OSDN Git Service

smb3: Add defines for new information level, FileIdInformation
[tomoyo/tomoyo-test1.git] / arch / powerpc / platforms / pseries / lpar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43
44 #include "pseries.h"
45
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST     0x4000000000000000UL
48 #define HBR_RESPONSE    0x8000000000000000UL
49 #define HBR_END         0xc000000000000000UL
50 #define HBR_AVPN        0x0200000000000000UL
51 #define HBR_ANDCOND     0x0100000000000000UL
52
53
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58
59 /*
60  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61  * page size is that page size.
62  *
63  * The first index is the segment base page size, the second one is the actual
64  * page size.
65  */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67
68 /*
69  * Due to the involved complexity, and that the current hypervisor is only
70  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71  * buffer size to 8 size block.
72  */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80
81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83         int cpu;
84         struct paca_struct *pp;
85         struct dtl_entry *dtl;
86
87         for_each_possible_cpu(cpu) {
88                 pp = paca_ptrs[cpu];
89                 if (pp->dispatch_log)
90                         continue;
91                 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92                 if (!dtl) {
93                         pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94                                 cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96                         pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98                         break;
99                 }
100
101                 pp->dtl_ridx = 0;
102                 pp->dispatch_log = dtl;
103                 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104                 pp->dtl_curr = dtl;
105
106                 if (time_limit && time_after(jiffies, *time_limit)) {
107                         cond_resched();
108                         *time_limit = jiffies + HZ;
109                 }
110         }
111 }
112
113 void register_dtl_buffer(int cpu)
114 {
115         long ret;
116         struct paca_struct *pp;
117         struct dtl_entry *dtl;
118         int hwcpu = get_hard_smp_processor_id(cpu);
119
120         pp = paca_ptrs[cpu];
121         dtl = pp->dispatch_log;
122         if (dtl && dtl_mask) {
123                 pp->dtl_ridx = 0;
124                 pp->dtl_curr = dtl;
125                 lppaca_of(cpu).dtl_idx = 0;
126
127                 /* hypervisor reads buffer length from this field */
128                 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129                 ret = register_dtl(hwcpu, __pa(dtl));
130                 if (ret)
131                         pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132                                cpu, hwcpu, ret);
133
134                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135         }
136 }
137
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140         struct delayed_work work;
141         int cpu;
142 };
143
144 struct vcpu_dispatch_data {
145         int last_disp_cpu;
146
147         int total_disp;
148
149         int same_cpu_disp;
150         int same_chip_disp;
151         int diff_chip_disp;
152         int far_chip_disp;
153
154         int numa_home_disp;
155         int numa_remote_disp;
156         int numa_far_disp;
157 };
158
159 /*
160  * This represents the number of cpus in the hypervisor. Since there is no
161  * architected way to discover the number of processors in the host, we
162  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163  * is sufficient for our purposes. This will need to be tweaked if
164  * CONFIG_NR_CPUS is changed.
165  */
166 #define NR_CPUS_H       NR_CPUS
167
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177
178
179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182         int cpu;
183         struct paca_struct *pp;
184
185         for_each_possible_cpu(cpu) {
186                 pp = paca_ptrs[cpu];
187                 if (!pp->dispatch_log)
188                         continue;
189                 kmem_cache_free(dtl_cache, pp->dispatch_log);
190                 pp->dtl_ridx = 0;
191                 pp->dispatch_log = 0;
192                 pp->dispatch_log_end = 0;
193                 pp->dtl_curr = 0;
194
195                 if (time_limit && time_after(jiffies, *time_limit)) {
196                         cond_resched();
197                         *time_limit = jiffies + HZ;
198                 }
199         }
200 #endif
201 }
202
203 static int init_cpu_associativity(void)
204 {
205         vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207         pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208                         VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209
210         if (!vcpu_associativity || !pcpu_associativity) {
211                 pr_err("error allocating memory for associativity information\n");
212                 return -ENOMEM;
213         }
214
215         return 0;
216 }
217
218 static void destroy_cpu_associativity(void)
219 {
220         kfree(vcpu_associativity);
221         kfree(pcpu_associativity);
222         vcpu_associativity = pcpu_associativity = 0;
223 }
224
225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227         __be32 *assoc;
228         int rc = 0;
229
230         assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231         if (!assoc[0]) {
232                 rc = hcall_vphn(cpu, flag, &assoc[0]);
233                 if (rc)
234                         return NULL;
235         }
236
237         return assoc;
238 }
239
240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242         return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244
245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247         return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249
250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252         __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253
254         if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255                 return -EINVAL;
256
257         last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258         cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259
260         if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261                 return -EIO;
262
263         return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265
266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268         __be32 *disp_cpu_assoc, *vcpu_assoc;
269         int vcpu_id = smp_processor_id();
270
271         if (disp_cpu >= NR_CPUS_H) {
272                 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273                                                 disp_cpu, NR_CPUS_H);
274                 return -EINVAL;
275         }
276
277         disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278         vcpu_assoc = get_vcpu_associativity(vcpu_id);
279
280         if (!disp_cpu_assoc || !vcpu_assoc)
281                 return -EIO;
282
283         return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285
286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288         struct vcpu_dispatch_data *disp;
289         int distance;
290
291         disp = this_cpu_ptr(&vcpu_disp_data);
292         if (disp->last_disp_cpu == -1) {
293                 disp->last_disp_cpu = disp_cpu;
294                 return;
295         }
296
297         disp->total_disp++;
298
299         if (disp->last_disp_cpu == disp_cpu ||
300                 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
301                                         cpu_first_thread_sibling(disp_cpu)))
302                 disp->same_cpu_disp++;
303         else {
304                 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305                                                                 disp_cpu);
306                 if (distance < 0)
307                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308                                         smp_processor_id());
309                 else {
310                         switch (distance) {
311                         case 0:
312                                 disp->same_chip_disp++;
313                                 break;
314                         case 1:
315                                 disp->diff_chip_disp++;
316                                 break;
317                         case 2:
318                                 disp->far_chip_disp++;
319                                 break;
320                         default:
321                                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322                                                  smp_processor_id(),
323                                                  disp->last_disp_cpu,
324                                                  disp_cpu,
325                                                  distance);
326                         }
327                 }
328         }
329
330         distance = cpu_home_node_dispatch_distance(disp_cpu);
331         if (distance < 0)
332                 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333                                 smp_processor_id());
334         else {
335                 switch (distance) {
336                 case 0:
337                         disp->numa_home_disp++;
338                         break;
339                 case 1:
340                         disp->numa_remote_disp++;
341                         break;
342                 case 2:
343                         disp->numa_far_disp++;
344                         break;
345                 default:
346                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347                                                  smp_processor_id(),
348                                                  disp_cpu,
349                                                  distance);
350                 }
351         }
352
353         disp->last_disp_cpu = disp_cpu;
354 }
355
356 static void process_dtl_buffer(struct work_struct *work)
357 {
358         struct dtl_entry dtle;
359         u64 i = __this_cpu_read(dtl_entry_ridx);
360         struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361         struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362         struct lppaca *vpa = local_paca->lppaca_ptr;
363         struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364
365         if (!local_paca->dispatch_log)
366                 return;
367
368         /* if we have been migrated away, we cancel ourself */
369         if (d->cpu != smp_processor_id()) {
370                 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371                                                 smp_processor_id());
372                 return;
373         }
374
375         if (i == be64_to_cpu(vpa->dtl_idx))
376                 goto out;
377
378         while (i < be64_to_cpu(vpa->dtl_idx)) {
379                 dtle = *dtl;
380                 barrier();
381                 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382                         /* buffer has overflowed */
383                         pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384                                 d->cpu,
385                                 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386                         i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387                         dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388                         continue;
389                 }
390                 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391                 ++i;
392                 ++dtl;
393                 if (dtl == dtl_end)
394                         dtl = local_paca->dispatch_log;
395         }
396
397         __this_cpu_write(dtl_entry_ridx, i);
398
399 out:
400         schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401                                         HZ / vcpudispatch_stats_freq);
402 }
403
404 static int dtl_worker_online(unsigned int cpu)
405 {
406         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407
408         memset(d, 0, sizeof(*d));
409         INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410         d->cpu = cpu;
411
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413         per_cpu(dtl_entry_ridx, cpu) = 0;
414         register_dtl_buffer(cpu);
415 #else
416         per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418
419         schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420         return 0;
421 }
422
423 static int dtl_worker_offline(unsigned int cpu)
424 {
425         struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426
427         cancel_delayed_work_sync(&d->work);
428
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430         unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432
433         return 0;
434 }
435
436 static void set_global_dtl_mask(u8 mask)
437 {
438         int cpu;
439
440         dtl_mask = mask;
441         for_each_present_cpu(cpu)
442                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444
445 static void reset_global_dtl_mask(void)
446 {
447         int cpu;
448
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450         dtl_mask = DTL_LOG_PREEMPT;
451 #else
452         dtl_mask = 0;
453 #endif
454         for_each_present_cpu(cpu)
455                 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457
458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460         int rc = 0, state;
461
462         if (!write_trylock(&dtl_access_lock)) {
463                 rc = -EBUSY;
464                 goto out;
465         }
466
467         set_global_dtl_mask(DTL_LOG_ALL);
468
469         /* Setup dtl buffers and register those */
470         alloc_dtl_buffers(time_limit);
471
472         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473                                         dtl_worker_online, dtl_worker_offline);
474         if (state < 0) {
475                 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476                 free_dtl_buffers(time_limit);
477                 reset_global_dtl_mask();
478                 write_unlock(&dtl_access_lock);
479                 rc = -EINVAL;
480                 goto out;
481         }
482         dtl_worker_state = state;
483
484 out:
485         return rc;
486 }
487
488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490         cpuhp_remove_state(dtl_worker_state);
491         free_dtl_buffers(time_limit);
492         reset_global_dtl_mask();
493         write_unlock(&dtl_access_lock);
494 }
495
496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497                 size_t count, loff_t *ppos)
498 {
499         unsigned long time_limit = jiffies + HZ;
500         struct vcpu_dispatch_data *disp;
501         int rc, cmd, cpu;
502         char buf[16];
503
504         if (count > 15)
505                 return -EINVAL;
506
507         if (copy_from_user(buf, p, count))
508                 return -EFAULT;
509
510         buf[count] = 0;
511         rc = kstrtoint(buf, 0, &cmd);
512         if (rc || cmd < 0 || cmd > 1) {
513                 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514                 return rc ? rc : -EINVAL;
515         }
516
517         mutex_lock(&dtl_enable_mutex);
518
519         if ((cmd == 0 && !vcpudispatch_stats_on) ||
520                         (cmd == 1 && vcpudispatch_stats_on))
521                 goto out;
522
523         if (cmd) {
524                 rc = init_cpu_associativity();
525                 if (rc)
526                         goto out;
527
528                 for_each_possible_cpu(cpu) {
529                         disp = per_cpu_ptr(&vcpu_disp_data, cpu);
530                         memset(disp, 0, sizeof(*disp));
531                         disp->last_disp_cpu = -1;
532                 }
533
534                 rc = dtl_worker_enable(&time_limit);
535                 if (rc) {
536                         destroy_cpu_associativity();
537                         goto out;
538                 }
539         } else {
540                 dtl_worker_disable(&time_limit);
541                 destroy_cpu_associativity();
542         }
543
544         vcpudispatch_stats_on = cmd;
545
546 out:
547         mutex_unlock(&dtl_enable_mutex);
548         if (rc)
549                 return rc;
550         return count;
551 }
552
553 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
554 {
555         int cpu;
556         struct vcpu_dispatch_data *disp;
557
558         if (!vcpudispatch_stats_on) {
559                 seq_puts(p, "off\n");
560                 return 0;
561         }
562
563         for_each_online_cpu(cpu) {
564                 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
565                 seq_printf(p, "cpu%d", cpu);
566                 seq_put_decimal_ull(p, " ", disp->total_disp);
567                 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
568                 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
569                 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
570                 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
571                 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
572                 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
573                 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
574                 seq_puts(p, "\n");
575         }
576
577         return 0;
578 }
579
580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
581 {
582         return single_open(file, vcpudispatch_stats_display, NULL);
583 }
584
585 static const struct file_operations vcpudispatch_stats_proc_ops = {
586         .open           = vcpudispatch_stats_open,
587         .read           = seq_read,
588         .write          = vcpudispatch_stats_write,
589         .llseek         = seq_lseek,
590         .release        = single_release,
591 };
592
593 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
594                 const char __user *p, size_t count, loff_t *ppos)
595 {
596         int rc, freq;
597         char buf[16];
598
599         if (count > 15)
600                 return -EINVAL;
601
602         if (copy_from_user(buf, p, count))
603                 return -EFAULT;
604
605         buf[count] = 0;
606         rc = kstrtoint(buf, 0, &freq);
607         if (rc || freq < 1 || freq > HZ) {
608                 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
609                                 HZ);
610                 return rc ? rc : -EINVAL;
611         }
612
613         vcpudispatch_stats_freq = freq;
614
615         return count;
616 }
617
618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
619 {
620         seq_printf(p, "%d\n", vcpudispatch_stats_freq);
621         return 0;
622 }
623
624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
625 {
626         return single_open(file, vcpudispatch_stats_freq_display, NULL);
627 }
628
629 static const struct file_operations vcpudispatch_stats_freq_proc_ops = {
630         .open           = vcpudispatch_stats_freq_open,
631         .read           = seq_read,
632         .write          = vcpudispatch_stats_freq_write,
633         .llseek         = seq_lseek,
634         .release        = single_release,
635 };
636
637 static int __init vcpudispatch_stats_procfs_init(void)
638 {
639         if (!lppaca_shared_proc(get_lppaca()))
640                 return 0;
641
642         if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
643                                         &vcpudispatch_stats_proc_ops))
644                 pr_err("vcpudispatch_stats: error creating procfs file\n");
645         else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
646                                         &vcpudispatch_stats_freq_proc_ops))
647                 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
648
649         return 0;
650 }
651
652 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
653 #endif /* CONFIG_PPC_SPLPAR */
654
655 void vpa_init(int cpu)
656 {
657         int hwcpu = get_hard_smp_processor_id(cpu);
658         unsigned long addr;
659         long ret;
660
661         /*
662          * The spec says it "may be problematic" if CPU x registers the VPA of
663          * CPU y. We should never do that, but wail if we ever do.
664          */
665         WARN_ON(cpu != smp_processor_id());
666
667         if (cpu_has_feature(CPU_FTR_ALTIVEC))
668                 lppaca_of(cpu).vmxregs_in_use = 1;
669
670         if (cpu_has_feature(CPU_FTR_ARCH_207S))
671                 lppaca_of(cpu).ebb_regs_in_use = 1;
672
673         addr = __pa(&lppaca_of(cpu));
674         ret = register_vpa(hwcpu, addr);
675
676         if (ret) {
677                 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
678                        "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
679                 return;
680         }
681
682 #ifdef CONFIG_PPC_BOOK3S_64
683         /*
684          * PAPR says this feature is SLB-Buffer but firmware never
685          * reports that.  All SPLPAR support SLB shadow buffer.
686          */
687         if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
688                 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
689                 ret = register_slb_shadow(hwcpu, addr);
690                 if (ret)
691                         pr_err("WARNING: SLB shadow buffer registration for "
692                                "cpu %d (hw %d) of area %lx failed with %ld\n",
693                                cpu, hwcpu, addr, ret);
694         }
695 #endif /* CONFIG_PPC_BOOK3S_64 */
696
697         /*
698          * Register dispatch trace log, if one has been allocated.
699          */
700         register_dtl_buffer(cpu);
701 }
702
703 #ifdef CONFIG_PPC_BOOK3S_64
704
705 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
706                                      unsigned long vpn, unsigned long pa,
707                                      unsigned long rflags, unsigned long vflags,
708                                      int psize, int apsize, int ssize)
709 {
710         unsigned long lpar_rc;
711         unsigned long flags;
712         unsigned long slot;
713         unsigned long hpte_v, hpte_r;
714
715         if (!(vflags & HPTE_V_BOLTED))
716                 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
717                          "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
718                          hpte_group, vpn,  pa, rflags, vflags, psize);
719
720         hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
721         hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
722
723         if (!(vflags & HPTE_V_BOLTED))
724                 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
725
726         /* Now fill in the actual HPTE */
727         /* Set CEC cookie to 0         */
728         /* Zero page = 0               */
729         /* I-cache Invalidate = 0      */
730         /* I-cache synchronize = 0     */
731         /* Exact = 0                   */
732         flags = 0;
733
734         if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
735                 flags |= H_COALESCE_CAND;
736
737         lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
738         if (unlikely(lpar_rc == H_PTEG_FULL)) {
739                 pr_devel("Hash table group is full\n");
740                 return -1;
741         }
742
743         /*
744          * Since we try and ioremap PHBs we don't own, the pte insert
745          * will fail. However we must catch the failure in hash_page
746          * or we will loop forever, so return -2 in this case.
747          */
748         if (unlikely(lpar_rc != H_SUCCESS)) {
749                 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
750                 return -2;
751         }
752         if (!(vflags & HPTE_V_BOLTED))
753                 pr_devel(" -> slot: %lu\n", slot & 7);
754
755         /* Because of iSeries, we have to pass down the secondary
756          * bucket bit here as well
757          */
758         return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
759 }
760
761 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
762
763 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
764 {
765         unsigned long slot_offset;
766         unsigned long lpar_rc;
767         int i;
768         unsigned long dummy1, dummy2;
769
770         /* pick a random slot to start at */
771         slot_offset = mftb() & 0x7;
772
773         for (i = 0; i < HPTES_PER_GROUP; i++) {
774
775                 /* don't remove a bolted entry */
776                 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
777                                            HPTE_V_BOLTED, &dummy1, &dummy2);
778                 if (lpar_rc == H_SUCCESS)
779                         return i;
780
781                 /*
782                  * The test for adjunct partition is performed before the
783                  * ANDCOND test.  H_RESOURCE may be returned, so we need to
784                  * check for that as well.
785                  */
786                 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
787
788                 slot_offset++;
789                 slot_offset &= 0x7;
790         }
791
792         return -1;
793 }
794
795 static void manual_hpte_clear_all(void)
796 {
797         unsigned long size_bytes = 1UL << ppc64_pft_size;
798         unsigned long hpte_count = size_bytes >> 4;
799         struct {
800                 unsigned long pteh;
801                 unsigned long ptel;
802         } ptes[4];
803         long lpar_rc;
804         unsigned long i, j;
805
806         /* Read in batches of 4,
807          * invalidate only valid entries not in the VRMA
808          * hpte_count will be a multiple of 4
809          */
810         for (i = 0; i < hpte_count; i += 4) {
811                 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
812                 if (lpar_rc != H_SUCCESS) {
813                         pr_info("Failed to read hash page table at %ld err %ld\n",
814                                 i, lpar_rc);
815                         continue;
816                 }
817                 for (j = 0; j < 4; j++){
818                         if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
819                                 HPTE_V_VRMA_MASK)
820                                 continue;
821                         if (ptes[j].pteh & HPTE_V_VALID)
822                                 plpar_pte_remove_raw(0, i + j, 0,
823                                         &(ptes[j].pteh), &(ptes[j].ptel));
824                 }
825         }
826 }
827
828 static int hcall_hpte_clear_all(void)
829 {
830         int rc;
831
832         do {
833                 rc = plpar_hcall_norets(H_CLEAR_HPT);
834         } while (rc == H_CONTINUE);
835
836         return rc;
837 }
838
839 static void pseries_hpte_clear_all(void)
840 {
841         int rc;
842
843         rc = hcall_hpte_clear_all();
844         if (rc != H_SUCCESS)
845                 manual_hpte_clear_all();
846
847 #ifdef __LITTLE_ENDIAN__
848         /*
849          * Reset exceptions to big endian.
850          *
851          * FIXME this is a hack for kexec, we need to reset the exception
852          * endian before starting the new kernel and this is a convenient place
853          * to do it.
854          *
855          * This is also called on boot when a fadump happens. In that case we
856          * must not change the exception endian mode.
857          */
858         if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
859                 pseries_big_endian_exceptions();
860 #endif
861 }
862
863 /*
864  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
865  * the low 3 bits of flags happen to line up.  So no transform is needed.
866  * We can probably optimize here and assume the high bits of newpp are
867  * already zero.  For now I am paranoid.
868  */
869 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
870                                        unsigned long newpp,
871                                        unsigned long vpn,
872                                        int psize, int apsize,
873                                        int ssize, unsigned long inv_flags)
874 {
875         unsigned long lpar_rc;
876         unsigned long flags;
877         unsigned long want_v;
878
879         want_v = hpte_encode_avpn(vpn, psize, ssize);
880
881         flags = (newpp & 7) | H_AVPN;
882         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
883                 /* Move pp0 into bit 8 (IBM 55) */
884                 flags |= (newpp & HPTE_R_PP0) >> 55;
885
886         pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
887                  want_v, slot, flags, psize);
888
889         lpar_rc = plpar_pte_protect(flags, slot, want_v);
890
891         if (lpar_rc == H_NOT_FOUND) {
892                 pr_devel("not found !\n");
893                 return -1;
894         }
895
896         pr_devel("ok\n");
897
898         BUG_ON(lpar_rc != H_SUCCESS);
899
900         return 0;
901 }
902
903 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
904 {
905         long lpar_rc;
906         unsigned long i, j;
907         struct {
908                 unsigned long pteh;
909                 unsigned long ptel;
910         } ptes[4];
911
912         for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
913
914                 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
915                 if (lpar_rc != H_SUCCESS) {
916                         pr_info("Failed to read hash page table at %ld err %ld\n",
917                                 hpte_group, lpar_rc);
918                         continue;
919                 }
920
921                 for (j = 0; j < 4; j++) {
922                         if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
923                             (ptes[j].pteh & HPTE_V_VALID))
924                                 return i + j;
925                 }
926         }
927
928         return -1;
929 }
930
931 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
932 {
933         long slot;
934         unsigned long hash;
935         unsigned long want_v;
936         unsigned long hpte_group;
937
938         hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
939         want_v = hpte_encode_avpn(vpn, psize, ssize);
940
941         /*
942          * We try to keep bolted entries always in primary hash
943          * But in some case we can find them in secondary too.
944          */
945         hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
946         slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
947         if (slot < 0) {
948                 /* Try in secondary */
949                 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
950                 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
951                 if (slot < 0)
952                         return -1;
953         }
954         return hpte_group + slot;
955 }
956
957 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
958                                              unsigned long ea,
959                                              int psize, int ssize)
960 {
961         unsigned long vpn;
962         unsigned long lpar_rc, slot, vsid, flags;
963
964         vsid = get_kernel_vsid(ea, ssize);
965         vpn = hpt_vpn(ea, vsid, ssize);
966
967         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
968         BUG_ON(slot == -1);
969
970         flags = newpp & 7;
971         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
972                 /* Move pp0 into bit 8 (IBM 55) */
973                 flags |= (newpp & HPTE_R_PP0) >> 55;
974
975         lpar_rc = plpar_pte_protect(flags, slot, 0);
976
977         BUG_ON(lpar_rc != H_SUCCESS);
978 }
979
980 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
981                                          int psize, int apsize,
982                                          int ssize, int local)
983 {
984         unsigned long want_v;
985         unsigned long lpar_rc;
986         unsigned long dummy1, dummy2;
987
988         pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
989                  slot, vpn, psize, local);
990
991         want_v = hpte_encode_avpn(vpn, psize, ssize);
992         lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
993         if (lpar_rc == H_NOT_FOUND)
994                 return;
995
996         BUG_ON(lpar_rc != H_SUCCESS);
997 }
998
999
1000 /*
1001  * As defined in the PAPR's section 14.5.4.1.8
1002  * The control mask doesn't include the returned reference and change bit from
1003  * the processed PTE.
1004  */
1005 #define HBLKR_AVPN              0x0100000000000000UL
1006 #define HBLKR_CTRL_MASK         0xf800000000000000UL
1007 #define HBLKR_CTRL_SUCCESS      0x8000000000000000UL
1008 #define HBLKR_CTRL_ERRNOTFOUND  0x8800000000000000UL
1009 #define HBLKR_CTRL_ERRBUSY      0xa000000000000000UL
1010
1011 /*
1012  * Returned true if we are supporting this block size for the specified segment
1013  * base page size and actual page size.
1014  *
1015  * Currently, we only support 8 size block.
1016  */
1017 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1018 {
1019         return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1020 }
1021
1022 /**
1023  * H_BLOCK_REMOVE caller.
1024  * @idx should point to the latest @param entry set with a PTEX.
1025  * If PTE cannot be processed because another CPUs has already locked that
1026  * group, those entries are put back in @param starting at index 1.
1027  * If entries has to be retried and @retry_busy is set to true, these entries
1028  * are retried until success. If @retry_busy is set to false, the returned
1029  * is the number of entries yet to process.
1030  */
1031 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1032                                        bool retry_busy)
1033 {
1034         unsigned long i, rc, new_idx;
1035         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1036
1037         if (idx < 2) {
1038                 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1039                 return 0;
1040         }
1041 again:
1042         new_idx = 0;
1043         if (idx > PLPAR_HCALL9_BUFSIZE) {
1044                 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1045                 idx = PLPAR_HCALL9_BUFSIZE;
1046         } else if (idx < PLPAR_HCALL9_BUFSIZE)
1047                 param[idx] = HBR_END;
1048
1049         rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1050                           param[0], /* AVA */
1051                           param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1052                           param[5],  param[6],  param[7],  param[8]);
1053         if (rc == H_SUCCESS)
1054                 return 0;
1055
1056         BUG_ON(rc != H_PARTIAL);
1057
1058         /* Check that the unprocessed entries were 'not found' or 'busy' */
1059         for (i = 0; i < idx-1; i++) {
1060                 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1061
1062                 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1063                         param[++new_idx] = param[i+1];
1064                         continue;
1065                 }
1066
1067                 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1068                        && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1069         }
1070
1071         /*
1072          * If there were entries found busy, retry these entries if requested,
1073          * of if all the entries have to be retried.
1074          */
1075         if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1076                 idx = new_idx + 1;
1077                 goto again;
1078         }
1079
1080         return new_idx;
1081 }
1082
1083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1084 /*
1085  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1086  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1087  */
1088 #define PPC64_HUGE_HPTE_BATCH 12
1089
1090 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1091                                       int count, int psize, int ssize)
1092 {
1093         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1094         unsigned long shift, current_vpgb, vpgb;
1095         int i, pix = 0;
1096
1097         shift = mmu_psize_defs[psize].shift;
1098
1099         for (i = 0; i < count; i++) {
1100                 /*
1101                  * Shifting 3 bits more on the right to get a
1102                  * 8 pages aligned virtual addresse.
1103                  */
1104                 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1105                 if (!pix || vpgb != current_vpgb) {
1106                         /*
1107                          * Need to start a new 8 pages block, flush
1108                          * the current one if needed.
1109                          */
1110                         if (pix)
1111                                 (void)call_block_remove(pix, param, true);
1112                         current_vpgb = vpgb;
1113                         param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1114                         pix = 1;
1115                 }
1116
1117                 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1118                 if (pix == PLPAR_HCALL9_BUFSIZE) {
1119                         pix = call_block_remove(pix, param, false);
1120                         /*
1121                          * pix = 0 means that all the entries were
1122                          * removed, we can start a new block.
1123                          * Otherwise, this means that there are entries
1124                          * to retry, and pix points to latest one, so
1125                          * we should increment it and try to continue
1126                          * the same block.
1127                          */
1128                         if (pix)
1129                                 pix++;
1130                 }
1131         }
1132         if (pix)
1133                 (void)call_block_remove(pix, param, true);
1134 }
1135
1136 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1137                                      int count, int psize, int ssize)
1138 {
1139         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1140         int i = 0, pix = 0, rc;
1141
1142         for (i = 0; i < count; i++) {
1143
1144                 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1145                         pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1146                                                      ssize, 0);
1147                 } else {
1148                         param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1149                         param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1150                         pix += 2;
1151                         if (pix == 8) {
1152                                 rc = plpar_hcall9(H_BULK_REMOVE, param,
1153                                                   param[0], param[1], param[2],
1154                                                   param[3], param[4], param[5],
1155                                                   param[6], param[7]);
1156                                 BUG_ON(rc != H_SUCCESS);
1157                                 pix = 0;
1158                         }
1159                 }
1160         }
1161         if (pix) {
1162                 param[pix] = HBR_END;
1163                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1164                                   param[2], param[3], param[4], param[5],
1165                                   param[6], param[7]);
1166                 BUG_ON(rc != H_SUCCESS);
1167         }
1168 }
1169
1170 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1171                                                       unsigned long *vpn,
1172                                                       int count, int psize,
1173                                                       int ssize)
1174 {
1175         unsigned long flags = 0;
1176         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1177
1178         if (lock_tlbie)
1179                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1180
1181         /* Assuming THP size is 16M */
1182         if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1183                 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1184         else
1185                 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1186
1187         if (lock_tlbie)
1188                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1189 }
1190
1191 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1192                                              unsigned long addr,
1193                                              unsigned char *hpte_slot_array,
1194                                              int psize, int ssize, int local)
1195 {
1196         int i, index = 0;
1197         unsigned long s_addr = addr;
1198         unsigned int max_hpte_count, valid;
1199         unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1200         unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1201         unsigned long shift, hidx, vpn = 0, hash, slot;
1202
1203         shift = mmu_psize_defs[psize].shift;
1204         max_hpte_count = 1U << (PMD_SHIFT - shift);
1205
1206         for (i = 0; i < max_hpte_count; i++) {
1207                 valid = hpte_valid(hpte_slot_array, i);
1208                 if (!valid)
1209                         continue;
1210                 hidx =  hpte_hash_index(hpte_slot_array, i);
1211
1212                 /* get the vpn */
1213                 addr = s_addr + (i * (1ul << shift));
1214                 vpn = hpt_vpn(addr, vsid, ssize);
1215                 hash = hpt_hash(vpn, shift, ssize);
1216                 if (hidx & _PTEIDX_SECONDARY)
1217                         hash = ~hash;
1218
1219                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1220                 slot += hidx & _PTEIDX_GROUP_IX;
1221
1222                 slot_array[index] = slot;
1223                 vpn_array[index] = vpn;
1224                 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1225                         /*
1226                          * Now do a bluk invalidate
1227                          */
1228                         __pSeries_lpar_hugepage_invalidate(slot_array,
1229                                                            vpn_array,
1230                                                            PPC64_HUGE_HPTE_BATCH,
1231                                                            psize, ssize);
1232                         index = 0;
1233                 } else
1234                         index++;
1235         }
1236         if (index)
1237                 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1238                                                    index, psize, ssize);
1239 }
1240 #else
1241 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1242                                              unsigned long addr,
1243                                              unsigned char *hpte_slot_array,
1244                                              int psize, int ssize, int local)
1245 {
1246         WARN(1, "%s called without THP support\n", __func__);
1247 }
1248 #endif
1249
1250 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1251                                           int psize, int ssize)
1252 {
1253         unsigned long vpn;
1254         unsigned long slot, vsid;
1255
1256         vsid = get_kernel_vsid(ea, ssize);
1257         vpn = hpt_vpn(ea, vsid, ssize);
1258
1259         slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1260         if (slot == -1)
1261                 return -ENOENT;
1262
1263         /*
1264          * lpar doesn't use the passed actual page size
1265          */
1266         pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1267         return 0;
1268 }
1269
1270
1271 static inline unsigned long compute_slot(real_pte_t pte,
1272                                          unsigned long vpn,
1273                                          unsigned long index,
1274                                          unsigned long shift,
1275                                          int ssize)
1276 {
1277         unsigned long slot, hash, hidx;
1278
1279         hash = hpt_hash(vpn, shift, ssize);
1280         hidx = __rpte_to_hidx(pte, index);
1281         if (hidx & _PTEIDX_SECONDARY)
1282                 hash = ~hash;
1283         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1284         slot += hidx & _PTEIDX_GROUP_IX;
1285         return slot;
1286 }
1287
1288 /**
1289  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1290  * "all within the same naturally aligned 8 page virtual address block".
1291  */
1292 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1293                             unsigned long *param)
1294 {
1295         unsigned long vpn;
1296         unsigned long i, pix = 0;
1297         unsigned long index, shift, slot, current_vpgb, vpgb;
1298         real_pte_t pte;
1299         int psize, ssize;
1300
1301         psize = batch->psize;
1302         ssize = batch->ssize;
1303
1304         for (i = 0; i < number; i++) {
1305                 vpn = batch->vpn[i];
1306                 pte = batch->pte[i];
1307                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1308                         /*
1309                          * Shifting 3 bits more on the right to get a
1310                          * 8 pages aligned virtual addresse.
1311                          */
1312                         vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1313                         if (!pix || vpgb != current_vpgb) {
1314                                 /*
1315                                  * Need to start a new 8 pages block, flush
1316                                  * the current one if needed.
1317                                  */
1318                                 if (pix)
1319                                         (void)call_block_remove(pix, param,
1320                                                                 true);
1321                                 current_vpgb = vpgb;
1322                                 param[0] = hpte_encode_avpn(vpn, psize,
1323                                                             ssize);
1324                                 pix = 1;
1325                         }
1326
1327                         slot = compute_slot(pte, vpn, index, shift, ssize);
1328                         param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1329
1330                         if (pix == PLPAR_HCALL9_BUFSIZE) {
1331                                 pix = call_block_remove(pix, param, false);
1332                                 /*
1333                                  * pix = 0 means that all the entries were
1334                                  * removed, we can start a new block.
1335                                  * Otherwise, this means that there are entries
1336                                  * to retry, and pix points to latest one, so
1337                                  * we should increment it and try to continue
1338                                  * the same block.
1339                                  */
1340                                 if (pix)
1341                                         pix++;
1342                         }
1343                 } pte_iterate_hashed_end();
1344         }
1345
1346         if (pix)
1347                 (void)call_block_remove(pix, param, true);
1348 }
1349
1350 /*
1351  * TLB Block Invalidate Characteristics
1352  *
1353  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1354  * is able to process for each couple segment base page size, actual page size.
1355  *
1356  * The ibm,get-system-parameter properties is returning a buffer with the
1357  * following layout:
1358  *
1359  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1360  * -----------------
1361  * TLB Block Invalidate Specifiers:
1362  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1363  * [ 1 byte Number of page sizes (N) that are supported for the specified
1364  *          TLB invalidate block size ]
1365  * [ 1 byte Encoded segment base page size and actual page size
1366  *          MSB=0 means 4k segment base page size and actual page size
1367  *          MSB=1 the penc value in mmu_psize_def ]
1368  * ...
1369  * -----------------
1370  * Next TLB Block Invalidate Specifiers...
1371  * -----------------
1372  * [ 0 ]
1373  */
1374 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1375                                         unsigned int block_size)
1376 {
1377         if (block_size > hblkrm_size[bpsize][psize])
1378                 hblkrm_size[bpsize][psize] = block_size;
1379 }
1380
1381 /*
1382  * Decode the Encoded segment base page size and actual page size.
1383  * PAPR specifies:
1384  *   - bit 7 is the L bit
1385  *   - bits 0-5 are the penc value
1386  * If the L bit is 0, this means 4K segment base page size and actual page size
1387  * otherwise the penc value should be read.
1388  */
1389 #define HBLKRM_L_MASK           0x80
1390 #define HBLKRM_PENC_MASK        0x3f
1391 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1392                                               unsigned int block_size)
1393 {
1394         unsigned int bpsize, psize;
1395
1396         /* First, check the L bit, if not set, this means 4K */
1397         if ((lp & HBLKRM_L_MASK) == 0) {
1398                 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1399                 return;
1400         }
1401
1402         lp &= HBLKRM_PENC_MASK;
1403         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1404                 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1405
1406                 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1407                         if (def->penc[psize] == lp) {
1408                                 set_hblkrm_bloc_size(bpsize, psize, block_size);
1409                                 return;
1410                         }
1411                 }
1412         }
1413 }
1414
1415 #define SPLPAR_TLB_BIC_TOKEN            50
1416
1417 /*
1418  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1419  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1420  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1421  * (128 bytes) for the buffer to get plenty of space.
1422  */
1423 #define SPLPAR_TLB_BIC_MAXLENGTH        128
1424
1425 void __init pseries_lpar_read_hblkrm_characteristics(void)
1426 {
1427         unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1428         int call_status, len, idx, bpsize;
1429
1430         if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1431                 return;
1432
1433         spin_lock(&rtas_data_buf_lock);
1434         memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1435         call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1436                                 NULL,
1437                                 SPLPAR_TLB_BIC_TOKEN,
1438                                 __pa(rtas_data_buf),
1439                                 RTAS_DATA_BUF_SIZE);
1440         memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1441         local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1442         spin_unlock(&rtas_data_buf_lock);
1443
1444         if (call_status != 0) {
1445                 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1446                         __FILE__, __func__, call_status);
1447                 return;
1448         }
1449
1450         /*
1451          * The first two (2) bytes of the data in the buffer are the length of
1452          * the returned data, not counting these first two (2) bytes.
1453          */
1454         len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1455         if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1456                 pr_warn("%s too large returned buffer %d", __func__, len);
1457                 return;
1458         }
1459
1460         idx = 2;
1461         while (idx < len) {
1462                 u8 block_shift = local_buffer[idx++];
1463                 u32 block_size;
1464                 unsigned int npsize;
1465
1466                 if (!block_shift)
1467                         break;
1468
1469                 block_size = 1 << block_shift;
1470
1471                 for (npsize = local_buffer[idx++];
1472                      npsize > 0 && idx < len; npsize--)
1473                         check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1474                                             block_size);
1475         }
1476
1477         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1478                 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1479                         if (hblkrm_size[bpsize][idx])
1480                                 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1481                                         bpsize, idx, hblkrm_size[bpsize][idx]);
1482 }
1483
1484 /*
1485  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1486  * lock.
1487  */
1488 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1489 {
1490         unsigned long vpn;
1491         unsigned long i, pix, rc;
1492         unsigned long flags = 0;
1493         struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1494         int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1495         unsigned long param[PLPAR_HCALL9_BUFSIZE];
1496         unsigned long index, shift, slot;
1497         real_pte_t pte;
1498         int psize, ssize;
1499
1500         if (lock_tlbie)
1501                 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1502
1503         if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1504                 do_block_remove(number, batch, param);
1505                 goto out;
1506         }
1507
1508         psize = batch->psize;
1509         ssize = batch->ssize;
1510         pix = 0;
1511         for (i = 0; i < number; i++) {
1512                 vpn = batch->vpn[i];
1513                 pte = batch->pte[i];
1514                 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1515                         slot = compute_slot(pte, vpn, index, shift, ssize);
1516                         if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1517                                 /*
1518                                  * lpar doesn't use the passed actual page size
1519                                  */
1520                                 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1521                                                              0, ssize, local);
1522                         } else {
1523                                 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1524                                 param[pix+1] = hpte_encode_avpn(vpn, psize,
1525                                                                 ssize);
1526                                 pix += 2;
1527                                 if (pix == 8) {
1528                                         rc = plpar_hcall9(H_BULK_REMOVE, param,
1529                                                 param[0], param[1], param[2],
1530                                                 param[3], param[4], param[5],
1531                                                 param[6], param[7]);
1532                                         BUG_ON(rc != H_SUCCESS);
1533                                         pix = 0;
1534                                 }
1535                         }
1536                 } pte_iterate_hashed_end();
1537         }
1538         if (pix) {
1539                 param[pix] = HBR_END;
1540                 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1541                                   param[2], param[3], param[4], param[5],
1542                                   param[6], param[7]);
1543                 BUG_ON(rc != H_SUCCESS);
1544         }
1545
1546 out:
1547         if (lock_tlbie)
1548                 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1549 }
1550
1551 static int __init disable_bulk_remove(char *str)
1552 {
1553         if (strcmp(str, "off") == 0 &&
1554             firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1555                 pr_info("Disabling BULK_REMOVE firmware feature");
1556                 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1557         }
1558         return 1;
1559 }
1560
1561 __setup("bulk_remove=", disable_bulk_remove);
1562
1563 #define HPT_RESIZE_TIMEOUT      10000 /* ms */
1564
1565 struct hpt_resize_state {
1566         unsigned long shift;
1567         int commit_rc;
1568 };
1569
1570 static int pseries_lpar_resize_hpt_commit(void *data)
1571 {
1572         struct hpt_resize_state *state = data;
1573
1574         state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1575         if (state->commit_rc != H_SUCCESS)
1576                 return -EIO;
1577
1578         /* Hypervisor has transitioned the HTAB, update our globals */
1579         ppc64_pft_size = state->shift;
1580         htab_size_bytes = 1UL << ppc64_pft_size;
1581         htab_hash_mask = (htab_size_bytes >> 7) - 1;
1582
1583         return 0;
1584 }
1585
1586 /*
1587  * Must be called in process context. The caller must hold the
1588  * cpus_lock.
1589  */
1590 static int pseries_lpar_resize_hpt(unsigned long shift)
1591 {
1592         struct hpt_resize_state state = {
1593                 .shift = shift,
1594                 .commit_rc = H_FUNCTION,
1595         };
1596         unsigned int delay, total_delay = 0;
1597         int rc;
1598         ktime_t t0, t1, t2;
1599
1600         might_sleep();
1601
1602         if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1603                 return -ENODEV;
1604
1605         pr_info("Attempting to resize HPT to shift %lu\n", shift);
1606
1607         t0 = ktime_get();
1608
1609         rc = plpar_resize_hpt_prepare(0, shift);
1610         while (H_IS_LONG_BUSY(rc)) {
1611                 delay = get_longbusy_msecs(rc);
1612                 total_delay += delay;
1613                 if (total_delay > HPT_RESIZE_TIMEOUT) {
1614                         /* prepare with shift==0 cancels an in-progress resize */
1615                         rc = plpar_resize_hpt_prepare(0, 0);
1616                         if (rc != H_SUCCESS)
1617                                 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1618                                        rc);
1619                         return -ETIMEDOUT;
1620                 }
1621                 msleep(delay);
1622                 rc = plpar_resize_hpt_prepare(0, shift);
1623         };
1624
1625         switch (rc) {
1626         case H_SUCCESS:
1627                 /* Continue on */
1628                 break;
1629
1630         case H_PARAMETER:
1631                 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1632                 return -EINVAL;
1633         case H_RESOURCE:
1634                 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1635                 return -EPERM;
1636         default:
1637                 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1638                 return -EIO;
1639         }
1640
1641         t1 = ktime_get();
1642
1643         rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1644                                      &state, NULL);
1645
1646         t2 = ktime_get();
1647
1648         if (rc != 0) {
1649                 switch (state.commit_rc) {
1650                 case H_PTEG_FULL:
1651                         return -ENOSPC;
1652
1653                 default:
1654                         pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1655                                 state.commit_rc);
1656                         return -EIO;
1657                 };
1658         }
1659
1660         pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1661                 shift, (long long) ktime_ms_delta(t1, t0),
1662                 (long long) ktime_ms_delta(t2, t1));
1663
1664         return 0;
1665 }
1666
1667 static int pseries_lpar_register_process_table(unsigned long base,
1668                         unsigned long page_size, unsigned long table_size)
1669 {
1670         long rc;
1671         unsigned long flags = 0;
1672
1673         if (table_size)
1674                 flags |= PROC_TABLE_NEW;
1675         if (radix_enabled())
1676                 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1677         else
1678                 flags |= PROC_TABLE_HPT_SLB;
1679         for (;;) {
1680                 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1681                                         page_size, table_size);
1682                 if (!H_IS_LONG_BUSY(rc))
1683                         break;
1684                 mdelay(get_longbusy_msecs(rc));
1685         }
1686         if (rc != H_SUCCESS) {
1687                 pr_err("Failed to register process table (rc=%ld)\n", rc);
1688                 BUG();
1689         }
1690         return rc;
1691 }
1692
1693 void __init hpte_init_pseries(void)
1694 {
1695         mmu_hash_ops.hpte_invalidate     = pSeries_lpar_hpte_invalidate;
1696         mmu_hash_ops.hpte_updatepp       = pSeries_lpar_hpte_updatepp;
1697         mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1698         mmu_hash_ops.hpte_insert         = pSeries_lpar_hpte_insert;
1699         mmu_hash_ops.hpte_remove         = pSeries_lpar_hpte_remove;
1700         mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1701         mmu_hash_ops.flush_hash_range    = pSeries_lpar_flush_hash_range;
1702         mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1703         mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1704
1705         if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1706                 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1707
1708         /*
1709          * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1710          * to inform the hypervisor that we wish to use the HPT.
1711          */
1712         if (cpu_has_feature(CPU_FTR_ARCH_300))
1713                 pseries_lpar_register_process_table(0, 0, 0);
1714 }
1715
1716 void radix_init_pseries(void)
1717 {
1718         pr_info("Using radix MMU under hypervisor\n");
1719
1720         pseries_lpar_register_process_table(__pa(process_tb),
1721                                                 0, PRTB_SIZE_SHIFT - 12);
1722 }
1723
1724 #ifdef CONFIG_PPC_SMLPAR
1725 #define CMO_FREE_HINT_DEFAULT 1
1726 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1727
1728 static int __init cmo_free_hint(char *str)
1729 {
1730         char *parm;
1731         parm = strstrip(str);
1732
1733         if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1734                 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1735                 cmo_free_hint_flag = 0;
1736                 return 1;
1737         }
1738
1739         cmo_free_hint_flag = 1;
1740         pr_info("%s: CMO free page hinting is active.\n", __func__);
1741
1742         if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1743                 return 1;
1744
1745         return 0;
1746 }
1747
1748 __setup("cmo_free_hint=", cmo_free_hint);
1749
1750 static void pSeries_set_page_state(struct page *page, int order,
1751                                    unsigned long state)
1752 {
1753         int i, j;
1754         unsigned long cmo_page_sz, addr;
1755
1756         cmo_page_sz = cmo_get_page_size();
1757         addr = __pa((unsigned long)page_address(page));
1758
1759         for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1760                 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1761                         plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1762         }
1763 }
1764
1765 void arch_free_page(struct page *page, int order)
1766 {
1767         if (radix_enabled())
1768                 return;
1769         if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1770                 return;
1771
1772         pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1773 }
1774 EXPORT_SYMBOL(arch_free_page);
1775
1776 #endif /* CONFIG_PPC_SMLPAR */
1777 #endif /* CONFIG_PPC_BOOK3S_64 */
1778
1779 #ifdef CONFIG_TRACEPOINTS
1780 #ifdef CONFIG_JUMP_LABEL
1781 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1782
1783 int hcall_tracepoint_regfunc(void)
1784 {
1785         static_key_slow_inc(&hcall_tracepoint_key);
1786         return 0;
1787 }
1788
1789 void hcall_tracepoint_unregfunc(void)
1790 {
1791         static_key_slow_dec(&hcall_tracepoint_key);
1792 }
1793 #else
1794 /*
1795  * We optimise our hcall path by placing hcall_tracepoint_refcount
1796  * directly in the TOC so we can check if the hcall tracepoints are
1797  * enabled via a single load.
1798  */
1799
1800 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1801 extern long hcall_tracepoint_refcount;
1802
1803 int hcall_tracepoint_regfunc(void)
1804 {
1805         hcall_tracepoint_refcount++;
1806         return 0;
1807 }
1808
1809 void hcall_tracepoint_unregfunc(void)
1810 {
1811         hcall_tracepoint_refcount--;
1812 }
1813 #endif
1814
1815 /*
1816  * Since the tracing code might execute hcalls we need to guard against
1817  * recursion. One example of this are spinlocks calling H_YIELD on
1818  * shared processor partitions.
1819  */
1820 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1821
1822
1823 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1824 {
1825         unsigned long flags;
1826         unsigned int *depth;
1827
1828         /*
1829          * We cannot call tracepoints inside RCU idle regions which
1830          * means we must not trace H_CEDE.
1831          */
1832         if (opcode == H_CEDE)
1833                 return;
1834
1835         local_irq_save(flags);
1836
1837         depth = this_cpu_ptr(&hcall_trace_depth);
1838
1839         if (*depth)
1840                 goto out;
1841
1842         (*depth)++;
1843         preempt_disable();
1844         trace_hcall_entry(opcode, args);
1845         (*depth)--;
1846
1847 out:
1848         local_irq_restore(flags);
1849 }
1850
1851 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1852 {
1853         unsigned long flags;
1854         unsigned int *depth;
1855
1856         if (opcode == H_CEDE)
1857                 return;
1858
1859         local_irq_save(flags);
1860
1861         depth = this_cpu_ptr(&hcall_trace_depth);
1862
1863         if (*depth)
1864                 goto out;
1865
1866         (*depth)++;
1867         trace_hcall_exit(opcode, retval, retbuf);
1868         preempt_enable();
1869         (*depth)--;
1870
1871 out:
1872         local_irq_restore(flags);
1873 }
1874 #endif
1875
1876 /**
1877  * h_get_mpp
1878  * H_GET_MPP hcall returns info in 7 parms
1879  */
1880 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1881 {
1882         int rc;
1883         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1884
1885         rc = plpar_hcall9(H_GET_MPP, retbuf);
1886
1887         mpp_data->entitled_mem = retbuf[0];
1888         mpp_data->mapped_mem = retbuf[1];
1889
1890         mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1891         mpp_data->pool_num = retbuf[2] & 0xffff;
1892
1893         mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1894         mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1895         mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1896
1897         mpp_data->pool_size = retbuf[4];
1898         mpp_data->loan_request = retbuf[5];
1899         mpp_data->backing_mem = retbuf[6];
1900
1901         return rc;
1902 }
1903 EXPORT_SYMBOL(h_get_mpp);
1904
1905 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1906 {
1907         int rc;
1908         unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1909
1910         rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1911
1912         mpp_x_data->coalesced_bytes = retbuf[0];
1913         mpp_x_data->pool_coalesced_bytes = retbuf[1];
1914         mpp_x_data->pool_purr_cycles = retbuf[2];
1915         mpp_x_data->pool_spurr_cycles = retbuf[3];
1916
1917         return rc;
1918 }
1919
1920 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1921 {
1922         unsigned long protovsid;
1923         unsigned long va_bits = VA_BITS;
1924         unsigned long modinv, vsid_modulus;
1925         unsigned long max_mod_inv, tmp_modinv;
1926
1927         if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1928                 va_bits = 65;
1929
1930         if (ssize == MMU_SEGSIZE_256M) {
1931                 modinv = VSID_MULINV_256M;
1932                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1933         } else {
1934                 modinv = VSID_MULINV_1T;
1935                 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1936         }
1937
1938         /*
1939          * vsid outside our range.
1940          */
1941         if (vsid >= vsid_modulus)
1942                 return 0;
1943
1944         /*
1945          * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1946          * and vsid = (protovsid * x) % vsid_modulus, then we say:
1947          *   protovsid = (vsid * modinv) % vsid_modulus
1948          */
1949
1950         /* Check if (vsid * modinv) overflow (63 bits) */
1951         max_mod_inv = 0x7fffffffffffffffull / vsid;
1952         if (modinv < max_mod_inv)
1953                 return (vsid * modinv) % vsid_modulus;
1954
1955         tmp_modinv = modinv/max_mod_inv;
1956         modinv %= max_mod_inv;
1957
1958         protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1959         protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1960
1961         return protovsid;
1962 }
1963
1964 static int __init reserve_vrma_context_id(void)
1965 {
1966         unsigned long protovsid;
1967
1968         /*
1969          * Reserve context ids which map to reserved virtual addresses. For now
1970          * we only reserve the context id which maps to the VRMA VSID. We ignore
1971          * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1972          * enable adjunct support via the "ibm,client-architecture-support"
1973          * interface.
1974          */
1975         protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1976         hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1977         return 0;
1978 }
1979 machine_device_initcall(pseries, reserve_vrma_context_id);
1980
1981 #ifdef CONFIG_DEBUG_FS
1982 /* debugfs file interface for vpa data */
1983 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1984                               loff_t *pos)
1985 {
1986         int cpu = (long)filp->private_data;
1987         struct lppaca *lppaca = &lppaca_of(cpu);
1988
1989         return simple_read_from_buffer(buf, len, pos, lppaca,
1990                                 sizeof(struct lppaca));
1991 }
1992
1993 static const struct file_operations vpa_fops = {
1994         .open           = simple_open,
1995         .read           = vpa_file_read,
1996         .llseek         = default_llseek,
1997 };
1998
1999 static int __init vpa_debugfs_init(void)
2000 {
2001         char name[16];
2002         long i;
2003         struct dentry *vpa_dir;
2004
2005         if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2006                 return 0;
2007
2008         vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2009
2010         /* set up the per-cpu vpa file*/
2011         for_each_possible_cpu(i) {
2012                 sprintf(name, "cpu-%ld", i);
2013                 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2014         }
2015
2016         return 0;
2017 }
2018 machine_arch_initcall(pseries, vpa_debugfs_init);
2019 #endif /* CONFIG_DEBUG_FS */