OSDN Git Service

f9b4f0fa425d5b5774dddc0dd702e15f6376d53f
[uclinux-h8/linux.git] / arch / mips / kvm / kvm_mips_emul.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "kvm_mips_opcode.h"
33 #include "kvm_mips_int.h"
34 #include "kvm_mips_comm.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         ktime_t expires;
306         int running;
307
308         /* Is the hrtimer pending? */
309         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310         if (ktime_compare(now, expires) >= 0) {
311                 /*
312                  * Cancel it while we handle it so there's no chance of
313                  * interference with the timeout handler.
314                  */
315                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316
317                 /* Nothing should be waiting on the timeout */
318                 kvm_mips_callbacks->queue_timer_int(vcpu);
319
320                 /*
321                  * Restart the timer if it was running based on the expiry time
322                  * we read, so that we don't push it back 2 periods.
323                  */
324                 if (running) {
325                         expires = ktime_add_ns(expires,
326                                                vcpu->arch.count_period);
327                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328                                       HRTIMER_MODE_ABS);
329                 }
330         }
331
332         /* Return the biased and scaled guest CP0_Count */
333         return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:       Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:     The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347         struct mips_coproc *cop0 = vcpu->arch.cop0;
348
349         /* If count disabled just read static copy of count */
350         if (kvm_mips_count_disabled(vcpu))
351                 return kvm_read_c0_guest_count(cop0);
352
353         return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:       Virtual CPU.
359  * @count:      Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:     The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373                                        uint32_t *count)
374 {
375         ktime_t now;
376
377         /* stop hrtimer before finding time */
378         hrtimer_cancel(&vcpu->arch.comparecount_timer);
379         now = ktime_get();
380
381         /* find count at this point and handle pending hrtimer */
382         *count = kvm_mips_read_count_running(vcpu, now);
383
384         return now;
385 }
386
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:       Virtual CPU.
390  * @now:        ktime at point of resume.
391  * @count:      CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404                                     ktime_t now, uint32_t count)
405 {
406         struct mips_coproc *cop0 = vcpu->arch.cop0;
407         uint32_t compare;
408         u64 delta;
409         ktime_t expire;
410
411         /* Calculate timeout (wrap 0 to 2^32) */
412         compare = kvm_read_c0_guest_compare(cop0);
413         delta = (u64)(uint32_t)(compare - count - 1) + 1;
414         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415         expire = ktime_add_ns(now, delta);
416
417         /* Update hrtimer to use new timeout */
418         hrtimer_cancel(&vcpu->arch.comparecount_timer);
419         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:       Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437         ktime_t now;
438         uint32_t count;
439
440         /*
441          * freeze_hrtimer takes care of a timer interrupts <= count, and
442          * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443          */
444         now = kvm_mips_freeze_hrtimer(vcpu, &count);
445         kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:       Virtual CPU.
451  * @count:      Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457         struct mips_coproc *cop0 = vcpu->arch.cop0;
458         ktime_t now;
459
460         /* Calculate bias */
461         now = kvm_mips_count_time(vcpu);
462         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463
464         if (kvm_mips_count_disabled(vcpu))
465                 /* The timer's disabled, adjust the static count */
466                 kvm_write_c0_guest_count(cop0, count);
467         else
468                 /* Update timeout */
469                 kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:       Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481         /* 100 MHz */
482         vcpu->arch.count_hz = 100*1000*1000;
483         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484                                           vcpu->arch.count_hz);
485         vcpu->arch.count_dyn_bias = 0;
486
487         /* Starting at 0 */
488         kvm_mips_write_count(vcpu, 0);
489 }
490
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:       Virtual CPU.
494  * @count_hz:   Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:     -EINVAL if @count_hz is out of range.
500  *              0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504         struct mips_coproc *cop0 = vcpu->arch.cop0;
505         int dc;
506         ktime_t now;
507         u32 count;
508
509         /* ensure the frequency is in a sensible range... */
510         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511                 return -EINVAL;
512         /* ... and has actually changed */
513         if (vcpu->arch.count_hz == count_hz)
514                 return 0;
515
516         /* Safely freeze timer so we can keep it continuous */
517         dc = kvm_mips_count_disabled(vcpu);
518         if (dc) {
519                 now = kvm_mips_count_time(vcpu);
520                 count = kvm_read_c0_guest_count(cop0);
521         } else {
522                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
523         }
524
525         /* Update the frequency */
526         vcpu->arch.count_hz = count_hz;
527         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528         vcpu->arch.count_dyn_bias = 0;
529
530         /* Calculate adjusted bias so dynamic count is unchanged */
531         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532
533         /* Update and resume hrtimer */
534         if (!dc)
535                 kvm_mips_resume_hrtimer(vcpu, now, count);
536         return 0;
537 }
538
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:       Virtual CPU.
542  * @compare:    New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548         struct mips_coproc *cop0 = vcpu->arch.cop0;
549
550         /* if unchanged, must just be an ack */
551         if (kvm_read_c0_guest_compare(cop0) == compare)
552                 return;
553
554         /* Update compare */
555         kvm_write_c0_guest_compare(cop0, compare);
556
557         /* Update timeout if count enabled */
558         if (!kvm_mips_count_disabled(vcpu))
559                 kvm_mips_update_hrtimer(vcpu);
560 }
561
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:       Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:     The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576         struct mips_coproc *cop0 = vcpu->arch.cop0;
577         uint32_t count;
578         ktime_t now;
579
580         /* Stop hrtimer */
581         hrtimer_cancel(&vcpu->arch.comparecount_timer);
582
583         /* Set the static count from the dynamic count, handling pending TI */
584         now = ktime_get();
585         count = kvm_mips_read_count_running(vcpu, now);
586         kvm_write_c0_guest_count(cop0, count);
587
588         return now;
589 }
590
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:       Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603         struct mips_coproc *cop0 = vcpu->arch.cop0;
604
605         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607                 kvm_mips_count_disable(vcpu);
608 }
609
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:       Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623         struct mips_coproc *cop0 = vcpu->arch.cop0;
624         uint32_t count;
625
626         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627
628         /*
629          * Set the dynamic count to match the static count.
630          * This starts the hrtimer if count_ctl.DC allows it.
631          * Otherwise it conveniently updates the biases.
632          */
633         count = kvm_read_c0_guest_count(cop0);
634         kvm_mips_write_count(vcpu, count);
635 }
636
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:       Virtual CPU.
640  * @count_ctl:  Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:     -EINVAL if reserved bits are set.
645  *              0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649         struct mips_coproc *cop0 = vcpu->arch.cop0;
650         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651         s64 delta;
652         ktime_t expire, now;
653         uint32_t count, compare;
654
655         /* Only allow defined bits to be changed */
656         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657                 return -EINVAL;
658
659         /* Apply new value */
660         vcpu->arch.count_ctl = count_ctl;
661
662         /* Master CP0_Count disable */
663         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664                 /* Is CP0_Cause.DC already disabling CP0_Count? */
665                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667                                 /* Just record the current time */
668                                 vcpu->arch.count_resume = ktime_get();
669                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670                         /* disable timer and record current time */
671                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672                 } else {
673                         /*
674                          * Calculate timeout relative to static count at resume
675                          * time (wrap 0 to 2^32).
676                          */
677                         count = kvm_read_c0_guest_count(cop0);
678                         compare = kvm_read_c0_guest_compare(cop0);
679                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
680                         delta = div_u64(delta * NSEC_PER_SEC,
681                                         vcpu->arch.count_hz);
682                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683
684                         /* Handle pending interrupt */
685                         now = ktime_get();
686                         if (ktime_compare(now, expire) >= 0)
687                                 /* Nothing should be waiting on the timeout */
688                                 kvm_mips_callbacks->queue_timer_int(vcpu);
689
690                         /* Resume hrtimer without changing bias */
691                         count = kvm_mips_read_count_running(vcpu, now);
692                         kvm_mips_resume_hrtimer(vcpu, now, count);
693                 }
694         }
695
696         return 0;
697 }
698
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:               Virtual CPU.
702  * @count_resume:       Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:     -EINVAL if out of valid range (0..now).
707  *              0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711         /*
712          * It doesn't make sense for the resume time to be in the future, as it
713          * would be possible for the next interrupt to be more than a full
714          * period in the future.
715          */
716         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717                 return -EINVAL;
718
719         vcpu->arch.count_resume = ns_to_ktime(count_resume);
720         return 0;
721 }
722
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:       Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733         /* Add the Count period to the current expiry time */
734         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735                                vcpu->arch.count_period);
736         return HRTIMER_RESTART;
737 }
738
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741         struct mips_coproc *cop0 = vcpu->arch.cop0;
742         enum emulation_result er = EMULATE_DONE;
743
744         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746                           kvm_read_c0_guest_epc(cop0));
747                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
748                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749
750         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
752                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753         } else {
754                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755                         vcpu->arch.pc);
756                 er = EMULATE_FAIL;
757         }
758
759         return er;
760 }
761
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765                   vcpu->arch.pending_exceptions);
766
767         ++vcpu->stat.wait_exits;
768         trace_kvm_exit(vcpu, WAIT_EXITS);
769         if (!vcpu->arch.pending_exceptions) {
770                 vcpu->arch.wait = 1;
771                 kvm_vcpu_block(vcpu);
772
773                 /*
774                  * We we are runnable, then definitely go off to user space to
775                  * check if any I/O interrupts are pending.
776                  */
777                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780                 }
781         }
782
783         return EMULATE_DONE;
784 }
785
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792         struct mips_coproc *cop0 = vcpu->arch.cop0;
793         uint32_t pc = vcpu->arch.pc;
794
795         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796         return EMULATE_FAIL;
797 }
798
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802         struct mips_coproc *cop0 = vcpu->arch.cop0;
803         int index = kvm_read_c0_guest_index(cop0);
804         struct kvm_mips_tlb *tlb = NULL;
805         uint32_t pc = vcpu->arch.pc;
806
807         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808                 kvm_debug("%s: illegal index: %d\n", __func__, index);
809                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810                           pc, index, kvm_read_c0_guest_entryhi(cop0),
811                           kvm_read_c0_guest_entrylo0(cop0),
812                           kvm_read_c0_guest_entrylo1(cop0),
813                           kvm_read_c0_guest_pagemask(cop0));
814                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815         }
816
817         tlb = &vcpu->arch.guest_tlb[index];
818         /*
819          * Probe the shadow host TLB for the entry being overwritten, if one
820          * matches, invalidate it
821          */
822         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823
824         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828
829         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830                   pc, index, kvm_read_c0_guest_entryhi(cop0),
831                   kvm_read_c0_guest_entrylo0(cop0),
832                   kvm_read_c0_guest_entrylo1(cop0),
833                   kvm_read_c0_guest_pagemask(cop0));
834
835         return EMULATE_DONE;
836 }
837
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841         struct mips_coproc *cop0 = vcpu->arch.cop0;
842         struct kvm_mips_tlb *tlb = NULL;
843         uint32_t pc = vcpu->arch.pc;
844         int index;
845
846         get_random_bytes(&index, sizeof(index));
847         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848
849         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
850                 kvm_err("%s: illegal index: %d\n", __func__, index);
851                 return EMULATE_FAIL;
852         }
853
854         tlb = &vcpu->arch.guest_tlb[index];
855
856         /*
857          * Probe the shadow host TLB for the entry being overwritten, if one
858          * matches, invalidate it
859          */
860         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
861
862         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
863         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
864         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
865         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
866
867         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
868                   pc, index, kvm_read_c0_guest_entryhi(cop0),
869                   kvm_read_c0_guest_entrylo0(cop0),
870                   kvm_read_c0_guest_entrylo1(cop0));
871
872         return EMULATE_DONE;
873 }
874
875 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
876 {
877         struct mips_coproc *cop0 = vcpu->arch.cop0;
878         long entryhi = kvm_read_c0_guest_entryhi(cop0);
879         uint32_t pc = vcpu->arch.pc;
880         int index = -1;
881
882         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
883
884         kvm_write_c0_guest_index(cop0, index);
885
886         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
887                   index);
888
889         return EMULATE_DONE;
890 }
891
892 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
893                                            uint32_t cause, struct kvm_run *run,
894                                            struct kvm_vcpu *vcpu)
895 {
896         struct mips_coproc *cop0 = vcpu->arch.cop0;
897         enum emulation_result er = EMULATE_DONE;
898         int32_t rt, rd, copz, sel, co_bit, op;
899         uint32_t pc = vcpu->arch.pc;
900         unsigned long curr_pc;
901
902         /*
903          * Update PC and hold onto current PC in case there is
904          * an error and we want to rollback the PC
905          */
906         curr_pc = vcpu->arch.pc;
907         er = update_pc(vcpu, cause);
908         if (er == EMULATE_FAIL)
909                 return er;
910
911         copz = (inst >> 21) & 0x1f;
912         rt = (inst >> 16) & 0x1f;
913         rd = (inst >> 11) & 0x1f;
914         sel = inst & 0x7;
915         co_bit = (inst >> 25) & 1;
916
917         if (co_bit) {
918                 op = (inst) & 0xff;
919
920                 switch (op) {
921                 case tlbr_op:   /*  Read indexed TLB entry  */
922                         er = kvm_mips_emul_tlbr(vcpu);
923                         break;
924                 case tlbwi_op:  /*  Write indexed  */
925                         er = kvm_mips_emul_tlbwi(vcpu);
926                         break;
927                 case tlbwr_op:  /*  Write random  */
928                         er = kvm_mips_emul_tlbwr(vcpu);
929                         break;
930                 case tlbp_op:   /* TLB Probe */
931                         er = kvm_mips_emul_tlbp(vcpu);
932                         break;
933                 case rfe_op:
934                         kvm_err("!!!COP0_RFE!!!\n");
935                         break;
936                 case eret_op:
937                         er = kvm_mips_emul_eret(vcpu);
938                         goto dont_update_pc;
939                         break;
940                 case wait_op:
941                         er = kvm_mips_emul_wait(vcpu);
942                         break;
943                 }
944         } else {
945                 switch (copz) {
946                 case mfc_op:
947 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
948                         cop0->stat[rd][sel]++;
949 #endif
950                         /* Get reg */
951                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
952                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
953                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
954                                 vcpu->arch.gprs[rt] = 0x0;
955 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
956                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
957 #endif
958                         } else {
959                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
960
961 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
962                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
963 #endif
964                         }
965
966                         kvm_debug
967                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
968                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
969
970                         break;
971
972                 case dmfc_op:
973                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
974                         break;
975
976                 case mtc_op:
977 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
978                         cop0->stat[rd][sel]++;
979 #endif
980                         if ((rd == MIPS_CP0_TLB_INDEX)
981                             && (vcpu->arch.gprs[rt] >=
982                                 KVM_MIPS_GUEST_TLB_SIZE)) {
983                                 kvm_err("Invalid TLB Index: %ld",
984                                         vcpu->arch.gprs[rt]);
985                                 er = EMULATE_FAIL;
986                                 break;
987                         }
988 #define C0_EBASE_CORE_MASK 0xff
989                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
990                                 /* Preserve CORE number */
991                                 kvm_change_c0_guest_ebase(cop0,
992                                                           ~(C0_EBASE_CORE_MASK),
993                                                           vcpu->arch.gprs[rt]);
994                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
995                                         kvm_read_c0_guest_ebase(cop0));
996                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
997                                 uint32_t nasid =
998                                         vcpu->arch.gprs[rt] & ASID_MASK;
999                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1000                                     ((kvm_read_c0_guest_entryhi(cop0) &
1001                                       ASID_MASK) != nasid)) {
1002                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1003                                                 kvm_read_c0_guest_entryhi(cop0)
1004                                                 & ASID_MASK,
1005                                                 vcpu->arch.gprs[rt]
1006                                                 & ASID_MASK);
1007
1008                                         /* Blow away the shadow host TLBs */
1009                                         kvm_mips_flush_host_tlb(1);
1010                                 }
1011                                 kvm_write_c0_guest_entryhi(cop0,
1012                                                            vcpu->arch.gprs[rt]);
1013                         }
1014                         /* Are we writing to COUNT */
1015                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1016                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1017                                 goto done;
1018                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1019                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1020                                           pc, kvm_read_c0_guest_compare(cop0),
1021                                           vcpu->arch.gprs[rt]);
1022
1023                                 /* If we are writing to COMPARE */
1024                                 /* Clear pending timer interrupt, if any */
1025                                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
1026                                 kvm_mips_write_compare(vcpu,
1027                                                        vcpu->arch.gprs[rt]);
1028                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1029                                 kvm_write_c0_guest_status(cop0,
1030                                                           vcpu->arch.gprs[rt]);
1031                                 /*
1032                                  * Make sure that CU1 and NMI bits are
1033                                  * never set
1034                                  */
1035                                 kvm_clear_c0_guest_status(cop0,
1036                                                           (ST0_CU1 | ST0_NMI));
1037
1038 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1039                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1040 #endif
1041                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1042                                 uint32_t old_cause, new_cause;
1043
1044                                 old_cause = kvm_read_c0_guest_cause(cop0);
1045                                 new_cause = vcpu->arch.gprs[rt];
1046                                 /* Update R/W bits */
1047                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1048                                                           new_cause);
1049                                 /* DC bit enabling/disabling timer? */
1050                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1051                                         if (new_cause & CAUSEF_DC)
1052                                                 kvm_mips_count_disable_cause(vcpu);
1053                                         else
1054                                                 kvm_mips_count_enable_cause(vcpu);
1055                                 }
1056                         } else {
1057                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1058 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1059                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1060 #endif
1061                         }
1062
1063                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1064                                   rd, sel, cop0->reg[rd][sel]);
1065                         break;
1066
1067                 case dmtc_op:
1068                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1069                                 vcpu->arch.pc, rt, rd, sel);
1070                         er = EMULATE_FAIL;
1071                         break;
1072
1073                 case mfmcz_op:
1074 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1075                         cop0->stat[MIPS_CP0_STATUS][0]++;
1076 #endif
1077                         if (rt != 0) {
1078                                 vcpu->arch.gprs[rt] =
1079                                     kvm_read_c0_guest_status(cop0);
1080                         }
1081                         /* EI */
1082                         if (inst & 0x20) {
1083                                 kvm_debug("[%#lx] mfmcz_op: EI\n",
1084                                           vcpu->arch.pc);
1085                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1086                         } else {
1087                                 kvm_debug("[%#lx] mfmcz_op: DI\n",
1088                                           vcpu->arch.pc);
1089                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1090                         }
1091
1092                         break;
1093
1094                 case wrpgpr_op:
1095                         {
1096                                 uint32_t css =
1097                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1098                                 uint32_t pss =
1099                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1100                                 /*
1101                                  * We don't support any shadow register sets, so
1102                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1103                                  */
1104                                 if (css || pss) {
1105                                         er = EMULATE_FAIL;
1106                                         break;
1107                                 }
1108                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1109                                           vcpu->arch.gprs[rt]);
1110                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1111                         }
1112                         break;
1113                 default:
1114                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1115                                 vcpu->arch.pc, copz);
1116                         er = EMULATE_FAIL;
1117                         break;
1118                 }
1119         }
1120
1121 done:
1122         /* Rollback PC only if emulation was unsuccessful */
1123         if (er == EMULATE_FAIL)
1124                 vcpu->arch.pc = curr_pc;
1125
1126 dont_update_pc:
1127         /*
1128          * This is for special instructions whose emulation
1129          * updates the PC, so do not overwrite the PC under
1130          * any circumstances
1131          */
1132
1133         return er;
1134 }
1135
1136 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1137                                              struct kvm_run *run,
1138                                              struct kvm_vcpu *vcpu)
1139 {
1140         enum emulation_result er = EMULATE_DO_MMIO;
1141         int32_t op, base, rt, offset;
1142         uint32_t bytes;
1143         void *data = run->mmio.data;
1144         unsigned long curr_pc;
1145
1146         /*
1147          * Update PC and hold onto current PC in case there is
1148          * an error and we want to rollback the PC
1149          */
1150         curr_pc = vcpu->arch.pc;
1151         er = update_pc(vcpu, cause);
1152         if (er == EMULATE_FAIL)
1153                 return er;
1154
1155         rt = (inst >> 16) & 0x1f;
1156         base = (inst >> 21) & 0x1f;
1157         offset = inst & 0xffff;
1158         op = (inst >> 26) & 0x3f;
1159
1160         switch (op) {
1161         case sb_op:
1162                 bytes = 1;
1163                 if (bytes > sizeof(run->mmio.data)) {
1164                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1165                                run->mmio.len);
1166                 }
1167                 run->mmio.phys_addr =
1168                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1169                                                    host_cp0_badvaddr);
1170                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1171                         er = EMULATE_FAIL;
1172                         break;
1173                 }
1174                 run->mmio.len = bytes;
1175                 run->mmio.is_write = 1;
1176                 vcpu->mmio_needed = 1;
1177                 vcpu->mmio_is_write = 1;
1178                 *(u8 *) data = vcpu->arch.gprs[rt];
1179                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1180                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1181                           *(uint8_t *) data);
1182
1183                 break;
1184
1185         case sw_op:
1186                 bytes = 4;
1187                 if (bytes > sizeof(run->mmio.data)) {
1188                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1189                                run->mmio.len);
1190                 }
1191                 run->mmio.phys_addr =
1192                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1193                                                    host_cp0_badvaddr);
1194                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1195                         er = EMULATE_FAIL;
1196                         break;
1197                 }
1198
1199                 run->mmio.len = bytes;
1200                 run->mmio.is_write = 1;
1201                 vcpu->mmio_needed = 1;
1202                 vcpu->mmio_is_write = 1;
1203                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1204
1205                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1206                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1207                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1208                 break;
1209
1210         case sh_op:
1211                 bytes = 2;
1212                 if (bytes > sizeof(run->mmio.data)) {
1213                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1214                                run->mmio.len);
1215                 }
1216                 run->mmio.phys_addr =
1217                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1218                                                    host_cp0_badvaddr);
1219                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1220                         er = EMULATE_FAIL;
1221                         break;
1222                 }
1223
1224                 run->mmio.len = bytes;
1225                 run->mmio.is_write = 1;
1226                 vcpu->mmio_needed = 1;
1227                 vcpu->mmio_is_write = 1;
1228                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1229
1230                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1231                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1232                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1233                 break;
1234
1235         default:
1236                 kvm_err("Store not yet supported");
1237                 er = EMULATE_FAIL;
1238                 break;
1239         }
1240
1241         /* Rollback PC if emulation was unsuccessful */
1242         if (er == EMULATE_FAIL)
1243                 vcpu->arch.pc = curr_pc;
1244
1245         return er;
1246 }
1247
1248 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1249                                             struct kvm_run *run,
1250                                             struct kvm_vcpu *vcpu)
1251 {
1252         enum emulation_result er = EMULATE_DO_MMIO;
1253         int32_t op, base, rt, offset;
1254         uint32_t bytes;
1255
1256         rt = (inst >> 16) & 0x1f;
1257         base = (inst >> 21) & 0x1f;
1258         offset = inst & 0xffff;
1259         op = (inst >> 26) & 0x3f;
1260
1261         vcpu->arch.pending_load_cause = cause;
1262         vcpu->arch.io_gpr = rt;
1263
1264         switch (op) {
1265         case lw_op:
1266                 bytes = 4;
1267                 if (bytes > sizeof(run->mmio.data)) {
1268                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1269                                run->mmio.len);
1270                         er = EMULATE_FAIL;
1271                         break;
1272                 }
1273                 run->mmio.phys_addr =
1274                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1275                                                    host_cp0_badvaddr);
1276                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1277                         er = EMULATE_FAIL;
1278                         break;
1279                 }
1280
1281                 run->mmio.len = bytes;
1282                 run->mmio.is_write = 0;
1283                 vcpu->mmio_needed = 1;
1284                 vcpu->mmio_is_write = 0;
1285                 break;
1286
1287         case lh_op:
1288         case lhu_op:
1289                 bytes = 2;
1290                 if (bytes > sizeof(run->mmio.data)) {
1291                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1292                                run->mmio.len);
1293                         er = EMULATE_FAIL;
1294                         break;
1295                 }
1296                 run->mmio.phys_addr =
1297                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1298                                                    host_cp0_badvaddr);
1299                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1300                         er = EMULATE_FAIL;
1301                         break;
1302                 }
1303
1304                 run->mmio.len = bytes;
1305                 run->mmio.is_write = 0;
1306                 vcpu->mmio_needed = 1;
1307                 vcpu->mmio_is_write = 0;
1308
1309                 if (op == lh_op)
1310                         vcpu->mmio_needed = 2;
1311                 else
1312                         vcpu->mmio_needed = 1;
1313
1314                 break;
1315
1316         case lbu_op:
1317         case lb_op:
1318                 bytes = 1;
1319                 if (bytes > sizeof(run->mmio.data)) {
1320                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1321                                run->mmio.len);
1322                         er = EMULATE_FAIL;
1323                         break;
1324                 }
1325                 run->mmio.phys_addr =
1326                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1327                                                    host_cp0_badvaddr);
1328                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1329                         er = EMULATE_FAIL;
1330                         break;
1331                 }
1332
1333                 run->mmio.len = bytes;
1334                 run->mmio.is_write = 0;
1335                 vcpu->mmio_is_write = 0;
1336
1337                 if (op == lb_op)
1338                         vcpu->mmio_needed = 2;
1339                 else
1340                         vcpu->mmio_needed = 1;
1341
1342                 break;
1343
1344         default:
1345                 kvm_err("Load not yet supported");
1346                 er = EMULATE_FAIL;
1347                 break;
1348         }
1349
1350         return er;
1351 }
1352
1353 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1354 {
1355         unsigned long offset = (va & ~PAGE_MASK);
1356         struct kvm *kvm = vcpu->kvm;
1357         unsigned long pa;
1358         gfn_t gfn;
1359         pfn_t pfn;
1360
1361         gfn = va >> PAGE_SHIFT;
1362
1363         if (gfn >= kvm->arch.guest_pmap_npages) {
1364                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1365                 kvm_mips_dump_host_tlbs();
1366                 kvm_arch_vcpu_dump_regs(vcpu);
1367                 return -1;
1368         }
1369         pfn = kvm->arch.guest_pmap[gfn];
1370         pa = (pfn << PAGE_SHIFT) | offset;
1371
1372         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1373                   CKSEG0ADDR(pa));
1374
1375         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1376         return 0;
1377 }
1378
1379 #define MIPS_CACHE_OP_INDEX_INV         0x0
1380 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1381 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1382 #define MIPS_CACHE_OP_IMP               0x3
1383 #define MIPS_CACHE_OP_HIT_INV           0x4
1384 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1385 #define MIPS_CACHE_OP_HIT_HB            0x6
1386 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1387
1388 #define MIPS_CACHE_ICACHE               0x0
1389 #define MIPS_CACHE_DCACHE               0x1
1390 #define MIPS_CACHE_SEC                  0x3
1391
1392 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1393                                              uint32_t cause,
1394                                              struct kvm_run *run,
1395                                              struct kvm_vcpu *vcpu)
1396 {
1397         struct mips_coproc *cop0 = vcpu->arch.cop0;
1398         enum emulation_result er = EMULATE_DONE;
1399         int32_t offset, cache, op_inst, op, base;
1400         struct kvm_vcpu_arch *arch = &vcpu->arch;
1401         unsigned long va;
1402         unsigned long curr_pc;
1403
1404         /*
1405          * Update PC and hold onto current PC in case there is
1406          * an error and we want to rollback the PC
1407          */
1408         curr_pc = vcpu->arch.pc;
1409         er = update_pc(vcpu, cause);
1410         if (er == EMULATE_FAIL)
1411                 return er;
1412
1413         base = (inst >> 21) & 0x1f;
1414         op_inst = (inst >> 16) & 0x1f;
1415         offset = inst & 0xffff;
1416         cache = (inst >> 16) & 0x3;
1417         op = (inst >> 18) & 0x7;
1418
1419         va = arch->gprs[base] + offset;
1420
1421         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1422                   cache, op, base, arch->gprs[base], offset);
1423
1424         /*
1425          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1426          * invalidate the caches entirely by stepping through all the
1427          * ways/indexes
1428          */
1429         if (op == MIPS_CACHE_OP_INDEX_INV) {
1430                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1431                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1432                           arch->gprs[base], offset);
1433
1434                 if (cache == MIPS_CACHE_DCACHE)
1435                         r4k_blast_dcache();
1436                 else if (cache == MIPS_CACHE_ICACHE)
1437                         r4k_blast_icache();
1438                 else {
1439                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1440                                 __func__);
1441                         return EMULATE_FAIL;
1442                 }
1443
1444 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1445                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1446 #endif
1447                 goto done;
1448         }
1449
1450         preempt_disable();
1451         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1452                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1453                         kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1454         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1455                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1456                 int index;
1457
1458                 /* If an entry already exists then skip */
1459                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1460                         goto skip_fault;
1461
1462                 /*
1463                  * If address not in the guest TLB, then give the guest a fault,
1464                  * the resulting handler will do the right thing
1465                  */
1466                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1467                                                   (kvm_read_c0_guest_entryhi
1468                                                    (cop0) & ASID_MASK));
1469
1470                 if (index < 0) {
1471                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1472                         vcpu->arch.host_cp0_badvaddr = va;
1473                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1474                                                          vcpu);
1475                         preempt_enable();
1476                         goto dont_update_pc;
1477                 } else {
1478                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1479                         /*
1480                          * Check if the entry is valid, if not then setup a TLB
1481                          * invalid exception to the guest
1482                          */
1483                         if (!TLB_IS_VALID(*tlb, va)) {
1484                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1485                                                                 run, vcpu);
1486                                 preempt_enable();
1487                                 goto dont_update_pc;
1488                         } else {
1489                                 /*
1490                                  * We fault an entry from the guest tlb to the
1491                                  * shadow host TLB
1492                                  */
1493                                 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1494                                                                      NULL,
1495                                                                      NULL);
1496                         }
1497                 }
1498         } else {
1499                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1500                         cache, op, base, arch->gprs[base], offset);
1501                 er = EMULATE_FAIL;
1502                 preempt_enable();
1503                 goto dont_update_pc;
1504
1505         }
1506
1507 skip_fault:
1508         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1509         if (cache == MIPS_CACHE_DCACHE
1510             && (op == MIPS_CACHE_OP_FILL_WB_INV
1511                 || op == MIPS_CACHE_OP_HIT_INV)) {
1512                 flush_dcache_line(va);
1513
1514 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1515                 /*
1516                  * Replace the CACHE instruction, with a SYNCI, not the same,
1517                  * but avoids a trap
1518                  */
1519                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1520 #endif
1521         } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1522                 flush_dcache_line(va);
1523                 flush_icache_line(va);
1524
1525 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1526                 /* Replace the CACHE instruction, with a SYNCI */
1527                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1528 #endif
1529         } else {
1530                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1531                         cache, op, base, arch->gprs[base], offset);
1532                 er = EMULATE_FAIL;
1533                 preempt_enable();
1534                 goto dont_update_pc;
1535         }
1536
1537         preempt_enable();
1538
1539 dont_update_pc:
1540         /* Rollback PC */
1541         vcpu->arch.pc = curr_pc;
1542 done:
1543         return er;
1544 }
1545
1546 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1547                                             struct kvm_run *run,
1548                                             struct kvm_vcpu *vcpu)
1549 {
1550         enum emulation_result er = EMULATE_DONE;
1551         uint32_t inst;
1552
1553         /* Fetch the instruction. */
1554         if (cause & CAUSEF_BD)
1555                 opc += 1;
1556
1557         inst = kvm_get_inst(opc, vcpu);
1558
1559         switch (((union mips_instruction)inst).r_format.opcode) {
1560         case cop0_op:
1561                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1562                 break;
1563         case sb_op:
1564         case sh_op:
1565         case sw_op:
1566                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1567                 break;
1568         case lb_op:
1569         case lbu_op:
1570         case lhu_op:
1571         case lh_op:
1572         case lw_op:
1573                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1574                 break;
1575
1576         case cache_op:
1577                 ++vcpu->stat.cache_exits;
1578                 trace_kvm_exit(vcpu, CACHE_EXITS);
1579                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1580                 break;
1581
1582         default:
1583                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1584                         inst);
1585                 kvm_arch_vcpu_dump_regs(vcpu);
1586                 er = EMULATE_FAIL;
1587                 break;
1588         }
1589
1590         return er;
1591 }
1592
1593 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1594                                                uint32_t *opc,
1595                                                struct kvm_run *run,
1596                                                struct kvm_vcpu *vcpu)
1597 {
1598         struct mips_coproc *cop0 = vcpu->arch.cop0;
1599         struct kvm_vcpu_arch *arch = &vcpu->arch;
1600         enum emulation_result er = EMULATE_DONE;
1601
1602         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1603                 /* save old pc */
1604                 kvm_write_c0_guest_epc(cop0, arch->pc);
1605                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1606
1607                 if (cause & CAUSEF_BD)
1608                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1609                 else
1610                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1611
1612                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1613
1614                 kvm_change_c0_guest_cause(cop0, (0xff),
1615                                           (T_SYSCALL << CAUSEB_EXCCODE));
1616
1617                 /* Set PC to the exception entry point */
1618                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1619
1620         } else {
1621                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1622                 er = EMULATE_FAIL;
1623         }
1624
1625         return er;
1626 }
1627
1628 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1629                                                   uint32_t *opc,
1630                                                   struct kvm_run *run,
1631                                                   struct kvm_vcpu *vcpu)
1632 {
1633         struct mips_coproc *cop0 = vcpu->arch.cop0;
1634         struct kvm_vcpu_arch *arch = &vcpu->arch;
1635         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1636                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1637
1638         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1639                 /* save old pc */
1640                 kvm_write_c0_guest_epc(cop0, arch->pc);
1641                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1642
1643                 if (cause & CAUSEF_BD)
1644                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1645                 else
1646                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1647
1648                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1649                           arch->pc);
1650
1651                 /* set pc to the exception entry point */
1652                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1653
1654         } else {
1655                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1656                           arch->pc);
1657
1658                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1659         }
1660
1661         kvm_change_c0_guest_cause(cop0, (0xff),
1662                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1663
1664         /* setup badvaddr, context and entryhi registers for the guest */
1665         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1666         /* XXXKYMA: is the context register used by linux??? */
1667         kvm_write_c0_guest_entryhi(cop0, entryhi);
1668         /* Blow away the shadow host TLBs */
1669         kvm_mips_flush_host_tlb(1);
1670
1671         return EMULATE_DONE;
1672 }
1673
1674 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1675                                                  uint32_t *opc,
1676                                                  struct kvm_run *run,
1677                                                  struct kvm_vcpu *vcpu)
1678 {
1679         struct mips_coproc *cop0 = vcpu->arch.cop0;
1680         struct kvm_vcpu_arch *arch = &vcpu->arch;
1681         unsigned long entryhi =
1682                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1683                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1684
1685         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1686                 /* save old pc */
1687                 kvm_write_c0_guest_epc(cop0, arch->pc);
1688                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1689
1690                 if (cause & CAUSEF_BD)
1691                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1692                 else
1693                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1694
1695                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1696                           arch->pc);
1697
1698                 /* set pc to the exception entry point */
1699                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1700
1701         } else {
1702                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1703                           arch->pc);
1704                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1705         }
1706
1707         kvm_change_c0_guest_cause(cop0, (0xff),
1708                                   (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1709
1710         /* setup badvaddr, context and entryhi registers for the guest */
1711         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1712         /* XXXKYMA: is the context register used by linux??? */
1713         kvm_write_c0_guest_entryhi(cop0, entryhi);
1714         /* Blow away the shadow host TLBs */
1715         kvm_mips_flush_host_tlb(1);
1716
1717         return EMULATE_DONE;
1718 }
1719
1720 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1721                                                   uint32_t *opc,
1722                                                   struct kvm_run *run,
1723                                                   struct kvm_vcpu *vcpu)
1724 {
1725         struct mips_coproc *cop0 = vcpu->arch.cop0;
1726         struct kvm_vcpu_arch *arch = &vcpu->arch;
1727         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1728                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1729
1730         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1731                 /* save old pc */
1732                 kvm_write_c0_guest_epc(cop0, arch->pc);
1733                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1734
1735                 if (cause & CAUSEF_BD)
1736                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1737                 else
1738                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1739
1740                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1741                           arch->pc);
1742
1743                 /* Set PC to the exception entry point */
1744                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1745         } else {
1746                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1747                           arch->pc);
1748                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1749         }
1750
1751         kvm_change_c0_guest_cause(cop0, (0xff),
1752                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1753
1754         /* setup badvaddr, context and entryhi registers for the guest */
1755         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1756         /* XXXKYMA: is the context register used by linux??? */
1757         kvm_write_c0_guest_entryhi(cop0, entryhi);
1758         /* Blow away the shadow host TLBs */
1759         kvm_mips_flush_host_tlb(1);
1760
1761         return EMULATE_DONE;
1762 }
1763
1764 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1765                                                  uint32_t *opc,
1766                                                  struct kvm_run *run,
1767                                                  struct kvm_vcpu *vcpu)
1768 {
1769         struct mips_coproc *cop0 = vcpu->arch.cop0;
1770         struct kvm_vcpu_arch *arch = &vcpu->arch;
1771         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1772                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1773
1774         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1775                 /* save old pc */
1776                 kvm_write_c0_guest_epc(cop0, arch->pc);
1777                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1778
1779                 if (cause & CAUSEF_BD)
1780                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1781                 else
1782                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1783
1784                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1785                           arch->pc);
1786
1787                 /* Set PC to the exception entry point */
1788                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1789         } else {
1790                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1791                           arch->pc);
1792                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1793         }
1794
1795         kvm_change_c0_guest_cause(cop0, (0xff),
1796                                   (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1797
1798         /* setup badvaddr, context and entryhi registers for the guest */
1799         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1800         /* XXXKYMA: is the context register used by linux??? */
1801         kvm_write_c0_guest_entryhi(cop0, entryhi);
1802         /* Blow away the shadow host TLBs */
1803         kvm_mips_flush_host_tlb(1);
1804
1805         return EMULATE_DONE;
1806 }
1807
1808 /* TLBMOD: store into address matching TLB with Dirty bit off */
1809 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1810                                              struct kvm_run *run,
1811                                              struct kvm_vcpu *vcpu)
1812 {
1813         enum emulation_result er = EMULATE_DONE;
1814 #ifdef DEBUG
1815         struct mips_coproc *cop0 = vcpu->arch.cop0;
1816         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1817                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1818         int index;
1819
1820         /* If address not in the guest TLB, then we are in trouble */
1821         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1822         if (index < 0) {
1823                 /* XXXKYMA Invalidate and retry */
1824                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1825                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1826                      __func__, entryhi);
1827                 kvm_mips_dump_guest_tlbs(vcpu);
1828                 kvm_mips_dump_host_tlbs();
1829                 return EMULATE_FAIL;
1830         }
1831 #endif
1832
1833         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1834         return er;
1835 }
1836
1837 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1838                                               uint32_t *opc,
1839                                               struct kvm_run *run,
1840                                               struct kvm_vcpu *vcpu)
1841 {
1842         struct mips_coproc *cop0 = vcpu->arch.cop0;
1843         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1844                                 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1845         struct kvm_vcpu_arch *arch = &vcpu->arch;
1846
1847         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1848                 /* save old pc */
1849                 kvm_write_c0_guest_epc(cop0, arch->pc);
1850                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1851
1852                 if (cause & CAUSEF_BD)
1853                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1854                 else
1855                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1856
1857                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
1858                           arch->pc);
1859
1860                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1861         } else {
1862                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
1863                           arch->pc);
1864                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1865         }
1866
1867         kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
1868
1869         /* setup badvaddr, context and entryhi registers for the guest */
1870         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1871         /* XXXKYMA: is the context register used by linux??? */
1872         kvm_write_c0_guest_entryhi(cop0, entryhi);
1873         /* Blow away the shadow host TLBs */
1874         kvm_mips_flush_host_tlb(1);
1875
1876         return EMULATE_DONE;
1877 }
1878
1879 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
1880                                                uint32_t *opc,
1881                                                struct kvm_run *run,
1882                                                struct kvm_vcpu *vcpu)
1883 {
1884         struct mips_coproc *cop0 = vcpu->arch.cop0;
1885         struct kvm_vcpu_arch *arch = &vcpu->arch;
1886
1887         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1888                 /* save old pc */
1889                 kvm_write_c0_guest_epc(cop0, arch->pc);
1890                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1891
1892                 if (cause & CAUSEF_BD)
1893                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1894                 else
1895                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1896
1897         }
1898
1899         arch->pc = KVM_GUEST_KSEG0 + 0x180;
1900
1901         kvm_change_c0_guest_cause(cop0, (0xff),
1902                                   (T_COP_UNUSABLE << CAUSEB_EXCCODE));
1903         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
1904
1905         return EMULATE_DONE;
1906 }
1907
1908 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
1909                                               uint32_t *opc,
1910                                               struct kvm_run *run,
1911                                               struct kvm_vcpu *vcpu)
1912 {
1913         struct mips_coproc *cop0 = vcpu->arch.cop0;
1914         struct kvm_vcpu_arch *arch = &vcpu->arch;
1915         enum emulation_result er = EMULATE_DONE;
1916
1917         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1918                 /* save old pc */
1919                 kvm_write_c0_guest_epc(cop0, arch->pc);
1920                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1921
1922                 if (cause & CAUSEF_BD)
1923                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1924                 else
1925                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1926
1927                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
1928
1929                 kvm_change_c0_guest_cause(cop0, (0xff),
1930                                           (T_RES_INST << CAUSEB_EXCCODE));
1931
1932                 /* Set PC to the exception entry point */
1933                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1934
1935         } else {
1936                 kvm_err("Trying to deliver RI when EXL is already set\n");
1937                 er = EMULATE_FAIL;
1938         }
1939
1940         return er;
1941 }
1942
1943 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
1944                                               uint32_t *opc,
1945                                               struct kvm_run *run,
1946                                               struct kvm_vcpu *vcpu)
1947 {
1948         struct mips_coproc *cop0 = vcpu->arch.cop0;
1949         struct kvm_vcpu_arch *arch = &vcpu->arch;
1950         enum emulation_result er = EMULATE_DONE;
1951
1952         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1953                 /* save old pc */
1954                 kvm_write_c0_guest_epc(cop0, arch->pc);
1955                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1956
1957                 if (cause & CAUSEF_BD)
1958                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1959                 else
1960                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1961
1962                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
1963
1964                 kvm_change_c0_guest_cause(cop0, (0xff),
1965                                           (T_BREAK << CAUSEB_EXCCODE));
1966
1967                 /* Set PC to the exception entry point */
1968                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1969
1970         } else {
1971                 kvm_err("Trying to deliver BP when EXL is already set\n");
1972                 er = EMULATE_FAIL;
1973         }
1974
1975         return er;
1976 }
1977
1978 /* ll/sc, rdhwr, sync emulation */
1979
1980 #define OPCODE 0xfc000000
1981 #define BASE   0x03e00000
1982 #define RT     0x001f0000
1983 #define OFFSET 0x0000ffff
1984 #define LL     0xc0000000
1985 #define SC     0xe0000000
1986 #define SPEC0  0x00000000
1987 #define SPEC3  0x7c000000
1988 #define RD     0x0000f800
1989 #define FUNC   0x0000003f
1990 #define SYNC   0x0000000f
1991 #define RDHWR  0x0000003b
1992
1993 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
1994                                          struct kvm_run *run,
1995                                          struct kvm_vcpu *vcpu)
1996 {
1997         struct mips_coproc *cop0 = vcpu->arch.cop0;
1998         struct kvm_vcpu_arch *arch = &vcpu->arch;
1999         enum emulation_result er = EMULATE_DONE;
2000         unsigned long curr_pc;
2001         uint32_t inst;
2002
2003         /*
2004          * Update PC and hold onto current PC in case there is
2005          * an error and we want to rollback the PC
2006          */
2007         curr_pc = vcpu->arch.pc;
2008         er = update_pc(vcpu, cause);
2009         if (er == EMULATE_FAIL)
2010                 return er;
2011
2012         /* Fetch the instruction. */
2013         if (cause & CAUSEF_BD)
2014                 opc += 1;
2015
2016         inst = kvm_get_inst(opc, vcpu);
2017
2018         if (inst == KVM_INVALID_INST) {
2019                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2020                 return EMULATE_FAIL;
2021         }
2022
2023         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2024                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2025                 int rd = (inst & RD) >> 11;
2026                 int rt = (inst & RT) >> 16;
2027                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2028                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2029                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2030                                   rd, opc);
2031                         goto emulate_ri;
2032                 }
2033                 switch (rd) {
2034                 case 0: /* CPU number */
2035                         arch->gprs[rt] = 0;
2036                         break;
2037                 case 1: /* SYNCI length */
2038                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2039                                              current_cpu_data.icache.linesz);
2040                         break;
2041                 case 2: /* Read count register */
2042                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2043                         break;
2044                 case 3: /* Count register resolution */
2045                         switch (current_cpu_data.cputype) {
2046                         case CPU_20KC:
2047                         case CPU_25KF:
2048                                 arch->gprs[rt] = 1;
2049                                 break;
2050                         default:
2051                                 arch->gprs[rt] = 2;
2052                         }
2053                         break;
2054                 case 29:
2055                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2056                         break;
2057
2058                 default:
2059                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2060                         goto emulate_ri;
2061                 }
2062         } else {
2063                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2064                 goto emulate_ri;
2065         }
2066
2067         return EMULATE_DONE;
2068
2069 emulate_ri:
2070         /*
2071          * Rollback PC (if in branch delay slot then the PC already points to
2072          * branch target), and pass the RI exception to the guest OS.
2073          */
2074         vcpu->arch.pc = curr_pc;
2075         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2076 }
2077
2078 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2079                                                   struct kvm_run *run)
2080 {
2081         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2082         enum emulation_result er = EMULATE_DONE;
2083         unsigned long curr_pc;
2084
2085         if (run->mmio.len > sizeof(*gpr)) {
2086                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2087                 er = EMULATE_FAIL;
2088                 goto done;
2089         }
2090
2091         /*
2092          * Update PC and hold onto current PC in case there is
2093          * an error and we want to rollback the PC
2094          */
2095         curr_pc = vcpu->arch.pc;
2096         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2097         if (er == EMULATE_FAIL)
2098                 return er;
2099
2100         switch (run->mmio.len) {
2101         case 4:
2102                 *gpr = *(int32_t *) run->mmio.data;
2103                 break;
2104
2105         case 2:
2106                 if (vcpu->mmio_needed == 2)
2107                         *gpr = *(int16_t *) run->mmio.data;
2108                 else
2109                         *gpr = *(int16_t *) run->mmio.data;
2110
2111                 break;
2112         case 1:
2113                 if (vcpu->mmio_needed == 2)
2114                         *gpr = *(int8_t *) run->mmio.data;
2115                 else
2116                         *gpr = *(u8 *) run->mmio.data;
2117                 break;
2118         }
2119
2120         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2121                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2122                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2123                           vcpu->mmio_needed);
2124
2125 done:
2126         return er;
2127 }
2128
2129 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2130                                                   uint32_t *opc,
2131                                                   struct kvm_run *run,
2132                                                   struct kvm_vcpu *vcpu)
2133 {
2134         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2135         struct mips_coproc *cop0 = vcpu->arch.cop0;
2136         struct kvm_vcpu_arch *arch = &vcpu->arch;
2137         enum emulation_result er = EMULATE_DONE;
2138
2139         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2140                 /* save old pc */
2141                 kvm_write_c0_guest_epc(cop0, arch->pc);
2142                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2143
2144                 if (cause & CAUSEF_BD)
2145                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2146                 else
2147                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2148
2149                 kvm_change_c0_guest_cause(cop0, (0xff),
2150                                           (exccode << CAUSEB_EXCCODE));
2151
2152                 /* Set PC to the exception entry point */
2153                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2154                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2155
2156                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2157                           exccode, kvm_read_c0_guest_epc(cop0),
2158                           kvm_read_c0_guest_badvaddr(cop0));
2159         } else {
2160                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2161                 er = EMULATE_FAIL;
2162         }
2163
2164         return er;
2165 }
2166
2167 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2168                                                uint32_t *opc,
2169                                                struct kvm_run *run,
2170                                                struct kvm_vcpu *vcpu)
2171 {
2172         enum emulation_result er = EMULATE_DONE;
2173         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2174         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2175
2176         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2177
2178         if (usermode) {
2179                 switch (exccode) {
2180                 case T_INT:
2181                 case T_SYSCALL:
2182                 case T_BREAK:
2183                 case T_RES_INST:
2184                         break;
2185
2186                 case T_COP_UNUSABLE:
2187                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2188                                 er = EMULATE_PRIV_FAIL;
2189                         break;
2190
2191                 case T_TLB_MOD:
2192                         break;
2193
2194                 case T_TLB_LD_MISS:
2195                         /*
2196                          * We we are accessing Guest kernel space, then send an
2197                          * address error exception to the guest
2198                          */
2199                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2200                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2201                                           badvaddr);
2202                                 cause &= ~0xff;
2203                                 cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2204                                 er = EMULATE_PRIV_FAIL;
2205                         }
2206                         break;
2207
2208                 case T_TLB_ST_MISS:
2209                         /*
2210                          * We we are accessing Guest kernel space, then send an
2211                          * address error exception to the guest
2212                          */
2213                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2214                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2215                                           badvaddr);
2216                                 cause &= ~0xff;
2217                                 cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2218                                 er = EMULATE_PRIV_FAIL;
2219                         }
2220                         break;
2221
2222                 case T_ADDR_ERR_ST:
2223                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2224                                   badvaddr);
2225                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2226                                 cause &= ~0xff;
2227                                 cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2228                         }
2229                         er = EMULATE_PRIV_FAIL;
2230                         break;
2231                 case T_ADDR_ERR_LD:
2232                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2233                                   badvaddr);
2234                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2235                                 cause &= ~0xff;
2236                                 cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2237                         }
2238                         er = EMULATE_PRIV_FAIL;
2239                         break;
2240                 default:
2241                         er = EMULATE_PRIV_FAIL;
2242                         break;
2243                 }
2244         }
2245
2246         if (er == EMULATE_PRIV_FAIL)
2247                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2248
2249         return er;
2250 }
2251
2252 /*
2253  * User Address (UA) fault, this could happen if
2254  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2255  *     case we pass on the fault to the guest kernel and let it handle it.
2256  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2257  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2258  */
2259 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2260                                               uint32_t *opc,
2261                                               struct kvm_run *run,
2262                                               struct kvm_vcpu *vcpu)
2263 {
2264         enum emulation_result er = EMULATE_DONE;
2265         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2266         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2267         int index;
2268
2269         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2270                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2271
2272         /*
2273          * KVM would not have got the exception if this entry was valid in the
2274          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2275          * send the guest an exception. The guest exc handler should then inject
2276          * an entry into the guest TLB.
2277          */
2278         index = kvm_mips_guest_tlb_lookup(vcpu,
2279                                           (va & VPN2_MASK) |
2280                                           (kvm_read_c0_guest_entryhi
2281                                            (vcpu->arch.cop0) & ASID_MASK));
2282         if (index < 0) {
2283                 if (exccode == T_TLB_LD_MISS) {
2284                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2285                 } else if (exccode == T_TLB_ST_MISS) {
2286                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2287                 } else {
2288                         kvm_err("%s: invalid exc code: %d\n", __func__,
2289                                 exccode);
2290                         er = EMULATE_FAIL;
2291                 }
2292         } else {
2293                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2294
2295                 /*
2296                  * Check if the entry is valid, if not then setup a TLB invalid
2297                  * exception to the guest
2298                  */
2299                 if (!TLB_IS_VALID(*tlb, va)) {
2300                         if (exccode == T_TLB_LD_MISS) {
2301                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2302                                                                 vcpu);
2303                         } else if (exccode == T_TLB_ST_MISS) {
2304                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2305                                                                 vcpu);
2306                         } else {
2307                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2308                                         exccode);
2309                                 er = EMULATE_FAIL;
2310                         }
2311                 } else {
2312                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2313                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2314                         /*
2315                          * OK we have a Guest TLB entry, now inject it into the
2316                          * shadow host TLB
2317                          */
2318                         kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2319                                                              NULL);
2320                 }
2321         }
2322
2323         return er;
2324 }