OSDN Git Service

arm64: KVM: common infrastructure for handling AArch32 CP14/CP15
[android-x86/kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35
36 #include "sys_regs.h"
37
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58         u32 ccsidr;
59
60         /* Make sure noone else changes CSSELR during this! */
61         local_irq_disable();
62         /* Put value into CSSELR */
63         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64         isb();
65         /* Read result out of CCSIDR */
66         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67         local_irq_enable();
68
69         return ccsidr;
70 }
71
72 static void do_dc_cisw(u32 val)
73 {
74         asm volatile("dc cisw, %x0" : : "r" (val));
75         dsb(ish);
76 }
77
78 static void do_dc_csw(u32 val)
79 {
80         asm volatile("dc csw, %x0" : : "r" (val));
81         dsb(ish);
82 }
83
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86                         const struct sys_reg_params *p,
87                         const struct sys_reg_desc *r)
88 {
89         unsigned long val;
90         int cpu;
91
92         if (!p->is_write)
93                 return read_from_write_only(vcpu, p);
94
95         cpu = get_cpu();
96
97         cpumask_setall(&vcpu->arch.require_dcache_flush);
98         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100         /* If we were already preempted, take the long way around */
101         if (cpu != vcpu->arch.last_pcpu) {
102                 flush_cache_all();
103                 goto done;
104         }
105
106         val = *vcpu_reg(vcpu, p->Rt);
107
108         switch (p->CRm) {
109         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110         case 14:                /* DCCISW */
111                 do_dc_cisw(val);
112                 break;
113
114         case 10:                /* DCCSW */
115                 do_dc_csw(val);
116                 break;
117         }
118
119 done:
120         put_cpu();
121
122         return true;
123 }
124
125 /*
126  * Generic accessor for VM registers. Only called as long as HCR_TVM
127  * is set.
128  */
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130                           const struct sys_reg_params *p,
131                           const struct sys_reg_desc *r)
132 {
133         unsigned long val;
134
135         BUG_ON(!p->is_write);
136
137         val = *vcpu_reg(vcpu, p->Rt);
138         if (!p->is_aarch32 || !p->is_32bit)
139                 vcpu_sys_reg(vcpu, r->reg) = val;
140         else
141                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
142
143         return true;
144 }
145
146 /*
147  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
148  * guest enables the MMU, we stop trapping the VM sys_regs and leave
149  * it in complete control of the caches.
150  */
151 static bool access_sctlr(struct kvm_vcpu *vcpu,
152                          const struct sys_reg_params *p,
153                          const struct sys_reg_desc *r)
154 {
155         access_vm_reg(vcpu, p, r);
156
157         if (vcpu_has_cache_enabled(vcpu)) {     /* MMU+Caches enabled? */
158                 vcpu->arch.hcr_el2 &= ~HCR_TVM;
159                 stage2_flush_vm(vcpu->kvm);
160         }
161
162         return true;
163 }
164
165 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
166                         const struct sys_reg_params *p,
167                         const struct sys_reg_desc *r)
168 {
169         if (p->is_write)
170                 return ignore_write(vcpu, p);
171         else
172                 return read_zero(vcpu, p);
173 }
174
175 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
176                            const struct sys_reg_params *p,
177                            const struct sys_reg_desc *r)
178 {
179         if (p->is_write) {
180                 return ignore_write(vcpu, p);
181         } else {
182                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
183                 return true;
184         }
185 }
186
187 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
188                                    const struct sys_reg_params *p,
189                                    const struct sys_reg_desc *r)
190 {
191         if (p->is_write) {
192                 return ignore_write(vcpu, p);
193         } else {
194                 u32 val;
195                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
196                 *vcpu_reg(vcpu, p->Rt) = val;
197                 return true;
198         }
199 }
200
201 /*
202  * We want to avoid world-switching all the DBG registers all the
203  * time:
204  * 
205  * - If we've touched any debug register, it is likely that we're
206  *   going to touch more of them. It then makes sense to disable the
207  *   traps and start doing the save/restore dance
208  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209  *   then mandatory to save/restore the registers, as the guest
210  *   depends on them.
211  * 
212  * For this, we use a DIRTY bit, indicating the guest has modified the
213  * debug registers, used as follow:
214  *
215  * On guest entry:
216  * - If the dirty bit is set (because we're coming back from trapping),
217  *   disable the traps, save host registers, restore guest registers.
218  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219  *   set the dirty bit, disable the traps, save host registers,
220  *   restore guest registers.
221  * - Otherwise, enable the traps
222  *
223  * On guest exit:
224  * - If the dirty bit is set, save guest registers, restore host
225  *   registers and clear the dirty bit. This ensure that the host can
226  *   now use the debug registers.
227  */
228 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229                             const struct sys_reg_params *p,
230                             const struct sys_reg_desc *r)
231 {
232         if (p->is_write) {
233                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
234                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235         } else {
236                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
237         }
238
239         return true;
240 }
241
242 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
243 {
244         u64 amair;
245
246         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
247         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
248 }
249
250 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
251 {
252         /*
253          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
254          */
255         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
256 }
257
258 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
259 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
260         /* DBGBVRn_EL1 */                                               \
261         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
262           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
263         /* DBGBCRn_EL1 */                                               \
264         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
265           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
266         /* DBGWVRn_EL1 */                                               \
267         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
268           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
269         /* DBGWCRn_EL1 */                                               \
270         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
271           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
272
273 /*
274  * Architected system registers.
275  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
276  *
277  * We could trap ID_DFR0 and tell the guest we don't support performance
278  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
279  * NAKed, so it will read the PMCR anyway.
280  *
281  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
282  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
283  * all PM registers, which doesn't crash the guest kernel at least.
284  *
285  * Debug handling: We do trap most, if not all debug related system
286  * registers. The implementation is good enough to ensure that a guest
287  * can use these with minimal performance degradation. The drawback is
288  * that we don't implement any of the external debug, none of the
289  * OSlock protocol. This should be revisited if we ever encounter a
290  * more demanding guest...
291  */
292 static const struct sys_reg_desc sys_reg_descs[] = {
293         /* DC ISW */
294         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
295           access_dcsw },
296         /* DC CSW */
297         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
298           access_dcsw },
299         /* DC CISW */
300         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
301           access_dcsw },
302
303         DBG_BCR_BVR_WCR_WVR_EL1(0),
304         DBG_BCR_BVR_WCR_WVR_EL1(1),
305         /* MDCCINT_EL1 */
306         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
307           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
308         /* MDSCR_EL1 */
309         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
310           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
311         DBG_BCR_BVR_WCR_WVR_EL1(2),
312         DBG_BCR_BVR_WCR_WVR_EL1(3),
313         DBG_BCR_BVR_WCR_WVR_EL1(4),
314         DBG_BCR_BVR_WCR_WVR_EL1(5),
315         DBG_BCR_BVR_WCR_WVR_EL1(6),
316         DBG_BCR_BVR_WCR_WVR_EL1(7),
317         DBG_BCR_BVR_WCR_WVR_EL1(8),
318         DBG_BCR_BVR_WCR_WVR_EL1(9),
319         DBG_BCR_BVR_WCR_WVR_EL1(10),
320         DBG_BCR_BVR_WCR_WVR_EL1(11),
321         DBG_BCR_BVR_WCR_WVR_EL1(12),
322         DBG_BCR_BVR_WCR_WVR_EL1(13),
323         DBG_BCR_BVR_WCR_WVR_EL1(14),
324         DBG_BCR_BVR_WCR_WVR_EL1(15),
325
326         /* MDRAR_EL1 */
327         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
328           trap_raz_wi },
329         /* OSLAR_EL1 */
330         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
331           trap_raz_wi },
332         /* OSLSR_EL1 */
333         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
334           trap_oslsr_el1 },
335         /* OSDLR_EL1 */
336         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
337           trap_raz_wi },
338         /* DBGPRCR_EL1 */
339         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
340           trap_raz_wi },
341         /* DBGCLAIMSET_EL1 */
342         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
343           trap_raz_wi },
344         /* DBGCLAIMCLR_EL1 */
345         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
346           trap_raz_wi },
347         /* DBGAUTHSTATUS_EL1 */
348         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
349           trap_dbgauthstatus_el1 },
350
351         /* TEECR32_EL1 */
352         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
353           NULL, reset_val, TEECR32_EL1, 0 },
354         /* TEEHBR32_EL1 */
355         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
356           NULL, reset_val, TEEHBR32_EL1, 0 },
357
358         /* MDCCSR_EL1 */
359         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
360           trap_raz_wi },
361         /* DBGDTR_EL0 */
362         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
363           trap_raz_wi },
364         /* DBGDTR[TR]X_EL0 */
365         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
366           trap_raz_wi },
367
368         /* DBGVCR32_EL2 */
369         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
370           NULL, reset_val, DBGVCR32_EL2, 0 },
371
372         /* MPIDR_EL1 */
373         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
374           NULL, reset_mpidr, MPIDR_EL1 },
375         /* SCTLR_EL1 */
376         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
377           access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
378         /* CPACR_EL1 */
379         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
380           NULL, reset_val, CPACR_EL1, 0 },
381         /* TTBR0_EL1 */
382         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
383           access_vm_reg, reset_unknown, TTBR0_EL1 },
384         /* TTBR1_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
386           access_vm_reg, reset_unknown, TTBR1_EL1 },
387         /* TCR_EL1 */
388         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
389           access_vm_reg, reset_val, TCR_EL1, 0 },
390
391         /* AFSR0_EL1 */
392         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
393           access_vm_reg, reset_unknown, AFSR0_EL1 },
394         /* AFSR1_EL1 */
395         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
396           access_vm_reg, reset_unknown, AFSR1_EL1 },
397         /* ESR_EL1 */
398         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
399           access_vm_reg, reset_unknown, ESR_EL1 },
400         /* FAR_EL1 */
401         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
402           access_vm_reg, reset_unknown, FAR_EL1 },
403         /* PAR_EL1 */
404         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
405           NULL, reset_unknown, PAR_EL1 },
406
407         /* PMINTENSET_EL1 */
408         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
409           trap_raz_wi },
410         /* PMINTENCLR_EL1 */
411         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
412           trap_raz_wi },
413
414         /* MAIR_EL1 */
415         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
416           access_vm_reg, reset_unknown, MAIR_EL1 },
417         /* AMAIR_EL1 */
418         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
419           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
420
421         /* VBAR_EL1 */
422         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
423           NULL, reset_val, VBAR_EL1, 0 },
424         /* CONTEXTIDR_EL1 */
425         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
426           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
427         /* TPIDR_EL1 */
428         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
429           NULL, reset_unknown, TPIDR_EL1 },
430
431         /* CNTKCTL_EL1 */
432         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
433           NULL, reset_val, CNTKCTL_EL1, 0},
434
435         /* CSSELR_EL1 */
436         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
437           NULL, reset_unknown, CSSELR_EL1 },
438
439         /* PMCR_EL0 */
440         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
441           trap_raz_wi },
442         /* PMCNTENSET_EL0 */
443         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
444           trap_raz_wi },
445         /* PMCNTENCLR_EL0 */
446         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
447           trap_raz_wi },
448         /* PMOVSCLR_EL0 */
449         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
450           trap_raz_wi },
451         /* PMSWINC_EL0 */
452         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
453           trap_raz_wi },
454         /* PMSELR_EL0 */
455         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
456           trap_raz_wi },
457         /* PMCEID0_EL0 */
458         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
459           trap_raz_wi },
460         /* PMCEID1_EL0 */
461         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
462           trap_raz_wi },
463         /* PMCCNTR_EL0 */
464         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
465           trap_raz_wi },
466         /* PMXEVTYPER_EL0 */
467         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
468           trap_raz_wi },
469         /* PMXEVCNTR_EL0 */
470         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
471           trap_raz_wi },
472         /* PMUSERENR_EL0 */
473         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
474           trap_raz_wi },
475         /* PMOVSSET_EL0 */
476         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
477           trap_raz_wi },
478
479         /* TPIDR_EL0 */
480         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
481           NULL, reset_unknown, TPIDR_EL0 },
482         /* TPIDRRO_EL0 */
483         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
484           NULL, reset_unknown, TPIDRRO_EL0 },
485
486         /* DACR32_EL2 */
487         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
488           NULL, reset_unknown, DACR32_EL2 },
489         /* IFSR32_EL2 */
490         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
491           NULL, reset_unknown, IFSR32_EL2 },
492         /* FPEXC32_EL2 */
493         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
494           NULL, reset_val, FPEXC32_EL2, 0x70 },
495 };
496
497 /* Trapped cp14 registers */
498 static const struct sys_reg_desc cp14_regs[] = {
499 };
500
501 /*
502  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
503  * depending on the way they are accessed (as a 32bit or a 64bit
504  * register).
505  */
506 static const struct sys_reg_desc cp15_regs[] = {
507         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
508         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
509         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
510         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
511         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
512         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
513         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
514         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
515         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
516         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
517         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
518         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
519
520         /*
521          * DC{C,I,CI}SW operations:
522          */
523         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
524         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
525         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
526
527         /* PMU */
528         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
529         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
530         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
531         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
532         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
533         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
534         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
535         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
536         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
537         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
538         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
539         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
540         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
541
542         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
543         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
544         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
545         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
546         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
547
548         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
549 };
550
551 /* Target specific emulation tables */
552 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
553
554 void kvm_register_target_sys_reg_table(unsigned int target,
555                                        struct kvm_sys_reg_target_table *table)
556 {
557         target_tables[target] = table;
558 }
559
560 /* Get specific register table for this target. */
561 static const struct sys_reg_desc *get_target_table(unsigned target,
562                                                    bool mode_is_64,
563                                                    size_t *num)
564 {
565         struct kvm_sys_reg_target_table *table;
566
567         table = target_tables[target];
568         if (mode_is_64) {
569                 *num = table->table64.num;
570                 return table->table64.table;
571         } else {
572                 *num = table->table32.num;
573                 return table->table32.table;
574         }
575 }
576
577 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
578                                          const struct sys_reg_desc table[],
579                                          unsigned int num)
580 {
581         unsigned int i;
582
583         for (i = 0; i < num; i++) {
584                 const struct sys_reg_desc *r = &table[i];
585
586                 if (params->Op0 != r->Op0)
587                         continue;
588                 if (params->Op1 != r->Op1)
589                         continue;
590                 if (params->CRn != r->CRn)
591                         continue;
592                 if (params->CRm != r->CRm)
593                         continue;
594                 if (params->Op2 != r->Op2)
595                         continue;
596
597                 return r;
598         }
599         return NULL;
600 }
601
602 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
603 {
604         kvm_inject_undefined(vcpu);
605         return 1;
606 }
607
608 /*
609  * emulate_cp --  tries to match a sys_reg access in a handling table, and
610  *                call the corresponding trap handler.
611  *
612  * @params: pointer to the descriptor of the access
613  * @table: array of trap descriptors
614  * @num: size of the trap descriptor array
615  *
616  * Return 0 if the access has been handled, and -1 if not.
617  */
618 static int emulate_cp(struct kvm_vcpu *vcpu,
619                       const struct sys_reg_params *params,
620                       const struct sys_reg_desc *table,
621                       size_t num)
622 {
623         const struct sys_reg_desc *r;
624
625         if (!table)
626                 return -1;      /* Not handled */
627
628         r = find_reg(params, table, num);
629
630         if (r) {
631                 /*
632                  * Not having an accessor means that we have
633                  * configured a trap that we don't know how to
634                  * handle. This certainly qualifies as a gross bug
635                  * that should be fixed right away.
636                  */
637                 BUG_ON(!r->access);
638
639                 if (likely(r->access(vcpu, params, r))) {
640                         /* Skip instruction, since it was emulated */
641                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
642                 }
643
644                 /* Handled */
645                 return 0;
646         }
647
648         /* Not handled */
649         return -1;
650 }
651
652 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
653                                 struct sys_reg_params *params)
654 {
655         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
656         int cp;
657
658         switch(hsr_ec) {
659         case ESR_EL2_EC_CP15_32:
660         case ESR_EL2_EC_CP15_64:
661                 cp = 15;
662                 break;
663         case ESR_EL2_EC_CP14_MR:
664         case ESR_EL2_EC_CP14_64:
665                 cp = 14;
666                 break;
667         default:
668                 WARN_ON((cp = -1));
669         }
670
671         kvm_err("Unsupported guest CP%d access at: %08lx\n",
672                 cp, *vcpu_pc(vcpu));
673         print_sys_reg_instr(params);
674         kvm_inject_undefined(vcpu);
675 }
676
677 /**
678  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
679  * @vcpu: The VCPU pointer
680  * @run:  The kvm_run struct
681  */
682 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
683                             const struct sys_reg_desc *global,
684                             size_t nr_global,
685                             const struct sys_reg_desc *target_specific,
686                             size_t nr_specific)
687 {
688         struct sys_reg_params params;
689         u32 hsr = kvm_vcpu_get_hsr(vcpu);
690         int Rt2 = (hsr >> 10) & 0xf;
691
692         params.is_aarch32 = true;
693         params.is_32bit = false;
694         params.CRm = (hsr >> 1) & 0xf;
695         params.Rt = (hsr >> 5) & 0xf;
696         params.is_write = ((hsr & 1) == 0);
697
698         params.Op0 = 0;
699         params.Op1 = (hsr >> 16) & 0xf;
700         params.Op2 = 0;
701         params.CRn = 0;
702
703         /*
704          * Massive hack here. Store Rt2 in the top 32bits so we only
705          * have one register to deal with. As we use the same trap
706          * backends between AArch32 and AArch64, we get away with it.
707          */
708         if (params.is_write) {
709                 u64 val = *vcpu_reg(vcpu, params.Rt);
710                 val &= 0xffffffff;
711                 val |= *vcpu_reg(vcpu, Rt2) << 32;
712                 *vcpu_reg(vcpu, params.Rt) = val;
713         }
714
715         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
716                 goto out;
717         if (!emulate_cp(vcpu, &params, global, nr_global))
718                 goto out;
719
720         unhandled_cp_access(vcpu, &params);
721
722 out:
723         /* Do the opposite hack for the read side */
724         if (!params.is_write) {
725                 u64 val = *vcpu_reg(vcpu, params.Rt);
726                 val >>= 32;
727                 *vcpu_reg(vcpu, Rt2) = val;
728         }
729
730         return 1;
731 }
732
733 /**
734  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
735  * @vcpu: The VCPU pointer
736  * @run:  The kvm_run struct
737  */
738 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
739                             const struct sys_reg_desc *global,
740                             size_t nr_global,
741                             const struct sys_reg_desc *target_specific,
742                             size_t nr_specific)
743 {
744         struct sys_reg_params params;
745         u32 hsr = kvm_vcpu_get_hsr(vcpu);
746
747         params.is_aarch32 = true;
748         params.is_32bit = true;
749         params.CRm = (hsr >> 1) & 0xf;
750         params.Rt  = (hsr >> 5) & 0xf;
751         params.is_write = ((hsr & 1) == 0);
752         params.CRn = (hsr >> 10) & 0xf;
753         params.Op0 = 0;
754         params.Op1 = (hsr >> 14) & 0x7;
755         params.Op2 = (hsr >> 17) & 0x7;
756
757         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
758                 return 1;
759         if (!emulate_cp(vcpu, &params, global, nr_global))
760                 return 1;
761
762         unhandled_cp_access(vcpu, &params);
763         return 1;
764 }
765
766 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
767 {
768         const struct sys_reg_desc *target_specific;
769         size_t num;
770
771         target_specific = get_target_table(vcpu->arch.target, false, &num);
772         return kvm_handle_cp_64(vcpu,
773                                 cp15_regs, ARRAY_SIZE(cp15_regs),
774                                 target_specific, num);
775 }
776
777 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
778 {
779         const struct sys_reg_desc *target_specific;
780         size_t num;
781
782         target_specific = get_target_table(vcpu->arch.target, false, &num);
783         return kvm_handle_cp_32(vcpu,
784                                 cp15_regs, ARRAY_SIZE(cp15_regs),
785                                 target_specific, num);
786 }
787
788 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
789 {
790         return kvm_handle_cp_64(vcpu,
791                                 cp14_regs, ARRAY_SIZE(cp14_regs),
792                                 NULL, 0);
793 }
794
795 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
796 {
797         return kvm_handle_cp_32(vcpu,
798                                 cp14_regs, ARRAY_SIZE(cp14_regs),
799                                 NULL, 0);
800 }
801
802 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
803                            const struct sys_reg_params *params)
804 {
805         size_t num;
806         const struct sys_reg_desc *table, *r;
807
808         table = get_target_table(vcpu->arch.target, true, &num);
809
810         /* Search target-specific then generic table. */
811         r = find_reg(params, table, num);
812         if (!r)
813                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
814
815         if (likely(r)) {
816                 /*
817                  * Not having an accessor means that we have
818                  * configured a trap that we don't know how to
819                  * handle. This certainly qualifies as a gross bug
820                  * that should be fixed right away.
821                  */
822                 BUG_ON(!r->access);
823
824                 if (likely(r->access(vcpu, params, r))) {
825                         /* Skip instruction, since it was emulated */
826                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
827                         return 1;
828                 }
829                 /* If access function fails, it should complain. */
830         } else {
831                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
832                         *vcpu_pc(vcpu));
833                 print_sys_reg_instr(params);
834         }
835         kvm_inject_undefined(vcpu);
836         return 1;
837 }
838
839 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
840                               const struct sys_reg_desc *table, size_t num)
841 {
842         unsigned long i;
843
844         for (i = 0; i < num; i++)
845                 if (table[i].reset)
846                         table[i].reset(vcpu, &table[i]);
847 }
848
849 /**
850  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
851  * @vcpu: The VCPU pointer
852  * @run:  The kvm_run struct
853  */
854 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
855 {
856         struct sys_reg_params params;
857         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
858
859         params.is_aarch32 = false;
860         params.is_32bit = false;
861         params.Op0 = (esr >> 20) & 3;
862         params.Op1 = (esr >> 14) & 0x7;
863         params.CRn = (esr >> 10) & 0xf;
864         params.CRm = (esr >> 1) & 0xf;
865         params.Op2 = (esr >> 17) & 0x7;
866         params.Rt = (esr >> 5) & 0x1f;
867         params.is_write = !(esr & 1);
868
869         return emulate_sys_reg(vcpu, &params);
870 }
871
872 /******************************************************************************
873  * Userspace API
874  *****************************************************************************/
875
876 static bool index_to_params(u64 id, struct sys_reg_params *params)
877 {
878         switch (id & KVM_REG_SIZE_MASK) {
879         case KVM_REG_SIZE_U64:
880                 /* Any unused index bits means it's not valid. */
881                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
882                               | KVM_REG_ARM_COPROC_MASK
883                               | KVM_REG_ARM64_SYSREG_OP0_MASK
884                               | KVM_REG_ARM64_SYSREG_OP1_MASK
885                               | KVM_REG_ARM64_SYSREG_CRN_MASK
886                               | KVM_REG_ARM64_SYSREG_CRM_MASK
887                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
888                         return false;
889                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
890                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
891                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
892                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
893                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
894                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
895                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
896                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
897                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
898                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
899                 return true;
900         default:
901                 return false;
902         }
903 }
904
905 /* Decode an index value, and find the sys_reg_desc entry. */
906 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
907                                                     u64 id)
908 {
909         size_t num;
910         const struct sys_reg_desc *table, *r;
911         struct sys_reg_params params;
912
913         /* We only do sys_reg for now. */
914         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
915                 return NULL;
916
917         if (!index_to_params(id, &params))
918                 return NULL;
919
920         table = get_target_table(vcpu->arch.target, true, &num);
921         r = find_reg(&params, table, num);
922         if (!r)
923                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
924
925         /* Not saved in the sys_reg array? */
926         if (r && !r->reg)
927                 r = NULL;
928
929         return r;
930 }
931
932 /*
933  * These are the invariant sys_reg registers: we let the guest see the
934  * host versions of these, so they're part of the guest state.
935  *
936  * A future CPU may provide a mechanism to present different values to
937  * the guest, or a future kvm may trap them.
938  */
939
940 #define FUNCTION_INVARIANT(reg)                                         \
941         static void get_##reg(struct kvm_vcpu *v,                       \
942                               const struct sys_reg_desc *r)             \
943         {                                                               \
944                 u64 val;                                                \
945                                                                         \
946                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
947                              : "=r" (val));                             \
948                 ((struct sys_reg_desc *)r)->val = val;                  \
949         }
950
951 FUNCTION_INVARIANT(midr_el1)
952 FUNCTION_INVARIANT(ctr_el0)
953 FUNCTION_INVARIANT(revidr_el1)
954 FUNCTION_INVARIANT(id_pfr0_el1)
955 FUNCTION_INVARIANT(id_pfr1_el1)
956 FUNCTION_INVARIANT(id_dfr0_el1)
957 FUNCTION_INVARIANT(id_afr0_el1)
958 FUNCTION_INVARIANT(id_mmfr0_el1)
959 FUNCTION_INVARIANT(id_mmfr1_el1)
960 FUNCTION_INVARIANT(id_mmfr2_el1)
961 FUNCTION_INVARIANT(id_mmfr3_el1)
962 FUNCTION_INVARIANT(id_isar0_el1)
963 FUNCTION_INVARIANT(id_isar1_el1)
964 FUNCTION_INVARIANT(id_isar2_el1)
965 FUNCTION_INVARIANT(id_isar3_el1)
966 FUNCTION_INVARIANT(id_isar4_el1)
967 FUNCTION_INVARIANT(id_isar5_el1)
968 FUNCTION_INVARIANT(clidr_el1)
969 FUNCTION_INVARIANT(aidr_el1)
970
971 /* ->val is filled in by kvm_sys_reg_table_init() */
972 static struct sys_reg_desc invariant_sys_regs[] = {
973         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
974           NULL, get_midr_el1 },
975         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
976           NULL, get_revidr_el1 },
977         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
978           NULL, get_id_pfr0_el1 },
979         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
980           NULL, get_id_pfr1_el1 },
981         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
982           NULL, get_id_dfr0_el1 },
983         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
984           NULL, get_id_afr0_el1 },
985         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
986           NULL, get_id_mmfr0_el1 },
987         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
988           NULL, get_id_mmfr1_el1 },
989         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
990           NULL, get_id_mmfr2_el1 },
991         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
992           NULL, get_id_mmfr3_el1 },
993         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
994           NULL, get_id_isar0_el1 },
995         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
996           NULL, get_id_isar1_el1 },
997         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
998           NULL, get_id_isar2_el1 },
999         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1000           NULL, get_id_isar3_el1 },
1001         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1002           NULL, get_id_isar4_el1 },
1003         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1004           NULL, get_id_isar5_el1 },
1005         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1006           NULL, get_clidr_el1 },
1007         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1008           NULL, get_aidr_el1 },
1009         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1010           NULL, get_ctr_el0 },
1011 };
1012
1013 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1014 {
1015         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1016                 return -EFAULT;
1017         return 0;
1018 }
1019
1020 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1021 {
1022         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1023                 return -EFAULT;
1024         return 0;
1025 }
1026
1027 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1028 {
1029         struct sys_reg_params params;
1030         const struct sys_reg_desc *r;
1031
1032         if (!index_to_params(id, &params))
1033                 return -ENOENT;
1034
1035         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1036         if (!r)
1037                 return -ENOENT;
1038
1039         return reg_to_user(uaddr, &r->val, id);
1040 }
1041
1042 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1043 {
1044         struct sys_reg_params params;
1045         const struct sys_reg_desc *r;
1046         int err;
1047         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1048
1049         if (!index_to_params(id, &params))
1050                 return -ENOENT;
1051         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1052         if (!r)
1053                 return -ENOENT;
1054
1055         err = reg_from_user(&val, uaddr, id);
1056         if (err)
1057                 return err;
1058
1059         /* This is what we mean by invariant: you can't change it. */
1060         if (r->val != val)
1061                 return -EINVAL;
1062
1063         return 0;
1064 }
1065
1066 static bool is_valid_cache(u32 val)
1067 {
1068         u32 level, ctype;
1069
1070         if (val >= CSSELR_MAX)
1071                 return -ENOENT;
1072
1073         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1074         level = (val >> 1);
1075         ctype = (cache_levels >> (level * 3)) & 7;
1076
1077         switch (ctype) {
1078         case 0: /* No cache */
1079                 return false;
1080         case 1: /* Instruction cache only */
1081                 return (val & 1);
1082         case 2: /* Data cache only */
1083         case 4: /* Unified cache */
1084                 return !(val & 1);
1085         case 3: /* Separate instruction and data caches */
1086                 return true;
1087         default: /* Reserved: we can't know instruction or data. */
1088                 return false;
1089         }
1090 }
1091
1092 static int demux_c15_get(u64 id, void __user *uaddr)
1093 {
1094         u32 val;
1095         u32 __user *uval = uaddr;
1096
1097         /* Fail if we have unknown bits set. */
1098         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1099                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1100                 return -ENOENT;
1101
1102         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1103         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1104                 if (KVM_REG_SIZE(id) != 4)
1105                         return -ENOENT;
1106                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1107                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1108                 if (!is_valid_cache(val))
1109                         return -ENOENT;
1110
1111                 return put_user(get_ccsidr(val), uval);
1112         default:
1113                 return -ENOENT;
1114         }
1115 }
1116
1117 static int demux_c15_set(u64 id, void __user *uaddr)
1118 {
1119         u32 val, newval;
1120         u32 __user *uval = uaddr;
1121
1122         /* Fail if we have unknown bits set. */
1123         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1124                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1125                 return -ENOENT;
1126
1127         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1128         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1129                 if (KVM_REG_SIZE(id) != 4)
1130                         return -ENOENT;
1131                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1132                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1133                 if (!is_valid_cache(val))
1134                         return -ENOENT;
1135
1136                 if (get_user(newval, uval))
1137                         return -EFAULT;
1138
1139                 /* This is also invariant: you can't change it. */
1140                 if (newval != get_ccsidr(val))
1141                         return -EINVAL;
1142                 return 0;
1143         default:
1144                 return -ENOENT;
1145         }
1146 }
1147
1148 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1149 {
1150         const struct sys_reg_desc *r;
1151         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1152
1153         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1154                 return demux_c15_get(reg->id, uaddr);
1155
1156         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1157                 return -ENOENT;
1158
1159         r = index_to_sys_reg_desc(vcpu, reg->id);
1160         if (!r)
1161                 return get_invariant_sys_reg(reg->id, uaddr);
1162
1163         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1164 }
1165
1166 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1167 {
1168         const struct sys_reg_desc *r;
1169         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1170
1171         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1172                 return demux_c15_set(reg->id, uaddr);
1173
1174         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1175                 return -ENOENT;
1176
1177         r = index_to_sys_reg_desc(vcpu, reg->id);
1178         if (!r)
1179                 return set_invariant_sys_reg(reg->id, uaddr);
1180
1181         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1182 }
1183
1184 static unsigned int num_demux_regs(void)
1185 {
1186         unsigned int i, count = 0;
1187
1188         for (i = 0; i < CSSELR_MAX; i++)
1189                 if (is_valid_cache(i))
1190                         count++;
1191
1192         return count;
1193 }
1194
1195 static int write_demux_regids(u64 __user *uindices)
1196 {
1197         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1198         unsigned int i;
1199
1200         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1201         for (i = 0; i < CSSELR_MAX; i++) {
1202                 if (!is_valid_cache(i))
1203                         continue;
1204                 if (put_user(val | i, uindices))
1205                         return -EFAULT;
1206                 uindices++;
1207         }
1208         return 0;
1209 }
1210
1211 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1212 {
1213         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1214                 KVM_REG_ARM64_SYSREG |
1215                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1216                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1217                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1218                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1219                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1220 }
1221
1222 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1223 {
1224         if (!*uind)
1225                 return true;
1226
1227         if (put_user(sys_reg_to_index(reg), *uind))
1228                 return false;
1229
1230         (*uind)++;
1231         return true;
1232 }
1233
1234 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1235 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1236 {
1237         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1238         unsigned int total = 0;
1239         size_t num;
1240
1241         /* We check for duplicates here, to allow arch-specific overrides. */
1242         i1 = get_target_table(vcpu->arch.target, true, &num);
1243         end1 = i1 + num;
1244         i2 = sys_reg_descs;
1245         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1246
1247         BUG_ON(i1 == end1 || i2 == end2);
1248
1249         /* Walk carefully, as both tables may refer to the same register. */
1250         while (i1 || i2) {
1251                 int cmp = cmp_sys_reg(i1, i2);
1252                 /* target-specific overrides generic entry. */
1253                 if (cmp <= 0) {
1254                         /* Ignore registers we trap but don't save. */
1255                         if (i1->reg) {
1256                                 if (!copy_reg_to_user(i1, &uind))
1257                                         return -EFAULT;
1258                                 total++;
1259                         }
1260                 } else {
1261                         /* Ignore registers we trap but don't save. */
1262                         if (i2->reg) {
1263                                 if (!copy_reg_to_user(i2, &uind))
1264                                         return -EFAULT;
1265                                 total++;
1266                         }
1267                 }
1268
1269                 if (cmp <= 0 && ++i1 == end1)
1270                         i1 = NULL;
1271                 if (cmp >= 0 && ++i2 == end2)
1272                         i2 = NULL;
1273         }
1274         return total;
1275 }
1276
1277 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1278 {
1279         return ARRAY_SIZE(invariant_sys_regs)
1280                 + num_demux_regs()
1281                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1282 }
1283
1284 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1285 {
1286         unsigned int i;
1287         int err;
1288
1289         /* Then give them all the invariant registers' indices. */
1290         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1291                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1292                         return -EFAULT;
1293                 uindices++;
1294         }
1295
1296         err = walk_sys_regs(vcpu, uindices);
1297         if (err < 0)
1298                 return err;
1299         uindices += err;
1300
1301         return write_demux_regids(uindices);
1302 }
1303
1304 void kvm_sys_reg_table_init(void)
1305 {
1306         unsigned int i;
1307         struct sys_reg_desc clidr;
1308
1309         /* Make sure tables are unique and in order. */
1310         for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1311                 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1312
1313         /* We abuse the reset function to overwrite the table itself. */
1314         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1315                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1316
1317         /*
1318          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1319          *
1320          *   If software reads the Cache Type fields from Ctype1
1321          *   upwards, once it has seen a value of 0b000, no caches
1322          *   exist at further-out levels of the hierarchy. So, for
1323          *   example, if Ctype3 is the first Cache Type field with a
1324          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1325          *   ignored.
1326          */
1327         get_clidr_el1(NULL, &clidr); /* Ugly... */
1328         cache_levels = clidr.val;
1329         for (i = 0; i < 7; i++)
1330                 if (((cache_levels >> (i*3)) & 7) == 0)
1331                         break;
1332         /* Clear all higher bits. */
1333         cache_levels &= (1 << (i*3))-1;
1334 }
1335
1336 /**
1337  * kvm_reset_sys_regs - sets system registers to reset value
1338  * @vcpu: The VCPU pointer
1339  *
1340  * This function finds the right table above and sets the registers on the
1341  * virtual CPU struct to their architecturally defined reset values.
1342  */
1343 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1344 {
1345         size_t num;
1346         const struct sys_reg_desc *table;
1347
1348         /* Catch someone adding a register without putting in reset entry. */
1349         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1350
1351         /* Generic chip reset first (so target could override). */
1352         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1353
1354         table = get_target_table(vcpu->arch.target, true, &num);
1355         reset_sys_reg_descs(vcpu, table, num);
1356
1357         for (num = 1; num < NR_SYS_REGS; num++)
1358                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1359                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1360 }