OSDN Git Service

MIPS: KVM: Add MSA exception handling
[uclinux-h8/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
59         {NULL}
60 };
61
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64         int i;
65
66         for_each_possible_cpu(i) {
67                 vcpu->arch.guest_kernel_asid[i] = 0;
68                 vcpu->arch.guest_user_asid[i] = 0;
69         }
70
71         return 0;
72 }
73
74 /*
75  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76  * Config7, so we are "runnable" if interrupts are pending
77  */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80         return !!(vcpu->arch.pending_exceptions);
81 }
82
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85         return 1;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_hardware_setup(void)
94 {
95         return 0;
96 }
97
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100         *(int *)rtn = 0;
101 }
102
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105         unsigned long wired;
106
107         /*
108          * Add a wired entry to the TLB, it is used to map the commpage to
109          * the Guest kernel
110          */
111         wired = read_c0_wired();
112         write_c0_wired(wired + 1);
113         mtc0_tlbw_hazard();
114         kvm->arch.commpage_tlb = wired;
115
116         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117                   kvm->arch.commpage_tlb);
118 }
119
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122         struct kvm *kvm = (struct kvm *)arg;
123
124         kvm_mips_init_tlbs(kvm);
125         kvm_mips_callbacks->vm_init(kvm);
126
127 }
128
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         if (atomic_inc_return(&kvm_mips_instance) == 1) {
132                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133                           __func__);
134                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135         }
136
137         return 0;
138 }
139
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142         unsigned int i;
143         struct kvm_vcpu *vcpu;
144
145         /* Put the pages we reserved for the guest pmap */
146         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148                         kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149         }
150         kfree(kvm->arch.guest_pmap);
151
152         kvm_for_each_vcpu(i, vcpu, kvm) {
153                 kvm_arch_vcpu_free(vcpu);
154         }
155
156         mutex_lock(&kvm->lock);
157
158         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159                 kvm->vcpus[i] = NULL;
160
161         atomic_set(&kvm->online_vcpus, 0);
162
163         mutex_unlock(&kvm->lock);
164 }
165
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168         /* Restore wired count */
169         write_c0_wired(0);
170         mtc0_tlbw_hazard();
171         /* Clear out all the TLBs */
172         kvm_local_flush_tlb_all();
173 }
174
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177         kvm_mips_free_vcpus(kvm);
178
179         /* If this is the last instance, restore wired count */
180         if (atomic_dec_return(&kvm_mips_instance) == 0) {
181                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182                           __func__);
183                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184         }
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188                         unsigned long arg)
189 {
190         return -ENOIOCTLCMD;
191 }
192
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194                             unsigned long npages)
195 {
196         return 0;
197 }
198
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200                                    struct kvm_memory_slot *memslot,
201                                    struct kvm_userspace_memory_region *mem,
202                                    enum kvm_mr_change change)
203 {
204         return 0;
205 }
206
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208                                    struct kvm_userspace_memory_region *mem,
209                                    const struct kvm_memory_slot *old,
210                                    enum kvm_mr_change change)
211 {
212         unsigned long npages = 0;
213         int i;
214
215         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
216                   __func__, kvm, mem->slot, mem->guest_phys_addr,
217                   mem->memory_size, mem->userspace_addr);
218
219         /* Setup Guest PMAP table */
220         if (!kvm->arch.guest_pmap) {
221                 if (mem->slot == 0)
222                         npages = mem->memory_size >> PAGE_SHIFT;
223
224                 if (npages) {
225                         kvm->arch.guest_pmap_npages = npages;
226                         kvm->arch.guest_pmap =
227                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
228
229                         if (!kvm->arch.guest_pmap) {
230                                 kvm_err("Failed to allocate guest PMAP");
231                                 return;
232                         }
233
234                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
235                                   npages, kvm->arch.guest_pmap);
236
237                         /* Now setup the page table */
238                         for (i = 0; i < npages; i++)
239                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
240                 }
241         }
242 }
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246         int err, size, offset;
247         void *gebase;
248         int i;
249
250         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
251
252         if (!vcpu) {
253                 err = -ENOMEM;
254                 goto out;
255         }
256
257         err = kvm_vcpu_init(vcpu, kvm, id);
258
259         if (err)
260                 goto out_free_cpu;
261
262         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
263
264         /*
265          * Allocate space for host mode exception handlers that handle
266          * guest mode exits
267          */
268         if (cpu_has_veic || cpu_has_vint)
269                 size = 0x200 + VECTORSPACING * 64;
270         else
271                 size = 0x4000;
272
273         /* Save Linux EBASE */
274         vcpu->arch.host_ebase = (void *)read_c0_ebase();
275
276         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
277
278         if (!gebase) {
279                 err = -ENOMEM;
280                 goto out_free_cpu;
281         }
282         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
283                   ALIGN(size, PAGE_SIZE), gebase);
284
285         /* Save new ebase */
286         vcpu->arch.guest_ebase = gebase;
287
288         /* Copy L1 Guest Exception handler to correct offset */
289
290         /* TLB Refill, EXL = 0 */
291         memcpy(gebase, mips32_exception,
292                mips32_exceptionEnd - mips32_exception);
293
294         /* General Exception Entry point */
295         memcpy(gebase + 0x180, mips32_exception,
296                mips32_exceptionEnd - mips32_exception);
297
298         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
299         for (i = 0; i < 8; i++) {
300                 kvm_debug("L1 Vectored handler @ %p\n",
301                           gebase + 0x200 + (i * VECTORSPACING));
302                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
303                        mips32_exceptionEnd - mips32_exception);
304         }
305
306         /* General handler, relocate to unmapped space for sanity's sake */
307         offset = 0x2000;
308         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
309                   gebase + offset,
310                   mips32_GuestExceptionEnd - mips32_GuestException);
311
312         memcpy(gebase + offset, mips32_GuestException,
313                mips32_GuestExceptionEnd - mips32_GuestException);
314
315         /* Invalidate the icache for these ranges */
316         local_flush_icache_range((unsigned long)gebase,
317                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
318
319         /*
320          * Allocate comm page for guest kernel, a TLB will be reserved for
321          * mapping GVA @ 0xFFFF8000 to this page
322          */
323         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
324
325         if (!vcpu->arch.kseg0_commpage) {
326                 err = -ENOMEM;
327                 goto out_free_gebase;
328         }
329
330         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
331         kvm_mips_commpage_init(vcpu);
332
333         /* Init */
334         vcpu->arch.last_sched_cpu = -1;
335
336         /* Start off the timer */
337         kvm_mips_init_count(vcpu);
338
339         return vcpu;
340
341 out_free_gebase:
342         kfree(gebase);
343
344 out_free_cpu:
345         kfree(vcpu);
346
347 out:
348         return ERR_PTR(err);
349 }
350
351 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
352 {
353         hrtimer_cancel(&vcpu->arch.comparecount_timer);
354
355         kvm_vcpu_uninit(vcpu);
356
357         kvm_mips_dump_stats(vcpu);
358
359         kfree(vcpu->arch.guest_ebase);
360         kfree(vcpu->arch.kseg0_commpage);
361         kfree(vcpu);
362 }
363
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366         kvm_arch_vcpu_free(vcpu);
367 }
368
369 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
370                                         struct kvm_guest_debug *dbg)
371 {
372         return -ENOIOCTLCMD;
373 }
374
375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
376 {
377         int r = 0;
378         sigset_t sigsaved;
379
380         if (vcpu->sigset_active)
381                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
382
383         if (vcpu->mmio_needed) {
384                 if (!vcpu->mmio_is_write)
385                         kvm_mips_complete_mmio_load(vcpu, run);
386                 vcpu->mmio_needed = 0;
387         }
388
389         lose_fpu(1);
390
391         local_irq_disable();
392         /* Check if we have any exceptions/interrupts pending */
393         kvm_mips_deliver_interrupts(vcpu,
394                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
395
396         kvm_guest_enter();
397
398         /* Disable hardware page table walking while in guest */
399         htw_stop();
400
401         r = __kvm_mips_vcpu_run(run, vcpu);
402
403         /* Re-enable HTW before enabling interrupts */
404         htw_start();
405
406         kvm_guest_exit();
407         local_irq_enable();
408
409         if (vcpu->sigset_active)
410                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
411
412         return r;
413 }
414
415 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
416                              struct kvm_mips_interrupt *irq)
417 {
418         int intr = (int)irq->irq;
419         struct kvm_vcpu *dvcpu = NULL;
420
421         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
422                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
423                           (int)intr);
424
425         if (irq->cpu == -1)
426                 dvcpu = vcpu;
427         else
428                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
429
430         if (intr == 2 || intr == 3 || intr == 4) {
431                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
432
433         } else if (intr == -2 || intr == -3 || intr == -4) {
434                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
435         } else {
436                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
437                         irq->cpu, irq->irq);
438                 return -EINVAL;
439         }
440
441         dvcpu->arch.wait = 0;
442
443         if (waitqueue_active(&dvcpu->wq))
444                 wake_up_interruptible(&dvcpu->wq);
445
446         return 0;
447 }
448
449 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
450                                     struct kvm_mp_state *mp_state)
451 {
452         return -ENOIOCTLCMD;
453 }
454
455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
456                                     struct kvm_mp_state *mp_state)
457 {
458         return -ENOIOCTLCMD;
459 }
460
461 static u64 kvm_mips_get_one_regs[] = {
462         KVM_REG_MIPS_R0,
463         KVM_REG_MIPS_R1,
464         KVM_REG_MIPS_R2,
465         KVM_REG_MIPS_R3,
466         KVM_REG_MIPS_R4,
467         KVM_REG_MIPS_R5,
468         KVM_REG_MIPS_R6,
469         KVM_REG_MIPS_R7,
470         KVM_REG_MIPS_R8,
471         KVM_REG_MIPS_R9,
472         KVM_REG_MIPS_R10,
473         KVM_REG_MIPS_R11,
474         KVM_REG_MIPS_R12,
475         KVM_REG_MIPS_R13,
476         KVM_REG_MIPS_R14,
477         KVM_REG_MIPS_R15,
478         KVM_REG_MIPS_R16,
479         KVM_REG_MIPS_R17,
480         KVM_REG_MIPS_R18,
481         KVM_REG_MIPS_R19,
482         KVM_REG_MIPS_R20,
483         KVM_REG_MIPS_R21,
484         KVM_REG_MIPS_R22,
485         KVM_REG_MIPS_R23,
486         KVM_REG_MIPS_R24,
487         KVM_REG_MIPS_R25,
488         KVM_REG_MIPS_R26,
489         KVM_REG_MIPS_R27,
490         KVM_REG_MIPS_R28,
491         KVM_REG_MIPS_R29,
492         KVM_REG_MIPS_R30,
493         KVM_REG_MIPS_R31,
494
495         KVM_REG_MIPS_HI,
496         KVM_REG_MIPS_LO,
497         KVM_REG_MIPS_PC,
498
499         KVM_REG_MIPS_CP0_INDEX,
500         KVM_REG_MIPS_CP0_CONTEXT,
501         KVM_REG_MIPS_CP0_USERLOCAL,
502         KVM_REG_MIPS_CP0_PAGEMASK,
503         KVM_REG_MIPS_CP0_WIRED,
504         KVM_REG_MIPS_CP0_HWRENA,
505         KVM_REG_MIPS_CP0_BADVADDR,
506         KVM_REG_MIPS_CP0_COUNT,
507         KVM_REG_MIPS_CP0_ENTRYHI,
508         KVM_REG_MIPS_CP0_COMPARE,
509         KVM_REG_MIPS_CP0_STATUS,
510         KVM_REG_MIPS_CP0_CAUSE,
511         KVM_REG_MIPS_CP0_EPC,
512         KVM_REG_MIPS_CP0_PRID,
513         KVM_REG_MIPS_CP0_CONFIG,
514         KVM_REG_MIPS_CP0_CONFIG1,
515         KVM_REG_MIPS_CP0_CONFIG2,
516         KVM_REG_MIPS_CP0_CONFIG3,
517         KVM_REG_MIPS_CP0_CONFIG4,
518         KVM_REG_MIPS_CP0_CONFIG5,
519         KVM_REG_MIPS_CP0_CONFIG7,
520         KVM_REG_MIPS_CP0_ERROREPC,
521
522         KVM_REG_MIPS_COUNT_CTL,
523         KVM_REG_MIPS_COUNT_RESUME,
524         KVM_REG_MIPS_COUNT_HZ,
525 };
526
527 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
528                             const struct kvm_one_reg *reg)
529 {
530         struct mips_coproc *cop0 = vcpu->arch.cop0;
531         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
532         int ret;
533         s64 v;
534         unsigned int idx;
535
536         switch (reg->id) {
537         /* General purpose registers */
538         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
539                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
540                 break;
541         case KVM_REG_MIPS_HI:
542                 v = (long)vcpu->arch.hi;
543                 break;
544         case KVM_REG_MIPS_LO:
545                 v = (long)vcpu->arch.lo;
546                 break;
547         case KVM_REG_MIPS_PC:
548                 v = (long)vcpu->arch.pc;
549                 break;
550
551         /* Floating point registers */
552         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
553                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
554                         return -EINVAL;
555                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
556                 /* Odd singles in top of even double when FR=0 */
557                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
558                         v = get_fpr32(&fpu->fpr[idx], 0);
559                 else
560                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
561                 break;
562         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
563                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
564                         return -EINVAL;
565                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
566                 /* Can't access odd doubles in FR=0 mode */
567                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
568                         return -EINVAL;
569                 v = get_fpr64(&fpu->fpr[idx], 0);
570                 break;
571         case KVM_REG_MIPS_FCR_IR:
572                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
573                         return -EINVAL;
574                 v = boot_cpu_data.fpu_id;
575                 break;
576         case KVM_REG_MIPS_FCR_CSR:
577                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
578                         return -EINVAL;
579                 v = fpu->fcr31;
580                 break;
581
582         /* Co-processor 0 registers */
583         case KVM_REG_MIPS_CP0_INDEX:
584                 v = (long)kvm_read_c0_guest_index(cop0);
585                 break;
586         case KVM_REG_MIPS_CP0_CONTEXT:
587                 v = (long)kvm_read_c0_guest_context(cop0);
588                 break;
589         case KVM_REG_MIPS_CP0_USERLOCAL:
590                 v = (long)kvm_read_c0_guest_userlocal(cop0);
591                 break;
592         case KVM_REG_MIPS_CP0_PAGEMASK:
593                 v = (long)kvm_read_c0_guest_pagemask(cop0);
594                 break;
595         case KVM_REG_MIPS_CP0_WIRED:
596                 v = (long)kvm_read_c0_guest_wired(cop0);
597                 break;
598         case KVM_REG_MIPS_CP0_HWRENA:
599                 v = (long)kvm_read_c0_guest_hwrena(cop0);
600                 break;
601         case KVM_REG_MIPS_CP0_BADVADDR:
602                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
603                 break;
604         case KVM_REG_MIPS_CP0_ENTRYHI:
605                 v = (long)kvm_read_c0_guest_entryhi(cop0);
606                 break;
607         case KVM_REG_MIPS_CP0_COMPARE:
608                 v = (long)kvm_read_c0_guest_compare(cop0);
609                 break;
610         case KVM_REG_MIPS_CP0_STATUS:
611                 v = (long)kvm_read_c0_guest_status(cop0);
612                 break;
613         case KVM_REG_MIPS_CP0_CAUSE:
614                 v = (long)kvm_read_c0_guest_cause(cop0);
615                 break;
616         case KVM_REG_MIPS_CP0_EPC:
617                 v = (long)kvm_read_c0_guest_epc(cop0);
618                 break;
619         case KVM_REG_MIPS_CP0_PRID:
620                 v = (long)kvm_read_c0_guest_prid(cop0);
621                 break;
622         case KVM_REG_MIPS_CP0_CONFIG:
623                 v = (long)kvm_read_c0_guest_config(cop0);
624                 break;
625         case KVM_REG_MIPS_CP0_CONFIG1:
626                 v = (long)kvm_read_c0_guest_config1(cop0);
627                 break;
628         case KVM_REG_MIPS_CP0_CONFIG2:
629                 v = (long)kvm_read_c0_guest_config2(cop0);
630                 break;
631         case KVM_REG_MIPS_CP0_CONFIG3:
632                 v = (long)kvm_read_c0_guest_config3(cop0);
633                 break;
634         case KVM_REG_MIPS_CP0_CONFIG4:
635                 v = (long)kvm_read_c0_guest_config4(cop0);
636                 break;
637         case KVM_REG_MIPS_CP0_CONFIG5:
638                 v = (long)kvm_read_c0_guest_config5(cop0);
639                 break;
640         case KVM_REG_MIPS_CP0_CONFIG7:
641                 v = (long)kvm_read_c0_guest_config7(cop0);
642                 break;
643         case KVM_REG_MIPS_CP0_ERROREPC:
644                 v = (long)kvm_read_c0_guest_errorepc(cop0);
645                 break;
646         /* registers to be handled specially */
647         case KVM_REG_MIPS_CP0_COUNT:
648         case KVM_REG_MIPS_COUNT_CTL:
649         case KVM_REG_MIPS_COUNT_RESUME:
650         case KVM_REG_MIPS_COUNT_HZ:
651                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
652                 if (ret)
653                         return ret;
654                 break;
655         default:
656                 return -EINVAL;
657         }
658         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
659                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
660
661                 return put_user(v, uaddr64);
662         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
663                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
664                 u32 v32 = (u32)v;
665
666                 return put_user(v32, uaddr32);
667         } else {
668                 return -EINVAL;
669         }
670 }
671
672 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
673                             const struct kvm_one_reg *reg)
674 {
675         struct mips_coproc *cop0 = vcpu->arch.cop0;
676         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
677         s64 v;
678         unsigned int idx;
679
680         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
681                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
682
683                 if (get_user(v, uaddr64) != 0)
684                         return -EFAULT;
685         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
686                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
687                 s32 v32;
688
689                 if (get_user(v32, uaddr32) != 0)
690                         return -EFAULT;
691                 v = (s64)v32;
692         } else {
693                 return -EINVAL;
694         }
695
696         switch (reg->id) {
697         /* General purpose registers */
698         case KVM_REG_MIPS_R0:
699                 /* Silently ignore requests to set $0 */
700                 break;
701         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
702                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
703                 break;
704         case KVM_REG_MIPS_HI:
705                 vcpu->arch.hi = v;
706                 break;
707         case KVM_REG_MIPS_LO:
708                 vcpu->arch.lo = v;
709                 break;
710         case KVM_REG_MIPS_PC:
711                 vcpu->arch.pc = v;
712                 break;
713
714         /* Floating point registers */
715         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
716                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
717                         return -EINVAL;
718                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
719                 /* Odd singles in top of even double when FR=0 */
720                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
721                         set_fpr32(&fpu->fpr[idx], 0, v);
722                 else
723                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
724                 break;
725         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
726                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
727                         return -EINVAL;
728                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
729                 /* Can't access odd doubles in FR=0 mode */
730                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
731                         return -EINVAL;
732                 set_fpr64(&fpu->fpr[idx], 0, v);
733                 break;
734         case KVM_REG_MIPS_FCR_IR:
735                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
736                         return -EINVAL;
737                 /* Read-only */
738                 break;
739         case KVM_REG_MIPS_FCR_CSR:
740                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
741                         return -EINVAL;
742                 fpu->fcr31 = v;
743                 break;
744
745         /* Co-processor 0 registers */
746         case KVM_REG_MIPS_CP0_INDEX:
747                 kvm_write_c0_guest_index(cop0, v);
748                 break;
749         case KVM_REG_MIPS_CP0_CONTEXT:
750                 kvm_write_c0_guest_context(cop0, v);
751                 break;
752         case KVM_REG_MIPS_CP0_USERLOCAL:
753                 kvm_write_c0_guest_userlocal(cop0, v);
754                 break;
755         case KVM_REG_MIPS_CP0_PAGEMASK:
756                 kvm_write_c0_guest_pagemask(cop0, v);
757                 break;
758         case KVM_REG_MIPS_CP0_WIRED:
759                 kvm_write_c0_guest_wired(cop0, v);
760                 break;
761         case KVM_REG_MIPS_CP0_HWRENA:
762                 kvm_write_c0_guest_hwrena(cop0, v);
763                 break;
764         case KVM_REG_MIPS_CP0_BADVADDR:
765                 kvm_write_c0_guest_badvaddr(cop0, v);
766                 break;
767         case KVM_REG_MIPS_CP0_ENTRYHI:
768                 kvm_write_c0_guest_entryhi(cop0, v);
769                 break;
770         case KVM_REG_MIPS_CP0_STATUS:
771                 kvm_write_c0_guest_status(cop0, v);
772                 break;
773         case KVM_REG_MIPS_CP0_EPC:
774                 kvm_write_c0_guest_epc(cop0, v);
775                 break;
776         case KVM_REG_MIPS_CP0_PRID:
777                 kvm_write_c0_guest_prid(cop0, v);
778                 break;
779         case KVM_REG_MIPS_CP0_ERROREPC:
780                 kvm_write_c0_guest_errorepc(cop0, v);
781                 break;
782         /* registers to be handled specially */
783         case KVM_REG_MIPS_CP0_COUNT:
784         case KVM_REG_MIPS_CP0_COMPARE:
785         case KVM_REG_MIPS_CP0_CAUSE:
786         case KVM_REG_MIPS_CP0_CONFIG:
787         case KVM_REG_MIPS_CP0_CONFIG1:
788         case KVM_REG_MIPS_CP0_CONFIG2:
789         case KVM_REG_MIPS_CP0_CONFIG3:
790         case KVM_REG_MIPS_CP0_CONFIG4:
791         case KVM_REG_MIPS_CP0_CONFIG5:
792         case KVM_REG_MIPS_COUNT_CTL:
793         case KVM_REG_MIPS_COUNT_RESUME:
794         case KVM_REG_MIPS_COUNT_HZ:
795                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
796         default:
797                 return -EINVAL;
798         }
799         return 0;
800 }
801
802 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
803                                      struct kvm_enable_cap *cap)
804 {
805         int r = 0;
806
807         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
808                 return -EINVAL;
809         if (cap->flags)
810                 return -EINVAL;
811         if (cap->args[0])
812                 return -EINVAL;
813
814         switch (cap->cap) {
815         case KVM_CAP_MIPS_FPU:
816                 vcpu->arch.fpu_enabled = true;
817                 break;
818         default:
819                 r = -EINVAL;
820                 break;
821         }
822
823         return r;
824 }
825
826 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
827                          unsigned long arg)
828 {
829         struct kvm_vcpu *vcpu = filp->private_data;
830         void __user *argp = (void __user *)arg;
831         long r;
832
833         switch (ioctl) {
834         case KVM_SET_ONE_REG:
835         case KVM_GET_ONE_REG: {
836                 struct kvm_one_reg reg;
837
838                 if (copy_from_user(&reg, argp, sizeof(reg)))
839                         return -EFAULT;
840                 if (ioctl == KVM_SET_ONE_REG)
841                         return kvm_mips_set_reg(vcpu, &reg);
842                 else
843                         return kvm_mips_get_reg(vcpu, &reg);
844         }
845         case KVM_GET_REG_LIST: {
846                 struct kvm_reg_list __user *user_list = argp;
847                 u64 __user *reg_dest;
848                 struct kvm_reg_list reg_list;
849                 unsigned n;
850
851                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
852                         return -EFAULT;
853                 n = reg_list.n;
854                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
855                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
856                         return -EFAULT;
857                 if (n < reg_list.n)
858                         return -E2BIG;
859                 reg_dest = user_list->reg;
860                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
861                                  sizeof(kvm_mips_get_one_regs)))
862                         return -EFAULT;
863                 return 0;
864         }
865         case KVM_NMI:
866                 /* Treat the NMI as a CPU reset */
867                 r = kvm_mips_reset_vcpu(vcpu);
868                 break;
869         case KVM_INTERRUPT:
870                 {
871                         struct kvm_mips_interrupt irq;
872
873                         r = -EFAULT;
874                         if (copy_from_user(&irq, argp, sizeof(irq)))
875                                 goto out;
876
877                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
878                                   irq.irq);
879
880                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
881                         break;
882                 }
883         case KVM_ENABLE_CAP: {
884                 struct kvm_enable_cap cap;
885
886                 r = -EFAULT;
887                 if (copy_from_user(&cap, argp, sizeof(cap)))
888                         goto out;
889                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
890                 break;
891         }
892         default:
893                 r = -ENOIOCTLCMD;
894         }
895
896 out:
897         return r;
898 }
899
900 /* Get (and clear) the dirty memory log for a memory slot. */
901 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
902 {
903         struct kvm_memory_slot *memslot;
904         unsigned long ga, ga_end;
905         int is_dirty = 0;
906         int r;
907         unsigned long n;
908
909         mutex_lock(&kvm->slots_lock);
910
911         r = kvm_get_dirty_log(kvm, log, &is_dirty);
912         if (r)
913                 goto out;
914
915         /* If nothing is dirty, don't bother messing with page tables. */
916         if (is_dirty) {
917                 memslot = &kvm->memslots->memslots[log->slot];
918
919                 ga = memslot->base_gfn << PAGE_SHIFT;
920                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
921
922                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
923                          ga_end);
924
925                 n = kvm_dirty_bitmap_bytes(memslot);
926                 memset(memslot->dirty_bitmap, 0, n);
927         }
928
929         r = 0;
930 out:
931         mutex_unlock(&kvm->slots_lock);
932         return r;
933
934 }
935
936 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
937 {
938         long r;
939
940         switch (ioctl) {
941         default:
942                 r = -ENOIOCTLCMD;
943         }
944
945         return r;
946 }
947
948 int kvm_arch_init(void *opaque)
949 {
950         if (kvm_mips_callbacks) {
951                 kvm_err("kvm: module already exists\n");
952                 return -EEXIST;
953         }
954
955         return kvm_mips_emulation_init(&kvm_mips_callbacks);
956 }
957
958 void kvm_arch_exit(void)
959 {
960         kvm_mips_callbacks = NULL;
961 }
962
963 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
964                                   struct kvm_sregs *sregs)
965 {
966         return -ENOIOCTLCMD;
967 }
968
969 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
970                                   struct kvm_sregs *sregs)
971 {
972         return -ENOIOCTLCMD;
973 }
974
975 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
976 {
977 }
978
979 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
980 {
981         return -ENOIOCTLCMD;
982 }
983
984 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
985 {
986         return -ENOIOCTLCMD;
987 }
988
989 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
990 {
991         return VM_FAULT_SIGBUS;
992 }
993
994 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
995 {
996         int r;
997
998         switch (ext) {
999         case KVM_CAP_ONE_REG:
1000         case KVM_CAP_ENABLE_CAP:
1001                 r = 1;
1002                 break;
1003         case KVM_CAP_COALESCED_MMIO:
1004                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1005                 break;
1006         case KVM_CAP_MIPS_FPU:
1007                 r = !!cpu_has_fpu;
1008                 break;
1009         default:
1010                 r = 0;
1011                 break;
1012         }
1013         return r;
1014 }
1015
1016 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1017 {
1018         return kvm_mips_pending_timer(vcpu);
1019 }
1020
1021 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1022 {
1023         int i;
1024         struct mips_coproc *cop0;
1025
1026         if (!vcpu)
1027                 return -1;
1028
1029         kvm_debug("VCPU Register Dump:\n");
1030         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1031         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1032
1033         for (i = 0; i < 32; i += 4) {
1034                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1035                        vcpu->arch.gprs[i],
1036                        vcpu->arch.gprs[i + 1],
1037                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1038         }
1039         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1040         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1041
1042         cop0 = vcpu->arch.cop0;
1043         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1044                   kvm_read_c0_guest_status(cop0),
1045                   kvm_read_c0_guest_cause(cop0));
1046
1047         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1048
1049         return 0;
1050 }
1051
1052 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1053 {
1054         int i;
1055
1056         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1057                 vcpu->arch.gprs[i] = regs->gpr[i];
1058         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1059         vcpu->arch.hi = regs->hi;
1060         vcpu->arch.lo = regs->lo;
1061         vcpu->arch.pc = regs->pc;
1062
1063         return 0;
1064 }
1065
1066 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1067 {
1068         int i;
1069
1070         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1071                 regs->gpr[i] = vcpu->arch.gprs[i];
1072
1073         regs->hi = vcpu->arch.hi;
1074         regs->lo = vcpu->arch.lo;
1075         regs->pc = vcpu->arch.pc;
1076
1077         return 0;
1078 }
1079
1080 static void kvm_mips_comparecount_func(unsigned long data)
1081 {
1082         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1083
1084         kvm_mips_callbacks->queue_timer_int(vcpu);
1085
1086         vcpu->arch.wait = 0;
1087         if (waitqueue_active(&vcpu->wq))
1088                 wake_up_interruptible(&vcpu->wq);
1089 }
1090
1091 /* low level hrtimer wake routine */
1092 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1093 {
1094         struct kvm_vcpu *vcpu;
1095
1096         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1097         kvm_mips_comparecount_func((unsigned long) vcpu);
1098         return kvm_mips_count_timeout(vcpu);
1099 }
1100
1101 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1102 {
1103         kvm_mips_callbacks->vcpu_init(vcpu);
1104         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1105                      HRTIMER_MODE_REL);
1106         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1107         return 0;
1108 }
1109
1110 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1111                                   struct kvm_translation *tr)
1112 {
1113         return 0;
1114 }
1115
1116 /* Initial guest state */
1117 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1118 {
1119         return kvm_mips_callbacks->vcpu_setup(vcpu);
1120 }
1121
1122 static void kvm_mips_set_c0_status(void)
1123 {
1124         uint32_t status = read_c0_status();
1125
1126         if (cpu_has_dsp)
1127                 status |= (ST0_MX);
1128
1129         write_c0_status(status);
1130         ehb();
1131 }
1132
1133 /*
1134  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1135  */
1136 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1137 {
1138         uint32_t cause = vcpu->arch.host_cp0_cause;
1139         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1140         uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1141         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1142         enum emulation_result er = EMULATE_DONE;
1143         int ret = RESUME_GUEST;
1144
1145         /* re-enable HTW before enabling interrupts */
1146         htw_start();
1147
1148         /* Set a default exit reason */
1149         run->exit_reason = KVM_EXIT_UNKNOWN;
1150         run->ready_for_interrupt_injection = 1;
1151
1152         /*
1153          * Set the appropriate status bits based on host CPU features,
1154          * before we hit the scheduler
1155          */
1156         kvm_mips_set_c0_status();
1157
1158         local_irq_enable();
1159
1160         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1161                         cause, opc, run, vcpu);
1162
1163         /*
1164          * Do a privilege check, if in UM most of these exit conditions end up
1165          * causing an exception to be delivered to the Guest Kernel
1166          */
1167         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1168         if (er == EMULATE_PRIV_FAIL) {
1169                 goto skip_emul;
1170         } else if (er == EMULATE_FAIL) {
1171                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1172                 ret = RESUME_HOST;
1173                 goto skip_emul;
1174         }
1175
1176         switch (exccode) {
1177         case T_INT:
1178                 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1179
1180                 ++vcpu->stat.int_exits;
1181                 trace_kvm_exit(vcpu, INT_EXITS);
1182
1183                 if (need_resched())
1184                         cond_resched();
1185
1186                 ret = RESUME_GUEST;
1187                 break;
1188
1189         case T_COP_UNUSABLE:
1190                 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1191
1192                 ++vcpu->stat.cop_unusable_exits;
1193                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1194                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1195                 /* XXXKYMA: Might need to return to user space */
1196                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1197                         ret = RESUME_HOST;
1198                 break;
1199
1200         case T_TLB_MOD:
1201                 ++vcpu->stat.tlbmod_exits;
1202                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1203                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1204                 break;
1205
1206         case T_TLB_ST_MISS:
1207                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1208                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1209                           badvaddr);
1210
1211                 ++vcpu->stat.tlbmiss_st_exits;
1212                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1213                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1214                 break;
1215
1216         case T_TLB_LD_MISS:
1217                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1218                           cause, opc, badvaddr);
1219
1220                 ++vcpu->stat.tlbmiss_ld_exits;
1221                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1222                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1223                 break;
1224
1225         case T_ADDR_ERR_ST:
1226                 ++vcpu->stat.addrerr_st_exits;
1227                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1228                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1229                 break;
1230
1231         case T_ADDR_ERR_LD:
1232                 ++vcpu->stat.addrerr_ld_exits;
1233                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1234                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1235                 break;
1236
1237         case T_SYSCALL:
1238                 ++vcpu->stat.syscall_exits;
1239                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1240                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1241                 break;
1242
1243         case T_RES_INST:
1244                 ++vcpu->stat.resvd_inst_exits;
1245                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1246                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1247                 break;
1248
1249         case T_BREAK:
1250                 ++vcpu->stat.break_inst_exits;
1251                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1252                 ret = kvm_mips_callbacks->handle_break(vcpu);
1253                 break;
1254
1255         case T_TRAP:
1256                 ++vcpu->stat.trap_inst_exits;
1257                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1258                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1259                 break;
1260
1261         case T_MSAFPE:
1262                 ++vcpu->stat.msa_fpe_exits;
1263                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1264                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1265                 break;
1266
1267         case T_FPE:
1268                 ++vcpu->stat.fpe_exits;
1269                 trace_kvm_exit(vcpu, FPE_EXITS);
1270                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1271                 break;
1272
1273         case T_MSADIS:
1274                 ++vcpu->stat.msa_disabled_exits;
1275                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1276                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1277                 break;
1278
1279         default:
1280                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1281                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1282                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1283                 kvm_arch_vcpu_dump_regs(vcpu);
1284                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1285                 ret = RESUME_HOST;
1286                 break;
1287
1288         }
1289
1290 skip_emul:
1291         local_irq_disable();
1292
1293         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1294                 kvm_mips_deliver_interrupts(vcpu, cause);
1295
1296         if (!(ret & RESUME_HOST)) {
1297                 /* Only check for signals if not already exiting to userspace */
1298                 if (signal_pending(current)) {
1299                         run->exit_reason = KVM_EXIT_INTR;
1300                         ret = (-EINTR << 2) | RESUME_HOST;
1301                         ++vcpu->stat.signal_exits;
1302                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1303                 }
1304         }
1305
1306         if (ret == RESUME_GUEST) {
1307                 /*
1308                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1309                  * is live), restore FCR31 / MSACSR.
1310                  *
1311                  * This should be before returning to the guest exception
1312                  * vector, as it may well cause an [MSA] FP exception if there
1313                  * are pending exception bits unmasked. (see
1314                  * kvm_mips_csr_die_notifier() for how that is handled).
1315                  */
1316                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1317                     read_c0_status() & ST0_CU1)
1318                         __kvm_restore_fcsr(&vcpu->arch);
1319
1320                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1321                     read_c0_config5() & MIPS_CONF5_MSAEN)
1322                         __kvm_restore_msacsr(&vcpu->arch);
1323         }
1324
1325         /* Disable HTW before returning to guest or host */
1326         htw_stop();
1327
1328         return ret;
1329 }
1330
1331 /* Enable FPU for guest and restore context */
1332 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1333 {
1334         struct mips_coproc *cop0 = vcpu->arch.cop0;
1335         unsigned int sr, cfg5;
1336
1337         preempt_disable();
1338
1339         sr = kvm_read_c0_guest_status(cop0);
1340
1341         /*
1342          * If MSA state is already live, it is undefined how it interacts with
1343          * FR=0 FPU state, and we don't want to hit reserved instruction
1344          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1345          * play it safe and save it first.
1346          *
1347          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1348          * get called when guest CU1 is set, however we can't trust the guest
1349          * not to clobber the status register directly via the commpage.
1350          */
1351         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1352             vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1353                 kvm_lose_fpu(vcpu);
1354
1355         /*
1356          * Enable FPU for guest
1357          * We set FR and FRE according to guest context
1358          */
1359         change_c0_status(ST0_CU1 | ST0_FR, sr);
1360         if (cpu_has_fre) {
1361                 cfg5 = kvm_read_c0_guest_config5(cop0);
1362                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1363         }
1364         enable_fpu_hazard();
1365
1366         /* If guest FPU state not active, restore it now */
1367         if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1368                 __kvm_restore_fpu(&vcpu->arch);
1369                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1370         }
1371
1372         preempt_enable();
1373 }
1374
1375 #ifdef CONFIG_CPU_HAS_MSA
1376 /* Enable MSA for guest and restore context */
1377 void kvm_own_msa(struct kvm_vcpu *vcpu)
1378 {
1379         struct mips_coproc *cop0 = vcpu->arch.cop0;
1380         unsigned int sr, cfg5;
1381
1382         preempt_disable();
1383
1384         /*
1385          * Enable FPU if enabled in guest, since we're restoring FPU context
1386          * anyway. We set FR and FRE according to guest context.
1387          */
1388         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1389                 sr = kvm_read_c0_guest_status(cop0);
1390
1391                 /*
1392                  * If FR=0 FPU state is already live, it is undefined how it
1393                  * interacts with MSA state, so play it safe and save it first.
1394                  */
1395                 if (!(sr & ST0_FR) &&
1396                     (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1397                                 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1398                         kvm_lose_fpu(vcpu);
1399
1400                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1401                 if (sr & ST0_CU1 && cpu_has_fre) {
1402                         cfg5 = kvm_read_c0_guest_config5(cop0);
1403                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1404                 }
1405         }
1406
1407         /* Enable MSA for guest */
1408         set_c0_config5(MIPS_CONF5_MSAEN);
1409         enable_fpu_hazard();
1410
1411         switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1412         case KVM_MIPS_FPU_FPU:
1413                 /*
1414                  * Guest FPU state already loaded, only restore upper MSA state
1415                  */
1416                 __kvm_restore_msa_upper(&vcpu->arch);
1417                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1418                 break;
1419         case 0:
1420                 /* Neither FPU or MSA already active, restore full MSA state */
1421                 __kvm_restore_msa(&vcpu->arch);
1422                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1423                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1424                         vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1425                 break;
1426         default:
1427                 break;
1428         }
1429
1430         preempt_enable();
1431 }
1432 #endif
1433
1434 /* Drop FPU & MSA without saving it */
1435 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1436 {
1437         preempt_disable();
1438         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1439                 disable_msa();
1440                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1441         }
1442         if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1443                 clear_c0_status(ST0_CU1 | ST0_FR);
1444                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1445         }
1446         preempt_enable();
1447 }
1448
1449 /* Save and disable FPU & MSA */
1450 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1451 {
1452         /*
1453          * FPU & MSA get disabled in root context (hardware) when it is disabled
1454          * in guest context (software), but the register state in the hardware
1455          * may still be in use. This is why we explicitly re-enable the hardware
1456          * before saving.
1457          */
1458
1459         preempt_disable();
1460         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1461                 set_c0_config5(MIPS_CONF5_MSAEN);
1462                 enable_fpu_hazard();
1463
1464                 __kvm_save_msa(&vcpu->arch);
1465
1466                 /* Disable MSA & FPU */
1467                 disable_msa();
1468                 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1469                         clear_c0_status(ST0_CU1 | ST0_FR);
1470                 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1471         } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1472                 set_c0_status(ST0_CU1);
1473                 enable_fpu_hazard();
1474
1475                 __kvm_save_fpu(&vcpu->arch);
1476                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1477
1478                 /* Disable FPU */
1479                 clear_c0_status(ST0_CU1 | ST0_FR);
1480         }
1481         preempt_enable();
1482 }
1483
1484 /*
1485  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1486  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1487  * exception if cause bits are set in the value being written.
1488  */
1489 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1490                                    unsigned long cmd, void *ptr)
1491 {
1492         struct die_args *args = (struct die_args *)ptr;
1493         struct pt_regs *regs = args->regs;
1494         unsigned long pc;
1495
1496         /* Only interested in FPE and MSAFPE */
1497         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1498                 return NOTIFY_DONE;
1499
1500         /* Return immediately if guest context isn't active */
1501         if (!(current->flags & PF_VCPU))
1502                 return NOTIFY_DONE;
1503
1504         /* Should never get here from user mode */
1505         BUG_ON(user_mode(regs));
1506
1507         pc = instruction_pointer(regs);
1508         switch (cmd) {
1509         case DIE_FP:
1510                 /* match 2nd instruction in __kvm_restore_fcsr */
1511                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1512                         return NOTIFY_DONE;
1513                 break;
1514         case DIE_MSAFP:
1515                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1516                 if (!cpu_has_msa ||
1517                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1518                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1519                         return NOTIFY_DONE;
1520                 break;
1521         }
1522
1523         /* Move PC forward a little and continue executing */
1524         instruction_pointer(regs) += 4;
1525
1526         return NOTIFY_STOP;
1527 }
1528
1529 static struct notifier_block kvm_mips_csr_die_notifier = {
1530         .notifier_call = kvm_mips_csr_die_notify,
1531 };
1532
1533 int __init kvm_mips_init(void)
1534 {
1535         int ret;
1536
1537         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1538
1539         if (ret)
1540                 return ret;
1541
1542         register_die_notifier(&kvm_mips_csr_die_notifier);
1543
1544         /*
1545          * On MIPS, kernel modules are executed from "mapped space", which
1546          * requires TLBs. The TLB handling code is statically linked with
1547          * the rest of the kernel (tlb.c) to avoid the possibility of
1548          * double faulting. The issue is that the TLB code references
1549          * routines that are part of the the KVM module, which are only
1550          * available once the module is loaded.
1551          */
1552         kvm_mips_gfn_to_pfn = gfn_to_pfn;
1553         kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1554         kvm_mips_is_error_pfn = is_error_pfn;
1555
1556         return 0;
1557 }
1558
1559 void __exit kvm_mips_exit(void)
1560 {
1561         kvm_exit();
1562
1563         kvm_mips_gfn_to_pfn = NULL;
1564         kvm_mips_release_pfn_clean = NULL;
1565         kvm_mips_is_error_pfn = NULL;
1566
1567         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1568 }
1569
1570 module_init(kvm_mips_init);
1571 module_exit(kvm_mips_exit);
1572
1573 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);