OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / arch / arm64 / kvm / hyp / nvhe / mm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20
21 struct kvm_pgtable pkvm_pgtable;
22 hyp_spinlock_t pkvm_pgd_lock;
23
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26
27 static u64 __io_map_base;
28
29 struct hyp_fixmap_slot {
30         u64 addr;
31         kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34
35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36                                   unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38         int err;
39
40         hyp_spin_lock(&pkvm_pgd_lock);
41         err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
42         hyp_spin_unlock(&pkvm_pgd_lock);
43
44         return err;
45 }
46
47 /**
48  * pkvm_alloc_private_va_range - Allocates a private VA range.
49  * @size:       The size of the VA range to reserve.
50  * @haddr:      The hypervisor virtual start address of the allocation.
51  *
52  * The private virtual address (VA) range is allocated above __io_map_base
53  * and aligned based on the order of @size.
54  *
55  * Return: 0 on success or negative error code on failure.
56  */
57 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
58 {
59         unsigned long base, addr;
60         int ret = 0;
61
62         hyp_spin_lock(&pkvm_pgd_lock);
63
64         /* Align the allocation based on the order of its size */
65         addr = ALIGN(__io_map_base, PAGE_SIZE << get_order(size));
66
67         /* The allocated size is always a multiple of PAGE_SIZE */
68         base = addr + PAGE_ALIGN(size);
69
70         /* Are we overflowing on the vmemmap ? */
71         if (!addr || base > __hyp_vmemmap)
72                 ret = -ENOMEM;
73         else {
74                 __io_map_base = base;
75                 *haddr = addr;
76         }
77
78         hyp_spin_unlock(&pkvm_pgd_lock);
79
80         return ret;
81 }
82
83 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
84                                   enum kvm_pgtable_prot prot,
85                                   unsigned long *haddr)
86 {
87         unsigned long addr;
88         int err;
89
90         size = PAGE_ALIGN(size + offset_in_page(phys));
91         err = pkvm_alloc_private_va_range(size, &addr);
92         if (err)
93                 return err;
94
95         err = __pkvm_create_mappings(addr, size, phys, prot);
96         if (err)
97                 return err;
98
99         *haddr = addr + offset_in_page(phys);
100         return err;
101 }
102
103 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
104 {
105         unsigned long start = (unsigned long)from;
106         unsigned long end = (unsigned long)to;
107         unsigned long virt_addr;
108         phys_addr_t phys;
109
110         hyp_assert_lock_held(&pkvm_pgd_lock);
111
112         start = start & PAGE_MASK;
113         end = PAGE_ALIGN(end);
114
115         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
116                 int err;
117
118                 phys = hyp_virt_to_phys((void *)virt_addr);
119                 err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
120                                           phys, prot);
121                 if (err)
122                         return err;
123         }
124
125         return 0;
126 }
127
128 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
129 {
130         int ret;
131
132         hyp_spin_lock(&pkvm_pgd_lock);
133         ret = pkvm_create_mappings_locked(from, to, prot);
134         hyp_spin_unlock(&pkvm_pgd_lock);
135
136         return ret;
137 }
138
139 int hyp_back_vmemmap(phys_addr_t back)
140 {
141         unsigned long i, start, size, end = 0;
142         int ret;
143
144         for (i = 0; i < hyp_memblock_nr; i++) {
145                 start = hyp_memory[i].base;
146                 start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
147                 /*
148                  * The begining of the hyp_vmemmap region for the current
149                  * memblock may already be backed by the page backing the end
150                  * the previous region, so avoid mapping it twice.
151                  */
152                 start = max(start, end);
153
154                 end = hyp_memory[i].base + hyp_memory[i].size;
155                 end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
156                 if (start >= end)
157                         continue;
158
159                 size = end - start;
160                 ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
161                 if (ret)
162                         return ret;
163
164                 memset(hyp_phys_to_virt(back), 0, size);
165                 back += size;
166         }
167
168         return 0;
169 }
170
171 static void *__hyp_bp_vect_base;
172 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
173 {
174         void *vector;
175
176         switch (slot) {
177         case HYP_VECTOR_DIRECT: {
178                 vector = __kvm_hyp_vector;
179                 break;
180         }
181         case HYP_VECTOR_SPECTRE_DIRECT: {
182                 vector = __bp_harden_hyp_vecs;
183                 break;
184         }
185         case HYP_VECTOR_INDIRECT:
186         case HYP_VECTOR_SPECTRE_INDIRECT: {
187                 vector = (void *)__hyp_bp_vect_base;
188                 break;
189         }
190         default:
191                 return -EINVAL;
192         }
193
194         vector = __kvm_vector_slot2addr(vector, slot);
195         *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
196
197         return 0;
198 }
199
200 int hyp_map_vectors(void)
201 {
202         phys_addr_t phys;
203         unsigned long bp_base;
204         int ret;
205
206         if (!kvm_system_needs_idmapped_vectors()) {
207                 __hyp_bp_vect_base = __bp_harden_hyp_vecs;
208                 return 0;
209         }
210
211         phys = __hyp_pa(__bp_harden_hyp_vecs);
212         ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
213                                             PAGE_HYP_EXEC, &bp_base);
214         if (ret)
215                 return ret;
216
217         __hyp_bp_vect_base = (void *)bp_base;
218
219         return 0;
220 }
221
222 void *hyp_fixmap_map(phys_addr_t phys)
223 {
224         struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
225         kvm_pte_t pte, *ptep = slot->ptep;
226
227         pte = *ptep;
228         pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
229         pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
230         WRITE_ONCE(*ptep, pte);
231         dsb(ishst);
232
233         return (void *)slot->addr;
234 }
235
236 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
237 {
238         kvm_pte_t *ptep = slot->ptep;
239         u64 addr = slot->addr;
240
241         WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
242
243         /*
244          * Irritatingly, the architecture requires that we use inner-shareable
245          * broadcast TLB invalidation here in case another CPU speculates
246          * through our fixmap and decides to create an "amalagamation of the
247          * values held in the TLB" due to the apparent lack of a
248          * break-before-make sequence.
249          *
250          * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
251          */
252         dsb(ishst);
253         __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
254         dsb(ish);
255         isb();
256 }
257
258 void hyp_fixmap_unmap(void)
259 {
260         fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
261 }
262
263 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
264                                    enum kvm_pgtable_walk_flags visit)
265 {
266         struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
267
268         if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
269                 return -EINVAL;
270
271         slot->addr = ctx->addr;
272         slot->ptep = ctx->ptep;
273
274         /*
275          * Clear the PTE, but keep the page-table page refcount elevated to
276          * prevent it from ever being freed. This lets us manipulate the PTEs
277          * by hand safely without ever needing to allocate memory.
278          */
279         fixmap_clear_slot(slot);
280
281         return 0;
282 }
283
284 static int create_fixmap_slot(u64 addr, u64 cpu)
285 {
286         struct kvm_pgtable_walker walker = {
287                 .cb     = __create_fixmap_slot_cb,
288                 .flags  = KVM_PGTABLE_WALK_LEAF,
289                 .arg = (void *)cpu,
290         };
291
292         return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
293 }
294
295 int hyp_create_pcpu_fixmap(void)
296 {
297         unsigned long addr, i;
298         int ret;
299
300         for (i = 0; i < hyp_nr_cpus; i++) {
301                 ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
302                 if (ret)
303                         return ret;
304
305                 ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
306                                           __hyp_pa(__hyp_bss_start), PAGE_HYP);
307                 if (ret)
308                         return ret;
309
310                 ret = create_fixmap_slot(addr, i);
311                 if (ret)
312                         return ret;
313         }
314
315         return 0;
316 }
317
318 int hyp_create_idmap(u32 hyp_va_bits)
319 {
320         unsigned long start, end;
321
322         start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
323         start = ALIGN_DOWN(start, PAGE_SIZE);
324
325         end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
326         end = ALIGN(end, PAGE_SIZE);
327
328         /*
329          * One half of the VA space is reserved to linearly map portions of
330          * memory -- see va_layout.c for more details. The other half of the VA
331          * space contains the trampoline page, and needs some care. Split that
332          * second half in two and find the quarter of VA space not conflicting
333          * with the idmap to place the IOs and the vmemmap. IOs use the lower
334          * half of the quarter and the vmemmap the upper half.
335          */
336         __io_map_base = start & BIT(hyp_va_bits - 2);
337         __io_map_base ^= BIT(hyp_va_bits - 2);
338         __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
339
340         return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
341 }
342
343 static void *admit_host_page(void *arg)
344 {
345         struct kvm_hyp_memcache *host_mc = arg;
346
347         if (!host_mc->nr_pages)
348                 return NULL;
349
350         /*
351          * The host still owns the pages in its memcache, so we need to go
352          * through a full host-to-hyp donation cycle to change it. Fortunately,
353          * __pkvm_host_donate_hyp() takes care of races for us, so if it
354          * succeeds we're good to go.
355          */
356         if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
357                 return NULL;
358
359         return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
360 }
361
362 /* Refill our local memcache by poping pages from the one provided by the host. */
363 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
364                     struct kvm_hyp_memcache *host_mc)
365 {
366         struct kvm_hyp_memcache tmp = *host_mc;
367         int ret;
368
369         ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
370                                     hyp_virt_to_phys, &tmp);
371         *host_mc = tmp;
372
373         return ret;
374 }