OSDN Git Service

Merge tag 'powerpc-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[uclinux-h8/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 #include <asm/dtl.h>
78
79 #include "book3s.h"
80
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
92
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL  (~(u64)0)
95
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops = {
115         .set = param_set_int,
116         .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133         return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_2THREAD,
159         RWMR_RPA_P8_3THREAD,
160         RWMR_RPA_P8_4THREAD,
161         RWMR_RPA_P8_5THREAD,
162         RWMR_RPA_P8_6THREAD,
163         RWMR_RPA_P8_7THREAD,
164         RWMR_RPA_P8_8THREAD,
165 };
166
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168                 int *ip)
169 {
170         int i = *ip;
171         struct kvm_vcpu *vcpu;
172
173         while (++i < MAX_SMT_THREADS) {
174                 vcpu = READ_ONCE(vc->runnable_threads[i]);
175                 if (vcpu) {
176                         *ip = i;
177                         return vcpu;
178                 }
179         }
180         return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192         if (kvmhv_on_pseries())
193                 return false;
194
195         /* On POWER9 we can use msgsnd to IPI any cpu */
196         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197                 msg |= get_hard_smp_processor_id(cpu);
198                 smp_mb();
199                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200                 return true;
201         }
202
203         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205                 preempt_disable();
206                 if (cpu_first_thread_sibling(cpu) ==
207                     cpu_first_thread_sibling(smp_processor_id())) {
208                         msg |= cpu_thread_in_core(cpu);
209                         smp_mb();
210                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                         preempt_enable();
212                         return true;
213                 }
214                 preempt_enable();
215         }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218         if (cpu >= 0 && cpu < nr_cpu_ids) {
219                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220                         xics_wake_cpu(cpu);
221                         return true;
222                 }
223                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224                 return true;
225         }
226 #endif
227
228         return false;
229 }
230
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233         int cpu;
234         struct rcuwait *waitp;
235
236         waitp = kvm_arch_vcpu_get_wait(vcpu);
237         if (rcuwait_wake_up(waitp))
238                 ++vcpu->stat.halt_wakeup;
239
240         cpu = READ_ONCE(vcpu->arch.thread_cpu);
241         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242                 return;
243
244         /* CPU points to the first thread of the core */
245         cpu = vcpu->cpu;
246         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247                 smp_send_reschedule(cpu);
248 }
249
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285         unsigned long flags;
286
287         spin_lock_irqsave(&vc->stoltb_lock, flags);
288         vc->preempt_tb = mftb();
289         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294         unsigned long flags;
295
296         spin_lock_irqsave(&vc->stoltb_lock, flags);
297         if (vc->preempt_tb != TB_NIL) {
298                 vc->stolen_tb += mftb() - vc->preempt_tb;
299                 vc->preempt_tb = TB_NIL;
300         }
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306         struct kvmppc_vcore *vc = vcpu->arch.vcore;
307         unsigned long flags;
308
309         /*
310          * We can test vc->runner without taking the vcore lock,
311          * because only this task ever sets vc->runner to this
312          * vcpu, and once it is set to this vcpu, only this task
313          * ever sets it to NULL.
314          */
315         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316                 kvmppc_core_end_stolen(vc);
317
318         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320             vcpu->arch.busy_preempt != TB_NIL) {
321                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322                 vcpu->arch.busy_preempt = TB_NIL;
323         }
324         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329         struct kvmppc_vcore *vc = vcpu->arch.vcore;
330         unsigned long flags;
331
332         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333                 kvmppc_core_start_stolen(vc);
334
335         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337                 vcpu->arch.busy_preempt = mftb();
338         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340
341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
342 {
343         vcpu->arch.pvr = pvr;
344 }
345
346 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
347 {
348         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
349         struct kvmppc_vcore *vc = vcpu->arch.vcore;
350
351         /* We can (emulate) our own architecture version and anything older */
352         if (cpu_has_feature(CPU_FTR_ARCH_300))
353                 host_pcr_bit = PCR_ARCH_300;
354         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
355                 host_pcr_bit = PCR_ARCH_207;
356         else if (cpu_has_feature(CPU_FTR_ARCH_206))
357                 host_pcr_bit = PCR_ARCH_206;
358         else
359                 host_pcr_bit = PCR_ARCH_205;
360
361         /* Determine lowest PCR bit needed to run guest in given PVR level */
362         guest_pcr_bit = host_pcr_bit;
363         if (arch_compat) {
364                 switch (arch_compat) {
365                 case PVR_ARCH_205:
366                         guest_pcr_bit = PCR_ARCH_205;
367                         break;
368                 case PVR_ARCH_206:
369                 case PVR_ARCH_206p:
370                         guest_pcr_bit = PCR_ARCH_206;
371                         break;
372                 case PVR_ARCH_207:
373                         guest_pcr_bit = PCR_ARCH_207;
374                         break;
375                 case PVR_ARCH_300:
376                         guest_pcr_bit = PCR_ARCH_300;
377                         break;
378                 default:
379                         return -EINVAL;
380                 }
381         }
382
383         /* Check requested PCR bits don't exceed our capabilities */
384         if (guest_pcr_bit > host_pcr_bit)
385                 return -EINVAL;
386
387         spin_lock(&vc->lock);
388         vc->arch_compat = arch_compat;
389         /*
390          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
391          * Also set all reserved PCR bits
392          */
393         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
394         spin_unlock(&vc->lock);
395
396         return 0;
397 }
398
399 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
400 {
401         int r;
402
403         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
404         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
405                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
406         for (r = 0; r < 16; ++r)
407                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
408                        r, kvmppc_get_gpr(vcpu, r),
409                        r+16, kvmppc_get_gpr(vcpu, r+16));
410         pr_err("ctr = %.16lx  lr  = %.16lx\n",
411                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
412         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
413                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
414         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
415                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
416         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
417                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
418         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
419                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
420         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
421         pr_err("fault dar = %.16lx dsisr = %.8x\n",
422                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
423         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
424         for (r = 0; r < vcpu->arch.slb_max; ++r)
425                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
426                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
427         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
428                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
429                vcpu->arch.last_inst);
430 }
431
432 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
433 {
434         return kvm_get_vcpu_by_id(kvm, id);
435 }
436
437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440         vpa->yield_count = cpu_to_be32(1);
441 }
442
443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444                    unsigned long addr, unsigned long len)
445 {
446         /* check address is cacheline aligned */
447         if (addr & (L1_CACHE_BYTES - 1))
448                 return -EINVAL;
449         spin_lock(&vcpu->arch.vpa_update_lock);
450         if (v->next_gpa != addr || v->len != len) {
451                 v->next_gpa = addr;
452                 v->len = addr ? len : 0;
453                 v->update_pending = 1;
454         }
455         spin_unlock(&vcpu->arch.vpa_update_lock);
456         return 0;
457 }
458
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461         u32 dummy;
462         union {
463                 __be16 hword;
464                 __be32 word;
465         } length;
466 };
467
468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470         if (vpap->update_pending)
471                 return vpap->next_gpa != 0;
472         return vpap->pinned_addr != NULL;
473 }
474
475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476                                        unsigned long flags,
477                                        unsigned long vcpuid, unsigned long vpa)
478 {
479         struct kvm *kvm = vcpu->kvm;
480         unsigned long len, nb;
481         void *va;
482         struct kvm_vcpu *tvcpu;
483         int err;
484         int subfunc;
485         struct kvmppc_vpa *vpap;
486
487         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488         if (!tvcpu)
489                 return H_PARAMETER;
490
491         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493             subfunc == H_VPA_REG_SLB) {
494                 /* Registering new area - address must be cache-line aligned */
495                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496                         return H_PARAMETER;
497
498                 /* convert logical addr to kernel addr and read length */
499                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500                 if (va == NULL)
501                         return H_PARAMETER;
502                 if (subfunc == H_VPA_REG_VPA)
503                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504                 else
505                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
507
508                 /* Check length */
509                 if (len > nb || len < sizeof(struct reg_vpa))
510                         return H_PARAMETER;
511         } else {
512                 vpa = 0;
513                 len = 0;
514         }
515
516         err = H_PARAMETER;
517         vpap = NULL;
518         spin_lock(&tvcpu->arch.vpa_update_lock);
519
520         switch (subfunc) {
521         case H_VPA_REG_VPA:             /* register VPA */
522                 /*
523                  * The size of our lppaca is 1kB because of the way we align
524                  * it for the guest to avoid crossing a 4kB boundary. We only
525                  * use 640 bytes of the structure though, so we should accept
526                  * clients that set a size of 640.
527                  */
528                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529                 if (len < sizeof(struct lppaca))
530                         break;
531                 vpap = &tvcpu->arch.vpa;
532                 err = 0;
533                 break;
534
535         case H_VPA_REG_DTL:             /* register DTL */
536                 if (len < sizeof(struct dtl_entry))
537                         break;
538                 len -= len % sizeof(struct dtl_entry);
539
540                 /* Check that they have previously registered a VPA */
541                 err = H_RESOURCE;
542                 if (!vpa_is_registered(&tvcpu->arch.vpa))
543                         break;
544
545                 vpap = &tvcpu->arch.dtl;
546                 err = 0;
547                 break;
548
549         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
550                 /* Check that they have previously registered a VPA */
551                 err = H_RESOURCE;
552                 if (!vpa_is_registered(&tvcpu->arch.vpa))
553                         break;
554
555                 vpap = &tvcpu->arch.slb_shadow;
556                 err = 0;
557                 break;
558
559         case H_VPA_DEREG_VPA:           /* deregister VPA */
560                 /* Check they don't still have a DTL or SLB buf registered */
561                 err = H_RESOURCE;
562                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
563                     vpa_is_registered(&tvcpu->arch.slb_shadow))
564                         break;
565
566                 vpap = &tvcpu->arch.vpa;
567                 err = 0;
568                 break;
569
570         case H_VPA_DEREG_DTL:           /* deregister DTL */
571                 vpap = &tvcpu->arch.dtl;
572                 err = 0;
573                 break;
574
575         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
576                 vpap = &tvcpu->arch.slb_shadow;
577                 err = 0;
578                 break;
579         }
580
581         if (vpap) {
582                 vpap->next_gpa = vpa;
583                 vpap->len = len;
584                 vpap->update_pending = 1;
585         }
586
587         spin_unlock(&tvcpu->arch.vpa_update_lock);
588
589         return err;
590 }
591
592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594         struct kvm *kvm = vcpu->kvm;
595         void *va;
596         unsigned long nb;
597         unsigned long gpa;
598
599         /*
600          * We need to pin the page pointed to by vpap->next_gpa,
601          * but we can't call kvmppc_pin_guest_page under the lock
602          * as it does get_user_pages() and down_read().  So we
603          * have to drop the lock, pin the page, then get the lock
604          * again and check that a new area didn't get registered
605          * in the meantime.
606          */
607         for (;;) {
608                 gpa = vpap->next_gpa;
609                 spin_unlock(&vcpu->arch.vpa_update_lock);
610                 va = NULL;
611                 nb = 0;
612                 if (gpa)
613                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614                 spin_lock(&vcpu->arch.vpa_update_lock);
615                 if (gpa == vpap->next_gpa)
616                         break;
617                 /* sigh... unpin that one and try again */
618                 if (va)
619                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
620         }
621
622         vpap->update_pending = 0;
623         if (va && nb < vpap->len) {
624                 /*
625                  * If it's now too short, it must be that userspace
626                  * has changed the mappings underlying guest memory,
627                  * so unregister the region.
628                  */
629                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
630                 va = NULL;
631         }
632         if (vpap->pinned_addr)
633                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634                                         vpap->dirty);
635         vpap->gpa = gpa;
636         vpap->pinned_addr = va;
637         vpap->dirty = false;
638         if (va)
639                 vpap->pinned_end = va + vpap->len;
640 }
641
642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644         if (!(vcpu->arch.vpa.update_pending ||
645               vcpu->arch.slb_shadow.update_pending ||
646               vcpu->arch.dtl.update_pending))
647                 return;
648
649         spin_lock(&vcpu->arch.vpa_update_lock);
650         if (vcpu->arch.vpa.update_pending) {
651                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652                 if (vcpu->arch.vpa.pinned_addr)
653                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654         }
655         if (vcpu->arch.dtl.update_pending) {
656                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658                 vcpu->arch.dtl_index = 0;
659         }
660         if (vcpu->arch.slb_shadow.update_pending)
661                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662         spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664
665 /*
666  * Return the accumulated stolen time for the vcore up until `now'.
667  * The caller should hold the vcore lock.
668  */
669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671         u64 p;
672         unsigned long flags;
673
674         spin_lock_irqsave(&vc->stoltb_lock, flags);
675         p = vc->stolen_tb;
676         if (vc->vcore_state != VCORE_INACTIVE &&
677             vc->preempt_tb != TB_NIL)
678                 p += now - vc->preempt_tb;
679         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680         return p;
681 }
682
683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684                                     struct kvmppc_vcore *vc)
685 {
686         struct dtl_entry *dt;
687         struct lppaca *vpa;
688         unsigned long stolen;
689         unsigned long core_stolen;
690         u64 now;
691         unsigned long flags;
692
693         dt = vcpu->arch.dtl_ptr;
694         vpa = vcpu->arch.vpa.pinned_addr;
695         now = mftb();
696         core_stolen = vcore_stolen_time(vc, now);
697         stolen = core_stolen - vcpu->arch.stolen_logged;
698         vcpu->arch.stolen_logged = core_stolen;
699         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700         stolen += vcpu->arch.busy_stolen;
701         vcpu->arch.busy_stolen = 0;
702         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703         if (!dt || !vpa)
704                 return;
705         memset(dt, 0, sizeof(struct dtl_entry));
706         dt->dispatch_reason = 7;
707         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708         dt->timebase = cpu_to_be64(now + vc->tb_offset);
709         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712         ++dt;
713         if (dt == vcpu->arch.dtl.pinned_end)
714                 dt = vcpu->arch.dtl.pinned_addr;
715         vcpu->arch.dtl_ptr = dt;
716         /* order writing *dt vs. writing vpa->dtl_idx */
717         smp_wmb();
718         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719         vcpu->arch.dtl.dirty = true;
720 }
721
722 /* See if there is a doorbell interrupt pending for a vcpu */
723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725         int thr;
726         struct kvmppc_vcore *vc;
727
728         if (vcpu->arch.doorbell_request)
729                 return true;
730         /*
731          * Ensure that the read of vcore->dpdes comes after the read
732          * of vcpu->doorbell_request.  This barrier matches the
733          * smp_wmb() in kvmppc_guest_entry_inject().
734          */
735         smp_rmb();
736         vc = vcpu->arch.vcore;
737         thr = vcpu->vcpu_id - vc->first_vcpuid;
738         return !!(vc->dpdes & (1 << thr));
739 }
740
741 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
742 {
743         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
744                 return true;
745         if ((!vcpu->arch.vcore->arch_compat) &&
746             cpu_has_feature(CPU_FTR_ARCH_207S))
747                 return true;
748         return false;
749 }
750
751 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
752                              unsigned long resource, unsigned long value1,
753                              unsigned long value2)
754 {
755         switch (resource) {
756         case H_SET_MODE_RESOURCE_SET_CIABR:
757                 if (!kvmppc_power8_compatible(vcpu))
758                         return H_P2;
759                 if (value2)
760                         return H_P4;
761                 if (mflags)
762                         return H_UNSUPPORTED_FLAG_START;
763                 /* Guests can't breakpoint the hypervisor */
764                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
765                         return H_P3;
766                 vcpu->arch.ciabr  = value1;
767                 return H_SUCCESS;
768         case H_SET_MODE_RESOURCE_SET_DAWR0:
769                 if (!kvmppc_power8_compatible(vcpu))
770                         return H_P2;
771                 if (!ppc_breakpoint_available())
772                         return H_P2;
773                 if (mflags)
774                         return H_UNSUPPORTED_FLAG_START;
775                 if (value2 & DABRX_HYP)
776                         return H_P4;
777                 vcpu->arch.dawr  = value1;
778                 vcpu->arch.dawrx = value2;
779                 return H_SUCCESS;
780         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
781                 /* KVM does not support mflags=2 (AIL=2) */
782                 if (mflags != 0 && mflags != 3)
783                         return H_UNSUPPORTED_FLAG_START;
784                 return H_TOO_HARD;
785         default:
786                 return H_TOO_HARD;
787         }
788 }
789
790 /* Copy guest memory in place - must reside within a single memslot */
791 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
792                                   unsigned long len)
793 {
794         struct kvm_memory_slot *to_memslot = NULL;
795         struct kvm_memory_slot *from_memslot = NULL;
796         unsigned long to_addr, from_addr;
797         int r;
798
799         /* Get HPA for from address */
800         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
801         if (!from_memslot)
802                 return -EFAULT;
803         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
804                              << PAGE_SHIFT))
805                 return -EINVAL;
806         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
807         if (kvm_is_error_hva(from_addr))
808                 return -EFAULT;
809         from_addr |= (from & (PAGE_SIZE - 1));
810
811         /* Get HPA for to address */
812         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
813         if (!to_memslot)
814                 return -EFAULT;
815         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
816                            << PAGE_SHIFT))
817                 return -EINVAL;
818         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
819         if (kvm_is_error_hva(to_addr))
820                 return -EFAULT;
821         to_addr |= (to & (PAGE_SIZE - 1));
822
823         /* Perform copy */
824         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
825                              len);
826         if (r)
827                 return -EFAULT;
828         mark_page_dirty(kvm, to >> PAGE_SHIFT);
829         return 0;
830 }
831
832 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
833                                unsigned long dest, unsigned long src)
834 {
835         u64 pg_sz = SZ_4K;              /* 4K page size */
836         u64 pg_mask = SZ_4K - 1;
837         int ret;
838
839         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
840         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
841                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
842                 return H_PARAMETER;
843
844         /* dest (and src if copy_page flag set) must be page aligned */
845         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
846                 return H_PARAMETER;
847
848         /* zero and/or copy the page as determined by the flags */
849         if (flags & H_COPY_PAGE) {
850                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
851                 if (ret < 0)
852                         return H_PARAMETER;
853         } else if (flags & H_ZERO_PAGE) {
854                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
855                 if (ret < 0)
856                         return H_PARAMETER;
857         }
858
859         /* We can ignore the remaining flags */
860
861         return H_SUCCESS;
862 }
863
864 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
865 {
866         struct kvmppc_vcore *vcore = target->arch.vcore;
867
868         /*
869          * We expect to have been called by the real mode handler
870          * (kvmppc_rm_h_confer()) which would have directly returned
871          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
872          * have useful work to do and should not confer) so we don't
873          * recheck that here.
874          */
875
876         spin_lock(&vcore->lock);
877         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
878             vcore->vcore_state != VCORE_INACTIVE &&
879             vcore->runner)
880                 target = vcore->runner;
881         spin_unlock(&vcore->lock);
882
883         return kvm_vcpu_yield_to(target);
884 }
885
886 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
887 {
888         int yield_count = 0;
889         struct lppaca *lppaca;
890
891         spin_lock(&vcpu->arch.vpa_update_lock);
892         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
893         if (lppaca)
894                 yield_count = be32_to_cpu(lppaca->yield_count);
895         spin_unlock(&vcpu->arch.vpa_update_lock);
896         return yield_count;
897 }
898
899 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
900 {
901         unsigned long req = kvmppc_get_gpr(vcpu, 3);
902         unsigned long target, ret = H_SUCCESS;
903         int yield_count;
904         struct kvm_vcpu *tvcpu;
905         int idx, rc;
906
907         if (req <= MAX_HCALL_OPCODE &&
908             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
909                 return RESUME_HOST;
910
911         switch (req) {
912         case H_CEDE:
913                 break;
914         case H_PROD:
915                 target = kvmppc_get_gpr(vcpu, 4);
916                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
917                 if (!tvcpu) {
918                         ret = H_PARAMETER;
919                         break;
920                 }
921                 tvcpu->arch.prodded = 1;
922                 smp_mb();
923                 if (tvcpu->arch.ceded)
924                         kvmppc_fast_vcpu_kick_hv(tvcpu);
925                 break;
926         case H_CONFER:
927                 target = kvmppc_get_gpr(vcpu, 4);
928                 if (target == -1)
929                         break;
930                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
931                 if (!tvcpu) {
932                         ret = H_PARAMETER;
933                         break;
934                 }
935                 yield_count = kvmppc_get_gpr(vcpu, 5);
936                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
937                         break;
938                 kvm_arch_vcpu_yield_to(tvcpu);
939                 break;
940         case H_REGISTER_VPA:
941                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
942                                         kvmppc_get_gpr(vcpu, 5),
943                                         kvmppc_get_gpr(vcpu, 6));
944                 break;
945         case H_RTAS:
946                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
947                         return RESUME_HOST;
948
949                 idx = srcu_read_lock(&vcpu->kvm->srcu);
950                 rc = kvmppc_rtas_hcall(vcpu);
951                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
952
953                 if (rc == -ENOENT)
954                         return RESUME_HOST;
955                 else if (rc == 0)
956                         break;
957
958                 /* Send the error out to userspace via KVM_RUN */
959                 return rc;
960         case H_LOGICAL_CI_LOAD:
961                 ret = kvmppc_h_logical_ci_load(vcpu);
962                 if (ret == H_TOO_HARD)
963                         return RESUME_HOST;
964                 break;
965         case H_LOGICAL_CI_STORE:
966                 ret = kvmppc_h_logical_ci_store(vcpu);
967                 if (ret == H_TOO_HARD)
968                         return RESUME_HOST;
969                 break;
970         case H_SET_MODE:
971                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
972                                         kvmppc_get_gpr(vcpu, 5),
973                                         kvmppc_get_gpr(vcpu, 6),
974                                         kvmppc_get_gpr(vcpu, 7));
975                 if (ret == H_TOO_HARD)
976                         return RESUME_HOST;
977                 break;
978         case H_XIRR:
979         case H_CPPR:
980         case H_EOI:
981         case H_IPI:
982         case H_IPOLL:
983         case H_XIRR_X:
984                 if (kvmppc_xics_enabled(vcpu)) {
985                         if (xics_on_xive()) {
986                                 ret = H_NOT_AVAILABLE;
987                                 return RESUME_GUEST;
988                         }
989                         ret = kvmppc_xics_hcall(vcpu, req);
990                         break;
991                 }
992                 return RESUME_HOST;
993         case H_SET_DABR:
994                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
995                 break;
996         case H_SET_XDABR:
997                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
998                                                 kvmppc_get_gpr(vcpu, 5));
999                 break;
1000 #ifdef CONFIG_SPAPR_TCE_IOMMU
1001         case H_GET_TCE:
1002                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1003                                                 kvmppc_get_gpr(vcpu, 5));
1004                 if (ret == H_TOO_HARD)
1005                         return RESUME_HOST;
1006                 break;
1007         case H_PUT_TCE:
1008                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1009                                                 kvmppc_get_gpr(vcpu, 5),
1010                                                 kvmppc_get_gpr(vcpu, 6));
1011                 if (ret == H_TOO_HARD)
1012                         return RESUME_HOST;
1013                 break;
1014         case H_PUT_TCE_INDIRECT:
1015                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1016                                                 kvmppc_get_gpr(vcpu, 5),
1017                                                 kvmppc_get_gpr(vcpu, 6),
1018                                                 kvmppc_get_gpr(vcpu, 7));
1019                 if (ret == H_TOO_HARD)
1020                         return RESUME_HOST;
1021                 break;
1022         case H_STUFF_TCE:
1023                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1024                                                 kvmppc_get_gpr(vcpu, 5),
1025                                                 kvmppc_get_gpr(vcpu, 6),
1026                                                 kvmppc_get_gpr(vcpu, 7));
1027                 if (ret == H_TOO_HARD)
1028                         return RESUME_HOST;
1029                 break;
1030 #endif
1031         case H_RANDOM:
1032                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1033                         ret = H_HARDWARE;
1034                 break;
1035
1036         case H_SET_PARTITION_TABLE:
1037                 ret = H_FUNCTION;
1038                 if (nesting_enabled(vcpu->kvm))
1039                         ret = kvmhv_set_partition_table(vcpu);
1040                 break;
1041         case H_ENTER_NESTED:
1042                 ret = H_FUNCTION;
1043                 if (!nesting_enabled(vcpu->kvm))
1044                         break;
1045                 ret = kvmhv_enter_nested_guest(vcpu);
1046                 if (ret == H_INTERRUPT) {
1047                         kvmppc_set_gpr(vcpu, 3, 0);
1048                         vcpu->arch.hcall_needed = 0;
1049                         return -EINTR;
1050                 } else if (ret == H_TOO_HARD) {
1051                         kvmppc_set_gpr(vcpu, 3, 0);
1052                         vcpu->arch.hcall_needed = 0;
1053                         return RESUME_HOST;
1054                 }
1055                 break;
1056         case H_TLB_INVALIDATE:
1057                 ret = H_FUNCTION;
1058                 if (nesting_enabled(vcpu->kvm))
1059                         ret = kvmhv_do_nested_tlbie(vcpu);
1060                 break;
1061         case H_COPY_TOFROM_GUEST:
1062                 ret = H_FUNCTION;
1063                 if (nesting_enabled(vcpu->kvm))
1064                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1065                 break;
1066         case H_PAGE_INIT:
1067                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1068                                          kvmppc_get_gpr(vcpu, 5),
1069                                          kvmppc_get_gpr(vcpu, 6));
1070                 break;
1071         case H_SVM_PAGE_IN:
1072                 ret = H_UNSUPPORTED;
1073                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1074                         ret = kvmppc_h_svm_page_in(vcpu->kvm,
1075                                                    kvmppc_get_gpr(vcpu, 4),
1076                                                    kvmppc_get_gpr(vcpu, 5),
1077                                                    kvmppc_get_gpr(vcpu, 6));
1078                 break;
1079         case H_SVM_PAGE_OUT:
1080                 ret = H_UNSUPPORTED;
1081                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1082                         ret = kvmppc_h_svm_page_out(vcpu->kvm,
1083                                                     kvmppc_get_gpr(vcpu, 4),
1084                                                     kvmppc_get_gpr(vcpu, 5),
1085                                                     kvmppc_get_gpr(vcpu, 6));
1086                 break;
1087         case H_SVM_INIT_START:
1088                 ret = H_UNSUPPORTED;
1089                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1090                         ret = kvmppc_h_svm_init_start(vcpu->kvm);
1091                 break;
1092         case H_SVM_INIT_DONE:
1093                 ret = H_UNSUPPORTED;
1094                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1095                         ret = kvmppc_h_svm_init_done(vcpu->kvm);
1096                 break;
1097         case H_SVM_INIT_ABORT:
1098                 /*
1099                  * Even if that call is made by the Ultravisor, the SSR1 value
1100                  * is the guest context one, with the secure bit clear as it has
1101                  * not yet been secured. So we can't check it here.
1102                  * Instead the kvm->arch.secure_guest flag is checked inside
1103                  * kvmppc_h_svm_init_abort().
1104                  */
1105                 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1106                 break;
1107
1108         default:
1109                 return RESUME_HOST;
1110         }
1111         kvmppc_set_gpr(vcpu, 3, ret);
1112         vcpu->arch.hcall_needed = 0;
1113         return RESUME_GUEST;
1114 }
1115
1116 /*
1117  * Handle H_CEDE in the nested virtualization case where we haven't
1118  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1119  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1120  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1121  */
1122 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1123 {
1124         vcpu->arch.shregs.msr |= MSR_EE;
1125         vcpu->arch.ceded = 1;
1126         smp_mb();
1127         if (vcpu->arch.prodded) {
1128                 vcpu->arch.prodded = 0;
1129                 smp_mb();
1130                 vcpu->arch.ceded = 0;
1131         }
1132 }
1133
1134 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1135 {
1136         switch (cmd) {
1137         case H_CEDE:
1138         case H_PROD:
1139         case H_CONFER:
1140         case H_REGISTER_VPA:
1141         case H_SET_MODE:
1142         case H_LOGICAL_CI_LOAD:
1143         case H_LOGICAL_CI_STORE:
1144 #ifdef CONFIG_KVM_XICS
1145         case H_XIRR:
1146         case H_CPPR:
1147         case H_EOI:
1148         case H_IPI:
1149         case H_IPOLL:
1150         case H_XIRR_X:
1151 #endif
1152         case H_PAGE_INIT:
1153                 return 1;
1154         }
1155
1156         /* See if it's in the real-mode table */
1157         return kvmppc_hcall_impl_hv_realmode(cmd);
1158 }
1159
1160 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1161 {
1162         u32 last_inst;
1163
1164         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1165                                         EMULATE_DONE) {
1166                 /*
1167                  * Fetch failed, so return to guest and
1168                  * try executing it again.
1169                  */
1170                 return RESUME_GUEST;
1171         }
1172
1173         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1174                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1175                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1176                 return RESUME_HOST;
1177         } else {
1178                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1179                 return RESUME_GUEST;
1180         }
1181 }
1182
1183 static void do_nothing(void *x)
1184 {
1185 }
1186
1187 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1188 {
1189         int thr, cpu, pcpu, nthreads;
1190         struct kvm_vcpu *v;
1191         unsigned long dpdes;
1192
1193         nthreads = vcpu->kvm->arch.emul_smt_mode;
1194         dpdes = 0;
1195         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1196         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1197                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1198                 if (!v)
1199                         continue;
1200                 /*
1201                  * If the vcpu is currently running on a physical cpu thread,
1202                  * interrupt it in order to pull it out of the guest briefly,
1203                  * which will update its vcore->dpdes value.
1204                  */
1205                 pcpu = READ_ONCE(v->cpu);
1206                 if (pcpu >= 0)
1207                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1208                 if (kvmppc_doorbell_pending(v))
1209                         dpdes |= 1 << thr;
1210         }
1211         return dpdes;
1212 }
1213
1214 /*
1215  * On POWER9, emulate doorbell-related instructions in order to
1216  * give the guest the illusion of running on a multi-threaded core.
1217  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1218  * and mfspr DPDES.
1219  */
1220 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1221 {
1222         u32 inst, rb, thr;
1223         unsigned long arg;
1224         struct kvm *kvm = vcpu->kvm;
1225         struct kvm_vcpu *tvcpu;
1226
1227         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1228                 return RESUME_GUEST;
1229         if (get_op(inst) != 31)
1230                 return EMULATE_FAIL;
1231         rb = get_rb(inst);
1232         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1233         switch (get_xop(inst)) {
1234         case OP_31_XOP_MSGSNDP:
1235                 arg = kvmppc_get_gpr(vcpu, rb);
1236                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1237                         break;
1238                 arg &= 0x3f;
1239                 if (arg >= kvm->arch.emul_smt_mode)
1240                         break;
1241                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1242                 if (!tvcpu)
1243                         break;
1244                 if (!tvcpu->arch.doorbell_request) {
1245                         tvcpu->arch.doorbell_request = 1;
1246                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1247                 }
1248                 break;
1249         case OP_31_XOP_MSGCLRP:
1250                 arg = kvmppc_get_gpr(vcpu, rb);
1251                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1252                         break;
1253                 vcpu->arch.vcore->dpdes = 0;
1254                 vcpu->arch.doorbell_request = 0;
1255                 break;
1256         case OP_31_XOP_MFSPR:
1257                 switch (get_sprn(inst)) {
1258                 case SPRN_TIR:
1259                         arg = thr;
1260                         break;
1261                 case SPRN_DPDES:
1262                         arg = kvmppc_read_dpdes(vcpu);
1263                         break;
1264                 default:
1265                         return EMULATE_FAIL;
1266                 }
1267                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1268                 break;
1269         default:
1270                 return EMULATE_FAIL;
1271         }
1272         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1273         return RESUME_GUEST;
1274 }
1275
1276 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1277                                  struct task_struct *tsk)
1278 {
1279         struct kvm_run *run = vcpu->run;
1280         int r = RESUME_HOST;
1281
1282         vcpu->stat.sum_exits++;
1283
1284         /*
1285          * This can happen if an interrupt occurs in the last stages
1286          * of guest entry or the first stages of guest exit (i.e. after
1287          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1288          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1289          * That can happen due to a bug, or due to a machine check
1290          * occurring at just the wrong time.
1291          */
1292         if (vcpu->arch.shregs.msr & MSR_HV) {
1293                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1294                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1295                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1296                         vcpu->arch.shregs.msr);
1297                 kvmppc_dump_regs(vcpu);
1298                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1299                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1300                 return RESUME_HOST;
1301         }
1302         run->exit_reason = KVM_EXIT_UNKNOWN;
1303         run->ready_for_interrupt_injection = 1;
1304         switch (vcpu->arch.trap) {
1305         /* We're good on these - the host merely wanted to get our attention */
1306         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1307                 vcpu->stat.dec_exits++;
1308                 r = RESUME_GUEST;
1309                 break;
1310         case BOOK3S_INTERRUPT_EXTERNAL:
1311         case BOOK3S_INTERRUPT_H_DOORBELL:
1312         case BOOK3S_INTERRUPT_H_VIRT:
1313                 vcpu->stat.ext_intr_exits++;
1314                 r = RESUME_GUEST;
1315                 break;
1316         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1317         case BOOK3S_INTERRUPT_HMI:
1318         case BOOK3S_INTERRUPT_PERFMON:
1319         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1320                 r = RESUME_GUEST;
1321                 break;
1322         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1323                 /* Print the MCE event to host console. */
1324                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1325
1326                 /*
1327                  * If the guest can do FWNMI, exit to userspace so it can
1328                  * deliver a FWNMI to the guest.
1329                  * Otherwise we synthesize a machine check for the guest
1330                  * so that it knows that the machine check occurred.
1331                  */
1332                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1333                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1334                         kvmppc_core_queue_machine_check(vcpu, flags);
1335                         r = RESUME_GUEST;
1336                         break;
1337                 }
1338
1339                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1340                 run->exit_reason = KVM_EXIT_NMI;
1341                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1342                 /* Clear out the old NMI status from run->flags */
1343                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1344                 /* Now set the NMI status */
1345                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1346                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1347                 else
1348                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1349
1350                 r = RESUME_HOST;
1351                 break;
1352         case BOOK3S_INTERRUPT_PROGRAM:
1353         {
1354                 ulong flags;
1355                 /*
1356                  * Normally program interrupts are delivered directly
1357                  * to the guest by the hardware, but we can get here
1358                  * as a result of a hypervisor emulation interrupt
1359                  * (e40) getting turned into a 700 by BML RTAS.
1360                  */
1361                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1362                 kvmppc_core_queue_program(vcpu, flags);
1363                 r = RESUME_GUEST;
1364                 break;
1365         }
1366         case BOOK3S_INTERRUPT_SYSCALL:
1367         {
1368                 /* hcall - punt to userspace */
1369                 int i;
1370
1371                 /* hypercall with MSR_PR has already been handled in rmode,
1372                  * and never reaches here.
1373                  */
1374
1375                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1376                 for (i = 0; i < 9; ++i)
1377                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1378                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1379                 vcpu->arch.hcall_needed = 1;
1380                 r = RESUME_HOST;
1381                 break;
1382         }
1383         /*
1384          * We get these next two if the guest accesses a page which it thinks
1385          * it has mapped but which is not actually present, either because
1386          * it is for an emulated I/O device or because the corresonding
1387          * host page has been paged out.  Any other HDSI/HISI interrupts
1388          * have been handled already.
1389          */
1390         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1391                 r = RESUME_PAGE_FAULT;
1392                 break;
1393         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1394                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1395                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1396                         DSISR_SRR1_MATCH_64S;
1397                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1398                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1399                 r = RESUME_PAGE_FAULT;
1400                 break;
1401         /*
1402          * This occurs if the guest executes an illegal instruction.
1403          * If the guest debug is disabled, generate a program interrupt
1404          * to the guest. If guest debug is enabled, we need to check
1405          * whether the instruction is a software breakpoint instruction.
1406          * Accordingly return to Guest or Host.
1407          */
1408         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1409                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1410                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1411                                 swab32(vcpu->arch.emul_inst) :
1412                                 vcpu->arch.emul_inst;
1413                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1414                         r = kvmppc_emulate_debug_inst(vcpu);
1415                 } else {
1416                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1417                         r = RESUME_GUEST;
1418                 }
1419                 break;
1420         /*
1421          * This occurs if the guest (kernel or userspace), does something that
1422          * is prohibited by HFSCR.
1423          * On POWER9, this could be a doorbell instruction that we need
1424          * to emulate.
1425          * Otherwise, we just generate a program interrupt to the guest.
1426          */
1427         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1428                 r = EMULATE_FAIL;
1429                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1430                     cpu_has_feature(CPU_FTR_ARCH_300))
1431                         r = kvmppc_emulate_doorbell_instr(vcpu);
1432                 if (r == EMULATE_FAIL) {
1433                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1434                         r = RESUME_GUEST;
1435                 }
1436                 break;
1437
1438 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1439         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1440                 /*
1441                  * This occurs for various TM-related instructions that
1442                  * we need to emulate on POWER9 DD2.2.  We have already
1443                  * handled the cases where the guest was in real-suspend
1444                  * mode and was transitioning to transactional state.
1445                  */
1446                 r = kvmhv_p9_tm_emulation(vcpu);
1447                 break;
1448 #endif
1449
1450         case BOOK3S_INTERRUPT_HV_RM_HARD:
1451                 r = RESUME_PASSTHROUGH;
1452                 break;
1453         default:
1454                 kvmppc_dump_regs(vcpu);
1455                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1456                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1457                         vcpu->arch.shregs.msr);
1458                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1459                 r = RESUME_HOST;
1460                 break;
1461         }
1462
1463         return r;
1464 }
1465
1466 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1467 {
1468         int r;
1469         int srcu_idx;
1470
1471         vcpu->stat.sum_exits++;
1472
1473         /*
1474          * This can happen if an interrupt occurs in the last stages
1475          * of guest entry or the first stages of guest exit (i.e. after
1476          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1477          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1478          * That can happen due to a bug, or due to a machine check
1479          * occurring at just the wrong time.
1480          */
1481         if (vcpu->arch.shregs.msr & MSR_HV) {
1482                 pr_emerg("KVM trap in HV mode while nested!\n");
1483                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1484                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1485                          vcpu->arch.shregs.msr);
1486                 kvmppc_dump_regs(vcpu);
1487                 return RESUME_HOST;
1488         }
1489         switch (vcpu->arch.trap) {
1490         /* We're good on these - the host merely wanted to get our attention */
1491         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1492                 vcpu->stat.dec_exits++;
1493                 r = RESUME_GUEST;
1494                 break;
1495         case BOOK3S_INTERRUPT_EXTERNAL:
1496                 vcpu->stat.ext_intr_exits++;
1497                 r = RESUME_HOST;
1498                 break;
1499         case BOOK3S_INTERRUPT_H_DOORBELL:
1500         case BOOK3S_INTERRUPT_H_VIRT:
1501                 vcpu->stat.ext_intr_exits++;
1502                 r = RESUME_GUEST;
1503                 break;
1504         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1505         case BOOK3S_INTERRUPT_HMI:
1506         case BOOK3S_INTERRUPT_PERFMON:
1507         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1508                 r = RESUME_GUEST;
1509                 break;
1510         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1511                 /* Pass the machine check to the L1 guest */
1512                 r = RESUME_HOST;
1513                 /* Print the MCE event to host console. */
1514                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1515                 break;
1516         /*
1517          * We get these next two if the guest accesses a page which it thinks
1518          * it has mapped but which is not actually present, either because
1519          * it is for an emulated I/O device or because the corresonding
1520          * host page has been paged out.
1521          */
1522         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1523                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1524                 r = kvmhv_nested_page_fault(vcpu);
1525                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1526                 break;
1527         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1528                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1529                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1530                                          DSISR_SRR1_MATCH_64S;
1531                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1532                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1533                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1534                 r = kvmhv_nested_page_fault(vcpu);
1535                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1536                 break;
1537
1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1539         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1540                 /*
1541                  * This occurs for various TM-related instructions that
1542                  * we need to emulate on POWER9 DD2.2.  We have already
1543                  * handled the cases where the guest was in real-suspend
1544                  * mode and was transitioning to transactional state.
1545                  */
1546                 r = kvmhv_p9_tm_emulation(vcpu);
1547                 break;
1548 #endif
1549
1550         case BOOK3S_INTERRUPT_HV_RM_HARD:
1551                 vcpu->arch.trap = 0;
1552                 r = RESUME_GUEST;
1553                 if (!xics_on_xive())
1554                         kvmppc_xics_rm_complete(vcpu, 0);
1555                 break;
1556         default:
1557                 r = RESUME_HOST;
1558                 break;
1559         }
1560
1561         return r;
1562 }
1563
1564 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1565                                             struct kvm_sregs *sregs)
1566 {
1567         int i;
1568
1569         memset(sregs, 0, sizeof(struct kvm_sregs));
1570         sregs->pvr = vcpu->arch.pvr;
1571         for (i = 0; i < vcpu->arch.slb_max; i++) {
1572                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1573                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1574         }
1575
1576         return 0;
1577 }
1578
1579 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1580                                             struct kvm_sregs *sregs)
1581 {
1582         int i, j;
1583
1584         /* Only accept the same PVR as the host's, since we can't spoof it */
1585         if (sregs->pvr != vcpu->arch.pvr)
1586                 return -EINVAL;
1587
1588         j = 0;
1589         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1590                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1591                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1592                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1593                         ++j;
1594                 }
1595         }
1596         vcpu->arch.slb_max = j;
1597
1598         return 0;
1599 }
1600
1601 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1602                 bool preserve_top32)
1603 {
1604         struct kvm *kvm = vcpu->kvm;
1605         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1606         u64 mask;
1607
1608         spin_lock(&vc->lock);
1609         /*
1610          * If ILE (interrupt little-endian) has changed, update the
1611          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1612          */
1613         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1614                 struct kvm_vcpu *vcpu;
1615                 int i;
1616
1617                 kvm_for_each_vcpu(i, vcpu, kvm) {
1618                         if (vcpu->arch.vcore != vc)
1619                                 continue;
1620                         if (new_lpcr & LPCR_ILE)
1621                                 vcpu->arch.intr_msr |= MSR_LE;
1622                         else
1623                                 vcpu->arch.intr_msr &= ~MSR_LE;
1624                 }
1625         }
1626
1627         /*
1628          * Userspace can only modify DPFD (default prefetch depth),
1629          * ILE (interrupt little-endian) and TC (translation control).
1630          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1631          */
1632         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1633         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1634                 mask |= LPCR_AIL;
1635         /*
1636          * On POWER9, allow userspace to enable large decrementer for the
1637          * guest, whether or not the host has it enabled.
1638          */
1639         if (cpu_has_feature(CPU_FTR_ARCH_300))
1640                 mask |= LPCR_LD;
1641
1642         /* Broken 32-bit version of LPCR must not clear top bits */
1643         if (preserve_top32)
1644                 mask &= 0xFFFFFFFF;
1645         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1646         spin_unlock(&vc->lock);
1647 }
1648
1649 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1650                                  union kvmppc_one_reg *val)
1651 {
1652         int r = 0;
1653         long int i;
1654
1655         switch (id) {
1656         case KVM_REG_PPC_DEBUG_INST:
1657                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1658                 break;
1659         case KVM_REG_PPC_HIOR:
1660                 *val = get_reg_val(id, 0);
1661                 break;
1662         case KVM_REG_PPC_DABR:
1663                 *val = get_reg_val(id, vcpu->arch.dabr);
1664                 break;
1665         case KVM_REG_PPC_DABRX:
1666                 *val = get_reg_val(id, vcpu->arch.dabrx);
1667                 break;
1668         case KVM_REG_PPC_DSCR:
1669                 *val = get_reg_val(id, vcpu->arch.dscr);
1670                 break;
1671         case KVM_REG_PPC_PURR:
1672                 *val = get_reg_val(id, vcpu->arch.purr);
1673                 break;
1674         case KVM_REG_PPC_SPURR:
1675                 *val = get_reg_val(id, vcpu->arch.spurr);
1676                 break;
1677         case KVM_REG_PPC_AMR:
1678                 *val = get_reg_val(id, vcpu->arch.amr);
1679                 break;
1680         case KVM_REG_PPC_UAMOR:
1681                 *val = get_reg_val(id, vcpu->arch.uamor);
1682                 break;
1683         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1684                 i = id - KVM_REG_PPC_MMCR0;
1685                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1686                 break;
1687         case KVM_REG_PPC_MMCR2:
1688                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1689                 break;
1690         case KVM_REG_PPC_MMCRA:
1691                 *val = get_reg_val(id, vcpu->arch.mmcra);
1692                 break;
1693         case KVM_REG_PPC_MMCRS:
1694                 *val = get_reg_val(id, vcpu->arch.mmcrs);
1695                 break;
1696         case KVM_REG_PPC_MMCR3:
1697                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1698                 break;
1699         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1700                 i = id - KVM_REG_PPC_PMC1;
1701                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1702                 break;
1703         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1704                 i = id - KVM_REG_PPC_SPMC1;
1705                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1706                 break;
1707         case KVM_REG_PPC_SIAR:
1708                 *val = get_reg_val(id, vcpu->arch.siar);
1709                 break;
1710         case KVM_REG_PPC_SDAR:
1711                 *val = get_reg_val(id, vcpu->arch.sdar);
1712                 break;
1713         case KVM_REG_PPC_SIER:
1714                 *val = get_reg_val(id, vcpu->arch.sier[0]);
1715                 break;
1716         case KVM_REG_PPC_SIER2:
1717                 *val = get_reg_val(id, vcpu->arch.sier[1]);
1718                 break;
1719         case KVM_REG_PPC_SIER3:
1720                 *val = get_reg_val(id, vcpu->arch.sier[2]);
1721                 break;
1722         case KVM_REG_PPC_IAMR:
1723                 *val = get_reg_val(id, vcpu->arch.iamr);
1724                 break;
1725         case KVM_REG_PPC_PSPB:
1726                 *val = get_reg_val(id, vcpu->arch.pspb);
1727                 break;
1728         case KVM_REG_PPC_DPDES:
1729                 /*
1730                  * On POWER9, where we are emulating msgsndp etc.,
1731                  * we return 1 bit for each vcpu, which can come from
1732                  * either vcore->dpdes or doorbell_request.
1733                  * On POWER8, doorbell_request is 0.
1734                  */
1735                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1736                                    vcpu->arch.doorbell_request);
1737                 break;
1738         case KVM_REG_PPC_VTB:
1739                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1740                 break;
1741         case KVM_REG_PPC_DAWR:
1742                 *val = get_reg_val(id, vcpu->arch.dawr);
1743                 break;
1744         case KVM_REG_PPC_DAWRX:
1745                 *val = get_reg_val(id, vcpu->arch.dawrx);
1746                 break;
1747         case KVM_REG_PPC_CIABR:
1748                 *val = get_reg_val(id, vcpu->arch.ciabr);
1749                 break;
1750         case KVM_REG_PPC_CSIGR:
1751                 *val = get_reg_val(id, vcpu->arch.csigr);
1752                 break;
1753         case KVM_REG_PPC_TACR:
1754                 *val = get_reg_val(id, vcpu->arch.tacr);
1755                 break;
1756         case KVM_REG_PPC_TCSCR:
1757                 *val = get_reg_val(id, vcpu->arch.tcscr);
1758                 break;
1759         case KVM_REG_PPC_PID:
1760                 *val = get_reg_val(id, vcpu->arch.pid);
1761                 break;
1762         case KVM_REG_PPC_ACOP:
1763                 *val = get_reg_val(id, vcpu->arch.acop);
1764                 break;
1765         case KVM_REG_PPC_WORT:
1766                 *val = get_reg_val(id, vcpu->arch.wort);
1767                 break;
1768         case KVM_REG_PPC_TIDR:
1769                 *val = get_reg_val(id, vcpu->arch.tid);
1770                 break;
1771         case KVM_REG_PPC_PSSCR:
1772                 *val = get_reg_val(id, vcpu->arch.psscr);
1773                 break;
1774         case KVM_REG_PPC_VPA_ADDR:
1775                 spin_lock(&vcpu->arch.vpa_update_lock);
1776                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1777                 spin_unlock(&vcpu->arch.vpa_update_lock);
1778                 break;
1779         case KVM_REG_PPC_VPA_SLB:
1780                 spin_lock(&vcpu->arch.vpa_update_lock);
1781                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1782                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1783                 spin_unlock(&vcpu->arch.vpa_update_lock);
1784                 break;
1785         case KVM_REG_PPC_VPA_DTL:
1786                 spin_lock(&vcpu->arch.vpa_update_lock);
1787                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1788                 val->vpaval.length = vcpu->arch.dtl.len;
1789                 spin_unlock(&vcpu->arch.vpa_update_lock);
1790                 break;
1791         case KVM_REG_PPC_TB_OFFSET:
1792                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1793                 break;
1794         case KVM_REG_PPC_LPCR:
1795         case KVM_REG_PPC_LPCR_64:
1796                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1797                 break;
1798         case KVM_REG_PPC_PPR:
1799                 *val = get_reg_val(id, vcpu->arch.ppr);
1800                 break;
1801 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1802         case KVM_REG_PPC_TFHAR:
1803                 *val = get_reg_val(id, vcpu->arch.tfhar);
1804                 break;
1805         case KVM_REG_PPC_TFIAR:
1806                 *val = get_reg_val(id, vcpu->arch.tfiar);
1807                 break;
1808         case KVM_REG_PPC_TEXASR:
1809                 *val = get_reg_val(id, vcpu->arch.texasr);
1810                 break;
1811         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1812                 i = id - KVM_REG_PPC_TM_GPR0;
1813                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1814                 break;
1815         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1816         {
1817                 int j;
1818                 i = id - KVM_REG_PPC_TM_VSR0;
1819                 if (i < 32)
1820                         for (j = 0; j < TS_FPRWIDTH; j++)
1821                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1822                 else {
1823                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1824                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1825                         else
1826                                 r = -ENXIO;
1827                 }
1828                 break;
1829         }
1830         case KVM_REG_PPC_TM_CR:
1831                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1832                 break;
1833         case KVM_REG_PPC_TM_XER:
1834                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1835                 break;
1836         case KVM_REG_PPC_TM_LR:
1837                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1838                 break;
1839         case KVM_REG_PPC_TM_CTR:
1840                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1841                 break;
1842         case KVM_REG_PPC_TM_FPSCR:
1843                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1844                 break;
1845         case KVM_REG_PPC_TM_AMR:
1846                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1847                 break;
1848         case KVM_REG_PPC_TM_PPR:
1849                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1850                 break;
1851         case KVM_REG_PPC_TM_VRSAVE:
1852                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1853                 break;
1854         case KVM_REG_PPC_TM_VSCR:
1855                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1856                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1857                 else
1858                         r = -ENXIO;
1859                 break;
1860         case KVM_REG_PPC_TM_DSCR:
1861                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1862                 break;
1863         case KVM_REG_PPC_TM_TAR:
1864                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1865                 break;
1866 #endif
1867         case KVM_REG_PPC_ARCH_COMPAT:
1868                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1869                 break;
1870         case KVM_REG_PPC_DEC_EXPIRY:
1871                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1872                                    vcpu->arch.vcore->tb_offset);
1873                 break;
1874         case KVM_REG_PPC_ONLINE:
1875                 *val = get_reg_val(id, vcpu->arch.online);
1876                 break;
1877         case KVM_REG_PPC_PTCR:
1878                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1879                 break;
1880         default:
1881                 r = -EINVAL;
1882                 break;
1883         }
1884
1885         return r;
1886 }
1887
1888 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1889                                  union kvmppc_one_reg *val)
1890 {
1891         int r = 0;
1892         long int i;
1893         unsigned long addr, len;
1894
1895         switch (id) {
1896         case KVM_REG_PPC_HIOR:
1897                 /* Only allow this to be set to zero */
1898                 if (set_reg_val(id, *val))
1899                         r = -EINVAL;
1900                 break;
1901         case KVM_REG_PPC_DABR:
1902                 vcpu->arch.dabr = set_reg_val(id, *val);
1903                 break;
1904         case KVM_REG_PPC_DABRX:
1905                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1906                 break;
1907         case KVM_REG_PPC_DSCR:
1908                 vcpu->arch.dscr = set_reg_val(id, *val);
1909                 break;
1910         case KVM_REG_PPC_PURR:
1911                 vcpu->arch.purr = set_reg_val(id, *val);
1912                 break;
1913         case KVM_REG_PPC_SPURR:
1914                 vcpu->arch.spurr = set_reg_val(id, *val);
1915                 break;
1916         case KVM_REG_PPC_AMR:
1917                 vcpu->arch.amr = set_reg_val(id, *val);
1918                 break;
1919         case KVM_REG_PPC_UAMOR:
1920                 vcpu->arch.uamor = set_reg_val(id, *val);
1921                 break;
1922         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1923                 i = id - KVM_REG_PPC_MMCR0;
1924                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1925                 break;
1926         case KVM_REG_PPC_MMCR2:
1927                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1928                 break;
1929         case KVM_REG_PPC_MMCRA:
1930                 vcpu->arch.mmcra = set_reg_val(id, *val);
1931                 break;
1932         case KVM_REG_PPC_MMCRS:
1933                 vcpu->arch.mmcrs = set_reg_val(id, *val);
1934                 break;
1935         case KVM_REG_PPC_MMCR3:
1936                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1937                 break;
1938         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1939                 i = id - KVM_REG_PPC_PMC1;
1940                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1941                 break;
1942         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1943                 i = id - KVM_REG_PPC_SPMC1;
1944                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1945                 break;
1946         case KVM_REG_PPC_SIAR:
1947                 vcpu->arch.siar = set_reg_val(id, *val);
1948                 break;
1949         case KVM_REG_PPC_SDAR:
1950                 vcpu->arch.sdar = set_reg_val(id, *val);
1951                 break;
1952         case KVM_REG_PPC_SIER:
1953                 vcpu->arch.sier[0] = set_reg_val(id, *val);
1954                 break;
1955         case KVM_REG_PPC_SIER2:
1956                 vcpu->arch.sier[1] = set_reg_val(id, *val);
1957                 break;
1958         case KVM_REG_PPC_SIER3:
1959                 vcpu->arch.sier[2] = set_reg_val(id, *val);
1960                 break;
1961         case KVM_REG_PPC_IAMR:
1962                 vcpu->arch.iamr = set_reg_val(id, *val);
1963                 break;
1964         case KVM_REG_PPC_PSPB:
1965                 vcpu->arch.pspb = set_reg_val(id, *val);
1966                 break;
1967         case KVM_REG_PPC_DPDES:
1968                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1969                 break;
1970         case KVM_REG_PPC_VTB:
1971                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1972                 break;
1973         case KVM_REG_PPC_DAWR:
1974                 vcpu->arch.dawr = set_reg_val(id, *val);
1975                 break;
1976         case KVM_REG_PPC_DAWRX:
1977                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1978                 break;
1979         case KVM_REG_PPC_CIABR:
1980                 vcpu->arch.ciabr = set_reg_val(id, *val);
1981                 /* Don't allow setting breakpoints in hypervisor code */
1982                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1983                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1984                 break;
1985         case KVM_REG_PPC_CSIGR:
1986                 vcpu->arch.csigr = set_reg_val(id, *val);
1987                 break;
1988         case KVM_REG_PPC_TACR:
1989                 vcpu->arch.tacr = set_reg_val(id, *val);
1990                 break;
1991         case KVM_REG_PPC_TCSCR:
1992                 vcpu->arch.tcscr = set_reg_val(id, *val);
1993                 break;
1994         case KVM_REG_PPC_PID:
1995                 vcpu->arch.pid = set_reg_val(id, *val);
1996                 break;
1997         case KVM_REG_PPC_ACOP:
1998                 vcpu->arch.acop = set_reg_val(id, *val);
1999                 break;
2000         case KVM_REG_PPC_WORT:
2001                 vcpu->arch.wort = set_reg_val(id, *val);
2002                 break;
2003         case KVM_REG_PPC_TIDR:
2004                 vcpu->arch.tid = set_reg_val(id, *val);
2005                 break;
2006         case KVM_REG_PPC_PSSCR:
2007                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2008                 break;
2009         case KVM_REG_PPC_VPA_ADDR:
2010                 addr = set_reg_val(id, *val);
2011                 r = -EINVAL;
2012                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2013                               vcpu->arch.dtl.next_gpa))
2014                         break;
2015                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2016                 break;
2017         case KVM_REG_PPC_VPA_SLB:
2018                 addr = val->vpaval.addr;
2019                 len = val->vpaval.length;
2020                 r = -EINVAL;
2021                 if (addr && !vcpu->arch.vpa.next_gpa)
2022                         break;
2023                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2024                 break;
2025         case KVM_REG_PPC_VPA_DTL:
2026                 addr = val->vpaval.addr;
2027                 len = val->vpaval.length;
2028                 r = -EINVAL;
2029                 if (addr && (len < sizeof(struct dtl_entry) ||
2030                              !vcpu->arch.vpa.next_gpa))
2031                         break;
2032                 len -= len % sizeof(struct dtl_entry);
2033                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2034                 break;
2035         case KVM_REG_PPC_TB_OFFSET:
2036                 /* round up to multiple of 2^24 */
2037                 vcpu->arch.vcore->tb_offset =
2038                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2039                 break;
2040         case KVM_REG_PPC_LPCR:
2041                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2042                 break;
2043         case KVM_REG_PPC_LPCR_64:
2044                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2045                 break;
2046         case KVM_REG_PPC_PPR:
2047                 vcpu->arch.ppr = set_reg_val(id, *val);
2048                 break;
2049 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2050         case KVM_REG_PPC_TFHAR:
2051                 vcpu->arch.tfhar = set_reg_val(id, *val);
2052                 break;
2053         case KVM_REG_PPC_TFIAR:
2054                 vcpu->arch.tfiar = set_reg_val(id, *val);
2055                 break;
2056         case KVM_REG_PPC_TEXASR:
2057                 vcpu->arch.texasr = set_reg_val(id, *val);
2058                 break;
2059         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2060                 i = id - KVM_REG_PPC_TM_GPR0;
2061                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2062                 break;
2063         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2064         {
2065                 int j;
2066                 i = id - KVM_REG_PPC_TM_VSR0;
2067                 if (i < 32)
2068                         for (j = 0; j < TS_FPRWIDTH; j++)
2069                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2070                 else
2071                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2072                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2073                         else
2074                                 r = -ENXIO;
2075                 break;
2076         }
2077         case KVM_REG_PPC_TM_CR:
2078                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2079                 break;
2080         case KVM_REG_PPC_TM_XER:
2081                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2082                 break;
2083         case KVM_REG_PPC_TM_LR:
2084                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2085                 break;
2086         case KVM_REG_PPC_TM_CTR:
2087                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2088                 break;
2089         case KVM_REG_PPC_TM_FPSCR:
2090                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2091                 break;
2092         case KVM_REG_PPC_TM_AMR:
2093                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2094                 break;
2095         case KVM_REG_PPC_TM_PPR:
2096                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2097                 break;
2098         case KVM_REG_PPC_TM_VRSAVE:
2099                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2100                 break;
2101         case KVM_REG_PPC_TM_VSCR:
2102                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2103                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2104                 else
2105                         r = - ENXIO;
2106                 break;
2107         case KVM_REG_PPC_TM_DSCR:
2108                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2109                 break;
2110         case KVM_REG_PPC_TM_TAR:
2111                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2112                 break;
2113 #endif
2114         case KVM_REG_PPC_ARCH_COMPAT:
2115                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2116                 break;
2117         case KVM_REG_PPC_DEC_EXPIRY:
2118                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2119                         vcpu->arch.vcore->tb_offset;
2120                 break;
2121         case KVM_REG_PPC_ONLINE:
2122                 i = set_reg_val(id, *val);
2123                 if (i && !vcpu->arch.online)
2124                         atomic_inc(&vcpu->arch.vcore->online_count);
2125                 else if (!i && vcpu->arch.online)
2126                         atomic_dec(&vcpu->arch.vcore->online_count);
2127                 vcpu->arch.online = i;
2128                 break;
2129         case KVM_REG_PPC_PTCR:
2130                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2131                 break;
2132         default:
2133                 r = -EINVAL;
2134                 break;
2135         }
2136
2137         return r;
2138 }
2139
2140 /*
2141  * On POWER9, threads are independent and can be in different partitions.
2142  * Therefore we consider each thread to be a subcore.
2143  * There is a restriction that all threads have to be in the same
2144  * MMU mode (radix or HPT), unfortunately, but since we only support
2145  * HPT guests on a HPT host so far, that isn't an impediment yet.
2146  */
2147 static int threads_per_vcore(struct kvm *kvm)
2148 {
2149         if (kvm->arch.threads_indep)
2150                 return 1;
2151         return threads_per_subcore;
2152 }
2153
2154 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2155 {
2156         struct kvmppc_vcore *vcore;
2157
2158         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2159
2160         if (vcore == NULL)
2161                 return NULL;
2162
2163         spin_lock_init(&vcore->lock);
2164         spin_lock_init(&vcore->stoltb_lock);
2165         rcuwait_init(&vcore->wait);
2166         vcore->preempt_tb = TB_NIL;
2167         vcore->lpcr = kvm->arch.lpcr;
2168         vcore->first_vcpuid = id;
2169         vcore->kvm = kvm;
2170         INIT_LIST_HEAD(&vcore->preempt_list);
2171
2172         return vcore;
2173 }
2174
2175 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2176 static struct debugfs_timings_element {
2177         const char *name;
2178         size_t offset;
2179 } timings[] = {
2180         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2181         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2182         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2183         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2184         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2185 };
2186
2187 #define N_TIMINGS       (ARRAY_SIZE(timings))
2188
2189 struct debugfs_timings_state {
2190         struct kvm_vcpu *vcpu;
2191         unsigned int    buflen;
2192         char            buf[N_TIMINGS * 100];
2193 };
2194
2195 static int debugfs_timings_open(struct inode *inode, struct file *file)
2196 {
2197         struct kvm_vcpu *vcpu = inode->i_private;
2198         struct debugfs_timings_state *p;
2199
2200         p = kzalloc(sizeof(*p), GFP_KERNEL);
2201         if (!p)
2202                 return -ENOMEM;
2203
2204         kvm_get_kvm(vcpu->kvm);
2205         p->vcpu = vcpu;
2206         file->private_data = p;
2207
2208         return nonseekable_open(inode, file);
2209 }
2210
2211 static int debugfs_timings_release(struct inode *inode, struct file *file)
2212 {
2213         struct debugfs_timings_state *p = file->private_data;
2214
2215         kvm_put_kvm(p->vcpu->kvm);
2216         kfree(p);
2217         return 0;
2218 }
2219
2220 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2221                                     size_t len, loff_t *ppos)
2222 {
2223         struct debugfs_timings_state *p = file->private_data;
2224         struct kvm_vcpu *vcpu = p->vcpu;
2225         char *s, *buf_end;
2226         struct kvmhv_tb_accumulator tb;
2227         u64 count;
2228         loff_t pos;
2229         ssize_t n;
2230         int i, loops;
2231         bool ok;
2232
2233         if (!p->buflen) {
2234                 s = p->buf;
2235                 buf_end = s + sizeof(p->buf);
2236                 for (i = 0; i < N_TIMINGS; ++i) {
2237                         struct kvmhv_tb_accumulator *acc;
2238
2239                         acc = (struct kvmhv_tb_accumulator *)
2240                                 ((unsigned long)vcpu + timings[i].offset);
2241                         ok = false;
2242                         for (loops = 0; loops < 1000; ++loops) {
2243                                 count = acc->seqcount;
2244                                 if (!(count & 1)) {
2245                                         smp_rmb();
2246                                         tb = *acc;
2247                                         smp_rmb();
2248                                         if (count == acc->seqcount) {
2249                                                 ok = true;
2250                                                 break;
2251                                         }
2252                                 }
2253                                 udelay(1);
2254                         }
2255                         if (!ok)
2256                                 snprintf(s, buf_end - s, "%s: stuck\n",
2257                                         timings[i].name);
2258                         else
2259                                 snprintf(s, buf_end - s,
2260                                         "%s: %llu %llu %llu %llu\n",
2261                                         timings[i].name, count / 2,
2262                                         tb_to_ns(tb.tb_total),
2263                                         tb_to_ns(tb.tb_min),
2264                                         tb_to_ns(tb.tb_max));
2265                         s += strlen(s);
2266                 }
2267                 p->buflen = s - p->buf;
2268         }
2269
2270         pos = *ppos;
2271         if (pos >= p->buflen)
2272                 return 0;
2273         if (len > p->buflen - pos)
2274                 len = p->buflen - pos;
2275         n = copy_to_user(buf, p->buf + pos, len);
2276         if (n) {
2277                 if (n == len)
2278                         return -EFAULT;
2279                 len -= n;
2280         }
2281         *ppos = pos + len;
2282         return len;
2283 }
2284
2285 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2286                                      size_t len, loff_t *ppos)
2287 {
2288         return -EACCES;
2289 }
2290
2291 static const struct file_operations debugfs_timings_ops = {
2292         .owner   = THIS_MODULE,
2293         .open    = debugfs_timings_open,
2294         .release = debugfs_timings_release,
2295         .read    = debugfs_timings_read,
2296         .write   = debugfs_timings_write,
2297         .llseek  = generic_file_llseek,
2298 };
2299
2300 /* Create a debugfs directory for the vcpu */
2301 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2302 {
2303         char buf[16];
2304         struct kvm *kvm = vcpu->kvm;
2305
2306         snprintf(buf, sizeof(buf), "vcpu%u", id);
2307         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2308         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2309                             &debugfs_timings_ops);
2310 }
2311
2312 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2313 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2314 {
2315 }
2316 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2317
2318 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2319 {
2320         int err;
2321         int core;
2322         struct kvmppc_vcore *vcore;
2323         struct kvm *kvm;
2324         unsigned int id;
2325
2326         kvm = vcpu->kvm;
2327         id = vcpu->vcpu_id;
2328
2329         vcpu->arch.shared = &vcpu->arch.shregs;
2330 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2331         /*
2332          * The shared struct is never shared on HV,
2333          * so we can always use host endianness
2334          */
2335 #ifdef __BIG_ENDIAN__
2336         vcpu->arch.shared_big_endian = true;
2337 #else
2338         vcpu->arch.shared_big_endian = false;
2339 #endif
2340 #endif
2341         vcpu->arch.mmcr[0] = MMCR0_FC;
2342         vcpu->arch.ctrl = CTRL_RUNLATCH;
2343         /* default to host PVR, since we can't spoof it */
2344         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2345         spin_lock_init(&vcpu->arch.vpa_update_lock);
2346         spin_lock_init(&vcpu->arch.tbacct_lock);
2347         vcpu->arch.busy_preempt = TB_NIL;
2348         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2349
2350         /*
2351          * Set the default HFSCR for the guest from the host value.
2352          * This value is only used on POWER9.
2353          * On POWER9, we want to virtualize the doorbell facility, so we
2354          * don't set the HFSCR_MSGP bit, and that causes those instructions
2355          * to trap and then we emulate them.
2356          */
2357         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2358                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2359         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2360                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2361                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2362                         vcpu->arch.hfscr |= HFSCR_TM;
2363         }
2364         if (cpu_has_feature(CPU_FTR_TM_COMP))
2365                 vcpu->arch.hfscr |= HFSCR_TM;
2366
2367         kvmppc_mmu_book3s_hv_init(vcpu);
2368
2369         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2370
2371         init_waitqueue_head(&vcpu->arch.cpu_run);
2372
2373         mutex_lock(&kvm->lock);
2374         vcore = NULL;
2375         err = -EINVAL;
2376         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2377                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2378                         pr_devel("KVM: VCPU ID too high\n");
2379                         core = KVM_MAX_VCORES;
2380                 } else {
2381                         BUG_ON(kvm->arch.smt_mode != 1);
2382                         core = kvmppc_pack_vcpu_id(kvm, id);
2383                 }
2384         } else {
2385                 core = id / kvm->arch.smt_mode;
2386         }
2387         if (core < KVM_MAX_VCORES) {
2388                 vcore = kvm->arch.vcores[core];
2389                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2390                         pr_devel("KVM: collision on id %u", id);
2391                         vcore = NULL;
2392                 } else if (!vcore) {
2393                         /*
2394                          * Take mmu_setup_lock for mutual exclusion
2395                          * with kvmppc_update_lpcr().
2396                          */
2397                         err = -ENOMEM;
2398                         vcore = kvmppc_vcore_create(kvm,
2399                                         id & ~(kvm->arch.smt_mode - 1));
2400                         mutex_lock(&kvm->arch.mmu_setup_lock);
2401                         kvm->arch.vcores[core] = vcore;
2402                         kvm->arch.online_vcores++;
2403                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2404                 }
2405         }
2406         mutex_unlock(&kvm->lock);
2407
2408         if (!vcore)
2409                 return err;
2410
2411         spin_lock(&vcore->lock);
2412         ++vcore->num_threads;
2413         spin_unlock(&vcore->lock);
2414         vcpu->arch.vcore = vcore;
2415         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2416         vcpu->arch.thread_cpu = -1;
2417         vcpu->arch.prev_cpu = -1;
2418
2419         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2420         kvmppc_sanity_check(vcpu);
2421
2422         debugfs_vcpu_init(vcpu, id);
2423
2424         return 0;
2425 }
2426
2427 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2428                               unsigned long flags)
2429 {
2430         int err;
2431         int esmt = 0;
2432
2433         if (flags)
2434                 return -EINVAL;
2435         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2436                 return -EINVAL;
2437         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2438                 /*
2439                  * On POWER8 (or POWER7), the threading mode is "strict",
2440                  * so we pack smt_mode vcpus per vcore.
2441                  */
2442                 if (smt_mode > threads_per_subcore)
2443                         return -EINVAL;
2444         } else {
2445                 /*
2446                  * On POWER9, the threading mode is "loose",
2447                  * so each vcpu gets its own vcore.
2448                  */
2449                 esmt = smt_mode;
2450                 smt_mode = 1;
2451         }
2452         mutex_lock(&kvm->lock);
2453         err = -EBUSY;
2454         if (!kvm->arch.online_vcores) {
2455                 kvm->arch.smt_mode = smt_mode;
2456                 kvm->arch.emul_smt_mode = esmt;
2457                 err = 0;
2458         }
2459         mutex_unlock(&kvm->lock);
2460
2461         return err;
2462 }
2463
2464 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2465 {
2466         if (vpa->pinned_addr)
2467                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2468                                         vpa->dirty);
2469 }
2470
2471 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2472 {
2473         spin_lock(&vcpu->arch.vpa_update_lock);
2474         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2475         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2476         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2477         spin_unlock(&vcpu->arch.vpa_update_lock);
2478 }
2479
2480 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2481 {
2482         /* Indicate we want to get back into the guest */
2483         return 1;
2484 }
2485
2486 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2487 {
2488         unsigned long dec_nsec, now;
2489
2490         now = get_tb();
2491         if (now > vcpu->arch.dec_expires) {
2492                 /* decrementer has already gone negative */
2493                 kvmppc_core_queue_dec(vcpu);
2494                 kvmppc_core_prepare_to_enter(vcpu);
2495                 return;
2496         }
2497         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2498         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2499         vcpu->arch.timer_running = 1;
2500 }
2501
2502 extern int __kvmppc_vcore_entry(void);
2503
2504 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2505                                    struct kvm_vcpu *vcpu)
2506 {
2507         u64 now;
2508
2509         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2510                 return;
2511         spin_lock_irq(&vcpu->arch.tbacct_lock);
2512         now = mftb();
2513         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2514                 vcpu->arch.stolen_logged;
2515         vcpu->arch.busy_preempt = now;
2516         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2517         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2518         --vc->n_runnable;
2519         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2520 }
2521
2522 static int kvmppc_grab_hwthread(int cpu)
2523 {
2524         struct paca_struct *tpaca;
2525         long timeout = 10000;
2526
2527         tpaca = paca_ptrs[cpu];
2528
2529         /* Ensure the thread won't go into the kernel if it wakes */
2530         tpaca->kvm_hstate.kvm_vcpu = NULL;
2531         tpaca->kvm_hstate.kvm_vcore = NULL;
2532         tpaca->kvm_hstate.napping = 0;
2533         smp_wmb();
2534         tpaca->kvm_hstate.hwthread_req = 1;
2535
2536         /*
2537          * If the thread is already executing in the kernel (e.g. handling
2538          * a stray interrupt), wait for it to get back to nap mode.
2539          * The smp_mb() is to ensure that our setting of hwthread_req
2540          * is visible before we look at hwthread_state, so if this
2541          * races with the code at system_reset_pSeries and the thread
2542          * misses our setting of hwthread_req, we are sure to see its
2543          * setting of hwthread_state, and vice versa.
2544          */
2545         smp_mb();
2546         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2547                 if (--timeout <= 0) {
2548                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2549                         return -EBUSY;
2550                 }
2551                 udelay(1);
2552         }
2553         return 0;
2554 }
2555
2556 static void kvmppc_release_hwthread(int cpu)
2557 {
2558         struct paca_struct *tpaca;
2559
2560         tpaca = paca_ptrs[cpu];
2561         tpaca->kvm_hstate.hwthread_req = 0;
2562         tpaca->kvm_hstate.kvm_vcpu = NULL;
2563         tpaca->kvm_hstate.kvm_vcore = NULL;
2564         tpaca->kvm_hstate.kvm_split_mode = NULL;
2565 }
2566
2567 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2568 {
2569         struct kvm_nested_guest *nested = vcpu->arch.nested;
2570         cpumask_t *cpu_in_guest;
2571         int i;
2572
2573         cpu = cpu_first_thread_sibling(cpu);
2574         if (nested) {
2575                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2576                 cpu_in_guest = &nested->cpu_in_guest;
2577         } else {
2578                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2579                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2580         }
2581         /*
2582          * Make sure setting of bit in need_tlb_flush precedes
2583          * testing of cpu_in_guest bits.  The matching barrier on
2584          * the other side is the first smp_mb() in kvmppc_run_core().
2585          */
2586         smp_mb();
2587         for (i = 0; i < threads_per_core; ++i)
2588                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2589                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2590 }
2591
2592 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2593 {
2594         struct kvm_nested_guest *nested = vcpu->arch.nested;
2595         struct kvm *kvm = vcpu->kvm;
2596         int prev_cpu;
2597
2598         if (!cpu_has_feature(CPU_FTR_HVMODE))
2599                 return;
2600
2601         if (nested)
2602                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2603         else
2604                 prev_cpu = vcpu->arch.prev_cpu;
2605
2606         /*
2607          * With radix, the guest can do TLB invalidations itself,
2608          * and it could choose to use the local form (tlbiel) if
2609          * it is invalidating a translation that has only ever been
2610          * used on one vcpu.  However, that doesn't mean it has
2611          * only ever been used on one physical cpu, since vcpus
2612          * can move around between pcpus.  To cope with this, when
2613          * a vcpu moves from one pcpu to another, we need to tell
2614          * any vcpus running on the same core as this vcpu previously
2615          * ran to flush the TLB.  The TLB is shared between threads,
2616          * so we use a single bit in .need_tlb_flush for all 4 threads.
2617          */
2618         if (prev_cpu != pcpu) {
2619                 if (prev_cpu >= 0 &&
2620                     cpu_first_thread_sibling(prev_cpu) !=
2621                     cpu_first_thread_sibling(pcpu))
2622                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2623                 if (nested)
2624                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2625                 else
2626                         vcpu->arch.prev_cpu = pcpu;
2627         }
2628 }
2629
2630 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2631 {
2632         int cpu;
2633         struct paca_struct *tpaca;
2634         struct kvm *kvm = vc->kvm;
2635
2636         cpu = vc->pcpu;
2637         if (vcpu) {
2638                 if (vcpu->arch.timer_running) {
2639                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2640                         vcpu->arch.timer_running = 0;
2641                 }
2642                 cpu += vcpu->arch.ptid;
2643                 vcpu->cpu = vc->pcpu;
2644                 vcpu->arch.thread_cpu = cpu;
2645                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2646         }
2647         tpaca = paca_ptrs[cpu];
2648         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2649         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2650         tpaca->kvm_hstate.fake_suspend = 0;
2651         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2652         smp_wmb();
2653         tpaca->kvm_hstate.kvm_vcore = vc;
2654         if (cpu != smp_processor_id())
2655                 kvmppc_ipi_thread(cpu);
2656 }
2657
2658 static void kvmppc_wait_for_nap(int n_threads)
2659 {
2660         int cpu = smp_processor_id();
2661         int i, loops;
2662
2663         if (n_threads <= 1)
2664                 return;
2665         for (loops = 0; loops < 1000000; ++loops) {
2666                 /*
2667                  * Check if all threads are finished.
2668                  * We set the vcore pointer when starting a thread
2669                  * and the thread clears it when finished, so we look
2670                  * for any threads that still have a non-NULL vcore ptr.
2671                  */
2672                 for (i = 1; i < n_threads; ++i)
2673                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2674                                 break;
2675                 if (i == n_threads) {
2676                         HMT_medium();
2677                         return;
2678                 }
2679                 HMT_low();
2680         }
2681         HMT_medium();
2682         for (i = 1; i < n_threads; ++i)
2683                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2684                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2685 }
2686
2687 /*
2688  * Check that we are on thread 0 and that any other threads in
2689  * this core are off-line.  Then grab the threads so they can't
2690  * enter the kernel.
2691  */
2692 static int on_primary_thread(void)
2693 {
2694         int cpu = smp_processor_id();
2695         int thr;
2696
2697         /* Are we on a primary subcore? */
2698         if (cpu_thread_in_subcore(cpu))
2699                 return 0;
2700
2701         thr = 0;
2702         while (++thr < threads_per_subcore)
2703                 if (cpu_online(cpu + thr))
2704                         return 0;
2705
2706         /* Grab all hw threads so they can't go into the kernel */
2707         for (thr = 1; thr < threads_per_subcore; ++thr) {
2708                 if (kvmppc_grab_hwthread(cpu + thr)) {
2709                         /* Couldn't grab one; let the others go */
2710                         do {
2711                                 kvmppc_release_hwthread(cpu + thr);
2712                         } while (--thr > 0);
2713                         return 0;
2714                 }
2715         }
2716         return 1;
2717 }
2718
2719 /*
2720  * A list of virtual cores for each physical CPU.
2721  * These are vcores that could run but their runner VCPU tasks are
2722  * (or may be) preempted.
2723  */
2724 struct preempted_vcore_list {
2725         struct list_head        list;
2726         spinlock_t              lock;
2727 };
2728
2729 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2730
2731 static void init_vcore_lists(void)
2732 {
2733         int cpu;
2734
2735         for_each_possible_cpu(cpu) {
2736                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2737                 spin_lock_init(&lp->lock);
2738                 INIT_LIST_HEAD(&lp->list);
2739         }
2740 }
2741
2742 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2743 {
2744         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2745
2746         vc->vcore_state = VCORE_PREEMPT;
2747         vc->pcpu = smp_processor_id();
2748         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2749                 spin_lock(&lp->lock);
2750                 list_add_tail(&vc->preempt_list, &lp->list);
2751                 spin_unlock(&lp->lock);
2752         }
2753
2754         /* Start accumulating stolen time */
2755         kvmppc_core_start_stolen(vc);
2756 }
2757
2758 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2759 {
2760         struct preempted_vcore_list *lp;
2761
2762         kvmppc_core_end_stolen(vc);
2763         if (!list_empty(&vc->preempt_list)) {
2764                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2765                 spin_lock(&lp->lock);
2766                 list_del_init(&vc->preempt_list);
2767                 spin_unlock(&lp->lock);
2768         }
2769         vc->vcore_state = VCORE_INACTIVE;
2770 }
2771
2772 /*
2773  * This stores information about the virtual cores currently
2774  * assigned to a physical core.
2775  */
2776 struct core_info {
2777         int             n_subcores;
2778         int             max_subcore_threads;
2779         int             total_threads;
2780         int             subcore_threads[MAX_SUBCORES];
2781         struct kvmppc_vcore *vc[MAX_SUBCORES];
2782 };
2783
2784 /*
2785  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2786  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2787  */
2788 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2789
2790 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2791 {
2792         memset(cip, 0, sizeof(*cip));
2793         cip->n_subcores = 1;
2794         cip->max_subcore_threads = vc->num_threads;
2795         cip->total_threads = vc->num_threads;
2796         cip->subcore_threads[0] = vc->num_threads;
2797         cip->vc[0] = vc;
2798 }
2799
2800 static bool subcore_config_ok(int n_subcores, int n_threads)
2801 {
2802         /*
2803          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2804          * split-core mode, with one thread per subcore.
2805          */
2806         if (cpu_has_feature(CPU_FTR_ARCH_300))
2807                 return n_subcores <= 4 && n_threads == 1;
2808
2809         /* On POWER8, can only dynamically split if unsplit to begin with */
2810         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2811                 return false;
2812         if (n_subcores > MAX_SUBCORES)
2813                 return false;
2814         if (n_subcores > 1) {
2815                 if (!(dynamic_mt_modes & 2))
2816                         n_subcores = 4;
2817                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2818                         return false;
2819         }
2820
2821         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2822 }
2823
2824 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2825 {
2826         vc->entry_exit_map = 0;
2827         vc->in_guest = 0;
2828         vc->napping_threads = 0;
2829         vc->conferring_threads = 0;
2830         vc->tb_offset_applied = 0;
2831 }
2832
2833 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2834 {
2835         int n_threads = vc->num_threads;
2836         int sub;
2837
2838         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2839                 return false;
2840
2841         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2842         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2843                 return false;
2844
2845         /* Some POWER9 chips require all threads to be in the same MMU mode */
2846         if (no_mixing_hpt_and_radix &&
2847             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2848                 return false;
2849
2850         if (n_threads < cip->max_subcore_threads)
2851                 n_threads = cip->max_subcore_threads;
2852         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2853                 return false;
2854         cip->max_subcore_threads = n_threads;
2855
2856         sub = cip->n_subcores;
2857         ++cip->n_subcores;
2858         cip->total_threads += vc->num_threads;
2859         cip->subcore_threads[sub] = vc->num_threads;
2860         cip->vc[sub] = vc;
2861         init_vcore_to_run(vc);
2862         list_del_init(&vc->preempt_list);
2863
2864         return true;
2865 }
2866
2867 /*
2868  * Work out whether it is possible to piggyback the execution of
2869  * vcore *pvc onto the execution of the other vcores described in *cip.
2870  */
2871 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2872                           int target_threads)
2873 {
2874         if (cip->total_threads + pvc->num_threads > target_threads)
2875                 return false;
2876
2877         return can_dynamic_split(pvc, cip);
2878 }
2879
2880 static void prepare_threads(struct kvmppc_vcore *vc)
2881 {
2882         int i;
2883         struct kvm_vcpu *vcpu;
2884
2885         for_each_runnable_thread(i, vcpu, vc) {
2886                 if (signal_pending(vcpu->arch.run_task))
2887                         vcpu->arch.ret = -EINTR;
2888                 else if (vcpu->arch.vpa.update_pending ||
2889                          vcpu->arch.slb_shadow.update_pending ||
2890                          vcpu->arch.dtl.update_pending)
2891                         vcpu->arch.ret = RESUME_GUEST;
2892                 else
2893                         continue;
2894                 kvmppc_remove_runnable(vc, vcpu);
2895                 wake_up(&vcpu->arch.cpu_run);
2896         }
2897 }
2898
2899 static void collect_piggybacks(struct core_info *cip, int target_threads)
2900 {
2901         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2902         struct kvmppc_vcore *pvc, *vcnext;
2903
2904         spin_lock(&lp->lock);
2905         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2906                 if (!spin_trylock(&pvc->lock))
2907                         continue;
2908                 prepare_threads(pvc);
2909                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2910                         list_del_init(&pvc->preempt_list);
2911                         if (pvc->runner == NULL) {
2912                                 pvc->vcore_state = VCORE_INACTIVE;
2913                                 kvmppc_core_end_stolen(pvc);
2914                         }
2915                         spin_unlock(&pvc->lock);
2916                         continue;
2917                 }
2918                 if (!can_piggyback(pvc, cip, target_threads)) {
2919                         spin_unlock(&pvc->lock);
2920                         continue;
2921                 }
2922                 kvmppc_core_end_stolen(pvc);
2923                 pvc->vcore_state = VCORE_PIGGYBACK;
2924                 if (cip->total_threads >= target_threads)
2925                         break;
2926         }
2927         spin_unlock(&lp->lock);
2928 }
2929
2930 static bool recheck_signals_and_mmu(struct core_info *cip)
2931 {
2932         int sub, i;
2933         struct kvm_vcpu *vcpu;
2934         struct kvmppc_vcore *vc;
2935
2936         for (sub = 0; sub < cip->n_subcores; ++sub) {
2937                 vc = cip->vc[sub];
2938                 if (!vc->kvm->arch.mmu_ready)
2939                         return true;
2940                 for_each_runnable_thread(i, vcpu, vc)
2941                         if (signal_pending(vcpu->arch.run_task))
2942                                 return true;
2943         }
2944         return false;
2945 }
2946
2947 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2948 {
2949         int still_running = 0, i;
2950         u64 now;
2951         long ret;
2952         struct kvm_vcpu *vcpu;
2953
2954         spin_lock(&vc->lock);
2955         now = get_tb();
2956         for_each_runnable_thread(i, vcpu, vc) {
2957                 /*
2958                  * It's safe to unlock the vcore in the loop here, because
2959                  * for_each_runnable_thread() is safe against removal of
2960                  * the vcpu, and the vcore state is VCORE_EXITING here,
2961                  * so any vcpus becoming runnable will have their arch.trap
2962                  * set to zero and can't actually run in the guest.
2963                  */
2964                 spin_unlock(&vc->lock);
2965                 /* cancel pending dec exception if dec is positive */
2966                 if (now < vcpu->arch.dec_expires &&
2967                     kvmppc_core_pending_dec(vcpu))
2968                         kvmppc_core_dequeue_dec(vcpu);
2969
2970                 trace_kvm_guest_exit(vcpu);
2971
2972                 ret = RESUME_GUEST;
2973                 if (vcpu->arch.trap)
2974                         ret = kvmppc_handle_exit_hv(vcpu,
2975                                                     vcpu->arch.run_task);
2976
2977                 vcpu->arch.ret = ret;
2978                 vcpu->arch.trap = 0;
2979
2980                 spin_lock(&vc->lock);
2981                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2982                         if (vcpu->arch.pending_exceptions)
2983                                 kvmppc_core_prepare_to_enter(vcpu);
2984                         if (vcpu->arch.ceded)
2985                                 kvmppc_set_timer(vcpu);
2986                         else
2987                                 ++still_running;
2988                 } else {
2989                         kvmppc_remove_runnable(vc, vcpu);
2990                         wake_up(&vcpu->arch.cpu_run);
2991                 }
2992         }
2993         if (!is_master) {
2994                 if (still_running > 0) {
2995                         kvmppc_vcore_preempt(vc);
2996                 } else if (vc->runner) {
2997                         vc->vcore_state = VCORE_PREEMPT;
2998                         kvmppc_core_start_stolen(vc);
2999                 } else {
3000                         vc->vcore_state = VCORE_INACTIVE;
3001                 }
3002                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3003                         /* make sure there's a candidate runner awake */
3004                         i = -1;
3005                         vcpu = next_runnable_thread(vc, &i);
3006                         wake_up(&vcpu->arch.cpu_run);
3007                 }
3008         }
3009         spin_unlock(&vc->lock);
3010 }
3011
3012 /*
3013  * Clear core from the list of active host cores as we are about to
3014  * enter the guest. Only do this if it is the primary thread of the
3015  * core (not if a subcore) that is entering the guest.
3016  */
3017 static inline int kvmppc_clear_host_core(unsigned int cpu)
3018 {
3019         int core;
3020
3021         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3022                 return 0;
3023         /*
3024          * Memory barrier can be omitted here as we will do a smp_wmb()
3025          * later in kvmppc_start_thread and we need ensure that state is
3026          * visible to other CPUs only after we enter guest.
3027          */
3028         core = cpu >> threads_shift;
3029         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3030         return 0;
3031 }
3032
3033 /*
3034  * Advertise this core as an active host core since we exited the guest
3035  * Only need to do this if it is the primary thread of the core that is
3036  * exiting.
3037  */
3038 static inline int kvmppc_set_host_core(unsigned int cpu)
3039 {
3040         int core;
3041
3042         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3043                 return 0;
3044
3045         /*
3046          * Memory barrier can be omitted here because we do a spin_unlock
3047          * immediately after this which provides the memory barrier.
3048          */
3049         core = cpu >> threads_shift;
3050         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3051         return 0;
3052 }
3053
3054 static void set_irq_happened(int trap)
3055 {
3056         switch (trap) {
3057         case BOOK3S_INTERRUPT_EXTERNAL:
3058                 local_paca->irq_happened |= PACA_IRQ_EE;
3059                 break;
3060         case BOOK3S_INTERRUPT_H_DOORBELL:
3061                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3062                 break;
3063         case BOOK3S_INTERRUPT_HMI:
3064                 local_paca->irq_happened |= PACA_IRQ_HMI;
3065                 break;
3066         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3067                 replay_system_reset();
3068                 break;
3069         }
3070 }
3071
3072 /*
3073  * Run a set of guest threads on a physical core.
3074  * Called with vc->lock held.
3075  */
3076 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3077 {
3078         struct kvm_vcpu *vcpu;
3079         int i;
3080         int srcu_idx;
3081         struct core_info core_info;
3082         struct kvmppc_vcore *pvc;
3083         struct kvm_split_mode split_info, *sip;
3084         int split, subcore_size, active;
3085         int sub;
3086         bool thr0_done;
3087         unsigned long cmd_bit, stat_bit;
3088         int pcpu, thr;
3089         int target_threads;
3090         int controlled_threads;
3091         int trap;
3092         bool is_power8;
3093         bool hpt_on_radix;
3094
3095         /*
3096          * Remove from the list any threads that have a signal pending
3097          * or need a VPA update done
3098          */
3099         prepare_threads(vc);
3100
3101         /* if the runner is no longer runnable, let the caller pick a new one */
3102         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3103                 return;
3104
3105         /*
3106          * Initialize *vc.
3107          */
3108         init_vcore_to_run(vc);
3109         vc->preempt_tb = TB_NIL;
3110
3111         /*
3112          * Number of threads that we will be controlling: the same as
3113          * the number of threads per subcore, except on POWER9,
3114          * where it's 1 because the threads are (mostly) independent.
3115          */
3116         controlled_threads = threads_per_vcore(vc->kvm);
3117
3118         /*
3119          * Make sure we are running on primary threads, and that secondary
3120          * threads are offline.  Also check if the number of threads in this
3121          * guest are greater than the current system threads per guest.
3122          * On POWER9, we need to be not in independent-threads mode if
3123          * this is a HPT guest on a radix host machine where the
3124          * CPU threads may not be in different MMU modes.
3125          */
3126         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3127                 !kvm_is_radix(vc->kvm);
3128         if (((controlled_threads > 1) &&
3129              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3130             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3131                 for_each_runnable_thread(i, vcpu, vc) {
3132                         vcpu->arch.ret = -EBUSY;
3133                         kvmppc_remove_runnable(vc, vcpu);
3134                         wake_up(&vcpu->arch.cpu_run);
3135                 }
3136                 goto out;
3137         }
3138
3139         /*
3140          * See if we could run any other vcores on the physical core
3141          * along with this one.
3142          */
3143         init_core_info(&core_info, vc);
3144         pcpu = smp_processor_id();
3145         target_threads = controlled_threads;
3146         if (target_smt_mode && target_smt_mode < target_threads)
3147                 target_threads = target_smt_mode;
3148         if (vc->num_threads < target_threads)
3149                 collect_piggybacks(&core_info, target_threads);
3150
3151         /*
3152          * On radix, arrange for TLB flushing if necessary.
3153          * This has to be done before disabling interrupts since
3154          * it uses smp_call_function().
3155          */
3156         pcpu = smp_processor_id();
3157         if (kvm_is_radix(vc->kvm)) {
3158                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3159                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3160                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3161         }
3162
3163         /*
3164          * Hard-disable interrupts, and check resched flag and signals.
3165          * If we need to reschedule or deliver a signal, clean up
3166          * and return without going into the guest(s).
3167          * If the mmu_ready flag has been cleared, don't go into the
3168          * guest because that means a HPT resize operation is in progress.
3169          */
3170         local_irq_disable();
3171         hard_irq_disable();
3172         if (lazy_irq_pending() || need_resched() ||
3173             recheck_signals_and_mmu(&core_info)) {
3174                 local_irq_enable();
3175                 vc->vcore_state = VCORE_INACTIVE;
3176                 /* Unlock all except the primary vcore */
3177                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3178                         pvc = core_info.vc[sub];
3179                         /* Put back on to the preempted vcores list */
3180                         kvmppc_vcore_preempt(pvc);
3181                         spin_unlock(&pvc->lock);
3182                 }
3183                 for (i = 0; i < controlled_threads; ++i)
3184                         kvmppc_release_hwthread(pcpu + i);
3185                 return;
3186         }
3187
3188         kvmppc_clear_host_core(pcpu);
3189
3190         /* Decide on micro-threading (split-core) mode */
3191         subcore_size = threads_per_subcore;
3192         cmd_bit = stat_bit = 0;
3193         split = core_info.n_subcores;
3194         sip = NULL;
3195         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3196                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3197
3198         if (split > 1 || hpt_on_radix) {
3199                 sip = &split_info;
3200                 memset(&split_info, 0, sizeof(split_info));
3201                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3202                         split_info.vc[sub] = core_info.vc[sub];
3203
3204                 if (is_power8) {
3205                         if (split == 2 && (dynamic_mt_modes & 2)) {
3206                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3207                                 stat_bit = HID0_POWER8_2LPARMODE;
3208                         } else {
3209                                 split = 4;
3210                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3211                                 stat_bit = HID0_POWER8_4LPARMODE;
3212                         }
3213                         subcore_size = MAX_SMT_THREADS / split;
3214                         split_info.rpr = mfspr(SPRN_RPR);
3215                         split_info.pmmar = mfspr(SPRN_PMMAR);
3216                         split_info.ldbar = mfspr(SPRN_LDBAR);
3217                         split_info.subcore_size = subcore_size;
3218                 } else {
3219                         split_info.subcore_size = 1;
3220                         if (hpt_on_radix) {
3221                                 /* Use the split_info for LPCR/LPIDR changes */
3222                                 split_info.lpcr_req = vc->lpcr;
3223                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3224                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3225                                 split_info.do_set = 1;
3226                         }
3227                 }
3228
3229                 /* order writes to split_info before kvm_split_mode pointer */
3230                 smp_wmb();
3231         }
3232
3233         for (thr = 0; thr < controlled_threads; ++thr) {
3234                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3235
3236                 paca->kvm_hstate.tid = thr;
3237                 paca->kvm_hstate.napping = 0;
3238                 paca->kvm_hstate.kvm_split_mode = sip;
3239         }
3240
3241         /* Initiate micro-threading (split-core) on POWER8 if required */
3242         if (cmd_bit) {
3243                 unsigned long hid0 = mfspr(SPRN_HID0);
3244
3245                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3246                 mb();
3247                 mtspr(SPRN_HID0, hid0);
3248                 isync();
3249                 for (;;) {
3250                         hid0 = mfspr(SPRN_HID0);
3251                         if (hid0 & stat_bit)
3252                                 break;
3253                         cpu_relax();
3254                 }
3255         }
3256
3257         /*
3258          * On POWER8, set RWMR register.
3259          * Since it only affects PURR and SPURR, it doesn't affect
3260          * the host, so we don't save/restore the host value.
3261          */
3262         if (is_power8) {
3263                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3264                 int n_online = atomic_read(&vc->online_count);
3265
3266                 /*
3267                  * Use the 8-thread value if we're doing split-core
3268                  * or if the vcore's online count looks bogus.
3269                  */
3270                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3271                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3272                         rwmr_val = p8_rwmr_values[n_online];
3273                 mtspr(SPRN_RWMR, rwmr_val);
3274         }
3275
3276         /* Start all the threads */
3277         active = 0;
3278         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3279                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3280                 thr0_done = false;
3281                 active |= 1 << thr;
3282                 pvc = core_info.vc[sub];
3283                 pvc->pcpu = pcpu + thr;
3284                 for_each_runnable_thread(i, vcpu, pvc) {
3285                         kvmppc_start_thread(vcpu, pvc);
3286                         kvmppc_create_dtl_entry(vcpu, pvc);
3287                         trace_kvm_guest_enter(vcpu);
3288                         if (!vcpu->arch.ptid)
3289                                 thr0_done = true;
3290                         active |= 1 << (thr + vcpu->arch.ptid);
3291                 }
3292                 /*
3293                  * We need to start the first thread of each subcore
3294                  * even if it doesn't have a vcpu.
3295                  */
3296                 if (!thr0_done)
3297                         kvmppc_start_thread(NULL, pvc);
3298         }
3299
3300         /*
3301          * Ensure that split_info.do_nap is set after setting
3302          * the vcore pointer in the PACA of the secondaries.
3303          */
3304         smp_mb();
3305
3306         /*
3307          * When doing micro-threading, poke the inactive threads as well.
3308          * This gets them to the nap instruction after kvm_do_nap,
3309          * which reduces the time taken to unsplit later.
3310          * For POWER9 HPT guest on radix host, we need all the secondary
3311          * threads woken up so they can do the LPCR/LPIDR change.
3312          */
3313         if (cmd_bit || hpt_on_radix) {
3314                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3315                 for (thr = 1; thr < threads_per_subcore; ++thr)
3316                         if (!(active & (1 << thr)))
3317                                 kvmppc_ipi_thread(pcpu + thr);
3318         }
3319
3320         vc->vcore_state = VCORE_RUNNING;
3321         preempt_disable();
3322
3323         trace_kvmppc_run_core(vc, 0);
3324
3325         for (sub = 0; sub < core_info.n_subcores; ++sub)
3326                 spin_unlock(&core_info.vc[sub]->lock);
3327
3328         guest_enter_irqoff();
3329
3330         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3331
3332         this_cpu_disable_ftrace();
3333
3334         /*
3335          * Interrupts will be enabled once we get into the guest,
3336          * so tell lockdep that we're about to enable interrupts.
3337          */
3338         trace_hardirqs_on();
3339
3340         trap = __kvmppc_vcore_entry();
3341
3342         trace_hardirqs_off();
3343
3344         this_cpu_enable_ftrace();
3345
3346         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3347
3348         set_irq_happened(trap);
3349
3350         spin_lock(&vc->lock);
3351         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3352         vc->vcore_state = VCORE_EXITING;
3353
3354         /* wait for secondary threads to finish writing their state to memory */
3355         kvmppc_wait_for_nap(controlled_threads);
3356
3357         /* Return to whole-core mode if we split the core earlier */
3358         if (cmd_bit) {
3359                 unsigned long hid0 = mfspr(SPRN_HID0);
3360                 unsigned long loops = 0;
3361
3362                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3363                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3364                 mb();
3365                 mtspr(SPRN_HID0, hid0);
3366                 isync();
3367                 for (;;) {
3368                         hid0 = mfspr(SPRN_HID0);
3369                         if (!(hid0 & stat_bit))
3370                                 break;
3371                         cpu_relax();
3372                         ++loops;
3373                 }
3374         } else if (hpt_on_radix) {
3375                 /* Wait for all threads to have seen final sync */
3376                 for (thr = 1; thr < controlled_threads; ++thr) {
3377                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3378
3379                         while (paca->kvm_hstate.kvm_split_mode) {
3380                                 HMT_low();
3381                                 barrier();
3382                         }
3383                         HMT_medium();
3384                 }
3385         }
3386         split_info.do_nap = 0;
3387
3388         kvmppc_set_host_core(pcpu);
3389
3390         local_irq_enable();
3391         guest_exit();
3392
3393         /* Let secondaries go back to the offline loop */
3394         for (i = 0; i < controlled_threads; ++i) {
3395                 kvmppc_release_hwthread(pcpu + i);
3396                 if (sip && sip->napped[i])
3397                         kvmppc_ipi_thread(pcpu + i);
3398                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3399         }
3400
3401         spin_unlock(&vc->lock);
3402
3403         /* make sure updates to secondary vcpu structs are visible now */
3404         smp_mb();
3405
3406         preempt_enable();
3407
3408         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3409                 pvc = core_info.vc[sub];
3410                 post_guest_process(pvc, pvc == vc);
3411         }
3412
3413         spin_lock(&vc->lock);
3414
3415  out:
3416         vc->vcore_state = VCORE_INACTIVE;
3417         trace_kvmppc_run_core(vc, 1);
3418 }
3419
3420 /*
3421  * Load up hypervisor-mode registers on P9.
3422  */
3423 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3424                                      unsigned long lpcr)
3425 {
3426         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3427         s64 hdec;
3428         u64 tb, purr, spurr;
3429         int trap;
3430         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3431         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3432         unsigned long host_dawr = mfspr(SPRN_DAWR0);
3433         unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3434         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3435         unsigned long host_pidr = mfspr(SPRN_PID);
3436
3437         hdec = time_limit - mftb();
3438         if (hdec < 0)
3439                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3440         mtspr(SPRN_HDEC, hdec);
3441
3442         if (vc->tb_offset) {
3443                 u64 new_tb = mftb() + vc->tb_offset;
3444                 mtspr(SPRN_TBU40, new_tb);
3445                 tb = mftb();
3446                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3447                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3448                 vc->tb_offset_applied = vc->tb_offset;
3449         }
3450
3451         if (vc->pcr)
3452                 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3453         mtspr(SPRN_DPDES, vc->dpdes);
3454         mtspr(SPRN_VTB, vc->vtb);
3455
3456         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3457         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3458         mtspr(SPRN_PURR, vcpu->arch.purr);
3459         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3460
3461         if (dawr_enabled()) {
3462                 mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3463                 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3464         }
3465         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3466         mtspr(SPRN_IC, vcpu->arch.ic);
3467         mtspr(SPRN_PID, vcpu->arch.pid);
3468
3469         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3470               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3471
3472         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3473
3474         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3475         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3476         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3477         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3478
3479         mtspr(SPRN_AMOR, ~0UL);
3480
3481         mtspr(SPRN_LPCR, lpcr);
3482         isync();
3483
3484         kvmppc_xive_push_vcpu(vcpu);
3485
3486         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3487         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3488
3489         trap = __kvmhv_vcpu_entry_p9(vcpu);
3490
3491         /* Advance host PURR/SPURR by the amount used by guest */
3492         purr = mfspr(SPRN_PURR);
3493         spurr = mfspr(SPRN_SPURR);
3494         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3495               purr - vcpu->arch.purr);
3496         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3497               spurr - vcpu->arch.spurr);
3498         vcpu->arch.purr = purr;
3499         vcpu->arch.spurr = spurr;
3500
3501         vcpu->arch.ic = mfspr(SPRN_IC);
3502         vcpu->arch.pid = mfspr(SPRN_PID);
3503         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3504
3505         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3506         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3507         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3508         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3509
3510         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3511         mtspr(SPRN_PSSCR, host_psscr |
3512               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3513         mtspr(SPRN_HFSCR, host_hfscr);
3514         mtspr(SPRN_CIABR, host_ciabr);
3515         mtspr(SPRN_DAWR0, host_dawr);
3516         mtspr(SPRN_DAWRX0, host_dawrx);
3517         mtspr(SPRN_PID, host_pidr);
3518
3519         /*
3520          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3521          * case we interrupted the guest between a tlbie and a ptesync.
3522          */
3523         asm volatile("eieio; tlbsync; ptesync");
3524
3525         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3526         isync();
3527
3528         vc->dpdes = mfspr(SPRN_DPDES);
3529         vc->vtb = mfspr(SPRN_VTB);
3530         mtspr(SPRN_DPDES, 0);
3531         if (vc->pcr)
3532                 mtspr(SPRN_PCR, PCR_MASK);
3533
3534         if (vc->tb_offset_applied) {
3535                 u64 new_tb = mftb() - vc->tb_offset_applied;
3536                 mtspr(SPRN_TBU40, new_tb);
3537                 tb = mftb();
3538                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3539                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3540                 vc->tb_offset_applied = 0;
3541         }
3542
3543         mtspr(SPRN_HDEC, 0x7fffffff);
3544         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3545
3546         return trap;
3547 }
3548
3549 /*
3550  * Virtual-mode guest entry for POWER9 and later when the host and
3551  * guest are both using the radix MMU.  The LPIDR has already been set.
3552  */
3553 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3554                          unsigned long lpcr)
3555 {
3556         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3557         unsigned long host_dscr = mfspr(SPRN_DSCR);
3558         unsigned long host_tidr = mfspr(SPRN_TIDR);
3559         unsigned long host_iamr = mfspr(SPRN_IAMR);
3560         unsigned long host_amr = mfspr(SPRN_AMR);
3561         s64 dec;
3562         u64 tb;
3563         int trap, save_pmu;
3564
3565         dec = mfspr(SPRN_DEC);
3566         tb = mftb();
3567         if (dec < 512)
3568                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3569         local_paca->kvm_hstate.dec_expires = dec + tb;
3570         if (local_paca->kvm_hstate.dec_expires < time_limit)
3571                 time_limit = local_paca->kvm_hstate.dec_expires;
3572
3573         vcpu->arch.ceded = 0;
3574
3575         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3576
3577         kvmppc_subcore_enter_guest();
3578
3579         vc->entry_exit_map = 1;
3580         vc->in_guest = 1;
3581
3582         if (vcpu->arch.vpa.pinned_addr) {
3583                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3584                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3585                 lp->yield_count = cpu_to_be32(yield_count);
3586                 vcpu->arch.vpa.dirty = 1;
3587         }
3588
3589         if (cpu_has_feature(CPU_FTR_TM) ||
3590             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3591                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3592
3593         kvmhv_load_guest_pmu(vcpu);
3594
3595         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3596         load_fp_state(&vcpu->arch.fp);
3597 #ifdef CONFIG_ALTIVEC
3598         load_vr_state(&vcpu->arch.vr);
3599 #endif
3600         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3601
3602         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3603         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3604         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3605         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3606         mtspr(SPRN_TAR, vcpu->arch.tar);
3607         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3608         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3609         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3610         mtspr(SPRN_WORT, vcpu->arch.wort);
3611         mtspr(SPRN_TIDR, vcpu->arch.tid);
3612         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3613         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3614         mtspr(SPRN_AMR, vcpu->arch.amr);
3615         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3616
3617         if (!(vcpu->arch.ctrl & 1))
3618                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3619
3620         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3621
3622         if (kvmhv_on_pseries()) {
3623                 /*
3624                  * We need to save and restore the guest visible part of the
3625                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3626                  * doesn't do this for us. Note only required if pseries since
3627                  * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3628                  */
3629                 unsigned long host_psscr;
3630                 /* call our hypervisor to load up HV regs and go */
3631                 struct hv_guest_state hvregs;
3632
3633                 host_psscr = mfspr(SPRN_PSSCR_PR);
3634                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3635                 kvmhv_save_hv_regs(vcpu, &hvregs);
3636                 hvregs.lpcr = lpcr;
3637                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3638                 hvregs.version = HV_GUEST_STATE_VERSION;
3639                 if (vcpu->arch.nested) {
3640                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3641                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3642                 } else {
3643                         hvregs.lpid = vcpu->kvm->arch.lpid;
3644                         hvregs.vcpu_token = vcpu->vcpu_id;
3645                 }
3646                 hvregs.hdec_expiry = time_limit;
3647                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3648                                           __pa(&vcpu->arch.regs));
3649                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3650                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3651                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3652                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3653                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3654                 mtspr(SPRN_PSSCR_PR, host_psscr);
3655
3656                 /* H_CEDE has to be handled now, not later */
3657                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3658                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3659                         kvmppc_nested_cede(vcpu);
3660                         kvmppc_set_gpr(vcpu, 3, 0);
3661                         trap = 0;
3662                 }
3663         } else {
3664                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3665         }
3666
3667         vcpu->arch.slb_max = 0;
3668         dec = mfspr(SPRN_DEC);
3669         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3670                 dec = (s32) dec;
3671         tb = mftb();
3672         vcpu->arch.dec_expires = dec + tb;
3673         vcpu->cpu = -1;
3674         vcpu->arch.thread_cpu = -1;
3675         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3676
3677         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3678         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3679         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3680         vcpu->arch.tar = mfspr(SPRN_TAR);
3681         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3682         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3683         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3684         vcpu->arch.wort = mfspr(SPRN_WORT);
3685         vcpu->arch.tid = mfspr(SPRN_TIDR);
3686         vcpu->arch.amr = mfspr(SPRN_AMR);
3687         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3688         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3689
3690         mtspr(SPRN_PSPB, 0);
3691         mtspr(SPRN_WORT, 0);
3692         mtspr(SPRN_UAMOR, 0);
3693         mtspr(SPRN_DSCR, host_dscr);
3694         mtspr(SPRN_TIDR, host_tidr);
3695         mtspr(SPRN_IAMR, host_iamr);
3696         mtspr(SPRN_PSPB, 0);
3697
3698         if (host_amr != vcpu->arch.amr)
3699                 mtspr(SPRN_AMR, host_amr);
3700
3701         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3702         store_fp_state(&vcpu->arch.fp);
3703 #ifdef CONFIG_ALTIVEC
3704         store_vr_state(&vcpu->arch.vr);
3705 #endif
3706         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3707
3708         if (cpu_has_feature(CPU_FTR_TM) ||
3709             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3710                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3711
3712         save_pmu = 1;
3713         if (vcpu->arch.vpa.pinned_addr) {
3714                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3715                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3716                 lp->yield_count = cpu_to_be32(yield_count);
3717                 vcpu->arch.vpa.dirty = 1;
3718                 save_pmu = lp->pmcregs_in_use;
3719         }
3720         /* Must save pmu if this guest is capable of running nested guests */
3721         save_pmu |= nesting_enabled(vcpu->kvm);
3722
3723         kvmhv_save_guest_pmu(vcpu, save_pmu);
3724
3725         vc->entry_exit_map = 0x101;
3726         vc->in_guest = 0;
3727
3728         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3729         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3730
3731         kvmhv_load_host_pmu();
3732
3733         kvmppc_subcore_exit_guest();
3734
3735         return trap;
3736 }
3737
3738 /*
3739  * Wait for some other vcpu thread to execute us, and
3740  * wake us up when we need to handle something in the host.
3741  */
3742 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3743                                  struct kvm_vcpu *vcpu, int wait_state)
3744 {
3745         DEFINE_WAIT(wait);
3746
3747         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3748         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3749                 spin_unlock(&vc->lock);
3750                 schedule();
3751                 spin_lock(&vc->lock);
3752         }
3753         finish_wait(&vcpu->arch.cpu_run, &wait);
3754 }
3755
3756 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3757 {
3758         if (!halt_poll_ns_grow)
3759                 return;
3760
3761         vc->halt_poll_ns *= halt_poll_ns_grow;
3762         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3763                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3764 }
3765
3766 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3767 {
3768         if (halt_poll_ns_shrink == 0)
3769                 vc->halt_poll_ns = 0;
3770         else
3771                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3772 }
3773
3774 #ifdef CONFIG_KVM_XICS
3775 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3776 {
3777         if (!xics_on_xive())
3778                 return false;
3779         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3780                 vcpu->arch.xive_saved_state.cppr;
3781 }
3782 #else
3783 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3784 {
3785         return false;
3786 }
3787 #endif /* CONFIG_KVM_XICS */
3788
3789 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3790 {
3791         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3792             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3793                 return true;
3794
3795         return false;
3796 }
3797
3798 /*
3799  * Check to see if any of the runnable vcpus on the vcore have pending
3800  * exceptions or are no longer ceded
3801  */
3802 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3803 {
3804         struct kvm_vcpu *vcpu;
3805         int i;
3806
3807         for_each_runnable_thread(i, vcpu, vc) {
3808                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3809                         return 1;
3810         }
3811
3812         return 0;
3813 }
3814
3815 /*
3816  * All the vcpus in this vcore are idle, so wait for a decrementer
3817  * or external interrupt to one of the vcpus.  vc->lock is held.
3818  */
3819 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3820 {
3821         ktime_t cur, start_poll, start_wait;
3822         int do_sleep = 1;
3823         u64 block_ns;
3824
3825         /* Poll for pending exceptions and ceded state */
3826         cur = start_poll = ktime_get();
3827         if (vc->halt_poll_ns) {
3828                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3829                 ++vc->runner->stat.halt_attempted_poll;
3830
3831                 vc->vcore_state = VCORE_POLLING;
3832                 spin_unlock(&vc->lock);
3833
3834                 do {
3835                         if (kvmppc_vcore_check_block(vc)) {
3836                                 do_sleep = 0;
3837                                 break;
3838                         }
3839                         cur = ktime_get();
3840                 } while (single_task_running() && ktime_before(cur, stop));
3841
3842                 spin_lock(&vc->lock);
3843                 vc->vcore_state = VCORE_INACTIVE;
3844
3845                 if (!do_sleep) {
3846                         ++vc->runner->stat.halt_successful_poll;
3847                         goto out;
3848                 }
3849         }
3850
3851         prepare_to_rcuwait(&vc->wait);
3852         set_current_state(TASK_INTERRUPTIBLE);
3853         if (kvmppc_vcore_check_block(vc)) {
3854                 finish_rcuwait(&vc->wait);
3855                 do_sleep = 0;
3856                 /* If we polled, count this as a successful poll */
3857                 if (vc->halt_poll_ns)
3858                         ++vc->runner->stat.halt_successful_poll;
3859                 goto out;
3860         }
3861
3862         start_wait = ktime_get();
3863
3864         vc->vcore_state = VCORE_SLEEPING;
3865         trace_kvmppc_vcore_blocked(vc, 0);
3866         spin_unlock(&vc->lock);
3867         schedule();
3868         finish_rcuwait(&vc->wait);
3869         spin_lock(&vc->lock);
3870         vc->vcore_state = VCORE_INACTIVE;
3871         trace_kvmppc_vcore_blocked(vc, 1);
3872         ++vc->runner->stat.halt_successful_wait;
3873
3874         cur = ktime_get();
3875
3876 out:
3877         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3878
3879         /* Attribute wait time */
3880         if (do_sleep) {
3881                 vc->runner->stat.halt_wait_ns +=
3882                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3883                 /* Attribute failed poll time */
3884                 if (vc->halt_poll_ns)
3885                         vc->runner->stat.halt_poll_fail_ns +=
3886                                 ktime_to_ns(start_wait) -
3887                                 ktime_to_ns(start_poll);
3888         } else {
3889                 /* Attribute successful poll time */
3890                 if (vc->halt_poll_ns)
3891                         vc->runner->stat.halt_poll_success_ns +=
3892                                 ktime_to_ns(cur) -
3893                                 ktime_to_ns(start_poll);
3894         }
3895
3896         /* Adjust poll time */
3897         if (halt_poll_ns) {
3898                 if (block_ns <= vc->halt_poll_ns)
3899                         ;
3900                 /* We slept and blocked for longer than the max halt time */
3901                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3902                         shrink_halt_poll_ns(vc);
3903                 /* We slept and our poll time is too small */
3904                 else if (vc->halt_poll_ns < halt_poll_ns &&
3905                                 block_ns < halt_poll_ns)
3906                         grow_halt_poll_ns(vc);
3907                 if (vc->halt_poll_ns > halt_poll_ns)
3908                         vc->halt_poll_ns = halt_poll_ns;
3909         } else
3910                 vc->halt_poll_ns = 0;
3911
3912         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3913 }
3914
3915 /*
3916  * This never fails for a radix guest, as none of the operations it does
3917  * for a radix guest can fail or have a way to report failure.
3918  * kvmhv_run_single_vcpu() relies on this fact.
3919  */
3920 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3921 {
3922         int r = 0;
3923         struct kvm *kvm = vcpu->kvm;
3924
3925         mutex_lock(&kvm->arch.mmu_setup_lock);
3926         if (!kvm->arch.mmu_ready) {
3927                 if (!kvm_is_radix(kvm))
3928                         r = kvmppc_hv_setup_htab_rma(vcpu);
3929                 if (!r) {
3930                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3931                                 kvmppc_setup_partition_table(kvm);
3932                         kvm->arch.mmu_ready = 1;
3933                 }
3934         }
3935         mutex_unlock(&kvm->arch.mmu_setup_lock);
3936         return r;
3937 }
3938
3939 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3940 {
3941         struct kvm_run *run = vcpu->run;
3942         int n_ceded, i, r;
3943         struct kvmppc_vcore *vc;
3944         struct kvm_vcpu *v;
3945
3946         trace_kvmppc_run_vcpu_enter(vcpu);
3947
3948         run->exit_reason = 0;
3949         vcpu->arch.ret = RESUME_GUEST;
3950         vcpu->arch.trap = 0;
3951         kvmppc_update_vpas(vcpu);
3952
3953         /*
3954          * Synchronize with other threads in this virtual core
3955          */
3956         vc = vcpu->arch.vcore;
3957         spin_lock(&vc->lock);
3958         vcpu->arch.ceded = 0;
3959         vcpu->arch.run_task = current;
3960         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3961         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3962         vcpu->arch.busy_preempt = TB_NIL;
3963         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3964         ++vc->n_runnable;
3965
3966         /*
3967          * This happens the first time this is called for a vcpu.
3968          * If the vcore is already running, we may be able to start
3969          * this thread straight away and have it join in.
3970          */
3971         if (!signal_pending(current)) {
3972                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3973                      vc->vcore_state == VCORE_RUNNING) &&
3974                            !VCORE_IS_EXITING(vc)) {
3975                         kvmppc_create_dtl_entry(vcpu, vc);
3976                         kvmppc_start_thread(vcpu, vc);
3977                         trace_kvm_guest_enter(vcpu);
3978                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3979                         rcuwait_wake_up(&vc->wait);
3980                 }
3981
3982         }
3983
3984         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3985                !signal_pending(current)) {
3986                 /* See if the MMU is ready to go */
3987                 if (!vcpu->kvm->arch.mmu_ready) {
3988                         spin_unlock(&vc->lock);
3989                         r = kvmhv_setup_mmu(vcpu);
3990                         spin_lock(&vc->lock);
3991                         if (r) {
3992                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3993                                 run->fail_entry.
3994                                         hardware_entry_failure_reason = 0;
3995                                 vcpu->arch.ret = r;
3996                                 break;
3997                         }
3998                 }
3999
4000                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4001                         kvmppc_vcore_end_preempt(vc);
4002
4003                 if (vc->vcore_state != VCORE_INACTIVE) {
4004                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4005                         continue;
4006                 }
4007                 for_each_runnable_thread(i, v, vc) {
4008                         kvmppc_core_prepare_to_enter(v);
4009                         if (signal_pending(v->arch.run_task)) {
4010                                 kvmppc_remove_runnable(vc, v);
4011                                 v->stat.signal_exits++;
4012                                 v->run->exit_reason = KVM_EXIT_INTR;
4013                                 v->arch.ret = -EINTR;
4014                                 wake_up(&v->arch.cpu_run);
4015                         }
4016                 }
4017                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4018                         break;
4019                 n_ceded = 0;
4020                 for_each_runnable_thread(i, v, vc) {
4021                         if (!kvmppc_vcpu_woken(v))
4022                                 n_ceded += v->arch.ceded;
4023                         else
4024                                 v->arch.ceded = 0;
4025                 }
4026                 vc->runner = vcpu;
4027                 if (n_ceded == vc->n_runnable) {
4028                         kvmppc_vcore_blocked(vc);
4029                 } else if (need_resched()) {
4030                         kvmppc_vcore_preempt(vc);
4031                         /* Let something else run */
4032                         cond_resched_lock(&vc->lock);
4033                         if (vc->vcore_state == VCORE_PREEMPT)
4034                                 kvmppc_vcore_end_preempt(vc);
4035                 } else {
4036                         kvmppc_run_core(vc);
4037                 }
4038                 vc->runner = NULL;
4039         }
4040
4041         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4042                (vc->vcore_state == VCORE_RUNNING ||
4043                 vc->vcore_state == VCORE_EXITING ||
4044                 vc->vcore_state == VCORE_PIGGYBACK))
4045                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4046
4047         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4048                 kvmppc_vcore_end_preempt(vc);
4049
4050         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4051                 kvmppc_remove_runnable(vc, vcpu);
4052                 vcpu->stat.signal_exits++;
4053                 run->exit_reason = KVM_EXIT_INTR;
4054                 vcpu->arch.ret = -EINTR;
4055         }
4056
4057         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4058                 /* Wake up some vcpu to run the core */
4059                 i = -1;
4060                 v = next_runnable_thread(vc, &i);
4061                 wake_up(&v->arch.cpu_run);
4062         }
4063
4064         trace_kvmppc_run_vcpu_exit(vcpu);
4065         spin_unlock(&vc->lock);
4066         return vcpu->arch.ret;
4067 }
4068
4069 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4070                           unsigned long lpcr)
4071 {
4072         struct kvm_run *run = vcpu->run;
4073         int trap, r, pcpu;
4074         int srcu_idx, lpid;
4075         struct kvmppc_vcore *vc;
4076         struct kvm *kvm = vcpu->kvm;
4077         struct kvm_nested_guest *nested = vcpu->arch.nested;
4078
4079         trace_kvmppc_run_vcpu_enter(vcpu);
4080
4081         run->exit_reason = 0;
4082         vcpu->arch.ret = RESUME_GUEST;
4083         vcpu->arch.trap = 0;
4084
4085         vc = vcpu->arch.vcore;
4086         vcpu->arch.ceded = 0;
4087         vcpu->arch.run_task = current;
4088         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4089         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4090         vcpu->arch.busy_preempt = TB_NIL;
4091         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4092         vc->runnable_threads[0] = vcpu;
4093         vc->n_runnable = 1;
4094         vc->runner = vcpu;
4095
4096         /* See if the MMU is ready to go */
4097         if (!kvm->arch.mmu_ready)
4098                 kvmhv_setup_mmu(vcpu);
4099
4100         if (need_resched())
4101                 cond_resched();
4102
4103         kvmppc_update_vpas(vcpu);
4104
4105         init_vcore_to_run(vc);
4106         vc->preempt_tb = TB_NIL;
4107
4108         preempt_disable();
4109         pcpu = smp_processor_id();
4110         vc->pcpu = pcpu;
4111         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4112
4113         local_irq_disable();
4114         hard_irq_disable();
4115         if (signal_pending(current))
4116                 goto sigpend;
4117         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4118                 goto out;
4119
4120         if (!nested) {
4121                 kvmppc_core_prepare_to_enter(vcpu);
4122                 if (vcpu->arch.doorbell_request) {
4123                         vc->dpdes = 1;
4124                         smp_wmb();
4125                         vcpu->arch.doorbell_request = 0;
4126                 }
4127                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4128                              &vcpu->arch.pending_exceptions))
4129                         lpcr |= LPCR_MER;
4130         } else if (vcpu->arch.pending_exceptions ||
4131                    vcpu->arch.doorbell_request ||
4132                    xive_interrupt_pending(vcpu)) {
4133                 vcpu->arch.ret = RESUME_HOST;
4134                 goto out;
4135         }
4136
4137         kvmppc_clear_host_core(pcpu);
4138
4139         local_paca->kvm_hstate.tid = 0;
4140         local_paca->kvm_hstate.napping = 0;
4141         local_paca->kvm_hstate.kvm_split_mode = NULL;
4142         kvmppc_start_thread(vcpu, vc);
4143         kvmppc_create_dtl_entry(vcpu, vc);
4144         trace_kvm_guest_enter(vcpu);
4145
4146         vc->vcore_state = VCORE_RUNNING;
4147         trace_kvmppc_run_core(vc, 0);
4148
4149         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4150                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4151                 mtspr(SPRN_LPID, lpid);
4152                 isync();
4153                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4154         }
4155
4156         guest_enter_irqoff();
4157
4158         srcu_idx = srcu_read_lock(&kvm->srcu);
4159
4160         this_cpu_disable_ftrace();
4161
4162         /* Tell lockdep that we're about to enable interrupts */
4163         trace_hardirqs_on();
4164
4165         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4166         vcpu->arch.trap = trap;
4167
4168         trace_hardirqs_off();
4169
4170         this_cpu_enable_ftrace();
4171
4172         srcu_read_unlock(&kvm->srcu, srcu_idx);
4173
4174         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4175                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4176                 isync();
4177         }
4178
4179         set_irq_happened(trap);
4180
4181         kvmppc_set_host_core(pcpu);
4182
4183         local_irq_enable();
4184         guest_exit();
4185
4186         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4187
4188         preempt_enable();
4189
4190         /*
4191          * cancel pending decrementer exception if DEC is now positive, or if
4192          * entering a nested guest in which case the decrementer is now owned
4193          * by L2 and the L1 decrementer is provided in hdec_expires
4194          */
4195         if (kvmppc_core_pending_dec(vcpu) &&
4196                         ((get_tb() < vcpu->arch.dec_expires) ||
4197                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4198                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4199                 kvmppc_core_dequeue_dec(vcpu);
4200
4201         trace_kvm_guest_exit(vcpu);
4202         r = RESUME_GUEST;
4203         if (trap) {
4204                 if (!nested)
4205                         r = kvmppc_handle_exit_hv(vcpu, current);
4206                 else
4207                         r = kvmppc_handle_nested_exit(vcpu);
4208         }
4209         vcpu->arch.ret = r;
4210
4211         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4212             !kvmppc_vcpu_woken(vcpu)) {
4213                 kvmppc_set_timer(vcpu);
4214                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4215                         if (signal_pending(current)) {
4216                                 vcpu->stat.signal_exits++;
4217                                 run->exit_reason = KVM_EXIT_INTR;
4218                                 vcpu->arch.ret = -EINTR;
4219                                 break;
4220                         }
4221                         spin_lock(&vc->lock);
4222                         kvmppc_vcore_blocked(vc);
4223                         spin_unlock(&vc->lock);
4224                 }
4225         }
4226         vcpu->arch.ceded = 0;
4227
4228         vc->vcore_state = VCORE_INACTIVE;
4229         trace_kvmppc_run_core(vc, 1);
4230
4231  done:
4232         kvmppc_remove_runnable(vc, vcpu);
4233         trace_kvmppc_run_vcpu_exit(vcpu);
4234
4235         return vcpu->arch.ret;
4236
4237  sigpend:
4238         vcpu->stat.signal_exits++;
4239         run->exit_reason = KVM_EXIT_INTR;
4240         vcpu->arch.ret = -EINTR;
4241  out:
4242         local_irq_enable();
4243         preempt_enable();
4244         goto done;
4245 }
4246
4247 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4248 {
4249         struct kvm_run *run = vcpu->run;
4250         int r;
4251         int srcu_idx;
4252         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4253         unsigned long user_tar = 0;
4254         unsigned int user_vrsave;
4255         struct kvm *kvm;
4256
4257         if (!vcpu->arch.sane) {
4258                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4259                 return -EINVAL;
4260         }
4261
4262         /*
4263          * Don't allow entry with a suspended transaction, because
4264          * the guest entry/exit code will lose it.
4265          * If the guest has TM enabled, save away their TM-related SPRs
4266          * (they will get restored by the TM unavailable interrupt).
4267          */
4268 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4269         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4270             (current->thread.regs->msr & MSR_TM)) {
4271                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4272                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4273                         run->fail_entry.hardware_entry_failure_reason = 0;
4274                         return -EINVAL;
4275                 }
4276                 /* Enable TM so we can read the TM SPRs */
4277                 mtmsr(mfmsr() | MSR_TM);
4278                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4279                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4280                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4281                 current->thread.regs->msr &= ~MSR_TM;
4282         }
4283 #endif
4284
4285         /*
4286          * Force online to 1 for the sake of old userspace which doesn't
4287          * set it.
4288          */
4289         if (!vcpu->arch.online) {
4290                 atomic_inc(&vcpu->arch.vcore->online_count);
4291                 vcpu->arch.online = 1;
4292         }
4293
4294         kvmppc_core_prepare_to_enter(vcpu);
4295
4296         /* No need to go into the guest when all we'll do is come back out */
4297         if (signal_pending(current)) {
4298                 run->exit_reason = KVM_EXIT_INTR;
4299                 return -EINTR;
4300         }
4301
4302         kvm = vcpu->kvm;
4303         atomic_inc(&kvm->arch.vcpus_running);
4304         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4305         smp_mb();
4306
4307         flush_all_to_thread(current);
4308
4309         /* Save userspace EBB and other register values */
4310         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4311                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4312                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4313                 ebb_regs[2] = mfspr(SPRN_BESCR);
4314                 user_tar = mfspr(SPRN_TAR);
4315         }
4316         user_vrsave = mfspr(SPRN_VRSAVE);
4317
4318         vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4319         vcpu->arch.pgdir = kvm->mm->pgd;
4320         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4321
4322         do {
4323                 /*
4324                  * The early POWER9 chips that can't mix radix and HPT threads
4325                  * on the same core also need the workaround for the problem
4326                  * where the TLB would prefetch entries in the guest exit path
4327                  * for radix guests using the guest PIDR value and LPID 0.
4328                  * The workaround is in the old path (kvmppc_run_vcpu())
4329                  * but not the new path (kvmhv_run_single_vcpu()).
4330                  */
4331                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4332                     !no_mixing_hpt_and_radix)
4333                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4334                                                   vcpu->arch.vcore->lpcr);
4335                 else
4336                         r = kvmppc_run_vcpu(vcpu);
4337
4338                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4339                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4340                         trace_kvm_hcall_enter(vcpu);
4341                         r = kvmppc_pseries_do_hcall(vcpu);
4342                         trace_kvm_hcall_exit(vcpu, r);
4343                         kvmppc_core_prepare_to_enter(vcpu);
4344                 } else if (r == RESUME_PAGE_FAULT) {
4345                         srcu_idx = srcu_read_lock(&kvm->srcu);
4346                         r = kvmppc_book3s_hv_page_fault(vcpu,
4347                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4348                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4349                 } else if (r == RESUME_PASSTHROUGH) {
4350                         if (WARN_ON(xics_on_xive()))
4351                                 r = H_SUCCESS;
4352                         else
4353                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4354                 }
4355         } while (is_kvmppc_resume_guest(r));
4356
4357         /* Restore userspace EBB and other register values */
4358         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4359                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4360                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4361                 mtspr(SPRN_BESCR, ebb_regs[2]);
4362                 mtspr(SPRN_TAR, user_tar);
4363                 mtspr(SPRN_FSCR, current->thread.fscr);
4364         }
4365         mtspr(SPRN_VRSAVE, user_vrsave);
4366
4367         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4368         atomic_dec(&kvm->arch.vcpus_running);
4369         return r;
4370 }
4371
4372 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4373                                      int shift, int sllp)
4374 {
4375         (*sps)->page_shift = shift;
4376         (*sps)->slb_enc = sllp;
4377         (*sps)->enc[0].page_shift = shift;
4378         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4379         /*
4380          * Add 16MB MPSS support (may get filtered out by userspace)
4381          */
4382         if (shift != 24) {
4383                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4384                 if (penc != -1) {
4385                         (*sps)->enc[1].page_shift = 24;
4386                         (*sps)->enc[1].pte_enc = penc;
4387                 }
4388         }
4389         (*sps)++;
4390 }
4391
4392 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4393                                          struct kvm_ppc_smmu_info *info)
4394 {
4395         struct kvm_ppc_one_seg_page_size *sps;
4396
4397         /*
4398          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4399          * POWER7 doesn't support keys for instruction accesses,
4400          * POWER8 and POWER9 do.
4401          */
4402         info->data_keys = 32;
4403         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4404
4405         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4406         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4407         info->slb_size = 32;
4408
4409         /* We only support these sizes for now, and no muti-size segments */
4410         sps = &info->sps[0];
4411         kvmppc_add_seg_page_size(&sps, 12, 0);
4412         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4413         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4414
4415         /* If running as a nested hypervisor, we don't support HPT guests */
4416         if (kvmhv_on_pseries())
4417                 info->flags |= KVM_PPC_NO_HASH;
4418
4419         return 0;
4420 }
4421
4422 /*
4423  * Get (and clear) the dirty memory log for a memory slot.
4424  */
4425 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4426                                          struct kvm_dirty_log *log)
4427 {
4428         struct kvm_memslots *slots;
4429         struct kvm_memory_slot *memslot;
4430         int i, r;
4431         unsigned long n;
4432         unsigned long *buf, *p;
4433         struct kvm_vcpu *vcpu;
4434
4435         mutex_lock(&kvm->slots_lock);
4436
4437         r = -EINVAL;
4438         if (log->slot >= KVM_USER_MEM_SLOTS)
4439                 goto out;
4440
4441         slots = kvm_memslots(kvm);
4442         memslot = id_to_memslot(slots, log->slot);
4443         r = -ENOENT;
4444         if (!memslot || !memslot->dirty_bitmap)
4445                 goto out;
4446
4447         /*
4448          * Use second half of bitmap area because both HPT and radix
4449          * accumulate bits in the first half.
4450          */
4451         n = kvm_dirty_bitmap_bytes(memslot);
4452         buf = memslot->dirty_bitmap + n / sizeof(long);
4453         memset(buf, 0, n);
4454
4455         if (kvm_is_radix(kvm))
4456                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4457         else
4458                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4459         if (r)
4460                 goto out;
4461
4462         /*
4463          * We accumulate dirty bits in the first half of the
4464          * memslot's dirty_bitmap area, for when pages are paged
4465          * out or modified by the host directly.  Pick up these
4466          * bits and add them to the map.
4467          */
4468         p = memslot->dirty_bitmap;
4469         for (i = 0; i < n / sizeof(long); ++i)
4470                 buf[i] |= xchg(&p[i], 0);
4471
4472         /* Harvest dirty bits from VPA and DTL updates */
4473         /* Note: we never modify the SLB shadow buffer areas */
4474         kvm_for_each_vcpu(i, vcpu, kvm) {
4475                 spin_lock(&vcpu->arch.vpa_update_lock);
4476                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4477                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4478                 spin_unlock(&vcpu->arch.vpa_update_lock);
4479         }
4480
4481         r = -EFAULT;
4482         if (copy_to_user(log->dirty_bitmap, buf, n))
4483                 goto out;
4484
4485         r = 0;
4486 out:
4487         mutex_unlock(&kvm->slots_lock);
4488         return r;
4489 }
4490
4491 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4492 {
4493         vfree(slot->arch.rmap);
4494         slot->arch.rmap = NULL;
4495 }
4496
4497 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4498                                         struct kvm_memory_slot *slot,
4499                                         const struct kvm_userspace_memory_region *mem,
4500                                         enum kvm_mr_change change)
4501 {
4502         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4503
4504         if (change == KVM_MR_CREATE) {
4505                 slot->arch.rmap = vzalloc(array_size(npages,
4506                                           sizeof(*slot->arch.rmap)));
4507                 if (!slot->arch.rmap)
4508                         return -ENOMEM;
4509         }
4510
4511         return 0;
4512 }
4513
4514 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4515                                 const struct kvm_userspace_memory_region *mem,
4516                                 const struct kvm_memory_slot *old,
4517                                 const struct kvm_memory_slot *new,
4518                                 enum kvm_mr_change change)
4519 {
4520         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4521
4522         /*
4523          * If we are making a new memslot, it might make
4524          * some address that was previously cached as emulated
4525          * MMIO be no longer emulated MMIO, so invalidate
4526          * all the caches of emulated MMIO translations.
4527          */
4528         if (npages)
4529                 atomic64_inc(&kvm->arch.mmio_update);
4530
4531         /*
4532          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4533          * have already called kvm_arch_flush_shadow_memslot() to
4534          * flush shadow mappings.  For KVM_MR_CREATE we have no
4535          * previous mappings.  So the only case to handle is
4536          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4537          * has been changed.
4538          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4539          * to get rid of any THP PTEs in the partition-scoped page tables
4540          * so we can track dirtiness at the page level; we flush when
4541          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4542          * using THP PTEs.
4543          */
4544         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4545             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4546                 kvmppc_radix_flush_memslot(kvm, old);
4547         /*
4548          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4549          */
4550         if (!kvm->arch.secure_guest)
4551                 return;
4552
4553         switch (change) {
4554         case KVM_MR_CREATE:
4555                 if (kvmppc_uvmem_slot_init(kvm, new))
4556                         return;
4557                 uv_register_mem_slot(kvm->arch.lpid,
4558                                      new->base_gfn << PAGE_SHIFT,
4559                                      new->npages * PAGE_SIZE,
4560                                      0, new->id);
4561                 break;
4562         case KVM_MR_DELETE:
4563                 uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4564                 kvmppc_uvmem_slot_free(kvm, old);
4565                 break;
4566         default:
4567                 /* TODO: Handle KVM_MR_MOVE */
4568                 break;
4569         }
4570 }
4571
4572 /*
4573  * Update LPCR values in kvm->arch and in vcores.
4574  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4575  * of kvm->arch.lpcr update).
4576  */
4577 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4578 {
4579         long int i;
4580         u32 cores_done = 0;
4581
4582         if ((kvm->arch.lpcr & mask) == lpcr)
4583                 return;
4584
4585         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4586
4587         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4588                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4589                 if (!vc)
4590                         continue;
4591                 spin_lock(&vc->lock);
4592                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4593                 spin_unlock(&vc->lock);
4594                 if (++cores_done >= kvm->arch.online_vcores)
4595                         break;
4596         }
4597 }
4598
4599 void kvmppc_setup_partition_table(struct kvm *kvm)
4600 {
4601         unsigned long dw0, dw1;
4602
4603         if (!kvm_is_radix(kvm)) {
4604                 /* PS field - page size for VRMA */
4605                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4606                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4607                 /* HTABSIZE and HTABORG fields */
4608                 dw0 |= kvm->arch.sdr1;
4609
4610                 /* Second dword as set by userspace */
4611                 dw1 = kvm->arch.process_table;
4612         } else {
4613                 dw0 = PATB_HR | radix__get_tree_size() |
4614                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4615                 dw1 = PATB_GR | kvm->arch.process_table;
4616         }
4617         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4618 }
4619
4620 /*
4621  * Set up HPT (hashed page table) and RMA (real-mode area).
4622  * Must be called with kvm->arch.mmu_setup_lock held.
4623  */
4624 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4625 {
4626         int err = 0;
4627         struct kvm *kvm = vcpu->kvm;
4628         unsigned long hva;
4629         struct kvm_memory_slot *memslot;
4630         struct vm_area_struct *vma;
4631         unsigned long lpcr = 0, senc;
4632         unsigned long psize, porder;
4633         int srcu_idx;
4634
4635         /* Allocate hashed page table (if not done already) and reset it */
4636         if (!kvm->arch.hpt.virt) {
4637                 int order = KVM_DEFAULT_HPT_ORDER;
4638                 struct kvm_hpt_info info;
4639
4640                 err = kvmppc_allocate_hpt(&info, order);
4641                 /* If we get here, it means userspace didn't specify a
4642                  * size explicitly.  So, try successively smaller
4643                  * sizes if the default failed. */
4644                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4645                         err  = kvmppc_allocate_hpt(&info, order);
4646
4647                 if (err < 0) {
4648                         pr_err("KVM: Couldn't alloc HPT\n");
4649                         goto out;
4650                 }
4651
4652                 kvmppc_set_hpt(kvm, &info);
4653         }
4654
4655         /* Look up the memslot for guest physical address 0 */
4656         srcu_idx = srcu_read_lock(&kvm->srcu);
4657         memslot = gfn_to_memslot(kvm, 0);
4658
4659         /* We must have some memory at 0 by now */
4660         err = -EINVAL;
4661         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4662                 goto out_srcu;
4663
4664         /* Look up the VMA for the start of this memory slot */
4665         hva = memslot->userspace_addr;
4666         mmap_read_lock(kvm->mm);
4667         vma = find_vma(kvm->mm, hva);
4668         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4669                 goto up_out;
4670
4671         psize = vma_kernel_pagesize(vma);
4672
4673         mmap_read_unlock(kvm->mm);
4674
4675         /* We can handle 4k, 64k or 16M pages in the VRMA */
4676         if (psize >= 0x1000000)
4677                 psize = 0x1000000;
4678         else if (psize >= 0x10000)
4679                 psize = 0x10000;
4680         else
4681                 psize = 0x1000;
4682         porder = __ilog2(psize);
4683
4684         senc = slb_pgsize_encoding(psize);
4685         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4686                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4687         /* Create HPTEs in the hash page table for the VRMA */
4688         kvmppc_map_vrma(vcpu, memslot, porder);
4689
4690         /* Update VRMASD field in the LPCR */
4691         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4692                 /* the -4 is to account for senc values starting at 0x10 */
4693                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4694                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4695         }
4696
4697         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4698         smp_wmb();
4699         err = 0;
4700  out_srcu:
4701         srcu_read_unlock(&kvm->srcu, srcu_idx);
4702  out:
4703         return err;
4704
4705  up_out:
4706         mmap_read_unlock(kvm->mm);
4707         goto out_srcu;
4708 }
4709
4710 /*
4711  * Must be called with kvm->arch.mmu_setup_lock held and
4712  * mmu_ready = 0 and no vcpus running.
4713  */
4714 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4715 {
4716         if (nesting_enabled(kvm))
4717                 kvmhv_release_all_nested(kvm);
4718         kvmppc_rmap_reset(kvm);
4719         kvm->arch.process_table = 0;
4720         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4721         spin_lock(&kvm->mmu_lock);
4722         kvm->arch.radix = 0;
4723         spin_unlock(&kvm->mmu_lock);
4724         kvmppc_free_radix(kvm);
4725         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4726                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4727         return 0;
4728 }
4729
4730 /*
4731  * Must be called with kvm->arch.mmu_setup_lock held and
4732  * mmu_ready = 0 and no vcpus running.
4733  */
4734 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4735 {
4736         int err;
4737
4738         err = kvmppc_init_vm_radix(kvm);
4739         if (err)
4740                 return err;
4741         kvmppc_rmap_reset(kvm);
4742         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4743         spin_lock(&kvm->mmu_lock);
4744         kvm->arch.radix = 1;
4745         spin_unlock(&kvm->mmu_lock);
4746         kvmppc_free_hpt(&kvm->arch.hpt);
4747         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4748                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4749         return 0;
4750 }
4751
4752 #ifdef CONFIG_KVM_XICS
4753 /*
4754  * Allocate a per-core structure for managing state about which cores are
4755  * running in the host versus the guest and for exchanging data between
4756  * real mode KVM and CPU running in the host.
4757  * This is only done for the first VM.
4758  * The allocated structure stays even if all VMs have stopped.
4759  * It is only freed when the kvm-hv module is unloaded.
4760  * It's OK for this routine to fail, we just don't support host
4761  * core operations like redirecting H_IPI wakeups.
4762  */
4763 void kvmppc_alloc_host_rm_ops(void)
4764 {
4765         struct kvmppc_host_rm_ops *ops;
4766         unsigned long l_ops;
4767         int cpu, core;
4768         int size;
4769
4770         /* Not the first time here ? */
4771         if (kvmppc_host_rm_ops_hv != NULL)
4772                 return;
4773
4774         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4775         if (!ops)
4776                 return;
4777
4778         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4779         ops->rm_core = kzalloc(size, GFP_KERNEL);
4780
4781         if (!ops->rm_core) {
4782                 kfree(ops);
4783                 return;
4784         }
4785
4786         cpus_read_lock();
4787
4788         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4789                 if (!cpu_online(cpu))
4790                         continue;
4791
4792                 core = cpu >> threads_shift;
4793                 ops->rm_core[core].rm_state.in_host = 1;
4794         }
4795
4796         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4797
4798         /*
4799          * Make the contents of the kvmppc_host_rm_ops structure visible
4800          * to other CPUs before we assign it to the global variable.
4801          * Do an atomic assignment (no locks used here), but if someone
4802          * beats us to it, just free our copy and return.
4803          */
4804         smp_wmb();
4805         l_ops = (unsigned long) ops;
4806
4807         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4808                 cpus_read_unlock();
4809                 kfree(ops->rm_core);
4810                 kfree(ops);
4811                 return;
4812         }
4813
4814         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4815                                              "ppc/kvm_book3s:prepare",
4816                                              kvmppc_set_host_core,
4817                                              kvmppc_clear_host_core);
4818         cpus_read_unlock();
4819 }
4820
4821 void kvmppc_free_host_rm_ops(void)
4822 {
4823         if (kvmppc_host_rm_ops_hv) {
4824                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4825                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4826                 kfree(kvmppc_host_rm_ops_hv);
4827                 kvmppc_host_rm_ops_hv = NULL;
4828         }
4829 }
4830 #endif
4831
4832 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4833 {
4834         unsigned long lpcr, lpid;
4835         char buf[32];
4836         int ret;
4837
4838         mutex_init(&kvm->arch.uvmem_lock);
4839         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4840         mutex_init(&kvm->arch.mmu_setup_lock);
4841
4842         /* Allocate the guest's logical partition ID */
4843
4844         lpid = kvmppc_alloc_lpid();
4845         if ((long)lpid < 0)
4846                 return -ENOMEM;
4847         kvm->arch.lpid = lpid;
4848
4849         kvmppc_alloc_host_rm_ops();
4850
4851         kvmhv_vm_nested_init(kvm);
4852
4853         /*
4854          * Since we don't flush the TLB when tearing down a VM,
4855          * and this lpid might have previously been used,
4856          * make sure we flush on each core before running the new VM.
4857          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4858          * does this flush for us.
4859          */
4860         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4861                 cpumask_setall(&kvm->arch.need_tlb_flush);
4862
4863         /* Start out with the default set of hcalls enabled */
4864         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4865                sizeof(kvm->arch.enabled_hcalls));
4866
4867         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4868                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4869
4870         /* Init LPCR for virtual RMA mode */
4871         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4872                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4873                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4874                 lpcr &= LPCR_PECE | LPCR_LPES;
4875         } else {
4876                 lpcr = 0;
4877         }
4878         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4879                 LPCR_VPM0 | LPCR_VPM1;
4880         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4881                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4882         /* On POWER8 turn on online bit to enable PURR/SPURR */
4883         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4884                 lpcr |= LPCR_ONL;
4885         /*
4886          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4887          * Set HVICE bit to enable hypervisor virtualization interrupts.
4888          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4889          * be unnecessary but better safe than sorry in case we re-enable
4890          * EE in HV mode with this LPCR still set)
4891          */
4892         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4893                 lpcr &= ~LPCR_VPM0;
4894                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4895
4896                 /*
4897                  * If xive is enabled, we route 0x500 interrupts directly
4898                  * to the guest.
4899                  */
4900                 if (xics_on_xive())
4901                         lpcr |= LPCR_LPES;
4902         }
4903
4904         /*
4905          * If the host uses radix, the guest starts out as radix.
4906          */
4907         if (radix_enabled()) {
4908                 kvm->arch.radix = 1;
4909                 kvm->arch.mmu_ready = 1;
4910                 lpcr &= ~LPCR_VPM1;
4911                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4912                 ret = kvmppc_init_vm_radix(kvm);
4913                 if (ret) {
4914                         kvmppc_free_lpid(kvm->arch.lpid);
4915                         return ret;
4916                 }
4917                 kvmppc_setup_partition_table(kvm);
4918         }
4919
4920         kvm->arch.lpcr = lpcr;
4921
4922         /* Initialization for future HPT resizes */
4923         kvm->arch.resize_hpt = NULL;
4924
4925         /*
4926          * Work out how many sets the TLB has, for the use of
4927          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4928          */
4929         if (radix_enabled())
4930                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4931         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4932                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4933         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4934                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4935         else
4936                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4937
4938         /*
4939          * Track that we now have a HV mode VM active. This blocks secondary
4940          * CPU threads from coming online.
4941          * On POWER9, we only need to do this if the "indep_threads_mode"
4942          * module parameter has been set to N.
4943          */
4944         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4945                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4946                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4947                         kvm->arch.threads_indep = true;
4948                 } else {
4949                         kvm->arch.threads_indep = indep_threads_mode;
4950                 }
4951         }
4952         if (!kvm->arch.threads_indep)
4953                 kvm_hv_vm_activated();
4954
4955         /*
4956          * Initialize smt_mode depending on processor.
4957          * POWER8 and earlier have to use "strict" threading, where
4958          * all vCPUs in a vcore have to run on the same (sub)core,
4959          * whereas on POWER9 the threads can each run a different
4960          * guest.
4961          */
4962         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4963                 kvm->arch.smt_mode = threads_per_subcore;
4964         else
4965                 kvm->arch.smt_mode = 1;
4966         kvm->arch.emul_smt_mode = 1;
4967
4968         /*
4969          * Create a debugfs directory for the VM
4970          */
4971         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4972         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4973         kvmppc_mmu_debugfs_init(kvm);
4974         if (radix_enabled())
4975                 kvmhv_radix_debugfs_init(kvm);
4976
4977         return 0;
4978 }
4979
4980 static void kvmppc_free_vcores(struct kvm *kvm)
4981 {
4982         long int i;
4983
4984         for (i = 0; i < KVM_MAX_VCORES; ++i)
4985                 kfree(kvm->arch.vcores[i]);
4986         kvm->arch.online_vcores = 0;
4987 }
4988
4989 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4990 {
4991         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4992
4993         if (!kvm->arch.threads_indep)
4994                 kvm_hv_vm_deactivated();
4995
4996         kvmppc_free_vcores(kvm);
4997
4998
4999         if (kvm_is_radix(kvm))
5000                 kvmppc_free_radix(kvm);
5001         else
5002                 kvmppc_free_hpt(&kvm->arch.hpt);
5003
5004         /* Perform global invalidation and return lpid to the pool */
5005         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5006                 if (nesting_enabled(kvm))
5007                         kvmhv_release_all_nested(kvm);
5008                 kvm->arch.process_table = 0;
5009                 if (kvm->arch.secure_guest)
5010                         uv_svm_terminate(kvm->arch.lpid);
5011                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5012         }
5013
5014         kvmppc_free_lpid(kvm->arch.lpid);
5015
5016         kvmppc_free_pimap(kvm);
5017 }
5018
5019 /* We don't need to emulate any privileged instructions or dcbz */
5020 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5021                                      unsigned int inst, int *advance)
5022 {
5023         return EMULATE_FAIL;
5024 }
5025
5026 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5027                                         ulong spr_val)
5028 {
5029         return EMULATE_FAIL;
5030 }
5031
5032 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5033                                         ulong *spr_val)
5034 {
5035         return EMULATE_FAIL;
5036 }
5037
5038 static int kvmppc_core_check_processor_compat_hv(void)
5039 {
5040         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5041             cpu_has_feature(CPU_FTR_ARCH_206))
5042                 return 0;
5043
5044         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5045         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5046                 return 0;
5047
5048         return -EIO;
5049 }
5050
5051 #ifdef CONFIG_KVM_XICS
5052
5053 void kvmppc_free_pimap(struct kvm *kvm)
5054 {
5055         kfree(kvm->arch.pimap);
5056 }
5057
5058 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5059 {
5060         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5061 }
5062
5063 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5064 {
5065         struct irq_desc *desc;
5066         struct kvmppc_irq_map *irq_map;
5067         struct kvmppc_passthru_irqmap *pimap;
5068         struct irq_chip *chip;
5069         int i, rc = 0;
5070
5071         if (!kvm_irq_bypass)
5072                 return 1;
5073
5074         desc = irq_to_desc(host_irq);
5075         if (!desc)
5076                 return -EIO;
5077
5078         mutex_lock(&kvm->lock);
5079
5080         pimap = kvm->arch.pimap;
5081         if (pimap == NULL) {
5082                 /* First call, allocate structure to hold IRQ map */
5083                 pimap = kvmppc_alloc_pimap();
5084                 if (pimap == NULL) {
5085                         mutex_unlock(&kvm->lock);
5086                         return -ENOMEM;
5087                 }
5088                 kvm->arch.pimap = pimap;
5089         }
5090
5091         /*
5092          * For now, we only support interrupts for which the EOI operation
5093          * is an OPAL call followed by a write to XIRR, since that's
5094          * what our real-mode EOI code does, or a XIVE interrupt
5095          */
5096         chip = irq_data_get_irq_chip(&desc->irq_data);
5097         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5098                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5099                         host_irq, guest_gsi);
5100                 mutex_unlock(&kvm->lock);
5101                 return -ENOENT;
5102         }
5103
5104         /*
5105          * See if we already have an entry for this guest IRQ number.
5106          * If it's mapped to a hardware IRQ number, that's an error,
5107          * otherwise re-use this entry.
5108          */
5109         for (i = 0; i < pimap->n_mapped; i++) {
5110                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5111                         if (pimap->mapped[i].r_hwirq) {
5112                                 mutex_unlock(&kvm->lock);
5113                                 return -EINVAL;
5114                         }
5115                         break;
5116                 }
5117         }
5118
5119         if (i == KVMPPC_PIRQ_MAPPED) {
5120                 mutex_unlock(&kvm->lock);
5121                 return -EAGAIN;         /* table is full */
5122         }
5123
5124         irq_map = &pimap->mapped[i];
5125
5126         irq_map->v_hwirq = guest_gsi;
5127         irq_map->desc = desc;
5128
5129         /*
5130          * Order the above two stores before the next to serialize with
5131          * the KVM real mode handler.
5132          */
5133         smp_wmb();
5134         irq_map->r_hwirq = desc->irq_data.hwirq;
5135
5136         if (i == pimap->n_mapped)
5137                 pimap->n_mapped++;
5138
5139         if (xics_on_xive())
5140                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5141         else
5142                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5143         if (rc)
5144                 irq_map->r_hwirq = 0;
5145
5146         mutex_unlock(&kvm->lock);
5147
5148         return 0;
5149 }
5150
5151 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5152 {
5153         struct irq_desc *desc;
5154         struct kvmppc_passthru_irqmap *pimap;
5155         int i, rc = 0;
5156
5157         if (!kvm_irq_bypass)
5158                 return 0;
5159
5160         desc = irq_to_desc(host_irq);
5161         if (!desc)
5162                 return -EIO;
5163
5164         mutex_lock(&kvm->lock);
5165         if (!kvm->arch.pimap)
5166                 goto unlock;
5167
5168         pimap = kvm->arch.pimap;
5169
5170         for (i = 0; i < pimap->n_mapped; i++) {
5171                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5172                         break;
5173         }
5174
5175         if (i == pimap->n_mapped) {
5176                 mutex_unlock(&kvm->lock);
5177                 return -ENODEV;
5178         }
5179
5180         if (xics_on_xive())
5181                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5182         else
5183                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5184
5185         /* invalidate the entry (what do do on error from the above ?) */
5186         pimap->mapped[i].r_hwirq = 0;
5187
5188         /*
5189          * We don't free this structure even when the count goes to
5190          * zero. The structure is freed when we destroy the VM.
5191          */
5192  unlock:
5193         mutex_unlock(&kvm->lock);
5194         return rc;
5195 }
5196
5197 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5198                                              struct irq_bypass_producer *prod)
5199 {
5200         int ret = 0;
5201         struct kvm_kernel_irqfd *irqfd =
5202                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5203
5204         irqfd->producer = prod;
5205
5206         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5207         if (ret)
5208                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5209                         prod->irq, irqfd->gsi, ret);
5210
5211         return ret;
5212 }
5213
5214 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5215                                               struct irq_bypass_producer *prod)
5216 {
5217         int ret;
5218         struct kvm_kernel_irqfd *irqfd =
5219                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5220
5221         irqfd->producer = NULL;
5222
5223         /*
5224          * When producer of consumer is unregistered, we change back to
5225          * default external interrupt handling mode - KVM real mode
5226          * will switch back to host.
5227          */
5228         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5229         if (ret)
5230                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5231                         prod->irq, irqfd->gsi, ret);
5232 }
5233 #endif
5234
5235 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5236                                  unsigned int ioctl, unsigned long arg)
5237 {
5238         struct kvm *kvm __maybe_unused = filp->private_data;
5239         void __user *argp = (void __user *)arg;
5240         long r;
5241
5242         switch (ioctl) {
5243
5244         case KVM_PPC_ALLOCATE_HTAB: {
5245                 u32 htab_order;
5246
5247                 r = -EFAULT;
5248                 if (get_user(htab_order, (u32 __user *)argp))
5249                         break;
5250                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5251                 if (r)
5252                         break;
5253                 r = 0;
5254                 break;
5255         }
5256
5257         case KVM_PPC_GET_HTAB_FD: {
5258                 struct kvm_get_htab_fd ghf;
5259
5260                 r = -EFAULT;
5261                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5262                         break;
5263                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5264                 break;
5265         }
5266
5267         case KVM_PPC_RESIZE_HPT_PREPARE: {
5268                 struct kvm_ppc_resize_hpt rhpt;
5269
5270                 r = -EFAULT;
5271                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5272                         break;
5273
5274                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5275                 break;
5276         }
5277
5278         case KVM_PPC_RESIZE_HPT_COMMIT: {
5279                 struct kvm_ppc_resize_hpt rhpt;
5280
5281                 r = -EFAULT;
5282                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5283                         break;
5284
5285                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5286                 break;
5287         }
5288
5289         default:
5290                 r = -ENOTTY;
5291         }
5292
5293         return r;
5294 }
5295
5296 /*
5297  * List of hcall numbers to enable by default.
5298  * For compatibility with old userspace, we enable by default
5299  * all hcalls that were implemented before the hcall-enabling
5300  * facility was added.  Note this list should not include H_RTAS.
5301  */
5302 static unsigned int default_hcall_list[] = {
5303         H_REMOVE,
5304         H_ENTER,
5305         H_READ,
5306         H_PROTECT,
5307         H_BULK_REMOVE,
5308         H_GET_TCE,
5309         H_PUT_TCE,
5310         H_SET_DABR,
5311         H_SET_XDABR,
5312         H_CEDE,
5313         H_PROD,
5314         H_CONFER,
5315         H_REGISTER_VPA,
5316 #ifdef CONFIG_KVM_XICS
5317         H_EOI,
5318         H_CPPR,
5319         H_IPI,
5320         H_IPOLL,
5321         H_XIRR,
5322         H_XIRR_X,
5323 #endif
5324         0
5325 };
5326
5327 static void init_default_hcalls(void)
5328 {
5329         int i;
5330         unsigned int hcall;
5331
5332         for (i = 0; default_hcall_list[i]; ++i) {
5333                 hcall = default_hcall_list[i];
5334                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5335                 __set_bit(hcall / 4, default_enabled_hcalls);
5336         }
5337 }
5338
5339 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5340 {
5341         unsigned long lpcr;
5342         int radix;
5343         int err;
5344
5345         /* If not on a POWER9, reject it */
5346         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5347                 return -ENODEV;
5348
5349         /* If any unknown flags set, reject it */
5350         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5351                 return -EINVAL;
5352
5353         /* GR (guest radix) bit in process_table field must match */
5354         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5355         if (!!(cfg->process_table & PATB_GR) != radix)
5356                 return -EINVAL;
5357
5358         /* Process table size field must be reasonable, i.e. <= 24 */
5359         if ((cfg->process_table & PRTS_MASK) > 24)
5360                 return -EINVAL;
5361
5362         /* We can change a guest to/from radix now, if the host is radix */
5363         if (radix && !radix_enabled())
5364                 return -EINVAL;
5365
5366         /* If we're a nested hypervisor, we currently only support radix */
5367         if (kvmhv_on_pseries() && !radix)
5368                 return -EINVAL;
5369
5370         mutex_lock(&kvm->arch.mmu_setup_lock);
5371         if (radix != kvm_is_radix(kvm)) {
5372                 if (kvm->arch.mmu_ready) {
5373                         kvm->arch.mmu_ready = 0;
5374                         /* order mmu_ready vs. vcpus_running */
5375                         smp_mb();
5376                         if (atomic_read(&kvm->arch.vcpus_running)) {
5377                                 kvm->arch.mmu_ready = 1;
5378                                 err = -EBUSY;
5379                                 goto out_unlock;
5380                         }
5381                 }
5382                 if (radix)
5383                         err = kvmppc_switch_mmu_to_radix(kvm);
5384                 else
5385                         err = kvmppc_switch_mmu_to_hpt(kvm);
5386                 if (err)
5387                         goto out_unlock;
5388         }
5389
5390         kvm->arch.process_table = cfg->process_table;
5391         kvmppc_setup_partition_table(kvm);
5392
5393         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5394         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5395         err = 0;
5396
5397  out_unlock:
5398         mutex_unlock(&kvm->arch.mmu_setup_lock);
5399         return err;
5400 }
5401
5402 static int kvmhv_enable_nested(struct kvm *kvm)
5403 {
5404         if (!nested)
5405                 return -EPERM;
5406         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5407                 return -ENODEV;
5408
5409         /* kvm == NULL means the caller is testing if the capability exists */
5410         if (kvm)
5411                 kvm->arch.nested_enable = true;
5412         return 0;
5413 }
5414
5415 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5416                                  int size)
5417 {
5418         int rc = -EINVAL;
5419
5420         if (kvmhv_vcpu_is_radix(vcpu)) {
5421                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5422
5423                 if (rc > 0)
5424                         rc = -EINVAL;
5425         }
5426
5427         /* For now quadrants are the only way to access nested guest memory */
5428         if (rc && vcpu->arch.nested)
5429                 rc = -EAGAIN;
5430
5431         return rc;
5432 }
5433
5434 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5435                                 int size)
5436 {
5437         int rc = -EINVAL;
5438
5439         if (kvmhv_vcpu_is_radix(vcpu)) {
5440                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5441
5442                 if (rc > 0)
5443                         rc = -EINVAL;
5444         }
5445
5446         /* For now quadrants are the only way to access nested guest memory */
5447         if (rc && vcpu->arch.nested)
5448                 rc = -EAGAIN;
5449
5450         return rc;
5451 }
5452
5453 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5454 {
5455         unpin_vpa(kvm, vpa);
5456         vpa->gpa = 0;
5457         vpa->pinned_addr = NULL;
5458         vpa->dirty = false;
5459         vpa->update_pending = 0;
5460 }
5461
5462 /*
5463  * Enable a guest to become a secure VM, or test whether
5464  * that could be enabled.
5465  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5466  * tested (kvm == NULL) or enabled (kvm != NULL).
5467  */
5468 static int kvmhv_enable_svm(struct kvm *kvm)
5469 {
5470         if (!kvmppc_uvmem_available())
5471                 return -EINVAL;
5472         if (kvm)
5473                 kvm->arch.svm_enabled = 1;
5474         return 0;
5475 }
5476
5477 /*
5478  *  IOCTL handler to turn off secure mode of guest
5479  *
5480  * - Release all device pages
5481  * - Issue ucall to terminate the guest on the UV side
5482  * - Unpin the VPA pages.
5483  * - Reinit the partition scoped page tables
5484  */
5485 static int kvmhv_svm_off(struct kvm *kvm)
5486 {
5487         struct kvm_vcpu *vcpu;
5488         int mmu_was_ready;
5489         int srcu_idx;
5490         int ret = 0;
5491         int i;
5492
5493         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5494                 return ret;
5495
5496         mutex_lock(&kvm->arch.mmu_setup_lock);
5497         mmu_was_ready = kvm->arch.mmu_ready;
5498         if (kvm->arch.mmu_ready) {
5499                 kvm->arch.mmu_ready = 0;
5500                 /* order mmu_ready vs. vcpus_running */
5501                 smp_mb();
5502                 if (atomic_read(&kvm->arch.vcpus_running)) {
5503                         kvm->arch.mmu_ready = 1;
5504                         ret = -EBUSY;
5505                         goto out;
5506                 }
5507         }
5508
5509         srcu_idx = srcu_read_lock(&kvm->srcu);
5510         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5511                 struct kvm_memory_slot *memslot;
5512                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5513
5514                 if (!slots)
5515                         continue;
5516
5517                 kvm_for_each_memslot(memslot, slots) {
5518                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5519                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5520                 }
5521         }
5522         srcu_read_unlock(&kvm->srcu, srcu_idx);
5523
5524         ret = uv_svm_terminate(kvm->arch.lpid);
5525         if (ret != U_SUCCESS) {
5526                 ret = -EINVAL;
5527                 goto out;
5528         }
5529
5530         /*
5531          * When secure guest is reset, all the guest pages are sent
5532          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5533          * chance to run and unpin their VPA pages. Unpinning of all
5534          * VPA pages is done here explicitly so that VPA pages
5535          * can be migrated to the secure side.
5536          *
5537          * This is required to for the secure SMP guest to reboot
5538          * correctly.
5539          */
5540         kvm_for_each_vcpu(i, vcpu, kvm) {
5541                 spin_lock(&vcpu->arch.vpa_update_lock);
5542                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5543                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5544                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5545                 spin_unlock(&vcpu->arch.vpa_update_lock);
5546         }
5547
5548         kvmppc_setup_partition_table(kvm);
5549         kvm->arch.secure_guest = 0;
5550         kvm->arch.mmu_ready = mmu_was_ready;
5551 out:
5552         mutex_unlock(&kvm->arch.mmu_setup_lock);
5553         return ret;
5554 }
5555
5556 static struct kvmppc_ops kvm_ops_hv = {
5557         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5558         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5559         .get_one_reg = kvmppc_get_one_reg_hv,
5560         .set_one_reg = kvmppc_set_one_reg_hv,
5561         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5562         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5563         .inject_interrupt = kvmppc_inject_interrupt_hv,
5564         .set_msr     = kvmppc_set_msr_hv,
5565         .vcpu_run    = kvmppc_vcpu_run_hv,
5566         .vcpu_create = kvmppc_core_vcpu_create_hv,
5567         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5568         .check_requests = kvmppc_core_check_requests_hv,
5569         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5570         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5571         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5572         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5573         .unmap_hva_range = kvm_unmap_hva_range_hv,
5574         .age_hva  = kvm_age_hva_hv,
5575         .test_age_hva = kvm_test_age_hva_hv,
5576         .set_spte_hva = kvm_set_spte_hva_hv,
5577         .free_memslot = kvmppc_core_free_memslot_hv,
5578         .init_vm =  kvmppc_core_init_vm_hv,
5579         .destroy_vm = kvmppc_core_destroy_vm_hv,
5580         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5581         .emulate_op = kvmppc_core_emulate_op_hv,
5582         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5583         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5584         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5585         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5586         .hcall_implemented = kvmppc_hcall_impl_hv,
5587 #ifdef CONFIG_KVM_XICS
5588         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5589         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5590 #endif
5591         .configure_mmu = kvmhv_configure_mmu,
5592         .get_rmmu_info = kvmhv_get_rmmu_info,
5593         .set_smt_mode = kvmhv_set_smt_mode,
5594         .enable_nested = kvmhv_enable_nested,
5595         .load_from_eaddr = kvmhv_load_from_eaddr,
5596         .store_to_eaddr = kvmhv_store_to_eaddr,
5597         .enable_svm = kvmhv_enable_svm,
5598         .svm_off = kvmhv_svm_off,
5599 };
5600
5601 static int kvm_init_subcore_bitmap(void)
5602 {
5603         int i, j;
5604         int nr_cores = cpu_nr_cores();
5605         struct sibling_subcore_state *sibling_subcore_state;
5606
5607         for (i = 0; i < nr_cores; i++) {
5608                 int first_cpu = i * threads_per_core;
5609                 int node = cpu_to_node(first_cpu);
5610
5611                 /* Ignore if it is already allocated. */
5612                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5613                         continue;
5614
5615                 sibling_subcore_state =
5616                         kzalloc_node(sizeof(struct sibling_subcore_state),
5617                                                         GFP_KERNEL, node);
5618                 if (!sibling_subcore_state)
5619                         return -ENOMEM;
5620
5621
5622                 for (j = 0; j < threads_per_core; j++) {
5623                         int cpu = first_cpu + j;
5624
5625                         paca_ptrs[cpu]->sibling_subcore_state =
5626                                                 sibling_subcore_state;
5627                 }
5628         }
5629         return 0;
5630 }
5631
5632 static int kvmppc_radix_possible(void)
5633 {
5634         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5635 }
5636
5637 static int kvmppc_book3s_init_hv(void)
5638 {
5639         int r;
5640
5641         if (!tlbie_capable) {
5642                 pr_err("KVM-HV: Host does not support TLBIE\n");
5643                 return -ENODEV;
5644         }
5645
5646         /*
5647          * FIXME!! Do we need to check on all cpus ?
5648          */
5649         r = kvmppc_core_check_processor_compat_hv();
5650         if (r < 0)
5651                 return -ENODEV;
5652
5653         r = kvmhv_nested_init();
5654         if (r)
5655                 return r;
5656
5657         r = kvm_init_subcore_bitmap();
5658         if (r)
5659                 return r;
5660
5661         /*
5662          * We need a way of accessing the XICS interrupt controller,
5663          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5664          * indirectly, via OPAL.
5665          */
5666 #ifdef CONFIG_SMP
5667         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5668             !local_paca->kvm_hstate.xics_phys) {
5669                 struct device_node *np;
5670
5671                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5672                 if (!np) {
5673                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5674                         return -ENODEV;
5675                 }
5676                 /* presence of intc confirmed - node can be dropped again */
5677                 of_node_put(np);
5678         }
5679 #endif
5680
5681         kvm_ops_hv.owner = THIS_MODULE;
5682         kvmppc_hv_ops = &kvm_ops_hv;
5683
5684         init_default_hcalls();
5685
5686         init_vcore_lists();
5687
5688         r = kvmppc_mmu_hv_init();
5689         if (r)
5690                 return r;
5691
5692         if (kvmppc_radix_possible())
5693                 r = kvmppc_radix_init();
5694
5695         /*
5696          * POWER9 chips before version 2.02 can't have some threads in
5697          * HPT mode and some in radix mode on the same core.
5698          */
5699         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5700                 unsigned int pvr = mfspr(SPRN_PVR);
5701                 if ((pvr >> 16) == PVR_POWER9 &&
5702                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5703                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5704                         no_mixing_hpt_and_radix = true;
5705         }
5706
5707         r = kvmppc_uvmem_init();
5708         if (r < 0)
5709                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5710
5711         return r;
5712 }
5713
5714 static void kvmppc_book3s_exit_hv(void)
5715 {
5716         kvmppc_uvmem_free();
5717         kvmppc_free_host_rm_ops();
5718         if (kvmppc_radix_possible())
5719                 kvmppc_radix_exit();
5720         kvmppc_hv_ops = NULL;
5721         kvmhv_nested_exit();
5722 }
5723
5724 module_init(kvmppc_book3s_init_hv);
5725 module_exit(kvmppc_book3s_exit_hv);
5726 MODULE_LICENSE("GPL");
5727 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5728 MODULE_ALIAS("devname:kvm");