OSDN Git Service

Merge tag 'ceph-for-5.1-rc3' of git://github.com/ceph/ceph-client
[uclinux-h8/linux.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/topology.h>
57 #include "entry.h"
58
59 enum {
60         ec_schedule = 0,
61         ec_call_function_single,
62         ec_stop_cpu,
63 };
64
65 enum {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 static DEFINE_PER_CPU(struct cpu *, cpu_device);
71
72 struct pcpu {
73         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
74         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
75         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
76         signed char state;              /* physical cpu state */
77         signed char polarization;       /* physical polarization */
78         u16 address;                    /* physical cpu address */
79 };
80
81 static u8 boot_core_type;
82 static struct pcpu pcpu_devices[NR_CPUS];
83
84 unsigned int smp_cpu_mt_shift;
85 EXPORT_SYMBOL(smp_cpu_mt_shift);
86
87 unsigned int smp_cpu_mtid;
88 EXPORT_SYMBOL(smp_cpu_mtid);
89
90 #ifdef CONFIG_CRASH_DUMP
91 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
92 #endif
93
94 static unsigned int smp_max_threads __initdata = -1U;
95
96 static int __init early_nosmt(char *s)
97 {
98         smp_max_threads = 1;
99         return 0;
100 }
101 early_param("nosmt", early_nosmt);
102
103 static int __init early_smt(char *s)
104 {
105         get_option(&s, &smp_max_threads);
106         return 0;
107 }
108 early_param("smt", early_smt);
109
110 /*
111  * The smp_cpu_state_mutex must be held when changing the state or polarization
112  * member of a pcpu data structure within the pcpu_devices arreay.
113  */
114 DEFINE_MUTEX(smp_cpu_state_mutex);
115
116 /*
117  * Signal processor helper functions.
118  */
119 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
120 {
121         int cc;
122
123         while (1) {
124                 cc = __pcpu_sigp(addr, order, parm, NULL);
125                 if (cc != SIGP_CC_BUSY)
126                         return cc;
127                 cpu_relax();
128         }
129 }
130
131 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
132 {
133         int cc, retry;
134
135         for (retry = 0; ; retry++) {
136                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
137                 if (cc != SIGP_CC_BUSY)
138                         break;
139                 if (retry >= 3)
140                         udelay(10);
141         }
142         return cc;
143 }
144
145 static inline int pcpu_stopped(struct pcpu *pcpu)
146 {
147         u32 uninitialized_var(status);
148
149         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
150                         0, &status) != SIGP_CC_STATUS_STORED)
151                 return 0;
152         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
153 }
154
155 static inline int pcpu_running(struct pcpu *pcpu)
156 {
157         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
158                         0, NULL) != SIGP_CC_STATUS_STORED)
159                 return 1;
160         /* Status stored condition code is equivalent to cpu not running. */
161         return 0;
162 }
163
164 /*
165  * Find struct pcpu by cpu address.
166  */
167 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
168 {
169         int cpu;
170
171         for_each_cpu(cpu, mask)
172                 if (pcpu_devices[cpu].address == address)
173                         return pcpu_devices + cpu;
174         return NULL;
175 }
176
177 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
178 {
179         int order;
180
181         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
182                 return;
183         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
184         pcpu->ec_clk = get_tod_clock_fast();
185         pcpu_sigp_retry(pcpu, order, 0);
186 }
187
188 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190         unsigned long async_stack, nodat_stack;
191         struct lowcore *lc;
192
193         if (pcpu != &pcpu_devices[0]) {
194                 pcpu->lowcore = (struct lowcore *)
195                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196                 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
197                 if (!pcpu->lowcore || !nodat_stack)
198                         goto out;
199         } else {
200                 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
201         }
202         async_stack = stack_alloc();
203         if (!async_stack)
204                 goto out;
205         lc = pcpu->lowcore;
206         memcpy(lc, &S390_lowcore, 512);
207         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
208         lc->async_stack = async_stack + STACK_INIT_OFFSET;
209         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
210         lc->cpu_nr = cpu;
211         lc->spinlock_lockval = arch_spin_lockval(cpu);
212         lc->spinlock_index = 0;
213         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
214         if (nmi_alloc_per_cpu(lc))
215                 goto out_async;
216         if (vdso_alloc_per_cpu(lc))
217                 goto out_mcesa;
218         lowcore_ptr[cpu] = lc;
219         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
220         return 0;
221
222 out_mcesa:
223         nmi_free_per_cpu(lc);
224 out_async:
225         stack_free(async_stack);
226 out:
227         if (pcpu != &pcpu_devices[0]) {
228                 free_pages(nodat_stack, THREAD_SIZE_ORDER);
229                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
230         }
231         return -ENOMEM;
232 }
233
234 #ifdef CONFIG_HOTPLUG_CPU
235
236 static void pcpu_free_lowcore(struct pcpu *pcpu)
237 {
238         unsigned long async_stack, nodat_stack, lowcore;
239
240         nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
241         async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
242         lowcore = (unsigned long) pcpu->lowcore;
243
244         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
245         lowcore_ptr[pcpu - pcpu_devices] = NULL;
246         vdso_free_per_cpu(pcpu->lowcore);
247         nmi_free_per_cpu(pcpu->lowcore);
248         stack_free(async_stack);
249         if (pcpu == &pcpu_devices[0])
250                 return;
251         free_pages(nodat_stack, THREAD_SIZE_ORDER);
252         free_pages(lowcore, LC_ORDER);
253 }
254
255 #endif /* CONFIG_HOTPLUG_CPU */
256
257 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
258 {
259         struct lowcore *lc = pcpu->lowcore;
260
261         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
262         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
263         lc->cpu_nr = cpu;
264         lc->spinlock_lockval = arch_spin_lockval(cpu);
265         lc->spinlock_index = 0;
266         lc->percpu_offset = __per_cpu_offset[cpu];
267         lc->kernel_asce = S390_lowcore.kernel_asce;
268         lc->machine_flags = S390_lowcore.machine_flags;
269         lc->user_timer = lc->system_timer =
270                 lc->steal_timer = lc->avg_steal_timer = 0;
271         __ctl_store(lc->cregs_save_area, 0, 15);
272         save_access_regs((unsigned int *) lc->access_regs_save_area);
273         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
274                sizeof(lc->stfle_fac_list));
275         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
276                sizeof(lc->alt_stfle_fac_list));
277         arch_spin_lock_setup(cpu);
278 }
279
280 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
281 {
282         struct lowcore *lc = pcpu->lowcore;
283
284         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
285                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
286         lc->current_task = (unsigned long) tsk;
287         lc->lpp = LPP_MAGIC;
288         lc->current_pid = tsk->pid;
289         lc->user_timer = tsk->thread.user_timer;
290         lc->guest_timer = tsk->thread.guest_timer;
291         lc->system_timer = tsk->thread.system_timer;
292         lc->hardirq_timer = tsk->thread.hardirq_timer;
293         lc->softirq_timer = tsk->thread.softirq_timer;
294         lc->steal_timer = 0;
295 }
296
297 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
298 {
299         struct lowcore *lc = pcpu->lowcore;
300
301         lc->restart_stack = lc->nodat_stack;
302         lc->restart_fn = (unsigned long) func;
303         lc->restart_data = (unsigned long) data;
304         lc->restart_source = -1UL;
305         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
306 }
307
308 /*
309  * Call function via PSW restart on pcpu and stop the current cpu.
310  */
311 static void __pcpu_delegate(void (*func)(void*), void *data)
312 {
313         func(data);     /* should not return */
314 }
315
316 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
317                                                 void (*func)(void *),
318                                                 void *data, unsigned long stack)
319 {
320         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321         unsigned long source_cpu = stap();
322
323         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324         if (pcpu->address == source_cpu)
325                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
326         /* Stop target cpu (if func returns this stops the current cpu). */
327         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328         /* Restart func on the target cpu and stop the current cpu. */
329         mem_assign_absolute(lc->restart_stack, stack);
330         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331         mem_assign_absolute(lc->restart_data, (unsigned long) data);
332         mem_assign_absolute(lc->restart_source, source_cpu);
333         __bpon();
334         asm volatile(
335                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
336                 "       brc     2,0b    # busy, try again\n"
337                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
338                 "       brc     2,1b    # busy, try again\n"
339                 : : "d" (pcpu->address), "d" (source_cpu),
340                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
341                 : "0", "1", "cc");
342         for (;;) ;
343 }
344
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350         int cc;
351
352         if (smp_cpu_mtid == mtid)
353                 return 0;
354         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355         if (cc == 0) {
356                 smp_cpu_mtid = mtid;
357                 smp_cpu_mt_shift = 0;
358                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359                         smp_cpu_mt_shift++;
360                 pcpu_devices[0].address = stap();
361         }
362         return cc;
363 }
364
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370         struct pcpu *pcpu;
371
372         /* Use the current cpu if it is online. */
373         pcpu = pcpu_find_address(cpu_online_mask, stap());
374         if (!pcpu)
375                 /* Use the first online cpu. */
376                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385         struct lowcore *lc = pcpu_devices->lowcore;
386
387         if (pcpu_devices[0].address == stap())
388                 lc = &S390_lowcore;
389
390         pcpu_delegate(&pcpu_devices[0], func, data,
391                       lc->nodat_stack);
392 }
393
394 int smp_find_processor_id(u16 address)
395 {
396         int cpu;
397
398         for_each_present_cpu(cpu)
399                 if (pcpu_devices[cpu].address == address)
400                         return cpu;
401         return -1;
402 }
403
404 bool arch_vcpu_is_preempted(int cpu)
405 {
406         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
407                 return false;
408         if (pcpu_running(pcpu_devices + cpu))
409                 return false;
410         return true;
411 }
412 EXPORT_SYMBOL(arch_vcpu_is_preempted);
413
414 void smp_yield_cpu(int cpu)
415 {
416         if (MACHINE_HAS_DIAG9C) {
417                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
418                 asm volatile("diag %0,0,0x9c"
419                              : : "d" (pcpu_devices[cpu].address));
420         } else if (MACHINE_HAS_DIAG44) {
421                 diag_stat_inc_norecursion(DIAG_STAT_X044);
422                 asm volatile("diag 0,0,0x44");
423         }
424 }
425
426 /*
427  * Send cpus emergency shutdown signal. This gives the cpus the
428  * opportunity to complete outstanding interrupts.
429  */
430 void notrace smp_emergency_stop(void)
431 {
432         cpumask_t cpumask;
433         u64 end;
434         int cpu;
435
436         cpumask_copy(&cpumask, cpu_online_mask);
437         cpumask_clear_cpu(smp_processor_id(), &cpumask);
438
439         end = get_tod_clock() + (1000000UL << 12);
440         for_each_cpu(cpu, &cpumask) {
441                 struct pcpu *pcpu = pcpu_devices + cpu;
442                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
443                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
444                                    0, NULL) == SIGP_CC_BUSY &&
445                        get_tod_clock() < end)
446                         cpu_relax();
447         }
448         while (get_tod_clock() < end) {
449                 for_each_cpu(cpu, &cpumask)
450                         if (pcpu_stopped(pcpu_devices + cpu))
451                                 cpumask_clear_cpu(cpu, &cpumask);
452                 if (cpumask_empty(&cpumask))
453                         break;
454                 cpu_relax();
455         }
456 }
457 NOKPROBE_SYMBOL(smp_emergency_stop);
458
459 /*
460  * Stop all cpus but the current one.
461  */
462 void smp_send_stop(void)
463 {
464         int cpu;
465
466         /* Disable all interrupts/machine checks */
467         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
468         trace_hardirqs_off();
469
470         debug_set_critical();
471
472         if (oops_in_progress)
473                 smp_emergency_stop();
474
475         /* stop all processors */
476         for_each_online_cpu(cpu) {
477                 if (cpu == smp_processor_id())
478                         continue;
479                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
480                 while (!pcpu_stopped(pcpu_devices + cpu))
481                         cpu_relax();
482         }
483 }
484
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
489 static void smp_handle_ext_call(void)
490 {
491         unsigned long bits;
492
493         /* handle bit signal external calls */
494         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
495         if (test_bit(ec_stop_cpu, &bits))
496                 smp_stop_cpu();
497         if (test_bit(ec_schedule, &bits))
498                 scheduler_ipi();
499         if (test_bit(ec_call_function_single, &bits))
500                 generic_smp_call_function_single_interrupt();
501 }
502
503 static void do_ext_call_interrupt(struct ext_code ext_code,
504                                   unsigned int param32, unsigned long param64)
505 {
506         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
507         smp_handle_ext_call();
508 }
509
510 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
511 {
512         int cpu;
513
514         for_each_cpu(cpu, mask)
515                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
516 }
517
518 void arch_send_call_function_single_ipi(int cpu)
519 {
520         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
521 }
522
523 /*
524  * this function sends a 'reschedule' IPI to another CPU.
525  * it goes straight through and wastes no time serializing
526  * anything. Worst case is that we lose a reschedule ...
527  */
528 void smp_send_reschedule(int cpu)
529 {
530         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
531 }
532
533 /*
534  * parameter area for the set/clear control bit callbacks
535  */
536 struct ec_creg_mask_parms {
537         unsigned long orval;
538         unsigned long andval;
539         int cr;
540 };
541
542 /*
543  * callback for setting/clearing control bits
544  */
545 static void smp_ctl_bit_callback(void *info)
546 {
547         struct ec_creg_mask_parms *pp = info;
548         unsigned long cregs[16];
549
550         __ctl_store(cregs, 0, 15);
551         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
552         __ctl_load(cregs, 0, 15);
553 }
554
555 /*
556  * Set a bit in a control register of all cpus
557  */
558 void smp_ctl_set_bit(int cr, int bit)
559 {
560         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
561
562         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
563 }
564 EXPORT_SYMBOL(smp_ctl_set_bit);
565
566 /*
567  * Clear a bit in a control register of all cpus
568  */
569 void smp_ctl_clear_bit(int cr, int bit)
570 {
571         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
572
573         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
574 }
575 EXPORT_SYMBOL(smp_ctl_clear_bit);
576
577 #ifdef CONFIG_CRASH_DUMP
578
579 int smp_store_status(int cpu)
580 {
581         struct pcpu *pcpu = pcpu_devices + cpu;
582         unsigned long pa;
583
584         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
585         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
586                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
587                 return -EIO;
588         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
589                 return 0;
590         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
591         if (MACHINE_HAS_GS)
592                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
593         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
594                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
595                 return -EIO;
596         return 0;
597 }
598
599 /*
600  * Collect CPU state of the previous, crashed system.
601  * There are four cases:
602  * 1) standard zfcp dump
603  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
604  *    The state for all CPUs except the boot CPU needs to be collected
605  *    with sigp stop-and-store-status. The boot CPU state is located in
606  *    the absolute lowcore of the memory stored in the HSA. The zcore code
607  *    will copy the boot CPU state from the HSA.
608  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
609  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
610  *    The state for all CPUs except the boot CPU needs to be collected
611  *    with sigp stop-and-store-status. The firmware or the boot-loader
612  *    stored the registers of the boot CPU in the absolute lowcore in the
613  *    memory of the old system.
614  * 3) kdump and the old kernel did not store the CPU state,
615  *    or stand-alone kdump for DASD
616  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
617  *    The state for all CPUs except the boot CPU needs to be collected
618  *    with sigp stop-and-store-status. The kexec code or the boot-loader
619  *    stored the registers of the boot CPU in the memory of the old system.
620  * 4) kdump and the old kernel stored the CPU state
621  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
622  *    This case does not exist for s390 anymore, setup_arch explicitly
623  *    deactivates the elfcorehdr= kernel parameter
624  */
625 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
626                                      bool is_boot_cpu, unsigned long page)
627 {
628         __vector128 *vxrs = (__vector128 *) page;
629
630         if (is_boot_cpu)
631                 vxrs = boot_cpu_vector_save_area;
632         else
633                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
634         save_area_add_vxrs(sa, vxrs);
635 }
636
637 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
638                                      bool is_boot_cpu, unsigned long page)
639 {
640         void *regs = (void *) page;
641
642         if (is_boot_cpu)
643                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
644         else
645                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
646         save_area_add_regs(sa, regs);
647 }
648
649 void __init smp_save_dump_cpus(void)
650 {
651         int addr, boot_cpu_addr, max_cpu_addr;
652         struct save_area *sa;
653         unsigned long page;
654         bool is_boot_cpu;
655
656         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
657                 /* No previous system present, normal boot. */
658                 return;
659         /* Allocate a page as dumping area for the store status sigps */
660         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
661         if (!page)
662                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
663                       PAGE_SIZE, 1UL << 31);
664
665         /* Set multi-threading state to the previous system. */
666         pcpu_set_smt(sclp.mtid_prev);
667         boot_cpu_addr = stap();
668         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
669         for (addr = 0; addr <= max_cpu_addr; addr++) {
670                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
671                     SIGP_CC_NOT_OPERATIONAL)
672                         continue;
673                 is_boot_cpu = (addr == boot_cpu_addr);
674                 /* Allocate save area */
675                 sa = save_area_alloc(is_boot_cpu);
676                 if (!sa)
677                         panic("could not allocate memory for save area\n");
678                 if (MACHINE_HAS_VX)
679                         /* Get the vector registers */
680                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
681                 /*
682                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
683                  * of the boot CPU are stored in the HSA. To retrieve
684                  * these registers an SCLP request is required which is
685                  * done by drivers/s390/char/zcore.c:init_cpu_info()
686                  */
687                 if (!is_boot_cpu || OLDMEM_BASE)
688                         /* Get the CPU registers */
689                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
690         }
691         memblock_free(page, PAGE_SIZE);
692         diag308_reset();
693         pcpu_set_smt(0);
694 }
695 #endif /* CONFIG_CRASH_DUMP */
696
697 void smp_cpu_set_polarization(int cpu, int val)
698 {
699         pcpu_devices[cpu].polarization = val;
700 }
701
702 int smp_cpu_get_polarization(int cpu)
703 {
704         return pcpu_devices[cpu].polarization;
705 }
706
707 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
708 {
709         static int use_sigp_detection;
710         int address;
711
712         if (use_sigp_detection || sclp_get_core_info(info, early)) {
713                 use_sigp_detection = 1;
714                 for (address = 0;
715                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
716                      address += (1U << smp_cpu_mt_shift)) {
717                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
718                             SIGP_CC_NOT_OPERATIONAL)
719                                 continue;
720                         info->core[info->configured].core_id =
721                                 address >> smp_cpu_mt_shift;
722                         info->configured++;
723                 }
724                 info->combined = info->configured;
725         }
726 }
727
728 static int smp_add_present_cpu(int cpu);
729
730 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
731 {
732         struct pcpu *pcpu;
733         cpumask_t avail;
734         int cpu, nr, i, j;
735         u16 address;
736
737         nr = 0;
738         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
739         cpu = cpumask_first(&avail);
740         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
741                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
742                         continue;
743                 address = info->core[i].core_id << smp_cpu_mt_shift;
744                 for (j = 0; j <= smp_cpu_mtid; j++) {
745                         if (pcpu_find_address(cpu_present_mask, address + j))
746                                 continue;
747                         pcpu = pcpu_devices + cpu;
748                         pcpu->address = address + j;
749                         pcpu->state =
750                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
751                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
752                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
753                         set_cpu_present(cpu, true);
754                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
755                                 set_cpu_present(cpu, false);
756                         else
757                                 nr++;
758                         cpu = cpumask_next(cpu, &avail);
759                         if (cpu >= nr_cpu_ids)
760                                 break;
761                 }
762         }
763         return nr;
764 }
765
766 void __init smp_detect_cpus(void)
767 {
768         unsigned int cpu, mtid, c_cpus, s_cpus;
769         struct sclp_core_info *info;
770         u16 address;
771
772         /* Get CPU information */
773         info = memblock_alloc(sizeof(*info), 8);
774         if (!info)
775                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
776                       __func__, sizeof(*info), 8);
777         smp_get_core_info(info, 1);
778         /* Find boot CPU type */
779         if (sclp.has_core_type) {
780                 address = stap();
781                 for (cpu = 0; cpu < info->combined; cpu++)
782                         if (info->core[cpu].core_id == address) {
783                                 /* The boot cpu dictates the cpu type. */
784                                 boot_core_type = info->core[cpu].type;
785                                 break;
786                         }
787                 if (cpu >= info->combined)
788                         panic("Could not find boot CPU type");
789         }
790
791         /* Set multi-threading state for the current system */
792         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
793         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
794         pcpu_set_smt(mtid);
795
796         /* Print number of CPUs */
797         c_cpus = s_cpus = 0;
798         for (cpu = 0; cpu < info->combined; cpu++) {
799                 if (sclp.has_core_type &&
800                     info->core[cpu].type != boot_core_type)
801                         continue;
802                 if (cpu < info->configured)
803                         c_cpus += smp_cpu_mtid + 1;
804                 else
805                         s_cpus += smp_cpu_mtid + 1;
806         }
807         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
808
809         /* Add CPUs present at boot */
810         get_online_cpus();
811         __smp_rescan_cpus(info, 0);
812         put_online_cpus();
813         memblock_free_early((unsigned long)info, sizeof(*info));
814 }
815
816 static void smp_init_secondary(void)
817 {
818         int cpu = smp_processor_id();
819
820         S390_lowcore.last_update_clock = get_tod_clock();
821         restore_access_regs(S390_lowcore.access_regs_save_area);
822         cpu_init();
823         preempt_disable();
824         init_cpu_timer();
825         vtime_init();
826         pfault_init();
827         notify_cpu_starting(smp_processor_id());
828         if (topology_cpu_dedicated(cpu))
829                 set_cpu_flag(CIF_DEDICATED_CPU);
830         else
831                 clear_cpu_flag(CIF_DEDICATED_CPU);
832         set_cpu_online(smp_processor_id(), true);
833         inc_irq_stat(CPU_RST);
834         local_irq_enable();
835         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
836 }
837
838 /*
839  *      Activate a secondary processor.
840  */
841 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
842 {
843         S390_lowcore.restart_stack = (unsigned long) restart_stack;
844         S390_lowcore.restart_fn = (unsigned long) do_restart;
845         S390_lowcore.restart_data = 0;
846         S390_lowcore.restart_source = -1UL;
847         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
848         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
849         CALL_ON_STACK(smp_init_secondary, S390_lowcore.kernel_stack, 0);
850 }
851
852 /* Upping and downing of CPUs */
853 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
854 {
855         struct pcpu *pcpu;
856         int base, i, rc;
857
858         pcpu = pcpu_devices + cpu;
859         if (pcpu->state != CPU_STATE_CONFIGURED)
860                 return -EIO;
861         base = smp_get_base_cpu(cpu);
862         for (i = 0; i <= smp_cpu_mtid; i++) {
863                 if (base + i < nr_cpu_ids)
864                         if (cpu_online(base + i))
865                                 break;
866         }
867         /*
868          * If this is the first CPU of the core to get online
869          * do an initial CPU reset.
870          */
871         if (i > smp_cpu_mtid &&
872             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
873             SIGP_CC_ORDER_CODE_ACCEPTED)
874                 return -EIO;
875
876         rc = pcpu_alloc_lowcore(pcpu, cpu);
877         if (rc)
878                 return rc;
879         pcpu_prepare_secondary(pcpu, cpu);
880         pcpu_attach_task(pcpu, tidle);
881         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
882         /* Wait until cpu puts itself in the online & active maps */
883         while (!cpu_online(cpu))
884                 cpu_relax();
885         return 0;
886 }
887
888 static unsigned int setup_possible_cpus __initdata;
889
890 static int __init _setup_possible_cpus(char *s)
891 {
892         get_option(&s, &setup_possible_cpus);
893         return 0;
894 }
895 early_param("possible_cpus", _setup_possible_cpus);
896
897 #ifdef CONFIG_HOTPLUG_CPU
898
899 int __cpu_disable(void)
900 {
901         unsigned long cregs[16];
902
903         /* Handle possible pending IPIs */
904         smp_handle_ext_call();
905         set_cpu_online(smp_processor_id(), false);
906         /* Disable pseudo page faults on this cpu. */
907         pfault_fini();
908         /* Disable interrupt sources via control register. */
909         __ctl_store(cregs, 0, 15);
910         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
911         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
912         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
913         __ctl_load(cregs, 0, 15);
914         clear_cpu_flag(CIF_NOHZ_DELAY);
915         return 0;
916 }
917
918 void __cpu_die(unsigned int cpu)
919 {
920         struct pcpu *pcpu;
921
922         /* Wait until target cpu is down */
923         pcpu = pcpu_devices + cpu;
924         while (!pcpu_stopped(pcpu))
925                 cpu_relax();
926         pcpu_free_lowcore(pcpu);
927         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
928         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
929 }
930
931 void __noreturn cpu_die(void)
932 {
933         idle_task_exit();
934         __bpon();
935         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
936         for (;;) ;
937 }
938
939 #endif /* CONFIG_HOTPLUG_CPU */
940
941 void __init smp_fill_possible_mask(void)
942 {
943         unsigned int possible, sclp_max, cpu;
944
945         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
946         sclp_max = min(smp_max_threads, sclp_max);
947         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
948         possible = setup_possible_cpus ?: nr_cpu_ids;
949         possible = min(possible, sclp_max);
950         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
951                 set_cpu_possible(cpu, true);
952 }
953
954 void __init smp_prepare_cpus(unsigned int max_cpus)
955 {
956         /* request the 0x1201 emergency signal external interrupt */
957         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
958                 panic("Couldn't request external interrupt 0x1201");
959         /* request the 0x1202 external call external interrupt */
960         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
961                 panic("Couldn't request external interrupt 0x1202");
962 }
963
964 void __init smp_prepare_boot_cpu(void)
965 {
966         struct pcpu *pcpu = pcpu_devices;
967
968         WARN_ON(!cpu_present(0) || !cpu_online(0));
969         pcpu->state = CPU_STATE_CONFIGURED;
970         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
971         S390_lowcore.percpu_offset = __per_cpu_offset[0];
972         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
973 }
974
975 void __init smp_cpus_done(unsigned int max_cpus)
976 {
977 }
978
979 void __init smp_setup_processor_id(void)
980 {
981         pcpu_devices[0].address = stap();
982         S390_lowcore.cpu_nr = 0;
983         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
984         S390_lowcore.spinlock_index = 0;
985 }
986
987 /*
988  * the frequency of the profiling timer can be changed
989  * by writing a multiplier value into /proc/profile.
990  *
991  * usually you want to run this on all CPUs ;)
992  */
993 int setup_profiling_timer(unsigned int multiplier)
994 {
995         return 0;
996 }
997
998 #ifdef CONFIG_HOTPLUG_CPU
999 static ssize_t cpu_configure_show(struct device *dev,
1000                                   struct device_attribute *attr, char *buf)
1001 {
1002         ssize_t count;
1003
1004         mutex_lock(&smp_cpu_state_mutex);
1005         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1006         mutex_unlock(&smp_cpu_state_mutex);
1007         return count;
1008 }
1009
1010 static ssize_t cpu_configure_store(struct device *dev,
1011                                    struct device_attribute *attr,
1012                                    const char *buf, size_t count)
1013 {
1014         struct pcpu *pcpu;
1015         int cpu, val, rc, i;
1016         char delim;
1017
1018         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1019                 return -EINVAL;
1020         if (val != 0 && val != 1)
1021                 return -EINVAL;
1022         get_online_cpus();
1023         mutex_lock(&smp_cpu_state_mutex);
1024         rc = -EBUSY;
1025         /* disallow configuration changes of online cpus and cpu 0 */
1026         cpu = dev->id;
1027         cpu = smp_get_base_cpu(cpu);
1028         if (cpu == 0)
1029                 goto out;
1030         for (i = 0; i <= smp_cpu_mtid; i++)
1031                 if (cpu_online(cpu + i))
1032                         goto out;
1033         pcpu = pcpu_devices + cpu;
1034         rc = 0;
1035         switch (val) {
1036         case 0:
1037                 if (pcpu->state != CPU_STATE_CONFIGURED)
1038                         break;
1039                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1040                 if (rc)
1041                         break;
1042                 for (i = 0; i <= smp_cpu_mtid; i++) {
1043                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1044                                 continue;
1045                         pcpu[i].state = CPU_STATE_STANDBY;
1046                         smp_cpu_set_polarization(cpu + i,
1047                                                  POLARIZATION_UNKNOWN);
1048                 }
1049                 topology_expect_change();
1050                 break;
1051         case 1:
1052                 if (pcpu->state != CPU_STATE_STANDBY)
1053                         break;
1054                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1055                 if (rc)
1056                         break;
1057                 for (i = 0; i <= smp_cpu_mtid; i++) {
1058                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1059                                 continue;
1060                         pcpu[i].state = CPU_STATE_CONFIGURED;
1061                         smp_cpu_set_polarization(cpu + i,
1062                                                  POLARIZATION_UNKNOWN);
1063                 }
1064                 topology_expect_change();
1065                 break;
1066         default:
1067                 break;
1068         }
1069 out:
1070         mutex_unlock(&smp_cpu_state_mutex);
1071         put_online_cpus();
1072         return rc ? rc : count;
1073 }
1074 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1075 #endif /* CONFIG_HOTPLUG_CPU */
1076
1077 static ssize_t show_cpu_address(struct device *dev,
1078                                 struct device_attribute *attr, char *buf)
1079 {
1080         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1081 }
1082 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1083
1084 static struct attribute *cpu_common_attrs[] = {
1085 #ifdef CONFIG_HOTPLUG_CPU
1086         &dev_attr_configure.attr,
1087 #endif
1088         &dev_attr_address.attr,
1089         NULL,
1090 };
1091
1092 static struct attribute_group cpu_common_attr_group = {
1093         .attrs = cpu_common_attrs,
1094 };
1095
1096 static struct attribute *cpu_online_attrs[] = {
1097         &dev_attr_idle_count.attr,
1098         &dev_attr_idle_time_us.attr,
1099         NULL,
1100 };
1101
1102 static struct attribute_group cpu_online_attr_group = {
1103         .attrs = cpu_online_attrs,
1104 };
1105
1106 static int smp_cpu_online(unsigned int cpu)
1107 {
1108         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1109
1110         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1111 }
1112 static int smp_cpu_pre_down(unsigned int cpu)
1113 {
1114         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1115
1116         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1117         return 0;
1118 }
1119
1120 static int smp_add_present_cpu(int cpu)
1121 {
1122         struct device *s;
1123         struct cpu *c;
1124         int rc;
1125
1126         c = kzalloc(sizeof(*c), GFP_KERNEL);
1127         if (!c)
1128                 return -ENOMEM;
1129         per_cpu(cpu_device, cpu) = c;
1130         s = &c->dev;
1131         c->hotpluggable = 1;
1132         rc = register_cpu(c, cpu);
1133         if (rc)
1134                 goto out;
1135         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1136         if (rc)
1137                 goto out_cpu;
1138         rc = topology_cpu_init(c);
1139         if (rc)
1140                 goto out_topology;
1141         return 0;
1142
1143 out_topology:
1144         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1145 out_cpu:
1146 #ifdef CONFIG_HOTPLUG_CPU
1147         unregister_cpu(c);
1148 #endif
1149 out:
1150         return rc;
1151 }
1152
1153 #ifdef CONFIG_HOTPLUG_CPU
1154
1155 int __ref smp_rescan_cpus(void)
1156 {
1157         struct sclp_core_info *info;
1158         int nr;
1159
1160         info = kzalloc(sizeof(*info), GFP_KERNEL);
1161         if (!info)
1162                 return -ENOMEM;
1163         smp_get_core_info(info, 0);
1164         get_online_cpus();
1165         mutex_lock(&smp_cpu_state_mutex);
1166         nr = __smp_rescan_cpus(info, 1);
1167         mutex_unlock(&smp_cpu_state_mutex);
1168         put_online_cpus();
1169         kfree(info);
1170         if (nr)
1171                 topology_schedule_update();
1172         return 0;
1173 }
1174
1175 static ssize_t __ref rescan_store(struct device *dev,
1176                                   struct device_attribute *attr,
1177                                   const char *buf,
1178                                   size_t count)
1179 {
1180         int rc;
1181
1182         rc = lock_device_hotplug_sysfs();
1183         if (rc)
1184                 return rc;
1185         rc = smp_rescan_cpus();
1186         unlock_device_hotplug();
1187         return rc ? rc : count;
1188 }
1189 static DEVICE_ATTR_WO(rescan);
1190 #endif /* CONFIG_HOTPLUG_CPU */
1191
1192 static int __init s390_smp_init(void)
1193 {
1194         int cpu, rc = 0;
1195
1196 #ifdef CONFIG_HOTPLUG_CPU
1197         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1198         if (rc)
1199                 return rc;
1200 #endif
1201         for_each_present_cpu(cpu) {
1202                 rc = smp_add_present_cpu(cpu);
1203                 if (rc)
1204                         goto out;
1205         }
1206
1207         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1208                                smp_cpu_online, smp_cpu_pre_down);
1209         rc = rc <= 0 ? rc : 0;
1210 out:
1211         return rc;
1212 }
1213 subsys_initcall(s390_smp_init);