OSDN Git Service

Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/uv/uv.h>
65 #include <asm/set_memory.h>
66 #include <asm/traps.h>
67 #include <asm/sev.h>
68
69 #include "cpu.h"
70
71 u32 elf_hwcap2 __read_mostly;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80 u16 get_llc_id(unsigned int cpu)
81 {
82         return per_cpu(cpu_llc_id, cpu);
83 }
84 EXPORT_SYMBOL_GPL(get_llc_id);
85
86 /* L2 cache ID of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
88
89 static struct ppin_info {
90         int     feature;
91         int     msr_ppin_ctl;
92         int     msr_ppin;
93 } ppin_info[] = {
94         [X86_VENDOR_INTEL] = {
95                 .feature = X86_FEATURE_INTEL_PPIN,
96                 .msr_ppin_ctl = MSR_PPIN_CTL,
97                 .msr_ppin = MSR_PPIN
98         },
99         [X86_VENDOR_AMD] = {
100                 .feature = X86_FEATURE_AMD_PPIN,
101                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
102                 .msr_ppin = MSR_AMD_PPIN
103         },
104 };
105
106 static const struct x86_cpu_id ppin_cpuids[] = {
107         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
108         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
109
110         /* Legacy models without CPUID enumeration */
111         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
112         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
113         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
114         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
115         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
116         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
117         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
118         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
122
123         {}
124 };
125
126 static void ppin_init(struct cpuinfo_x86 *c)
127 {
128         const struct x86_cpu_id *id;
129         unsigned long long val;
130         struct ppin_info *info;
131
132         id = x86_match_cpu(ppin_cpuids);
133         if (!id)
134                 return;
135
136         /*
137          * Testing the presence of the MSR is not enough. Need to check
138          * that the PPIN_CTL allows reading of the PPIN.
139          */
140         info = (struct ppin_info *)id->driver_data;
141
142         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
143                 goto clear_ppin;
144
145         if ((val & 3UL) == 1UL) {
146                 /* PPIN locked in disabled mode */
147                 goto clear_ppin;
148         }
149
150         /* If PPIN is disabled, try to enable */
151         if (!(val & 2UL)) {
152                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
153                 rdmsrl_safe(info->msr_ppin_ctl, &val);
154         }
155
156         /* Is the enable bit set? */
157         if (val & 2UL) {
158                 c->ppin = __rdmsr(info->msr_ppin);
159                 set_cpu_cap(c, info->feature);
160                 return;
161         }
162
163 clear_ppin:
164         clear_cpu_cap(c, info->feature);
165 }
166
167 static void default_init(struct cpuinfo_x86 *c)
168 {
169 #ifdef CONFIG_X86_64
170         cpu_detect_cache_sizes(c);
171 #else
172         /* Not much we can do here... */
173         /* Check if at least it has cpuid */
174         if (c->cpuid_level == -1) {
175                 /* No cpuid. It must be an ancient CPU */
176                 if (c->x86 == 4)
177                         strcpy(c->x86_model_id, "486");
178                 else if (c->x86 == 3)
179                         strcpy(c->x86_model_id, "386");
180         }
181 #endif
182 }
183
184 static const struct cpu_dev default_cpu = {
185         .c_init         = default_init,
186         .c_vendor       = "Unknown",
187         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
188 };
189
190 static const struct cpu_dev *this_cpu = &default_cpu;
191
192 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
193 #ifdef CONFIG_X86_64
194         /*
195          * We need valid kernel segments for data and code in long mode too
196          * IRET will check the segment types  kkeil 2000/10/28
197          * Also sysret mandates a special GDT layout
198          *
199          * TLS descriptors are currently at a different place compared to i386.
200          * Hopefully nobody expects them at a fixed place (Wine?)
201          */
202         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
203         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
204         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
205         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
206         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
207         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
208 #else
209         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
210         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
211         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
212         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
213         /*
214          * Segments used for calling PnP BIOS have byte granularity.
215          * They code segments and data segments have fixed 64k limits,
216          * the transfer segment sizes are set at run time.
217          */
218         /* 32-bit code */
219         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
220         /* 16-bit code */
221         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
222         /* 16-bit data */
223         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
224         /* 16-bit data */
225         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
226         /* 16-bit data */
227         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
228         /*
229          * The APM segments have byte granularity and their bases
230          * are set at run time.  All have 64k limits.
231          */
232         /* 32-bit code */
233         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
234         /* 16-bit code */
235         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
236         /* data */
237         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
238
239         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
240         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
241 #endif
242 } };
243 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
244
245 #ifdef CONFIG_X86_64
246 static int __init x86_nopcid_setup(char *s)
247 {
248         /* nopcid doesn't accept parameters */
249         if (s)
250                 return -EINVAL;
251
252         /* do not emit a message if the feature is not present */
253         if (!boot_cpu_has(X86_FEATURE_PCID))
254                 return 0;
255
256         setup_clear_cpu_cap(X86_FEATURE_PCID);
257         pr_info("nopcid: PCID feature disabled\n");
258         return 0;
259 }
260 early_param("nopcid", x86_nopcid_setup);
261 #endif
262
263 static int __init x86_noinvpcid_setup(char *s)
264 {
265         /* noinvpcid doesn't accept parameters */
266         if (s)
267                 return -EINVAL;
268
269         /* do not emit a message if the feature is not present */
270         if (!boot_cpu_has(X86_FEATURE_INVPCID))
271                 return 0;
272
273         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
274         pr_info("noinvpcid: INVPCID feature disabled\n");
275         return 0;
276 }
277 early_param("noinvpcid", x86_noinvpcid_setup);
278
279 #ifdef CONFIG_X86_32
280 static int cachesize_override = -1;
281 static int disable_x86_serial_nr = 1;
282
283 static int __init cachesize_setup(char *str)
284 {
285         get_option(&str, &cachesize_override);
286         return 1;
287 }
288 __setup("cachesize=", cachesize_setup);
289
290 /* Standard macro to see if a specific flag is changeable */
291 static inline int flag_is_changeable_p(u32 flag)
292 {
293         u32 f1, f2;
294
295         /*
296          * Cyrix and IDT cpus allow disabling of CPUID
297          * so the code below may return different results
298          * when it is executed before and after enabling
299          * the CPUID. Add "volatile" to not allow gcc to
300          * optimize the subsequent calls to this function.
301          */
302         asm volatile ("pushfl           \n\t"
303                       "pushfl           \n\t"
304                       "popl %0          \n\t"
305                       "movl %0, %1      \n\t"
306                       "xorl %2, %0      \n\t"
307                       "pushl %0         \n\t"
308                       "popfl            \n\t"
309                       "pushfl           \n\t"
310                       "popl %0          \n\t"
311                       "popfl            \n\t"
312
313                       : "=&r" (f1), "=&r" (f2)
314                       : "ir" (flag));
315
316         return ((f1^f2) & flag) != 0;
317 }
318
319 /* Probe for the CPUID instruction */
320 int have_cpuid_p(void)
321 {
322         return flag_is_changeable_p(X86_EFLAGS_ID);
323 }
324
325 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
326 {
327         unsigned long lo, hi;
328
329         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
330                 return;
331
332         /* Disable processor serial number: */
333
334         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
335         lo |= 0x200000;
336         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
337
338         pr_notice("CPU serial number disabled.\n");
339         clear_cpu_cap(c, X86_FEATURE_PN);
340
341         /* Disabling the serial number may affect the cpuid level */
342         c->cpuid_level = cpuid_eax(0);
343 }
344
345 static int __init x86_serial_nr_setup(char *s)
346 {
347         disable_x86_serial_nr = 0;
348         return 1;
349 }
350 __setup("serialnumber", x86_serial_nr_setup);
351 #else
352 static inline int flag_is_changeable_p(u32 flag)
353 {
354         return 1;
355 }
356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357 {
358 }
359 #endif
360
361 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362 {
363         if (cpu_has(c, X86_FEATURE_SMEP))
364                 cr4_set_bits(X86_CR4_SMEP);
365 }
366
367 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368 {
369         unsigned long eflags = native_save_fl();
370
371         /* This should have been cleared long ago */
372         BUG_ON(eflags & X86_EFLAGS_AC);
373
374         if (cpu_has(c, X86_FEATURE_SMAP))
375                 cr4_set_bits(X86_CR4_SMAP);
376 }
377
378 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379 {
380         /* Check the boot processor, plus build option for UMIP. */
381         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382                 goto out;
383
384         /* Check the current processor's cpuid bits. */
385         if (!cpu_has(c, X86_FEATURE_UMIP))
386                 goto out;
387
388         cr4_set_bits(X86_CR4_UMIP);
389
390         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391
392         return;
393
394 out:
395         /*
396          * Make sure UMIP is disabled in case it was enabled in a
397          * previous boot (e.g., via kexec).
398          */
399         cr4_clear_bits(X86_CR4_UMIP);
400 }
401
402 /* These bits should not change their value after CPU init is finished. */
403 static const unsigned long cr4_pinned_mask =
404         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405         X86_CR4_FSGSBASE | X86_CR4_CET;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408
409 void native_write_cr0(unsigned long val)
410 {
411         unsigned long bits_missing = 0;
412
413 set_register:
414         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415
416         if (static_branch_likely(&cr_pinning)) {
417                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418                         bits_missing = X86_CR0_WP;
419                         val |= bits_missing;
420                         goto set_register;
421                 }
422                 /* Warn after we've set the missing bits. */
423                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424         }
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427
428 void __no_profile native_write_cr4(unsigned long val)
429 {
430         unsigned long bits_changed = 0;
431
432 set_register:
433         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434
435         if (static_branch_likely(&cr_pinning)) {
436                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439                         goto set_register;
440                 }
441                 /* Warn after we've corrected the changed bits. */
442                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443                           bits_changed);
444         }
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449
450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453
454         lockdep_assert_irqs_disabled();
455
456         newval = (cr4 & ~clear) | set;
457         if (newval != cr4) {
458                 this_cpu_write(cpu_tlbstate.cr4, newval);
459                 __write_cr4(newval);
460         }
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463
464 /* Read the CR4 shadow. */
465 unsigned long cr4_read_shadow(void)
466 {
467         return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470
471 void cr4_init(void)
472 {
473         unsigned long cr4 = __read_cr4();
474
475         if (boot_cpu_has(X86_FEATURE_PCID))
476                 cr4 |= X86_CR4_PCIDE;
477         if (static_branch_likely(&cr_pinning))
478                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479
480         __write_cr4(cr4);
481
482         /* Initialize cr4 shadow for this CPU. */
483         this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485
486 /*
487  * Once CPU feature detection is finished (and boot params have been
488  * parsed), record any of the sensitive CR bits that are set, and
489  * enable CR pinning.
490  */
491 static void __init setup_cr_pinning(void)
492 {
493         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494         static_key_enable(&cr_pinning.key);
495 }
496
497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499         /* Require an exact match without trailing characters. */
500         if (strlen(arg))
501                 return 0;
502
503         /* Do not emit a message if the feature is not present. */
504         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505                 return 1;
506
507         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508         pr_info("FSGSBASE disabled via kernel command line\n");
509         return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512
513 /*
514  * Protection Keys are not available in 32-bit mode.
515  */
516 static bool pku_disabled;
517
518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520         if (c == &boot_cpu_data) {
521                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522                         return;
523                 /*
524                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525                  * bit to be set.  Enforce it.
526                  */
527                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
528
529         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530                 return;
531         }
532
533         cr4_set_bits(X86_CR4_PKE);
534         /* Load the default PKRU value */
535         pkru_write_default();
536 }
537
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
539 static __init int setup_disable_pku(char *arg)
540 {
541         /*
542          * Do not clear the X86_FEATURE_PKU bit.  All of the
543          * runtime checks are against OSPKE so clearing the
544          * bit does nothing.
545          *
546          * This way, we will see "pku" in cpuinfo, but not
547          * "ospke", which is exactly what we want.  It shows
548          * that the CPU has PKU, but the OS has not enabled it.
549          * This happens to be exactly how a system would look
550          * if we disabled the config option.
551          */
552         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553         pku_disabled = true;
554         return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558
559 #ifdef CONFIG_X86_KERNEL_IBT
560
561 __noendbr u64 ibt_save(bool disable)
562 {
563         u64 msr = 0;
564
565         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566                 rdmsrl(MSR_IA32_S_CET, msr);
567                 if (disable)
568                         wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569         }
570
571         return msr;
572 }
573
574 __noendbr void ibt_restore(u64 save)
575 {
576         u64 msr;
577
578         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579                 rdmsrl(MSR_IA32_S_CET, msr);
580                 msr &= ~CET_ENDBR_EN;
581                 msr |= (save & CET_ENDBR_EN);
582                 wrmsrl(MSR_IA32_S_CET, msr);
583         }
584 }
585
586 #endif
587
588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590         bool user_shstk, kernel_ibt;
591
592         if (!IS_ENABLED(CONFIG_X86_CET))
593                 return;
594
595         kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
596         user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
597                      IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
598
599         if (!kernel_ibt && !user_shstk)
600                 return;
601
602         if (user_shstk)
603                 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
604
605         if (kernel_ibt)
606                 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
607         else
608                 wrmsrl(MSR_IA32_S_CET, 0);
609
610         cr4_set_bits(X86_CR4_CET);
611
612         if (kernel_ibt && ibt_selftest()) {
613                 pr_err("IBT selftest: Failed!\n");
614                 wrmsrl(MSR_IA32_S_CET, 0);
615                 setup_clear_cpu_cap(X86_FEATURE_IBT);
616         }
617 }
618
619 __noendbr void cet_disable(void)
620 {
621         if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
622               cpu_feature_enabled(X86_FEATURE_SHSTK)))
623                 return;
624
625         wrmsrl(MSR_IA32_S_CET, 0);
626         wrmsrl(MSR_IA32_U_CET, 0);
627 }
628
629 /*
630  * Some CPU features depend on higher CPUID levels, which may not always
631  * be available due to CPUID level capping or broken virtualization
632  * software.  Add those features to this table to auto-disable them.
633  */
634 struct cpuid_dependent_feature {
635         u32 feature;
636         u32 level;
637 };
638
639 static const struct cpuid_dependent_feature
640 cpuid_dependent_features[] = {
641         { X86_FEATURE_MWAIT,            0x00000005 },
642         { X86_FEATURE_DCA,              0x00000009 },
643         { X86_FEATURE_XSAVE,            0x0000000d },
644         { 0, 0 }
645 };
646
647 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
648 {
649         const struct cpuid_dependent_feature *df;
650
651         for (df = cpuid_dependent_features; df->feature; df++) {
652
653                 if (!cpu_has(c, df->feature))
654                         continue;
655                 /*
656                  * Note: cpuid_level is set to -1 if unavailable, but
657                  * extended_extended_level is set to 0 if unavailable
658                  * and the legitimate extended levels are all negative
659                  * when signed; hence the weird messing around with
660                  * signs here...
661                  */
662                 if (!((s32)df->level < 0 ?
663                      (u32)df->level > (u32)c->extended_cpuid_level :
664                      (s32)df->level > (s32)c->cpuid_level))
665                         continue;
666
667                 clear_cpu_cap(c, df->feature);
668                 if (!warn)
669                         continue;
670
671                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
672                         x86_cap_flag(df->feature), df->level);
673         }
674 }
675
676 /*
677  * Naming convention should be: <Name> [(<Codename>)]
678  * This table only is used unless init_<vendor>() below doesn't set it;
679  * in particular, if CPUID levels 0x80000002..4 are supported, this
680  * isn't used
681  */
682
683 /* Look up CPU names by table lookup. */
684 static const char *table_lookup_model(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687         const struct legacy_cpu_model_info *info;
688
689         if (c->x86_model >= 16)
690                 return NULL;    /* Range check */
691
692         if (!this_cpu)
693                 return NULL;
694
695         info = this_cpu->legacy_models;
696
697         while (info->family) {
698                 if (info->family == c->x86)
699                         return info->model_names[c->x86_model];
700                 info++;
701         }
702 #endif
703         return NULL;            /* Not found */
704 }
705
706 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
707 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709
710 #ifdef CONFIG_X86_32
711 /* The 32-bit entry code needs to find cpu_entry_area. */
712 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
713 #endif
714
715 /* Load the original GDT from the per-cpu structure */
716 void load_direct_gdt(int cpu)
717 {
718         struct desc_ptr gdt_descr;
719
720         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
721         gdt_descr.size = GDT_SIZE - 1;
722         load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_direct_gdt);
725
726 /* Load a fixmap remapping of the per-cpu GDT */
727 void load_fixmap_gdt(int cpu)
728 {
729         struct desc_ptr gdt_descr;
730
731         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
732         gdt_descr.size = GDT_SIZE - 1;
733         load_gdt(&gdt_descr);
734 }
735 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
736
737 /**
738  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
739  * @cpu:        The CPU number for which this is invoked
740  *
741  * Invoked during early boot to switch from early GDT and early per CPU to
742  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
743  * switch is implicit by loading the direct GDT. On 64bit this requires
744  * to update GSBASE.
745  */
746 void __init switch_gdt_and_percpu_base(int cpu)
747 {
748         load_direct_gdt(cpu);
749
750 #ifdef CONFIG_X86_64
751         /*
752          * No need to load %gs. It is already correct.
753          *
754          * Writing %gs on 64bit would zero GSBASE which would make any per
755          * CPU operation up to the point of the wrmsrl() fault.
756          *
757          * Set GSBASE to the new offset. Until the wrmsrl() happens the
758          * early mapping is still valid. That means the GSBASE update will
759          * lose any prior per CPU data which was not copied over in
760          * setup_per_cpu_areas().
761          *
762          * This works even with stackprotector enabled because the
763          * per CPU stack canary is 0 in both per CPU areas.
764          */
765         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
766 #else
767         /*
768          * %fs is already set to __KERNEL_PERCPU, but after switching GDT
769          * it is required to load FS again so that the 'hidden' part is
770          * updated from the new GDT. Up to this point the early per CPU
771          * translation is active. Any content of the early per CPU data
772          * which was not copied over in setup_per_cpu_areas() is lost.
773          */
774         loadsegment(fs, __KERNEL_PERCPU);
775 #endif
776 }
777
778 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
779
780 static void get_model_name(struct cpuinfo_x86 *c)
781 {
782         unsigned int *v;
783         char *p, *q, *s;
784
785         if (c->extended_cpuid_level < 0x80000004)
786                 return;
787
788         v = (unsigned int *)c->x86_model_id;
789         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792         c->x86_model_id[48] = 0;
793
794         /* Trim whitespace */
795         p = q = s = &c->x86_model_id[0];
796
797         while (*p == ' ')
798                 p++;
799
800         while (*p) {
801                 /* Note the last non-whitespace index */
802                 if (!isspace(*p))
803                         s = q;
804
805                 *q++ = *p++;
806         }
807
808         *(s + 1) = '\0';
809 }
810
811 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
812 {
813         unsigned int eax, ebx, ecx, edx;
814
815         c->x86_max_cores = 1;
816         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
817                 return;
818
819         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
820         if (eax & 0x1f)
821                 c->x86_max_cores = (eax >> 26) + 1;
822 }
823
824 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
825 {
826         unsigned int n, dummy, ebx, ecx, edx, l2size;
827
828         n = c->extended_cpuid_level;
829
830         if (n >= 0x80000005) {
831                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
832                 c->x86_cache_size = (ecx>>24) + (edx>>24);
833 #ifdef CONFIG_X86_64
834                 /* On K8 L1 TLB is inclusive, so don't count it */
835                 c->x86_tlbsize = 0;
836 #endif
837         }
838
839         if (n < 0x80000006)     /* Some chips just has a large L1. */
840                 return;
841
842         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
843         l2size = ecx >> 16;
844
845 #ifdef CONFIG_X86_64
846         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
847 #else
848         /* do processor-specific cache resizing */
849         if (this_cpu->legacy_cache_size)
850                 l2size = this_cpu->legacy_cache_size(c, l2size);
851
852         /* Allow user to override all this if necessary. */
853         if (cachesize_override != -1)
854                 l2size = cachesize_override;
855
856         if (l2size == 0)
857                 return;         /* Again, no L2 cache is possible */
858 #endif
859
860         c->x86_cache_size = l2size;
861 }
862
863 u16 __read_mostly tlb_lli_4k[NR_INFO];
864 u16 __read_mostly tlb_lli_2m[NR_INFO];
865 u16 __read_mostly tlb_lli_4m[NR_INFO];
866 u16 __read_mostly tlb_lld_4k[NR_INFO];
867 u16 __read_mostly tlb_lld_2m[NR_INFO];
868 u16 __read_mostly tlb_lld_4m[NR_INFO];
869 u16 __read_mostly tlb_lld_1g[NR_INFO];
870
871 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
872 {
873         if (this_cpu->c_detect_tlb)
874                 this_cpu->c_detect_tlb(c);
875
876         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
877                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
878                 tlb_lli_4m[ENTRIES]);
879
880         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
881                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
882                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
883 }
884
885 int detect_ht_early(struct cpuinfo_x86 *c)
886 {
887 #ifdef CONFIG_SMP
888         u32 eax, ebx, ecx, edx;
889
890         if (!cpu_has(c, X86_FEATURE_HT))
891                 return -1;
892
893         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
894                 return -1;
895
896         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
897                 return -1;
898
899         cpuid(1, &eax, &ebx, &ecx, &edx);
900
901         smp_num_siblings = (ebx & 0xff0000) >> 16;
902         if (smp_num_siblings == 1)
903                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
904 #endif
905         return 0;
906 }
907
908 void detect_ht(struct cpuinfo_x86 *c)
909 {
910 #ifdef CONFIG_SMP
911         int index_msb, core_bits;
912
913         if (detect_ht_early(c) < 0)
914                 return;
915
916         index_msb = get_count_order(smp_num_siblings);
917         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
918
919         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
920
921         index_msb = get_count_order(smp_num_siblings);
922
923         core_bits = get_count_order(c->x86_max_cores);
924
925         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
926                                        ((1 << core_bits) - 1);
927 #endif
928 }
929
930 static void get_cpu_vendor(struct cpuinfo_x86 *c)
931 {
932         char *v = c->x86_vendor_id;
933         int i;
934
935         for (i = 0; i < X86_VENDOR_NUM; i++) {
936                 if (!cpu_devs[i])
937                         break;
938
939                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
940                     (cpu_devs[i]->c_ident[1] &&
941                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
942
943                         this_cpu = cpu_devs[i];
944                         c->x86_vendor = this_cpu->c_x86_vendor;
945                         return;
946                 }
947         }
948
949         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
950                     "CPU: Your system may be unstable.\n", v);
951
952         c->x86_vendor = X86_VENDOR_UNKNOWN;
953         this_cpu = &default_cpu;
954 }
955
956 void cpu_detect(struct cpuinfo_x86 *c)
957 {
958         /* Get vendor name */
959         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
960               (unsigned int *)&c->x86_vendor_id[0],
961               (unsigned int *)&c->x86_vendor_id[8],
962               (unsigned int *)&c->x86_vendor_id[4]);
963
964         c->x86 = 4;
965         /* Intel-defined flags: level 0x00000001 */
966         if (c->cpuid_level >= 0x00000001) {
967                 u32 junk, tfms, cap0, misc;
968
969                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
970                 c->x86          = x86_family(tfms);
971                 c->x86_model    = x86_model(tfms);
972                 c->x86_stepping = x86_stepping(tfms);
973
974                 if (cap0 & (1<<19)) {
975                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
976                         c->x86_cache_alignment = c->x86_clflush_size;
977                 }
978         }
979 }
980
981 static void apply_forced_caps(struct cpuinfo_x86 *c)
982 {
983         int i;
984
985         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
986                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
987                 c->x86_capability[i] |= cpu_caps_set[i];
988         }
989 }
990
991 static void init_speculation_control(struct cpuinfo_x86 *c)
992 {
993         /*
994          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
995          * and they also have a different bit for STIBP support. Also,
996          * a hypervisor might have set the individual AMD bits even on
997          * Intel CPUs, for finer-grained selection of what's available.
998          */
999         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
1000                 set_cpu_cap(c, X86_FEATURE_IBRS);
1001                 set_cpu_cap(c, X86_FEATURE_IBPB);
1002                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1003         }
1004
1005         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1006                 set_cpu_cap(c, X86_FEATURE_STIBP);
1007
1008         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1009             cpu_has(c, X86_FEATURE_VIRT_SSBD))
1010                 set_cpu_cap(c, X86_FEATURE_SSBD);
1011
1012         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1013                 set_cpu_cap(c, X86_FEATURE_IBRS);
1014                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1015         }
1016
1017         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1018                 set_cpu_cap(c, X86_FEATURE_IBPB);
1019
1020         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1021                 set_cpu_cap(c, X86_FEATURE_STIBP);
1022                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1023         }
1024
1025         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1026                 set_cpu_cap(c, X86_FEATURE_SSBD);
1027                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1028                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1029         }
1030 }
1031
1032 void get_cpu_cap(struct cpuinfo_x86 *c)
1033 {
1034         u32 eax, ebx, ecx, edx;
1035
1036         /* Intel-defined flags: level 0x00000001 */
1037         if (c->cpuid_level >= 0x00000001) {
1038                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1039
1040                 c->x86_capability[CPUID_1_ECX] = ecx;
1041                 c->x86_capability[CPUID_1_EDX] = edx;
1042         }
1043
1044         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1045         if (c->cpuid_level >= 0x00000006)
1046                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1047
1048         /* Additional Intel-defined flags: level 0x00000007 */
1049         if (c->cpuid_level >= 0x00000007) {
1050                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1051                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1052                 c->x86_capability[CPUID_7_ECX] = ecx;
1053                 c->x86_capability[CPUID_7_EDX] = edx;
1054
1055                 /* Check valid sub-leaf index before accessing it */
1056                 if (eax >= 1) {
1057                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1058                         c->x86_capability[CPUID_7_1_EAX] = eax;
1059                 }
1060         }
1061
1062         /* Extended state features: level 0x0000000d */
1063         if (c->cpuid_level >= 0x0000000d) {
1064                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1065
1066                 c->x86_capability[CPUID_D_1_EAX] = eax;
1067         }
1068
1069         /* AMD-defined flags: level 0x80000001 */
1070         eax = cpuid_eax(0x80000000);
1071         c->extended_cpuid_level = eax;
1072
1073         if ((eax & 0xffff0000) == 0x80000000) {
1074                 if (eax >= 0x80000001) {
1075                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1076
1077                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1078                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1079                 }
1080         }
1081
1082         if (c->extended_cpuid_level >= 0x80000007) {
1083                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1084
1085                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1086                 c->x86_power = edx;
1087         }
1088
1089         if (c->extended_cpuid_level >= 0x80000008) {
1090                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1091                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1092         }
1093
1094         if (c->extended_cpuid_level >= 0x8000000a)
1095                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1096
1097         if (c->extended_cpuid_level >= 0x8000001f)
1098                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1099
1100         if (c->extended_cpuid_level >= 0x80000021)
1101                 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1102
1103         init_scattered_cpuid_features(c);
1104         init_speculation_control(c);
1105
1106         /*
1107          * Clear/Set all flags overridden by options, after probe.
1108          * This needs to happen each time we re-probe, which may happen
1109          * several times during CPU initialization.
1110          */
1111         apply_forced_caps(c);
1112 }
1113
1114 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1115 {
1116         u32 eax, ebx, ecx, edx;
1117
1118         if (c->extended_cpuid_level >= 0x80000008) {
1119                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1120
1121                 c->x86_virt_bits = (eax >> 8) & 0xff;
1122                 c->x86_phys_bits = eax & 0xff;
1123         }
1124 #ifdef CONFIG_X86_32
1125         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1126                 c->x86_phys_bits = 36;
1127 #endif
1128         c->x86_cache_bits = c->x86_phys_bits;
1129 }
1130
1131 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1132 {
1133 #ifdef CONFIG_X86_32
1134         int i;
1135
1136         /*
1137          * First of all, decide if this is a 486 or higher
1138          * It's a 486 if we can modify the AC flag
1139          */
1140         if (flag_is_changeable_p(X86_EFLAGS_AC))
1141                 c->x86 = 4;
1142         else
1143                 c->x86 = 3;
1144
1145         for (i = 0; i < X86_VENDOR_NUM; i++)
1146                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1147                         c->x86_vendor_id[0] = 0;
1148                         cpu_devs[i]->c_identify(c);
1149                         if (c->x86_vendor_id[0]) {
1150                                 get_cpu_vendor(c);
1151                                 break;
1152                         }
1153                 }
1154 #endif
1155 }
1156
1157 #define NO_SPECULATION          BIT(0)
1158 #define NO_MELTDOWN             BIT(1)
1159 #define NO_SSB                  BIT(2)
1160 #define NO_L1TF                 BIT(3)
1161 #define NO_MDS                  BIT(4)
1162 #define MSBDS_ONLY              BIT(5)
1163 #define NO_SWAPGS               BIT(6)
1164 #define NO_ITLB_MULTIHIT        BIT(7)
1165 #define NO_SPECTRE_V2           BIT(8)
1166 #define NO_MMIO                 BIT(9)
1167 #define NO_EIBRS_PBRSB          BIT(10)
1168
1169 #define VULNWL(vendor, family, model, whitelist)        \
1170         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1171
1172 #define VULNWL_INTEL(model, whitelist)          \
1173         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1174
1175 #define VULNWL_AMD(family, whitelist)           \
1176         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1177
1178 #define VULNWL_HYGON(family, whitelist)         \
1179         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1180
1181 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1182         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1183         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1184         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1185         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1186         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1187         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1188
1189         /* Intel Family 6 */
1190         VULNWL_INTEL(TIGERLAKE,                 NO_MMIO),
1191         VULNWL_INTEL(TIGERLAKE_L,               NO_MMIO),
1192         VULNWL_INTEL(ALDERLAKE,                 NO_MMIO),
1193         VULNWL_INTEL(ALDERLAKE_L,               NO_MMIO),
1194
1195         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1196         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1197         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1198         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1199         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1200
1201         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207
1208         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1209
1210         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1211         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1212
1213         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1214         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1215         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1216
1217         /*
1218          * Technically, swapgs isn't serializing on AMD (despite it previously
1219          * being documented as such in the APM).  But according to AMD, %gs is
1220          * updated non-speculatively, and the issuing of %gs-relative memory
1221          * operands will be blocked until the %gs update completes, which is
1222          * good enough for our purposes.
1223          */
1224
1225         VULNWL_INTEL(ATOM_TREMONT,              NO_EIBRS_PBRSB),
1226         VULNWL_INTEL(ATOM_TREMONT_L,            NO_EIBRS_PBRSB),
1227         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1228
1229         /* AMD Family 0xf - 0x12 */
1230         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1233         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1234
1235         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1236         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1237         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1238
1239         /* Zhaoxin Family 7 */
1240         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1241         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1242         {}
1243 };
1244
1245 #define VULNBL(vendor, family, model, blacklist)        \
1246         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1247
1248 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1249         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1250                                             INTEL_FAM6_##model, steppings, \
1251                                             X86_FEATURE_ANY, issues)
1252
1253 #define VULNBL_AMD(family, blacklist)           \
1254         VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1255
1256 #define VULNBL_HYGON(family, blacklist)         \
1257         VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1258
1259 #define SRBDS           BIT(0)
1260 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1261 #define MMIO            BIT(1)
1262 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1263 #define MMIO_SBDS       BIT(2)
1264 /* CPU is affected by RETbleed, speculating where you would not expect it */
1265 #define RETBLEED        BIT(3)
1266 /* CPU is affected by SMT (cross-thread) return predictions */
1267 #define SMT_RSB         BIT(4)
1268 /* CPU is affected by SRSO */
1269 #define SRSO            BIT(5)
1270 /* CPU is affected by GDS */
1271 #define GDS             BIT(6)
1272
1273 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1274         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1275         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1276         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1277         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1278         VULNBL_INTEL_STEPPINGS(HASWELL_X,       X86_STEPPING_ANY,               MMIO),
1279         VULNBL_INTEL_STEPPINGS(BROADWELL_D,     X86_STEPPING_ANY,               MMIO),
1280         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1281         VULNBL_INTEL_STEPPINGS(BROADWELL_X,     X86_STEPPING_ANY,               MMIO),
1282         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1283         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1284         VULNBL_INTEL_STEPPINGS(SKYLAKE_X,       X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1285         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED),
1286         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED | GDS),
1287         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPING_ANY,               SRBDS | MMIO | RETBLEED | GDS),
1288         VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,    X86_STEPPING_ANY,               RETBLEED),
1289         VULNBL_INTEL_STEPPINGS(ICELAKE_L,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1290         VULNBL_INTEL_STEPPINGS(ICELAKE_D,       X86_STEPPING_ANY,               MMIO | GDS),
1291         VULNBL_INTEL_STEPPINGS(ICELAKE_X,       X86_STEPPING_ANY,               MMIO | GDS),
1292         VULNBL_INTEL_STEPPINGS(COMETLAKE,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1293         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPINGS(0x0, 0x0),        MMIO | RETBLEED),
1294         VULNBL_INTEL_STEPPINGS(COMETLAKE_L,     X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED | GDS),
1295         VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,     X86_STEPPING_ANY,               GDS),
1296         VULNBL_INTEL_STEPPINGS(TIGERLAKE,       X86_STEPPING_ANY,               GDS),
1297         VULNBL_INTEL_STEPPINGS(LAKEFIELD,       X86_STEPPING_ANY,               MMIO | MMIO_SBDS | RETBLEED),
1298         VULNBL_INTEL_STEPPINGS(ROCKETLAKE,      X86_STEPPING_ANY,               MMIO | RETBLEED | GDS),
1299         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,    X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1300         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,  X86_STEPPING_ANY,               MMIO),
1301         VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,  X86_STEPPING_ANY,               MMIO | MMIO_SBDS),
1302
1303         VULNBL_AMD(0x15, RETBLEED),
1304         VULNBL_AMD(0x16, RETBLEED),
1305         VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1306         VULNBL_HYGON(0x18, RETBLEED | SMT_RSB),
1307         VULNBL_AMD(0x19, SRSO),
1308         {}
1309 };
1310
1311 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1312 {
1313         const struct x86_cpu_id *m = x86_match_cpu(table);
1314
1315         return m && !!(m->driver_data & which);
1316 }
1317
1318 u64 x86_read_arch_cap_msr(void)
1319 {
1320         u64 ia32_cap = 0;
1321
1322         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1323                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1324
1325         return ia32_cap;
1326 }
1327
1328 static bool arch_cap_mmio_immune(u64 ia32_cap)
1329 {
1330         return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1331                 ia32_cap & ARCH_CAP_PSDP_NO &&
1332                 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1333 }
1334
1335 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1336 {
1337         u64 ia32_cap = x86_read_arch_cap_msr();
1338
1339         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1340         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1341             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1342                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1343
1344         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1345                 return;
1346
1347         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1348
1349         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1350                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1351
1352         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1353             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1354            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1355                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1356
1357         /*
1358          * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1359          * flag and protect from vendor-specific bugs via the whitelist.
1360          */
1361         if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1362                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1363                 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1364                     !(ia32_cap & ARCH_CAP_PBRSB_NO))
1365                         setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1366         }
1367
1368         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1369             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1370                 setup_force_cpu_bug(X86_BUG_MDS);
1371                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1372                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1373         }
1374
1375         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1376                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1377
1378         /*
1379          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1380          *      - TSX is supported or
1381          *      - TSX_CTRL is present
1382          *
1383          * TSX_CTRL check is needed for cases when TSX could be disabled before
1384          * the kernel boot e.g. kexec.
1385          * TSX_CTRL check alone is not sufficient for cases when the microcode
1386          * update is not present or running as guest that don't get TSX_CTRL.
1387          */
1388         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1389             (cpu_has(c, X86_FEATURE_RTM) ||
1390              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1391                 setup_force_cpu_bug(X86_BUG_TAA);
1392
1393         /*
1394          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1395          * in the vulnerability blacklist.
1396          *
1397          * Some of the implications and mitigation of Shared Buffers Data
1398          * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1399          * SRBDS.
1400          */
1401         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1402              cpu_has(c, X86_FEATURE_RDSEED)) &&
1403             cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1404                     setup_force_cpu_bug(X86_BUG_SRBDS);
1405
1406         /*
1407          * Processor MMIO Stale Data bug enumeration
1408          *
1409          * Affected CPU list is generally enough to enumerate the vulnerability,
1410          * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1411          * not want the guest to enumerate the bug.
1412          *
1413          * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1414          * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1415          */
1416         if (!arch_cap_mmio_immune(ia32_cap)) {
1417                 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1418                         setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1419                 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1420                         setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1421         }
1422
1423         if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1424                 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1425                         setup_force_cpu_bug(X86_BUG_RETBLEED);
1426         }
1427
1428         if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1429                 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1430
1431         if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1432                 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1433                         setup_force_cpu_bug(X86_BUG_SRSO);
1434         }
1435
1436         /*
1437          * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1438          * an affected processor, the VMM may have disabled the use of GATHER by
1439          * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1440          * which means that AVX will be disabled.
1441          */
1442         if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1443             boot_cpu_has(X86_FEATURE_AVX))
1444                 setup_force_cpu_bug(X86_BUG_GDS);
1445
1446         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447                 return;
1448
1449         /* Rogue Data Cache Load? No! */
1450         if (ia32_cap & ARCH_CAP_RDCL_NO)
1451                 return;
1452
1453         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454
1455         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456                 return;
1457
1458         setup_force_cpu_bug(X86_BUG_L1TF);
1459 }
1460
1461 /*
1462  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463  * unfortunately, that's not true in practice because of early VIA
1464  * chips and (more importantly) broken virtualizers that are not easy
1465  * to detect. In the latter case it doesn't even *fail* reliably, so
1466  * probing for it doesn't even work. Disable it completely on 32-bit
1467  * unless we can find a reliable way to detect all the broken cases.
1468  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469  */
1470 static void detect_nopl(void)
1471 {
1472 #ifdef CONFIG_X86_32
1473         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474 #else
1475         setup_force_cpu_cap(X86_FEATURE_NOPL);
1476 #endif
1477 }
1478
1479 /*
1480  * We parse cpu parameters early because fpu__init_system() is executed
1481  * before parse_early_param().
1482  */
1483 static void __init cpu_parse_early_param(void)
1484 {
1485         char arg[128];
1486         char *argptr = arg, *opt;
1487         int arglen, taint = 0;
1488
1489 #ifdef CONFIG_X86_32
1490         if (cmdline_find_option_bool(boot_command_line, "no387"))
1491 #ifdef CONFIG_MATH_EMULATION
1492                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1493 #else
1494                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495 #endif
1496
1497         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499 #endif
1500
1501         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503
1504         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506
1507         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509
1510         if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511                 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512
1513         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1514         if (arglen <= 0)
1515                 return;
1516
1517         pr_info("Clearing CPUID bits:");
1518
1519         while (argptr) {
1520                 bool found __maybe_unused = false;
1521                 unsigned int bit;
1522
1523                 opt = strsep(&argptr, ",");
1524
1525                 /*
1526                  * Handle naked numbers first for feature flags which don't
1527                  * have names.
1528                  */
1529                 if (!kstrtouint(opt, 10, &bit)) {
1530                         if (bit < NCAPINTS * 32) {
1531
1532                                 /* empty-string, i.e., ""-defined feature flags */
1533                                 if (!x86_cap_flags[bit])
1534                                         pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1535                                 else
1536                                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1537
1538                                 setup_clear_cpu_cap(bit);
1539                                 taint++;
1540                         }
1541                         /*
1542                          * The assumption is that there are no feature names with only
1543                          * numbers in the name thus go to the next argument.
1544                          */
1545                         continue;
1546                 }
1547
1548                 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1549                         if (!x86_cap_flag(bit))
1550                                 continue;
1551
1552                         if (strcmp(x86_cap_flag(bit), opt))
1553                                 continue;
1554
1555                         pr_cont(" %s", opt);
1556                         setup_clear_cpu_cap(bit);
1557                         taint++;
1558                         found = true;
1559                         break;
1560                 }
1561
1562                 if (!found)
1563                         pr_cont(" (unknown: %s)", opt);
1564         }
1565         pr_cont("\n");
1566
1567         if (taint)
1568                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1569 }
1570
1571 /*
1572  * Do minimum CPU detection early.
1573  * Fields really needed: vendor, cpuid_level, family, model, mask,
1574  * cache alignment.
1575  * The others are not touched to avoid unwanted side effects.
1576  *
1577  * WARNING: this function is only called on the boot CPU.  Don't add code
1578  * here that is supposed to run on all CPUs.
1579  */
1580 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1581 {
1582 #ifdef CONFIG_X86_64
1583         c->x86_clflush_size = 64;
1584         c->x86_phys_bits = 36;
1585         c->x86_virt_bits = 48;
1586 #else
1587         c->x86_clflush_size = 32;
1588         c->x86_phys_bits = 32;
1589         c->x86_virt_bits = 32;
1590 #endif
1591         c->x86_cache_alignment = c->x86_clflush_size;
1592
1593         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1594         c->extended_cpuid_level = 0;
1595
1596         if (!have_cpuid_p())
1597                 identify_cpu_without_cpuid(c);
1598
1599         /* cyrix could have cpuid enabled via c_identify()*/
1600         if (have_cpuid_p()) {
1601                 cpu_detect(c);
1602                 get_cpu_vendor(c);
1603                 get_cpu_cap(c);
1604                 get_cpu_address_sizes(c);
1605                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1606                 cpu_parse_early_param();
1607
1608                 if (this_cpu->c_early_init)
1609                         this_cpu->c_early_init(c);
1610
1611                 c->cpu_index = 0;
1612                 filter_cpuid_features(c, false);
1613
1614                 if (this_cpu->c_bsp_init)
1615                         this_cpu->c_bsp_init(c);
1616         } else {
1617                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1618         }
1619
1620         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1621
1622         cpu_set_bug_bits(c);
1623
1624         sld_setup(c);
1625
1626 #ifdef CONFIG_X86_32
1627         /*
1628          * Regardless of whether PCID is enumerated, the SDM says
1629          * that it can't be enabled in 32-bit mode.
1630          */
1631         setup_clear_cpu_cap(X86_FEATURE_PCID);
1632 #endif
1633
1634         /*
1635          * Later in the boot process pgtable_l5_enabled() relies on
1636          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1637          * enabled by this point we need to clear the feature bit to avoid
1638          * false-positives at the later stage.
1639          *
1640          * pgtable_l5_enabled() can be false here for several reasons:
1641          *  - 5-level paging is disabled compile-time;
1642          *  - it's 32-bit kernel;
1643          *  - machine doesn't support 5-level paging;
1644          *  - user specified 'no5lvl' in kernel command line.
1645          */
1646         if (!pgtable_l5_enabled())
1647                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1648
1649         detect_nopl();
1650 }
1651
1652 void __init early_cpu_init(void)
1653 {
1654         const struct cpu_dev *const *cdev;
1655         int count = 0;
1656
1657 #ifdef CONFIG_PROCESSOR_SELECT
1658         pr_info("KERNEL supported cpus:\n");
1659 #endif
1660
1661         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1662                 const struct cpu_dev *cpudev = *cdev;
1663
1664                 if (count >= X86_VENDOR_NUM)
1665                         break;
1666                 cpu_devs[count] = cpudev;
1667                 count++;
1668
1669 #ifdef CONFIG_PROCESSOR_SELECT
1670                 {
1671                         unsigned int j;
1672
1673                         for (j = 0; j < 2; j++) {
1674                                 if (!cpudev->c_ident[j])
1675                                         continue;
1676                                 pr_info("  %s %s\n", cpudev->c_vendor,
1677                                         cpudev->c_ident[j]);
1678                         }
1679                 }
1680 #endif
1681         }
1682         early_identify_cpu(&boot_cpu_data);
1683 }
1684
1685 static bool detect_null_seg_behavior(void)
1686 {
1687         /*
1688          * Empirically, writing zero to a segment selector on AMD does
1689          * not clear the base, whereas writing zero to a segment
1690          * selector on Intel does clear the base.  Intel's behavior
1691          * allows slightly faster context switches in the common case
1692          * where GS is unused by the prev and next threads.
1693          *
1694          * Since neither vendor documents this anywhere that I can see,
1695          * detect it directly instead of hard-coding the choice by
1696          * vendor.
1697          *
1698          * I've designated AMD's behavior as the "bug" because it's
1699          * counterintuitive and less friendly.
1700          */
1701
1702         unsigned long old_base, tmp;
1703         rdmsrl(MSR_FS_BASE, old_base);
1704         wrmsrl(MSR_FS_BASE, 1);
1705         loadsegment(fs, 0);
1706         rdmsrl(MSR_FS_BASE, tmp);
1707         wrmsrl(MSR_FS_BASE, old_base);
1708         return tmp == 0;
1709 }
1710
1711 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1712 {
1713         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1714         if (!IS_ENABLED(CONFIG_X86_64))
1715                 return;
1716
1717         if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1718                 return;
1719
1720         /*
1721          * CPUID bit above wasn't set. If this kernel is still running
1722          * as a HV guest, then the HV has decided not to advertize
1723          * that CPUID bit for whatever reason.  For example, one
1724          * member of the migration pool might be vulnerable.  Which
1725          * means, the bug is present: set the BUG flag and return.
1726          */
1727         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1728                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1729                 return;
1730         }
1731
1732         /*
1733          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1734          * 0x18 is the respective family for Hygon.
1735          */
1736         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1737             detect_null_seg_behavior())
1738                 return;
1739
1740         /* All the remaining ones are affected */
1741         set_cpu_bug(c, X86_BUG_NULL_SEG);
1742 }
1743
1744 static void generic_identify(struct cpuinfo_x86 *c)
1745 {
1746         c->extended_cpuid_level = 0;
1747
1748         if (!have_cpuid_p())
1749                 identify_cpu_without_cpuid(c);
1750
1751         /* cyrix could have cpuid enabled via c_identify()*/
1752         if (!have_cpuid_p())
1753                 return;
1754
1755         cpu_detect(c);
1756
1757         get_cpu_vendor(c);
1758
1759         get_cpu_cap(c);
1760
1761         get_cpu_address_sizes(c);
1762
1763         if (c->cpuid_level >= 0x00000001) {
1764                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1765 #ifdef CONFIG_X86_32
1766 # ifdef CONFIG_SMP
1767                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1768 # else
1769                 c->apicid = c->initial_apicid;
1770 # endif
1771 #endif
1772                 c->phys_proc_id = c->initial_apicid;
1773         }
1774
1775         get_model_name(c); /* Default name */
1776
1777         /*
1778          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1779          * systems that run Linux at CPL > 0 may or may not have the
1780          * issue, but, even if they have the issue, there's absolutely
1781          * nothing we can do about it because we can't use the real IRET
1782          * instruction.
1783          *
1784          * NB: For the time being, only 32-bit kernels support
1785          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1786          * whether to apply espfix using paravirt hooks.  If any
1787          * non-paravirt system ever shows up that does *not* have the
1788          * ESPFIX issue, we can change this.
1789          */
1790 #ifdef CONFIG_X86_32
1791         set_cpu_bug(c, X86_BUG_ESPFIX);
1792 #endif
1793 }
1794
1795 /*
1796  * Validate that ACPI/mptables have the same information about the
1797  * effective APIC id and update the package map.
1798  */
1799 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1800 {
1801 #ifdef CONFIG_SMP
1802         unsigned int apicid, cpu = smp_processor_id();
1803
1804         apicid = apic->cpu_present_to_apicid(cpu);
1805
1806         if (apicid != c->apicid) {
1807                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1808                        cpu, apicid, c->initial_apicid);
1809         }
1810         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1811         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1812 #else
1813         c->logical_proc_id = 0;
1814 #endif
1815 }
1816
1817 /*
1818  * This does the hard work of actually picking apart the CPU stuff...
1819  */
1820 static void identify_cpu(struct cpuinfo_x86 *c)
1821 {
1822         int i;
1823
1824         c->loops_per_jiffy = loops_per_jiffy;
1825         c->x86_cache_size = 0;
1826         c->x86_vendor = X86_VENDOR_UNKNOWN;
1827         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1828         c->x86_vendor_id[0] = '\0'; /* Unset */
1829         c->x86_model_id[0] = '\0';  /* Unset */
1830         c->x86_max_cores = 1;
1831         c->x86_coreid_bits = 0;
1832         c->cu_id = 0xff;
1833 #ifdef CONFIG_X86_64
1834         c->x86_clflush_size = 64;
1835         c->x86_phys_bits = 36;
1836         c->x86_virt_bits = 48;
1837 #else
1838         c->cpuid_level = -1;    /* CPUID not detected */
1839         c->x86_clflush_size = 32;
1840         c->x86_phys_bits = 32;
1841         c->x86_virt_bits = 32;
1842 #endif
1843         c->x86_cache_alignment = c->x86_clflush_size;
1844         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1845 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1846         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1847 #endif
1848
1849         generic_identify(c);
1850
1851         if (this_cpu->c_identify)
1852                 this_cpu->c_identify(c);
1853
1854         /* Clear/Set all flags overridden by options, after probe */
1855         apply_forced_caps(c);
1856
1857 #ifdef CONFIG_X86_64
1858         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1859 #endif
1860
1861         /*
1862          * Vendor-specific initialization.  In this section we
1863          * canonicalize the feature flags, meaning if there are
1864          * features a certain CPU supports which CPUID doesn't
1865          * tell us, CPUID claiming incorrect flags, or other bugs,
1866          * we handle them here.
1867          *
1868          * At the end of this section, c->x86_capability better
1869          * indicate the features this CPU genuinely supports!
1870          */
1871         if (this_cpu->c_init)
1872                 this_cpu->c_init(c);
1873
1874         /* Disable the PN if appropriate */
1875         squash_the_stupid_serial_number(c);
1876
1877         /* Set up SMEP/SMAP/UMIP */
1878         setup_smep(c);
1879         setup_smap(c);
1880         setup_umip(c);
1881
1882         /* Enable FSGSBASE instructions if available. */
1883         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1884                 cr4_set_bits(X86_CR4_FSGSBASE);
1885                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1886         }
1887
1888         /*
1889          * The vendor-specific functions might have changed features.
1890          * Now we do "generic changes."
1891          */
1892
1893         /* Filter out anything that depends on CPUID levels we don't have */
1894         filter_cpuid_features(c, true);
1895
1896         /* If the model name is still unset, do table lookup. */
1897         if (!c->x86_model_id[0]) {
1898                 const char *p;
1899                 p = table_lookup_model(c);
1900                 if (p)
1901                         strcpy(c->x86_model_id, p);
1902                 else
1903                         /* Last resort... */
1904                         sprintf(c->x86_model_id, "%02x/%02x",
1905                                 c->x86, c->x86_model);
1906         }
1907
1908 #ifdef CONFIG_X86_64
1909         detect_ht(c);
1910 #endif
1911
1912         x86_init_rdrand(c);
1913         setup_pku(c);
1914         setup_cet(c);
1915
1916         /*
1917          * Clear/Set all flags overridden by options, need do it
1918          * before following smp all cpus cap AND.
1919          */
1920         apply_forced_caps(c);
1921
1922         /*
1923          * On SMP, boot_cpu_data holds the common feature set between
1924          * all CPUs; so make sure that we indicate which features are
1925          * common between the CPUs.  The first time this routine gets
1926          * executed, c == &boot_cpu_data.
1927          */
1928         if (c != &boot_cpu_data) {
1929                 /* AND the already accumulated flags with these */
1930                 for (i = 0; i < NCAPINTS; i++)
1931                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1932
1933                 /* OR, i.e. replicate the bug flags */
1934                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1935                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1936         }
1937
1938         ppin_init(c);
1939
1940         /* Init Machine Check Exception if available. */
1941         mcheck_cpu_init(c);
1942
1943         select_idle_routine(c);
1944
1945 #ifdef CONFIG_NUMA
1946         numa_add_cpu(smp_processor_id());
1947 #endif
1948 }
1949
1950 /*
1951  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1952  * on 32-bit kernels:
1953  */
1954 #ifdef CONFIG_X86_32
1955 void enable_sep_cpu(void)
1956 {
1957         struct tss_struct *tss;
1958         int cpu;
1959
1960         if (!boot_cpu_has(X86_FEATURE_SEP))
1961                 return;
1962
1963         cpu = get_cpu();
1964         tss = &per_cpu(cpu_tss_rw, cpu);
1965
1966         /*
1967          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1968          * see the big comment in struct x86_hw_tss's definition.
1969          */
1970
1971         tss->x86_tss.ss1 = __KERNEL_CS;
1972         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1973         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1974         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1975
1976         put_cpu();
1977 }
1978 #endif
1979
1980 static __init void identify_boot_cpu(void)
1981 {
1982         identify_cpu(&boot_cpu_data);
1983         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1984                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1985 #ifdef CONFIG_X86_32
1986         enable_sep_cpu();
1987 #endif
1988         cpu_detect_tlb(&boot_cpu_data);
1989         setup_cr_pinning();
1990
1991         tsx_init();
1992         lkgs_init();
1993 }
1994
1995 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1996 {
1997         BUG_ON(c == &boot_cpu_data);
1998         identify_cpu(c);
1999 #ifdef CONFIG_X86_32
2000         enable_sep_cpu();
2001 #endif
2002         validate_apic_and_package_id(c);
2003         x86_spec_ctrl_setup_ap();
2004         update_srbds_msr();
2005         if (boot_cpu_has_bug(X86_BUG_GDS))
2006                 update_gds_msr();
2007
2008         tsx_ap_init();
2009 }
2010
2011 void print_cpu_info(struct cpuinfo_x86 *c)
2012 {
2013         const char *vendor = NULL;
2014
2015         if (c->x86_vendor < X86_VENDOR_NUM) {
2016                 vendor = this_cpu->c_vendor;
2017         } else {
2018                 if (c->cpuid_level >= 0)
2019                         vendor = c->x86_vendor_id;
2020         }
2021
2022         if (vendor && !strstr(c->x86_model_id, vendor))
2023                 pr_cont("%s ", vendor);
2024
2025         if (c->x86_model_id[0])
2026                 pr_cont("%s", c->x86_model_id);
2027         else
2028                 pr_cont("%d86", c->x86);
2029
2030         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2031
2032         if (c->x86_stepping || c->cpuid_level >= 0)
2033                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2034         else
2035                 pr_cont(")\n");
2036 }
2037
2038 /*
2039  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
2040  * function prevents it from becoming an environment variable for init.
2041  */
2042 static __init int setup_clearcpuid(char *arg)
2043 {
2044         return 1;
2045 }
2046 __setup("clearcpuid=", setup_clearcpuid);
2047
2048 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2049         .current_task   = &init_task,
2050         .preempt_count  = INIT_PREEMPT_COUNT,
2051         .top_of_stack   = TOP_OF_INIT_STACK,
2052 };
2053 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2054
2055 #ifdef CONFIG_X86_64
2056 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2057                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2058 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2059
2060 static void wrmsrl_cstar(unsigned long val)
2061 {
2062         /*
2063          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2064          * is so far ignored by the CPU, but raises a #VE trap in a TDX
2065          * guest. Avoid the pointless write on all Intel CPUs.
2066          */
2067         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2068                 wrmsrl(MSR_CSTAR, val);
2069 }
2070
2071 /* May not be marked __init: used by software suspend */
2072 void syscall_init(void)
2073 {
2074         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2075         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2076
2077 #ifdef CONFIG_IA32_EMULATION
2078         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2079         /*
2080          * This only works on Intel CPUs.
2081          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2082          * This does not cause SYSENTER to jump to the wrong location, because
2083          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2084          */
2085         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2086         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2087                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2088         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2089 #else
2090         wrmsrl_cstar((unsigned long)ignore_sysret);
2091         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2092         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2093         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2094 #endif
2095
2096         /*
2097          * Flags to clear on syscall; clear as much as possible
2098          * to minimize user space-kernel interference.
2099          */
2100         wrmsrl(MSR_SYSCALL_MASK,
2101                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2102                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2103                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2104                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2105                X86_EFLAGS_AC|X86_EFLAGS_ID);
2106 }
2107
2108 #else   /* CONFIG_X86_64 */
2109
2110 #ifdef CONFIG_STACKPROTECTOR
2111 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2112 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2113 #endif
2114
2115 #endif  /* CONFIG_X86_64 */
2116
2117 /*
2118  * Clear all 6 debug registers:
2119  */
2120 static void clear_all_debug_regs(void)
2121 {
2122         int i;
2123
2124         for (i = 0; i < 8; i++) {
2125                 /* Ignore db4, db5 */
2126                 if ((i == 4) || (i == 5))
2127                         continue;
2128
2129                 set_debugreg(0, i);
2130         }
2131 }
2132
2133 #ifdef CONFIG_KGDB
2134 /*
2135  * Restore debug regs if using kgdbwait and you have a kernel debugger
2136  * connection established.
2137  */
2138 static void dbg_restore_debug_regs(void)
2139 {
2140         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2141                 arch_kgdb_ops.correct_hw_break();
2142 }
2143 #else /* ! CONFIG_KGDB */
2144 #define dbg_restore_debug_regs()
2145 #endif /* ! CONFIG_KGDB */
2146
2147 static inline void setup_getcpu(int cpu)
2148 {
2149         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2150         struct desc_struct d = { };
2151
2152         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2153                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2154
2155         /* Store CPU and node number in limit. */
2156         d.limit0 = cpudata;
2157         d.limit1 = cpudata >> 16;
2158
2159         d.type = 5;             /* RO data, expand down, accessed */
2160         d.dpl = 3;              /* Visible to user code */
2161         d.s = 1;                /* Not a system segment */
2162         d.p = 1;                /* Present */
2163         d.d = 1;                /* 32-bit */
2164
2165         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2166 }
2167
2168 #ifdef CONFIG_X86_64
2169 static inline void ucode_cpu_init(int cpu) { }
2170
2171 static inline void tss_setup_ist(struct tss_struct *tss)
2172 {
2173         /* Set up the per-CPU TSS IST stacks */
2174         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2175         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2176         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2177         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2178         /* Only mapped when SEV-ES is active */
2179         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2180 }
2181
2182 #else /* CONFIG_X86_64 */
2183
2184 static inline void ucode_cpu_init(int cpu)
2185 {
2186         show_ucode_info_early();
2187 }
2188
2189 static inline void tss_setup_ist(struct tss_struct *tss) { }
2190
2191 #endif /* !CONFIG_X86_64 */
2192
2193 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2194 {
2195         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2196
2197 #ifdef CONFIG_X86_IOPL_IOPERM
2198         tss->io_bitmap.prev_max = 0;
2199         tss->io_bitmap.prev_sequence = 0;
2200         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2201         /*
2202          * Invalidate the extra array entry past the end of the all
2203          * permission bitmap as required by the hardware.
2204          */
2205         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2206 #endif
2207 }
2208
2209 /*
2210  * Setup everything needed to handle exceptions from the IDT, including the IST
2211  * exceptions which use paranoid_entry().
2212  */
2213 void cpu_init_exception_handling(void)
2214 {
2215         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2216         int cpu = raw_smp_processor_id();
2217
2218         /* paranoid_entry() gets the CPU number from the GDT */
2219         setup_getcpu(cpu);
2220
2221         /* IST vectors need TSS to be set up. */
2222         tss_setup_ist(tss);
2223         tss_setup_io_bitmap(tss);
2224         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2225
2226         load_TR_desc();
2227
2228         /* GHCB needs to be setup to handle #VC. */
2229         setup_ghcb();
2230
2231         /* Finally load the IDT */
2232         load_current_idt();
2233 }
2234
2235 /*
2236  * cpu_init() initializes state that is per-CPU. Some data is already
2237  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2238  * reload it nevertheless, this function acts as a 'CPU state barrier',
2239  * nothing should get across.
2240  */
2241 void cpu_init(void)
2242 {
2243         struct task_struct *cur = current;
2244         int cpu = raw_smp_processor_id();
2245
2246         ucode_cpu_init(cpu);
2247
2248 #ifdef CONFIG_NUMA
2249         if (this_cpu_read(numa_node) == 0 &&
2250             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2251                 set_numa_node(early_cpu_to_node(cpu));
2252 #endif
2253         pr_debug("Initializing CPU#%d\n", cpu);
2254
2255         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2256             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2257                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2258
2259         if (IS_ENABLED(CONFIG_X86_64)) {
2260                 loadsegment(fs, 0);
2261                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2262                 syscall_init();
2263
2264                 wrmsrl(MSR_FS_BASE, 0);
2265                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2266                 barrier();
2267
2268                 x2apic_setup();
2269         }
2270
2271         mmgrab(&init_mm);
2272         cur->active_mm = &init_mm;
2273         BUG_ON(cur->mm);
2274         initialize_tlbstate_and_flush();
2275         enter_lazy_tlb(&init_mm, cur);
2276
2277         /*
2278          * sp0 points to the entry trampoline stack regardless of what task
2279          * is running.
2280          */
2281         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2282
2283         load_mm_ldt(&init_mm);
2284
2285         clear_all_debug_regs();
2286         dbg_restore_debug_regs();
2287
2288         doublefault_init_cpu_tss();
2289
2290         if (is_uv_system())
2291                 uv_cpu_init();
2292
2293         load_fixmap_gdt(cpu);
2294 }
2295
2296 #ifdef CONFIG_MICROCODE_LATE_LOADING
2297 /**
2298  * store_cpu_caps() - Store a snapshot of CPU capabilities
2299  * @curr_info: Pointer where to store it
2300  *
2301  * Returns: None
2302  */
2303 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2304 {
2305         /* Reload CPUID max function as it might've changed. */
2306         curr_info->cpuid_level = cpuid_eax(0);
2307
2308         /* Copy all capability leafs and pick up the synthetic ones. */
2309         memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2310                sizeof(curr_info->x86_capability));
2311
2312         /* Get the hardware CPUID leafs */
2313         get_cpu_cap(curr_info);
2314 }
2315
2316 /**
2317  * microcode_check() - Check if any CPU capabilities changed after an update.
2318  * @prev_info:  CPU capabilities stored before an update.
2319  *
2320  * The microcode loader calls this upon late microcode load to recheck features,
2321  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2322  *
2323  * Return: None
2324  */
2325 void microcode_check(struct cpuinfo_x86 *prev_info)
2326 {
2327         struct cpuinfo_x86 curr_info;
2328
2329         perf_check_microcode();
2330
2331         amd_check_microcode();
2332
2333         store_cpu_caps(&curr_info);
2334
2335         if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2336                     sizeof(prev_info->x86_capability)))
2337                 return;
2338
2339         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2340         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2341 }
2342 #endif
2343
2344 /*
2345  * Invoked from core CPU hotplug code after hotplug operations
2346  */
2347 void arch_smt_update(void)
2348 {
2349         /* Handle the speculative execution misfeatures */
2350         cpu_bugs_smt_update();
2351         /* Check whether IPI broadcasting can be enabled */
2352         apic_smt_update();
2353 }
2354
2355 void __init arch_cpu_finalize_init(void)
2356 {
2357         identify_boot_cpu();
2358
2359         /*
2360          * identify_boot_cpu() initialized SMT support information, let the
2361          * core code know.
2362          */
2363         cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2364
2365         if (!IS_ENABLED(CONFIG_SMP)) {
2366                 pr_info("CPU: ");
2367                 print_cpu_info(&boot_cpu_data);
2368         }
2369
2370         cpu_select_mitigations();
2371
2372         arch_smt_update();
2373
2374         if (IS_ENABLED(CONFIG_X86_32)) {
2375                 /*
2376                  * Check whether this is a real i386 which is not longer
2377                  * supported and fixup the utsname.
2378                  */
2379                 if (boot_cpu_data.x86 < 4)
2380                         panic("Kernel requires i486+ for 'invlpg' and other features");
2381
2382                 init_utsname()->machine[1] =
2383                         '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2384         }
2385
2386         /*
2387          * Must be before alternatives because it might set or clear
2388          * feature bits.
2389          */
2390         fpu__init_system();
2391         fpu__init_cpu();
2392
2393         alternative_instructions();
2394
2395         if (IS_ENABLED(CONFIG_X86_64)) {
2396                 /*
2397                  * Make sure the first 2MB area is not mapped by huge pages
2398                  * There are typically fixed size MTRRs in there and overlapping
2399                  * MTRRs into large pages causes slow downs.
2400                  *
2401                  * Right now we don't do that with gbpages because there seems
2402                  * very little benefit for that case.
2403                  */
2404                 if (!direct_gbpages)
2405                         set_memory_4k((unsigned long)__va(0), 1);
2406         } else {
2407                 fpu__init_check_bugs();
2408         }
2409
2410         /*
2411          * This needs to be called before any devices perform DMA
2412          * operations that might use the SWIOTLB bounce buffers. It will
2413          * mark the bounce buffers as decrypted so that their usage will
2414          * not cause "plain-text" data to be decrypted when accessed. It
2415          * must be called after late_time_init() so that Hyper-V x86/x64
2416          * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2417          */
2418         mem_encrypt_init();
2419 }