on
2034                  * the order of its size.
2035                  */
2036                 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2037                 if (err) {
2038                         kvm_err("Cannot allocate hyp stack guard page\n");
2039                         goto out_err;
2040                 }
2041
2042                 /*
2043                  * Since the stack grows downwards, map the stack to the page
2044                  * at the higher address and leave the lower guard page
2045                  * unbacked.
2046                  *
2047                  * Any valid stack address now has the PAGE_SHIFT bit as 1
2048                  * and addresses corresponding to the guard page have the
2049                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2050                  */
2051                 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2052                                             __pa(stack_page), PAGE_HYP);
2053                 if (err) {
2054                         kvm_err("Cannot map hyp stack\n");
2055                         goto out_err;
2056                 }
2057
2058                 /*
2059                  * Save the stack PA in nvhe_init_params. This will be needed
2060                  * to recreate the stack mapping in protected nVHE mode.
2061                  * __hyp_pa() won't do the right thing there, since the stack
2062                  * has been mapped in the flexible private VA space.
2063                  */
2064                 params->stack_pa = __pa(stack_page);
2065
2066                 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2067         }
2068
2069         for_each_possible_cpu(cpu) {
2070                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2071                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2072
2073                 /* Map Hyp percpu pages */
2074                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2075                 if (err) {
2076                         kvm_err("Cannot map hyp percpu region\n");
2077                         goto out_err;
2078                 }
2079
2080                 /* Prepare the CPU initialization parameters */
2081                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2082         }
2083
2084         kvm_hyp_init_symbols();
2085
2086         if (is_protected_kvm_enabled()) {
2087                 init_cpu_logical_map();
2088
2089                 if (!init_psci_relay()) {
2090                         err = -ENODEV;
2091                         goto out_err;
2092                 }
2093
2094                 err = kvm_hyp_init_protection(hyp_va_bits);
2095                 if (err) {
2096                         kvm_err("Failed to init hyp memory protection\n");
2097                         goto out_err;
2098                 }
2099         }
2100
2101         return 0;
2102
2103 out_err:
2104         teardown_hyp_mode();
2105         kvm_err("error initializing Hyp mode: %d\n", err);
2106         return err;
2107 }
2108
2109 static void __init _kvm_host_prot_finalize(void *arg)
2110 {
2111         int *err = arg;
2112
2113         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2114                 WRITE_ONCE(*err, -EINVAL);
2115 }
2116
2117 static int __init pkvm_drop_host_privileges(void)
2118 {
2119         int ret = 0;
2120
2121         /*
2122          * Flip the static key upfront as that may no longer be possible
2123          * once the host stage 2 is installed.
2124          */
2125         static_branch_enable(&kvm_protected_mode_initialized);
2126         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2127         return ret;
2128 }
2129
2130 static int __init finalize_hyp_mode(void)
2131 {
2132         if (!is_protected_kvm_enabled())
2133                 return 0;
2134
2135         /*
2136          * Exclude HYP sections from kmemleak so that they don't get peeked
2137          * at, which would end badly once inaccessible.
2138          */
2139         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2140         kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
2141         return pkvm_drop_host_privileges();
2142 }
2143
2144 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2145 {
2146         struct kvm_vcpu *vcpu;
2147         unsigned long i;
2148
2149         mpidr &= MPIDR_HWID_BITMASK;
2150         kvm_for_each_vcpu(i, vcpu, kvm) {
2151                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2152                         return vcpu;
2153         }
2154         return NULL;
2155 }
2156
2157 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2158 {
2159         return irqchip_in_kernel(kvm);
2160 }
2161
2162 bool kvm_arch_has_irq_bypass(void)
2163 {
2164         return true;
2165 }
2166
2167 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2168                                       struct irq_bypass_producer *prod)
2169 {
2170         struct kvm_kernel_irqfd *irqfd =
2171                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2172
2173         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2174                                           &irqfd->irq_entry);
2175 }
2176 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2177                                       struct irq_bypass_producer *prod)
2178 {
2179         struct kvm_kernel_irqfd *irqfd =
2180                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2181
2182         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2183                                      &irqfd->irq_entry);
2184 }
2185
2186 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2187 {
2188         struct kvm_kernel_irqfd *irqfd =
2189                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2190
2191         kvm_arm_halt_guest(irqfd->kvm);
2192 }
2193
2194 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2195 {
2196         struct kvm_kernel_irqfd *irqfd =
2197                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2198
2199         kvm_arm_resume_guest(irqfd->kvm);
2200 }
2201
2202 /* Initialize Hyp-mode and memory mappings on all CPUs */
2203 static __init int kvm_arm_init(void)
2204 {
2205         int err;
2206         bool in_hyp_mode;
2207
2208         if (!is_hyp_mode_available()) {
2209                 kvm_info("HYP mode not available\n");
2210                 return -ENODEV;
2211         }
2212
2213         if (kvm_get_mode() == KVM_MODE_NONE) {
2214                 kvm_info("KVM disabled from command line\n");
2215                 return -ENODEV;
2216         }
2217
2218         err = kvm_sys_reg_table_init();
2219         if (err) {
2220                 kvm_info("Error initializing system register tables");
2221                 return err;
2222         }
2223
2224         in_hyp_mode = is_kernel_in_hyp_mode();
2225
2226         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2227             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2228                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2229                          "Only trusted guests should be used on this system.\n");
2230
2231         err = kvm_set_ipa_limit();
2232         if (err)
2233                 return err;
2234
2235         err = kvm_arm_init_sve();
2236         if (err)
2237                 return err;
2238
2239         err = kvm_arm_vmid_alloc_init();
2240         if (err) {
2241                 kvm_err("Failed to initialize VMID allocator.\n");
2242                 return err;
2243         }
2244
2245         if (!in_hyp_mode) {
2246                 err = init_hyp_mode();
2247                 if (err)
2248                         goto out_err;
2249         }
2250
2251         err = kvm_init_vector_slots();
2252         if (err) {
2253                 kvm_err("Cannot initialise vector slots\n");
2254                 goto out_hyp;
2255         }
2256
2257         err = init_subsystems();
2258         if (err)
2259                 goto out_hyp;
2260
2261         if (!in_hyp_mode) {
2262                 err = finalize_hyp_mode();
2263                 if (err) {
2264                         kvm_err("Failed to finalize Hyp protection\n");
2265                         goto out_subs;
2266                 }
2267         }
2268
2269         if (is_protected_kvm_enabled()) {
2270                 kvm_info("Protected nVHE mode initialized successfully\n");
2271         } else if (in_hyp_mode) {
2272                 kvm_info("VHE mode initialized successfully\n");
2273         } else {
2274                 kvm_info("Hyp mode initialized successfully\n");
2275         }
2276
2277         /*
2278          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2279          * hypervisor protection is finalized.
2280          */
2281         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2282         if (err)
2283                 goto out_subs;
2284
2285         return 0;
2286
2287 out_subs:
2288         teardown_subsystems();
2289 out_hyp:
2290         if (!in_hyp_mode)
2291                 teardown_hyp_mode();
2292 out_err:
2293         kvm_arm_vmid_alloc_free();
2294         return err;
2295 }
2296
2297 static int __init early_kvm_mode_cfg(char *arg)
2298 {
2299         if (!arg)
2300                 return -EINVAL;
2301
2302         if (strcmp(arg, "none") == 0) {
2303                 kvm_mode = KVM_MODE_NONE;
2304                 return 0;
2305         }
2306
2307         if (!is_hyp_mode_available()) {
2308                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2309                 return 0;
2310         }
2311
2312         if (strcmp(arg, "protected") == 0) {
2313                 if (!is_kernel_in_hyp_mode())
2314                         kvm_mode = KVM_MODE_PROTECTED;
2315                 else
2316                         pr_warn_once("Protected KVM not available with VHE\n");
2317
2318                 return 0;
2319         }
2320
2321         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2322                 kvm_mode = KVM_MODE_DEFAULT;
2323                 return 0;
2324         }
2325
2326         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2327                 kvm_mode = KVM_MODE_NV;
2328                 return 0;
2329         }
2330
2331         return -EINVAL;
2332 }
2333 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2334
2335 enum kvm_mode kvm_get_mode(void)
2336 {
2337         return kvm_mode;
2338 }
2339
2340 module_init(kvm_arm_init);