OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / arch / riscv / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/hugetlb.h>
13 #include <linux/module.h>
14 #include <linux/uaccess.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/signal.h>
18 #include <asm/csr.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21
22 #ifdef CONFIG_64BIT
23 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
24 static unsigned long gstage_pgd_levels __ro_after_init = 3;
25 #define gstage_index_bits       9
26 #else
27 static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
28 static unsigned long gstage_pgd_levels __ro_after_init = 2;
29 #define gstage_index_bits       10
30 #endif
31
32 #define gstage_pgd_xbits        2
33 #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
34 #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
35                          (gstage_pgd_levels * gstage_index_bits) + \
36                          gstage_pgd_xbits)
37 #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
38
39 #define gstage_pte_leaf(__ptep) \
40         (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
41
42 static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
43 {
44         unsigned long mask;
45         unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
46
47         if (level == (gstage_pgd_levels - 1))
48                 mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
49         else
50                 mask = PTRS_PER_PTE - 1;
51
52         return (addr >> shift) & mask;
53 }
54
55 static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
56 {
57         return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte)));
58 }
59
60 static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
61 {
62         u32 i;
63         unsigned long psz = 1UL << 12;
64
65         for (i = 0; i < gstage_pgd_levels; i++) {
66                 if (page_size == (psz << (i * gstage_index_bits))) {
67                         *out_level = i;
68                         return 0;
69                 }
70         }
71
72         return -EINVAL;
73 }
74
75 static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
76 {
77         if (gstage_pgd_levels < level)
78                 return -EINVAL;
79
80         *out_pgorder = 12 + (level * gstage_index_bits);
81         return 0;
82 }
83
84 static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
85 {
86         int rc;
87         unsigned long page_order = PAGE_SHIFT;
88
89         rc = gstage_level_to_page_order(level, &page_order);
90         if (rc)
91                 return rc;
92
93         *out_pgsize = BIT(page_order);
94         return 0;
95 }
96
97 static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
98                                   pte_t **ptepp, u32 *ptep_level)
99 {
100         pte_t *ptep;
101         u32 current_level = gstage_pgd_levels - 1;
102
103         *ptep_level = current_level;
104         ptep = (pte_t *)kvm->arch.pgd;
105         ptep = &ptep[gstage_pte_index(addr, current_level)];
106         while (ptep && pte_val(*ptep)) {
107                 if (gstage_pte_leaf(ptep)) {
108                         *ptep_level = current_level;
109                         *ptepp = ptep;
110                         return true;
111                 }
112
113                 if (current_level) {
114                         current_level--;
115                         *ptep_level = current_level;
116                         ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
117                         ptep = &ptep[gstage_pte_index(addr, current_level)];
118                 } else {
119                         ptep = NULL;
120                 }
121         }
122
123         return false;
124 }
125
126 static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
127 {
128         unsigned long order = PAGE_SHIFT;
129
130         if (gstage_level_to_page_order(level, &order))
131                 return;
132         addr &= ~(BIT(order) - 1);
133
134         kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
135 }
136
137 static int gstage_set_pte(struct kvm *kvm, u32 level,
138                            struct kvm_mmu_memory_cache *pcache,
139                            gpa_t addr, const pte_t *new_pte)
140 {
141         u32 current_level = gstage_pgd_levels - 1;
142         pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
143         pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
144
145         if (current_level < level)
146                 return -EINVAL;
147
148         while (current_level != level) {
149                 if (gstage_pte_leaf(ptep))
150                         return -EEXIST;
151
152                 if (!pte_val(*ptep)) {
153                         if (!pcache)
154                                 return -ENOMEM;
155                         next_ptep = kvm_mmu_memory_cache_alloc(pcache);
156                         if (!next_ptep)
157                                 return -ENOMEM;
158                         *ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
159                                         __pgprot(_PAGE_TABLE));
160                 } else {
161                         if (gstage_pte_leaf(ptep))
162                                 return -EEXIST;
163                         next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
164                 }
165
166                 current_level--;
167                 ptep = &next_ptep[gstage_pte_index(addr, current_level)];
168         }
169
170         *ptep = *new_pte;
171         if (gstage_pte_leaf(ptep))
172                 gstage_remote_tlb_flush(kvm, current_level, addr);
173
174         return 0;
175 }
176
177 static int gstage_map_page(struct kvm *kvm,
178                            struct kvm_mmu_memory_cache *pcache,
179                            gpa_t gpa, phys_addr_t hpa,
180                            unsigned long page_size,
181                            bool page_rdonly, bool page_exec)
182 {
183         int ret;
184         u32 level = 0;
185         pte_t new_pte;
186         pgprot_t prot;
187
188         ret = gstage_page_size_to_level(page_size, &level);
189         if (ret)
190                 return ret;
191
192         /*
193          * A RISC-V implementation can choose to either:
194          * 1) Update 'A' and 'D' PTE bits in hardware
195          * 2) Generate page fault when 'A' and/or 'D' bits are not set
196          *    PTE so that software can update these bits.
197          *
198          * We support both options mentioned above. To achieve this, we
199          * always set 'A' and 'D' PTE bits at time of creating G-stage
200          * mapping. To support KVM dirty page logging with both options
201          * mentioned above, we will write-protect G-stage PTEs to track
202          * dirty pages.
203          */
204
205         if (page_exec) {
206                 if (page_rdonly)
207                         prot = PAGE_READ_EXEC;
208                 else
209                         prot = PAGE_WRITE_EXEC;
210         } else {
211                 if (page_rdonly)
212                         prot = PAGE_READ;
213                 else
214                         prot = PAGE_WRITE;
215         }
216         new_pte = pfn_pte(PFN_DOWN(hpa), prot);
217         new_pte = pte_mkdirty(new_pte);
218
219         return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
220 }
221
222 enum gstage_op {
223         GSTAGE_OP_NOP = 0,      /* Nothing */
224         GSTAGE_OP_CLEAR,        /* Clear/Unmap */
225         GSTAGE_OP_WP,           /* Write-protect */
226 };
227
228 static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
229                           pte_t *ptep, u32 ptep_level, enum gstage_op op)
230 {
231         int i, ret;
232         pte_t *next_ptep;
233         u32 next_ptep_level;
234         unsigned long next_page_size, page_size;
235
236         ret = gstage_level_to_page_size(ptep_level, &page_size);
237         if (ret)
238                 return;
239
240         BUG_ON(addr & (page_size - 1));
241
242         if (!pte_val(*ptep))
243                 return;
244
245         if (ptep_level && !gstage_pte_leaf(ptep)) {
246                 next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
247                 next_ptep_level = ptep_level - 1;
248                 ret = gstage_level_to_page_size(next_ptep_level,
249                                                 &next_page_size);
250                 if (ret)
251                         return;
252
253                 if (op == GSTAGE_OP_CLEAR)
254                         set_pte(ptep, __pte(0));
255                 for (i = 0; i < PTRS_PER_PTE; i++)
256                         gstage_op_pte(kvm, addr + i * next_page_size,
257                                         &next_ptep[i], next_ptep_level, op);
258                 if (op == GSTAGE_OP_CLEAR)
259                         put_page(virt_to_page(next_ptep));
260         } else {
261                 if (op == GSTAGE_OP_CLEAR)
262                         set_pte(ptep, __pte(0));
263                 else if (op == GSTAGE_OP_WP)
264                         set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
265                 gstage_remote_tlb_flush(kvm, ptep_level, addr);
266         }
267 }
268
269 static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
270                                gpa_t size, bool may_block)
271 {
272         int ret;
273         pte_t *ptep;
274         u32 ptep_level;
275         bool found_leaf;
276         unsigned long page_size;
277         gpa_t addr = start, end = start + size;
278
279         while (addr < end) {
280                 found_leaf = gstage_get_leaf_entry(kvm, addr,
281                                                    &ptep, &ptep_level);
282                 ret = gstage_level_to_page_size(ptep_level, &page_size);
283                 if (ret)
284                         break;
285
286                 if (!found_leaf)
287                         goto next;
288
289                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
290                         gstage_op_pte(kvm, addr, ptep,
291                                       ptep_level, GSTAGE_OP_CLEAR);
292
293 next:
294                 addr += page_size;
295
296                 /*
297                  * If the range is too large, release the kvm->mmu_lock
298                  * to prevent starvation and lockup detector warnings.
299                  */
300                 if (may_block && addr < end)
301                         cond_resched_lock(&kvm->mmu_lock);
302         }
303 }
304
305 static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
306 {
307         int ret;
308         pte_t *ptep;
309         u32 ptep_level;
310         bool found_leaf;
311         gpa_t addr = start;
312         unsigned long page_size;
313
314         while (addr < end) {
315                 found_leaf = gstage_get_leaf_entry(kvm, addr,
316                                                    &ptep, &ptep_level);
317                 ret = gstage_level_to_page_size(ptep_level, &page_size);
318                 if (ret)
319                         break;
320
321                 if (!found_leaf)
322                         goto next;
323
324                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
325                         gstage_op_pte(kvm, addr, ptep,
326                                       ptep_level, GSTAGE_OP_WP);
327
328 next:
329                 addr += page_size;
330         }
331 }
332
333 static void gstage_wp_memory_region(struct kvm *kvm, int slot)
334 {
335         struct kvm_memslots *slots = kvm_memslots(kvm);
336         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
337         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
338         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
339
340         spin_lock(&kvm->mmu_lock);
341         gstage_wp_range(kvm, start, end);
342         spin_unlock(&kvm->mmu_lock);
343         kvm_flush_remote_tlbs(kvm);
344 }
345
346 int kvm_riscv_gstage_ioremap(struct kvm *kvm, gpa_t gpa,
347                              phys_addr_t hpa, unsigned long size,
348                              bool writable, bool in_atomic)
349 {
350         pte_t pte;
351         int ret = 0;
352         unsigned long pfn;
353         phys_addr_t addr, end;
354         struct kvm_mmu_memory_cache pcache = {
355                 .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
356                 .gfp_zero = __GFP_ZERO,
357         };
358
359         end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
360         pfn = __phys_to_pfn(hpa);
361
362         for (addr = gpa; addr < end; addr += PAGE_SIZE) {
363                 pte = pfn_pte(pfn, PAGE_KERNEL_IO);
364
365                 if (!writable)
366                         pte = pte_wrprotect(pte);
367
368                 ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
369                 if (ret)
370                         goto out;
371
372                 spin_lock(&kvm->mmu_lock);
373                 ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
374                 spin_unlock(&kvm->mmu_lock);
375                 if (ret)
376                         goto out;
377
378                 pfn++;
379         }
380
381 out:
382         kvm_mmu_free_memory_cache(&pcache);
383         return ret;
384 }
385
386 void kvm_riscv_gstage_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
387 {
388         spin_lock(&kvm->mmu_lock);
389         gstage_unmap_range(kvm, gpa, size, false);
390         spin_unlock(&kvm->mmu_lock);
391 }
392
393 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
394                                              struct kvm_memory_slot *slot,
395                                              gfn_t gfn_offset,
396                                              unsigned long mask)
397 {
398         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
399         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
400         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
401
402         gstage_wp_range(kvm, start, end);
403 }
404
405 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
406 {
407 }
408
409 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
410                                         const struct kvm_memory_slot *memslot)
411 {
412         kvm_flush_remote_tlbs(kvm);
413 }
414
415 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
416 {
417 }
418
419 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
420 {
421 }
422
423 void kvm_arch_flush_shadow_all(struct kvm *kvm)
424 {
425         kvm_riscv_gstage_free_pgd(kvm);
426 }
427
428 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
429                                    struct kvm_memory_slot *slot)
430 {
431         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
432         phys_addr_t size = slot->npages << PAGE_SHIFT;
433
434         spin_lock(&kvm->mmu_lock);
435         gstage_unmap_range(kvm, gpa, size, false);
436         spin_unlock(&kvm->mmu_lock);
437 }
438
439 void kvm_arch_commit_memory_region(struct kvm *kvm,
440                                 struct kvm_memory_slot *old,
441                                 const struct kvm_memory_slot *new,
442                                 enum kvm_mr_change change)
443 {
444         /*
445          * At this point memslot has been committed and there is an
446          * allocated dirty_bitmap[], dirty pages will be tracked while
447          * the memory slot is write protected.
448          */
449         if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
450                 gstage_wp_memory_region(kvm, new->id);
451 }
452
453 int kvm_arch_prepare_memory_region(struct kvm *kvm,
454                                 const struct kvm_memory_slot *old,
455                                 struct kvm_memory_slot *new,
456                                 enum kvm_mr_change change)
457 {
458         hva_t hva, reg_end, size;
459         gpa_t base_gpa;
460         bool writable;
461         int ret = 0;
462
463         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
464                         change != KVM_MR_FLAGS_ONLY)
465                 return 0;
466
467         /*
468          * Prevent userspace from creating a memory region outside of the GPA
469          * space addressable by the KVM guest GPA space.
470          */
471         if ((new->base_gfn + new->npages) >=
472             (gstage_gpa_size >> PAGE_SHIFT))
473                 return -EFAULT;
474
475         hva = new->userspace_addr;
476         size = new->npages << PAGE_SHIFT;
477         reg_end = hva + size;
478         base_gpa = new->base_gfn << PAGE_SHIFT;
479         writable = !(new->flags & KVM_MEM_READONLY);
480
481         mmap_read_lock(current->mm);
482
483         /*
484          * A memory region could potentially cover multiple VMAs, and
485          * any holes between them, so iterate over all of them to find
486          * out if we can map any of them right now.
487          *
488          *     +--------------------------------------------+
489          * +---------------+----------------+   +----------------+
490          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
491          * +---------------+----------------+   +----------------+
492          *     |               memory region                |
493          *     +--------------------------------------------+
494          */
495         do {
496                 struct vm_area_struct *vma = find_vma(current->mm, hva);
497                 hva_t vm_start, vm_end;
498
499                 if (!vma || vma->vm_start >= reg_end)
500                         break;
501
502                 /*
503                  * Mapping a read-only VMA is only allowed if the
504                  * memory region is configured as read-only.
505                  */
506                 if (writable && !(vma->vm_flags & VM_WRITE)) {
507                         ret = -EPERM;
508                         break;
509                 }
510
511                 /* Take the intersection of this VMA with the memory region */
512                 vm_start = max(hva, vma->vm_start);
513                 vm_end = min(reg_end, vma->vm_end);
514
515                 if (vma->vm_flags & VM_PFNMAP) {
516                         gpa_t gpa = base_gpa + (vm_start - hva);
517                         phys_addr_t pa;
518
519                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
520                         pa += vm_start - vma->vm_start;
521
522                         /* IO region dirty page logging not allowed */
523                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
524                                 ret = -EINVAL;
525                                 goto out;
526                         }
527
528                         ret = kvm_riscv_gstage_ioremap(kvm, gpa, pa,
529                                                        vm_end - vm_start,
530                                                        writable, false);
531                         if (ret)
532                                 break;
533                 }
534                 hva = vm_end;
535         } while (hva < reg_end);
536
537         if (change == KVM_MR_FLAGS_ONLY)
538                 goto out;
539
540         if (ret)
541                 kvm_riscv_gstage_iounmap(kvm, base_gpa, size);
542
543 out:
544         mmap_read_unlock(current->mm);
545         return ret;
546 }
547
548 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
549 {
550         if (!kvm->arch.pgd)
551                 return false;
552
553         gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
554                            (range->end - range->start) << PAGE_SHIFT,
555                            range->may_block);
556         return false;
557 }
558
559 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
560 {
561         int ret;
562         kvm_pfn_t pfn = pte_pfn(range->pte);
563
564         if (!kvm->arch.pgd)
565                 return false;
566
567         WARN_ON(range->end - range->start != 1);
568
569         ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
570                               __pfn_to_phys(pfn), PAGE_SIZE, true, true);
571         if (ret) {
572                 kvm_debug("Failed to map G-stage page (error %d)\n", ret);
573                 return true;
574         }
575
576         return false;
577 }
578
579 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
580 {
581         pte_t *ptep;
582         u32 ptep_level = 0;
583         u64 size = (range->end - range->start) << PAGE_SHIFT;
584
585         if (!kvm->arch.pgd)
586                 return false;
587
588         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
589
590         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
591                                    &ptep, &ptep_level))
592                 return false;
593
594         return ptep_test_and_clear_young(NULL, 0, ptep);
595 }
596
597 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
598 {
599         pte_t *ptep;
600         u32 ptep_level = 0;
601         u64 size = (range->end - range->start) << PAGE_SHIFT;
602
603         if (!kvm->arch.pgd)
604                 return false;
605
606         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
607
608         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
609                                    &ptep, &ptep_level))
610                 return false;
611
612         return pte_young(*ptep);
613 }
614
615 int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
616                          struct kvm_memory_slot *memslot,
617                          gpa_t gpa, unsigned long hva, bool is_write)
618 {
619         int ret;
620         kvm_pfn_t hfn;
621         bool writable;
622         short vma_pageshift;
623         gfn_t gfn = gpa >> PAGE_SHIFT;
624         struct vm_area_struct *vma;
625         struct kvm *kvm = vcpu->kvm;
626         struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
627         bool logging = (memslot->dirty_bitmap &&
628                         !(memslot->flags & KVM_MEM_READONLY)) ? true : false;
629         unsigned long vma_pagesize, mmu_seq;
630
631         /* We need minimum second+third level pages */
632         ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
633         if (ret) {
634                 kvm_err("Failed to topup G-stage cache\n");
635                 return ret;
636         }
637
638         mmap_read_lock(current->mm);
639
640         vma = vma_lookup(current->mm, hva);
641         if (unlikely(!vma)) {
642                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
643                 mmap_read_unlock(current->mm);
644                 return -EFAULT;
645         }
646
647         if (is_vm_hugetlb_page(vma))
648                 vma_pageshift = huge_page_shift(hstate_vma(vma));
649         else
650                 vma_pageshift = PAGE_SHIFT;
651         vma_pagesize = 1ULL << vma_pageshift;
652         if (logging || (vma->vm_flags & VM_PFNMAP))
653                 vma_pagesize = PAGE_SIZE;
654
655         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
656                 gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
657
658         /*
659          * Read mmu_invalidate_seq so that KVM can detect if the results of
660          * vma_lookup() or gfn_to_pfn_prot() become stale priort to acquiring
661          * kvm->mmu_lock.
662          *
663          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
664          * with the smp_wmb() in kvm_mmu_invalidate_end().
665          */
666         mmu_seq = kvm->mmu_invalidate_seq;
667         mmap_read_unlock(current->mm);
668
669         if (vma_pagesize != PUD_SIZE &&
670             vma_pagesize != PMD_SIZE &&
671             vma_pagesize != PAGE_SIZE) {
672                 kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
673                 return -EFAULT;
674         }
675
676         hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writable);
677         if (hfn == KVM_PFN_ERR_HWPOISON) {
678                 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
679                                 vma_pageshift, current);
680                 return 0;
681         }
682         if (is_error_noslot_pfn(hfn))
683                 return -EFAULT;
684
685         /*
686          * If logging is active then we allow writable pages only
687          * for write faults.
688          */
689         if (logging && !is_write)
690                 writable = false;
691
692         spin_lock(&kvm->mmu_lock);
693
694         if (mmu_invalidate_retry(kvm, mmu_seq))
695                 goto out_unlock;
696
697         if (writable) {
698                 kvm_set_pfn_dirty(hfn);
699                 mark_page_dirty(kvm, gfn);
700                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
701                                       vma_pagesize, false, true);
702         } else {
703                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
704                                       vma_pagesize, true, true);
705         }
706
707         if (ret)
708                 kvm_err("Failed to map in G-stage\n");
709
710 out_unlock:
711         spin_unlock(&kvm->mmu_lock);
712         kvm_set_pfn_accessed(hfn);
713         kvm_release_pfn_clean(hfn);
714         return ret;
715 }
716
717 int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
718 {
719         struct page *pgd_page;
720
721         if (kvm->arch.pgd != NULL) {
722                 kvm_err("kvm_arch already initialized?\n");
723                 return -EINVAL;
724         }
725
726         pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
727                                 get_order(gstage_pgd_size));
728         if (!pgd_page)
729                 return -ENOMEM;
730         kvm->arch.pgd = page_to_virt(pgd_page);
731         kvm->arch.pgd_phys = page_to_phys(pgd_page);
732
733         return 0;
734 }
735
736 void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
737 {
738         void *pgd = NULL;
739
740         spin_lock(&kvm->mmu_lock);
741         if (kvm->arch.pgd) {
742                 gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
743                 pgd = READ_ONCE(kvm->arch.pgd);
744                 kvm->arch.pgd = NULL;
745                 kvm->arch.pgd_phys = 0;
746         }
747         spin_unlock(&kvm->mmu_lock);
748
749         if (pgd)
750                 free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
751 }
752
753 void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
754 {
755         unsigned long hgatp = gstage_mode;
756         struct kvm_arch *k = &vcpu->kvm->arch;
757
758         hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
759         hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
760
761         csr_write(CSR_HGATP, hgatp);
762
763         if (!kvm_riscv_gstage_vmid_bits())
764                 kvm_riscv_local_hfence_gvma_all();
765 }
766
767 void __init kvm_riscv_gstage_mode_detect(void)
768 {
769 #ifdef CONFIG_64BIT
770         /* Try Sv57x4 G-stage mode */
771         csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
772         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
773                 gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
774                 gstage_pgd_levels = 5;
775                 goto skip_sv48x4_test;
776         }
777
778         /* Try Sv48x4 G-stage mode */
779         csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
780         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
781                 gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
782                 gstage_pgd_levels = 4;
783         }
784 skip_sv48x4_test:
785
786         csr_write(CSR_HGATP, 0);
787         kvm_riscv_local_hfence_gvma_all();
788 #endif
789 }
790
791 unsigned long __init kvm_riscv_gstage_mode(void)
792 {
793         return gstage_mode >> HGATP_MODE_SHIFT;
794 }
795
796 int kvm_riscv_gstage_gpa_bits(void)
797 {
798         return gstage_gpa_bits;
799 }