OSDN Git Service

ae29554f57ea8b9e800878e95f657aebf10ec977
[uclinux-h8/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 #include <linux/irqdomain.h>
15
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC                   1000000L
25
26 #define HPET_DEV_USED_BIT               2
27 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID                  0x8
29 #define HPET_DEV_FSB_CAP                0x1000
30 #define HPET_DEV_PERI_CAP               0x2000
31
32 #define HPET_MIN_CYCLES                 128
33 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 u8                                      hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long                    hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58         return container_of(evtdev, struct hpet_dev, evt);
59 }
60
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63         return readl(hpet_virt_address + a);
64 }
65
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68         writel(d, hpet_virt_address + a);
69 }
70
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74
75 static inline void hpet_set_mapping(void)
76 {
77         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82         iounmap(hpet_virt_address);
83         hpet_virt_address = NULL;
84 }
85
86 /*
87  * HPET command line enable / disable
88  */
89 int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95         while (str) {
96                 char *next = strchr(str, ',');
97
98                 if (next)
99                         *next++ = 0;
100                 if (!strncmp("disable", str, 7))
101                         boot_hpet_disable = 1;
102                 if (!strncmp("force", str, 5))
103                         hpet_force_user = 1;
104                 if (!strncmp("verbose", str, 7))
105                         hpet_verbose = 1;
106                 str = next;
107         }
108         return 1;
109 }
110 __setup("hpet=", hpet_setup);
111
112 static int __init disable_hpet(char *str)
113 {
114         boot_hpet_disable = 1;
115         return 1;
116 }
117 __setup("nohpet", disable_hpet);
118
119 static inline int is_hpet_capable(void)
120 {
121         return !boot_hpet_disable && hpet_address;
122 }
123
124 /*
125  * HPET timer interrupt enable / disable
126  */
127 static int hpet_legacy_int_enabled;
128
129 /**
130  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131  */
132 int is_hpet_enabled(void)
133 {
134         return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137
138 static void _hpet_print_config(const char *function, int line)
139 {
140         u32 i, timers, l, h;
141         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142         l = hpet_readl(HPET_ID);
143         h = hpet_readl(HPET_PERIOD);
144         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146         l = hpet_readl(HPET_CFG);
147         h = hpet_readl(HPET_STATUS);
148         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149         l = hpet_readl(HPET_COUNTER);
150         h = hpet_readl(HPET_COUNTER+4);
151         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152
153         for (i = 0; i < timers; i++) {
154                 l = hpet_readl(HPET_Tn_CFG(i));
155                 h = hpet_readl(HPET_Tn_CFG(i)+4);
156                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157                        i, l, h);
158                 l = hpet_readl(HPET_Tn_CMP(i));
159                 h = hpet_readl(HPET_Tn_CMP(i)+4);
160                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161                        i, l, h);
162                 l = hpet_readl(HPET_Tn_ROUTE(i));
163                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165                        i, l, h);
166         }
167 }
168
169 #define hpet_print_config()                                     \
170 do {                                                            \
171         if (hpet_verbose)                                       \
172                 _hpet_print_config(__func__, __LINE__); \
173 } while (0)
174
175 /*
176  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177  * timer 0 and timer 1 in case of RTC emulation.
178  */
179 #ifdef CONFIG_HPET
180
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185         struct hpet __iomem *hpet = hpet_virt_address;
186         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187         unsigned int nrtimers, i;
188         struct hpet_data hd;
189
190         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191
192         memset(&hd, 0, sizeof(hd));
193         hd.hd_phys_address      = hpet_address;
194         hd.hd_address           = hpet;
195         hd.hd_nirqs             = nrtimers;
196         hpet_reserve_timer(&hd, 0);
197
198 #ifdef CONFIG_HPET_EMULATE_RTC
199         hpet_reserve_timer(&hd, 1);
200 #endif
201
202         /*
203          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
205          * don't bother configuring *any* comparator interrupts.
206          */
207         hd.hd_irq[0] = HPET_LEGACY_8254;
208         hd.hd_irq[1] = HPET_LEGACY_RTC;
209
210         for (i = 2; i < nrtimers; timer++, i++) {
211                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
212                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213         }
214
215         hpet_reserve_msi_timers(&hd);
216
217         hpet_alloc(&hd);
218
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223
224 /*
225  * Common hpet info
226  */
227 static unsigned long hpet_freq;
228
229 static void hpet_legacy_set_mode(enum clock_event_mode mode,
230                           struct clock_event_device *evt);
231 static int hpet_legacy_next_event(unsigned long delta,
232                            struct clock_event_device *evt);
233
234 /*
235  * The hpet clock event device
236  */
237 static struct clock_event_device hpet_clockevent = {
238         .name           = "hpet",
239         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
240         .set_mode       = hpet_legacy_set_mode,
241         .set_next_event = hpet_legacy_next_event,
242         .irq            = 0,
243         .rating         = 50,
244 };
245
246 static void hpet_stop_counter(void)
247 {
248         unsigned long cfg = hpet_readl(HPET_CFG);
249         cfg &= ~HPET_CFG_ENABLE;
250         hpet_writel(cfg, HPET_CFG);
251 }
252
253 static void hpet_reset_counter(void)
254 {
255         hpet_writel(0, HPET_COUNTER);
256         hpet_writel(0, HPET_COUNTER + 4);
257 }
258
259 static void hpet_start_counter(void)
260 {
261         unsigned int cfg = hpet_readl(HPET_CFG);
262         cfg |= HPET_CFG_ENABLE;
263         hpet_writel(cfg, HPET_CFG);
264 }
265
266 static void hpet_restart_counter(void)
267 {
268         hpet_stop_counter();
269         hpet_reset_counter();
270         hpet_start_counter();
271 }
272
273 static void hpet_resume_device(void)
274 {
275         force_hpet_resume();
276 }
277
278 static void hpet_resume_counter(struct clocksource *cs)
279 {
280         hpet_resume_device();
281         hpet_restart_counter();
282 }
283
284 static void hpet_enable_legacy_int(void)
285 {
286         unsigned int cfg = hpet_readl(HPET_CFG);
287
288         cfg |= HPET_CFG_LEGACY;
289         hpet_writel(cfg, HPET_CFG);
290         hpet_legacy_int_enabled = 1;
291 }
292
293 static void hpet_legacy_clockevent_register(void)
294 {
295         /* Start HPET legacy interrupts */
296         hpet_enable_legacy_int();
297
298         /*
299          * Start hpet with the boot cpu mask and make it
300          * global after the IO_APIC has been initialized.
301          */
302         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
303         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
304                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
305         global_clock_event = &hpet_clockevent;
306         printk(KERN_DEBUG "hpet clockevent registered\n");
307 }
308
309 static int hpet_setup_msi_irq(unsigned int irq);
310
311 static void hpet_set_mode(enum clock_event_mode mode,
312                           struct clock_event_device *evt, int timer)
313 {
314         unsigned int cfg, cmp, now;
315         uint64_t delta;
316
317         switch (mode) {
318         case CLOCK_EVT_MODE_PERIODIC:
319                 hpet_stop_counter();
320                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
321                 delta >>= evt->shift;
322                 now = hpet_readl(HPET_COUNTER);
323                 cmp = now + (unsigned int) delta;
324                 cfg = hpet_readl(HPET_Tn_CFG(timer));
325                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
326                        HPET_TN_SETVAL | HPET_TN_32BIT;
327                 hpet_writel(cfg, HPET_Tn_CFG(timer));
328                 hpet_writel(cmp, HPET_Tn_CMP(timer));
329                 udelay(1);
330                 /*
331                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
332                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
333                  * bit is automatically cleared after the first write.
334                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
335                  * Publication # 24674)
336                  */
337                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
338                 hpet_start_counter();
339                 hpet_print_config();
340                 break;
341
342         case CLOCK_EVT_MODE_ONESHOT:
343                 cfg = hpet_readl(HPET_Tn_CFG(timer));
344                 cfg &= ~HPET_TN_PERIODIC;
345                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
346                 hpet_writel(cfg, HPET_Tn_CFG(timer));
347                 break;
348
349         case CLOCK_EVT_MODE_UNUSED:
350         case CLOCK_EVT_MODE_SHUTDOWN:
351                 cfg = hpet_readl(HPET_Tn_CFG(timer));
352                 cfg &= ~HPET_TN_ENABLE;
353                 hpet_writel(cfg, HPET_Tn_CFG(timer));
354                 break;
355
356         case CLOCK_EVT_MODE_RESUME:
357                 if (timer == 0) {
358                         hpet_enable_legacy_int();
359                 } else {
360                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
361                         hpet_setup_msi_irq(hdev->irq);
362                         disable_irq(hdev->irq);
363                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
364                         enable_irq(hdev->irq);
365                 }
366                 hpet_print_config();
367                 break;
368         }
369 }
370
371 static int hpet_next_event(unsigned long delta,
372                            struct clock_event_device *evt, int timer)
373 {
374         u32 cnt;
375         s32 res;
376
377         cnt = hpet_readl(HPET_COUNTER);
378         cnt += (u32) delta;
379         hpet_writel(cnt, HPET_Tn_CMP(timer));
380
381         /*
382          * HPETs are a complete disaster. The compare register is
383          * based on a equal comparison and neither provides a less
384          * than or equal functionality (which would require to take
385          * the wraparound into account) nor a simple count down event
386          * mode. Further the write to the comparator register is
387          * delayed internally up to two HPET clock cycles in certain
388          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
389          * longer delays. We worked around that by reading back the
390          * compare register, but that required another workaround for
391          * ICH9,10 chips where the first readout after write can
392          * return the old stale value. We already had a minimum
393          * programming delta of 5us enforced, but a NMI or SMI hitting
394          * between the counter readout and the comparator write can
395          * move us behind that point easily. Now instead of reading
396          * the compare register back several times, we make the ETIME
397          * decision based on the following: Return ETIME if the
398          * counter value after the write is less than HPET_MIN_CYCLES
399          * away from the event or if the counter is already ahead of
400          * the event. The minimum programming delta for the generic
401          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
402          */
403         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
404
405         return res < HPET_MIN_CYCLES ? -ETIME : 0;
406 }
407
408 static void hpet_legacy_set_mode(enum clock_event_mode mode,
409                         struct clock_event_device *evt)
410 {
411         hpet_set_mode(mode, evt, 0);
412 }
413
414 static int hpet_legacy_next_event(unsigned long delta,
415                         struct clock_event_device *evt)
416 {
417         return hpet_next_event(delta, evt, 0);
418 }
419
420 /*
421  * HPET MSI Support
422  */
423 #ifdef CONFIG_PCI_MSI
424
425 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
426 static struct hpet_dev  *hpet_devs;
427
428 void hpet_msi_unmask(struct irq_data *data)
429 {
430         struct hpet_dev *hdev = data->handler_data;
431         unsigned int cfg;
432
433         /* unmask it */
434         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
435         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
436         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
437 }
438
439 void hpet_msi_mask(struct irq_data *data)
440 {
441         struct hpet_dev *hdev = data->handler_data;
442         unsigned int cfg;
443
444         /* mask it */
445         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
446         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
447         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
448 }
449
450 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
451 {
452         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
453         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
454 }
455
456 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
457 {
458         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
459         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
460         msg->address_hi = 0;
461 }
462
463 static void hpet_msi_set_mode(enum clock_event_mode mode,
464                                 struct clock_event_device *evt)
465 {
466         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
467         hpet_set_mode(mode, evt, hdev->num);
468 }
469
470 static int hpet_msi_next_event(unsigned long delta,
471                                 struct clock_event_device *evt)
472 {
473         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
474         return hpet_next_event(delta, evt, hdev->num);
475 }
476
477 static int hpet_setup_msi_irq(unsigned int irq)
478 {
479         if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
480                 irq_domain_free_irqs(irq, 1);
481                 return -EINVAL;
482         }
483         return 0;
484 }
485
486 static int hpet_assign_irq(struct hpet_dev *dev)
487 {
488         int irq;
489
490         irq = irq_domain_alloc_irqs(NULL, 1, NUMA_NO_NODE, NULL);
491         if (irq <= 0)
492                 return -EINVAL;
493
494         irq_set_handler_data(irq, dev);
495
496         if (hpet_setup_msi_irq(irq))
497                 return -EINVAL;
498
499         dev->irq = irq;
500         return 0;
501 }
502
503 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
504 {
505         struct hpet_dev *dev = (struct hpet_dev *)data;
506         struct clock_event_device *hevt = &dev->evt;
507
508         if (!hevt->event_handler) {
509                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
510                                 dev->num);
511                 return IRQ_HANDLED;
512         }
513
514         hevt->event_handler(hevt);
515         return IRQ_HANDLED;
516 }
517
518 static int hpet_setup_irq(struct hpet_dev *dev)
519 {
520
521         if (request_irq(dev->irq, hpet_interrupt_handler,
522                         IRQF_TIMER | IRQF_NOBALANCING,
523                         dev->name, dev))
524                 return -1;
525
526         disable_irq(dev->irq);
527         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
528         enable_irq(dev->irq);
529
530         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
531                          dev->name, dev->irq);
532
533         return 0;
534 }
535
536 /* This should be called in specific @cpu */
537 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
538 {
539         struct clock_event_device *evt = &hdev->evt;
540
541         WARN_ON(cpu != smp_processor_id());
542         if (!(hdev->flags & HPET_DEV_VALID))
543                 return;
544
545         if (hpet_setup_msi_irq(hdev->irq))
546                 return;
547
548         hdev->cpu = cpu;
549         per_cpu(cpu_hpet_dev, cpu) = hdev;
550         evt->name = hdev->name;
551         hpet_setup_irq(hdev);
552         evt->irq = hdev->irq;
553
554         evt->rating = 110;
555         evt->features = CLOCK_EVT_FEAT_ONESHOT;
556         if (hdev->flags & HPET_DEV_PERI_CAP)
557                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
558
559         evt->set_mode = hpet_msi_set_mode;
560         evt->set_next_event = hpet_msi_next_event;
561         evt->cpumask = cpumask_of(hdev->cpu);
562
563         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
564                                         0x7FFFFFFF);
565 }
566
567 #ifdef CONFIG_HPET
568 /* Reserve at least one timer for userspace (/dev/hpet) */
569 #define RESERVE_TIMERS 1
570 #else
571 #define RESERVE_TIMERS 0
572 #endif
573
574 static void hpet_msi_capability_lookup(unsigned int start_timer)
575 {
576         unsigned int id;
577         unsigned int num_timers;
578         unsigned int num_timers_used = 0;
579         int i;
580
581         if (hpet_msi_disable)
582                 return;
583
584         if (boot_cpu_has(X86_FEATURE_ARAT))
585                 return;
586         id = hpet_readl(HPET_ID);
587
588         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
589         num_timers++; /* Value read out starts from 0 */
590         hpet_print_config();
591
592         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
593         if (!hpet_devs)
594                 return;
595
596         hpet_num_timers = num_timers;
597
598         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
599                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
600                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
601
602                 /* Only consider HPET timer with MSI support */
603                 if (!(cfg & HPET_TN_FSB_CAP))
604                         continue;
605
606                 hdev->flags = 0;
607                 if (cfg & HPET_TN_PERIODIC_CAP)
608                         hdev->flags |= HPET_DEV_PERI_CAP;
609                 hdev->num = i;
610
611                 sprintf(hdev->name, "hpet%d", i);
612                 if (hpet_assign_irq(hdev))
613                         continue;
614
615                 hdev->flags |= HPET_DEV_FSB_CAP;
616                 hdev->flags |= HPET_DEV_VALID;
617                 num_timers_used++;
618                 if (num_timers_used == num_possible_cpus())
619                         break;
620         }
621
622         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623                 num_timers, num_timers_used);
624 }
625
626 #ifdef CONFIG_HPET
627 static void hpet_reserve_msi_timers(struct hpet_data *hd)
628 {
629         int i;
630
631         if (!hpet_devs)
632                 return;
633
634         for (i = 0; i < hpet_num_timers; i++) {
635                 struct hpet_dev *hdev = &hpet_devs[i];
636
637                 if (!(hdev->flags & HPET_DEV_VALID))
638                         continue;
639
640                 hd->hd_irq[hdev->num] = hdev->irq;
641                 hpet_reserve_timer(hd, hdev->num);
642         }
643 }
644 #endif
645
646 static struct hpet_dev *hpet_get_unused_timer(void)
647 {
648         int i;
649
650         if (!hpet_devs)
651                 return NULL;
652
653         for (i = 0; i < hpet_num_timers; i++) {
654                 struct hpet_dev *hdev = &hpet_devs[i];
655
656                 if (!(hdev->flags & HPET_DEV_VALID))
657                         continue;
658                 if (test_and_set_bit(HPET_DEV_USED_BIT,
659                         (unsigned long *)&hdev->flags))
660                         continue;
661                 return hdev;
662         }
663         return NULL;
664 }
665
666 struct hpet_work_struct {
667         struct delayed_work work;
668         struct completion complete;
669 };
670
671 static void hpet_work(struct work_struct *w)
672 {
673         struct hpet_dev *hdev;
674         int cpu = smp_processor_id();
675         struct hpet_work_struct *hpet_work;
676
677         hpet_work = container_of(w, struct hpet_work_struct, work.work);
678
679         hdev = hpet_get_unused_timer();
680         if (hdev)
681                 init_one_hpet_msi_clockevent(hdev, cpu);
682
683         complete(&hpet_work->complete);
684 }
685
686 static int hpet_cpuhp_notify(struct notifier_block *n,
687                 unsigned long action, void *hcpu)
688 {
689         unsigned long cpu = (unsigned long)hcpu;
690         struct hpet_work_struct work;
691         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
692
693         switch (action & 0xf) {
694         case CPU_ONLINE:
695                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
696                 init_completion(&work.complete);
697                 /* FIXME: add schedule_work_on() */
698                 schedule_delayed_work_on(cpu, &work.work, 0);
699                 wait_for_completion(&work.complete);
700                 destroy_delayed_work_on_stack(&work.work);
701                 break;
702         case CPU_DEAD:
703                 if (hdev) {
704                         free_irq(hdev->irq, hdev);
705                         hdev->flags &= ~HPET_DEV_USED;
706                         per_cpu(cpu_hpet_dev, cpu) = NULL;
707                 }
708                 break;
709         }
710         return NOTIFY_OK;
711 }
712 #else
713
714 static int hpet_setup_msi_irq(unsigned int irq)
715 {
716         return 0;
717 }
718 static void hpet_msi_capability_lookup(unsigned int start_timer)
719 {
720         return;
721 }
722
723 #ifdef CONFIG_HPET
724 static void hpet_reserve_msi_timers(struct hpet_data *hd)
725 {
726         return;
727 }
728 #endif
729
730 static int hpet_cpuhp_notify(struct notifier_block *n,
731                 unsigned long action, void *hcpu)
732 {
733         return NOTIFY_OK;
734 }
735
736 #endif
737
738 /*
739  * Clock source related code
740  */
741 static cycle_t read_hpet(struct clocksource *cs)
742 {
743         return (cycle_t)hpet_readl(HPET_COUNTER);
744 }
745
746 static struct clocksource clocksource_hpet = {
747         .name           = "hpet",
748         .rating         = 250,
749         .read           = read_hpet,
750         .mask           = HPET_MASK,
751         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
752         .resume         = hpet_resume_counter,
753         .archdata       = { .vclock_mode = VCLOCK_HPET },
754 };
755
756 static int hpet_clocksource_register(void)
757 {
758         u64 start, now;
759         cycle_t t1;
760
761         /* Start the counter */
762         hpet_restart_counter();
763
764         /* Verify whether hpet counter works */
765         t1 = hpet_readl(HPET_COUNTER);
766         rdtscll(start);
767
768         /*
769          * We don't know the TSC frequency yet, but waiting for
770          * 200000 TSC cycles is safe:
771          * 4 GHz == 50us
772          * 1 GHz == 200us
773          */
774         do {
775                 rep_nop();
776                 rdtscll(now);
777         } while ((now - start) < 200000UL);
778
779         if (t1 == hpet_readl(HPET_COUNTER)) {
780                 printk(KERN_WARNING
781                        "HPET counter not counting. HPET disabled\n");
782                 return -ENODEV;
783         }
784
785         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
786         return 0;
787 }
788
789 static u32 *hpet_boot_cfg;
790
791 /**
792  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
793  */
794 int __init hpet_enable(void)
795 {
796         u32 hpet_period, cfg, id;
797         u64 freq;
798         unsigned int i, last;
799
800         if (!is_hpet_capable())
801                 return 0;
802
803         hpet_set_mapping();
804
805         /*
806          * Read the period and check for a sane value:
807          */
808         hpet_period = hpet_readl(HPET_PERIOD);
809
810         /*
811          * AMD SB700 based systems with spread spectrum enabled use a
812          * SMM based HPET emulation to provide proper frequency
813          * setting. The SMM code is initialized with the first HPET
814          * register access and takes some time to complete. During
815          * this time the config register reads 0xffffffff. We check
816          * for max. 1000 loops whether the config register reads a non
817          * 0xffffffff value to make sure that HPET is up and running
818          * before we go further. A counting loop is safe, as the HPET
819          * access takes thousands of CPU cycles. On non SB700 based
820          * machines this check is only done once and has no side
821          * effects.
822          */
823         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
824                 if (i == 1000) {
825                         printk(KERN_WARNING
826                                "HPET config register value = 0xFFFFFFFF. "
827                                "Disabling HPET\n");
828                         goto out_nohpet;
829                 }
830         }
831
832         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
833                 goto out_nohpet;
834
835         /*
836          * The period is a femto seconds value. Convert it to a
837          * frequency.
838          */
839         freq = FSEC_PER_SEC;
840         do_div(freq, hpet_period);
841         hpet_freq = freq;
842
843         /*
844          * Read the HPET ID register to retrieve the IRQ routing
845          * information and the number of channels
846          */
847         id = hpet_readl(HPET_ID);
848         hpet_print_config();
849
850         last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
851
852 #ifdef CONFIG_HPET_EMULATE_RTC
853         /*
854          * The legacy routing mode needs at least two channels, tick timer
855          * and the rtc emulation channel.
856          */
857         if (!last)
858                 goto out_nohpet;
859 #endif
860
861         cfg = hpet_readl(HPET_CFG);
862         hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
863                                 GFP_KERNEL);
864         if (hpet_boot_cfg)
865                 *hpet_boot_cfg = cfg;
866         else
867                 pr_warn("HPET initial state will not be saved\n");
868         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
869         hpet_writel(cfg, HPET_CFG);
870         if (cfg)
871                 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
872                         cfg);
873
874         for (i = 0; i <= last; ++i) {
875                 cfg = hpet_readl(HPET_Tn_CFG(i));
876                 if (hpet_boot_cfg)
877                         hpet_boot_cfg[i + 1] = cfg;
878                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
879                 hpet_writel(cfg, HPET_Tn_CFG(i));
880                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
881                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
882                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
883                 if (cfg)
884                         pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
885                                 cfg, i);
886         }
887         hpet_print_config();
888
889         if (hpet_clocksource_register())
890                 goto out_nohpet;
891
892         if (id & HPET_ID_LEGSUP) {
893                 hpet_legacy_clockevent_register();
894                 return 1;
895         }
896         return 0;
897
898 out_nohpet:
899         hpet_clear_mapping();
900         hpet_address = 0;
901         return 0;
902 }
903
904 /*
905  * Needs to be late, as the reserve_timer code calls kalloc !
906  *
907  * Not a problem on i386 as hpet_enable is called from late_time_init,
908  * but on x86_64 it is necessary !
909  */
910 static __init int hpet_late_init(void)
911 {
912         int cpu;
913
914         if (boot_hpet_disable)
915                 return -ENODEV;
916
917         if (!hpet_address) {
918                 if (!force_hpet_address)
919                         return -ENODEV;
920
921                 hpet_address = force_hpet_address;
922                 hpet_enable();
923         }
924
925         if (!hpet_virt_address)
926                 return -ENODEV;
927
928         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
929                 hpet_msi_capability_lookup(2);
930         else
931                 hpet_msi_capability_lookup(0);
932
933         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
934         hpet_print_config();
935
936         if (hpet_msi_disable)
937                 return 0;
938
939         if (boot_cpu_has(X86_FEATURE_ARAT))
940                 return 0;
941
942         cpu_notifier_register_begin();
943         for_each_online_cpu(cpu) {
944                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
945         }
946
947         /* This notifier should be called after workqueue is ready */
948         __hotcpu_notifier(hpet_cpuhp_notify, -20);
949         cpu_notifier_register_done();
950
951         return 0;
952 }
953 fs_initcall(hpet_late_init);
954
955 void hpet_disable(void)
956 {
957         if (is_hpet_capable() && hpet_virt_address) {
958                 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
959
960                 if (hpet_boot_cfg)
961                         cfg = *hpet_boot_cfg;
962                 else if (hpet_legacy_int_enabled) {
963                         cfg &= ~HPET_CFG_LEGACY;
964                         hpet_legacy_int_enabled = 0;
965                 }
966                 cfg &= ~HPET_CFG_ENABLE;
967                 hpet_writel(cfg, HPET_CFG);
968
969                 if (!hpet_boot_cfg)
970                         return;
971
972                 id = hpet_readl(HPET_ID);
973                 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
974
975                 for (id = 0; id <= last; ++id)
976                         hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
977
978                 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
979                         hpet_writel(*hpet_boot_cfg, HPET_CFG);
980         }
981 }
982
983 #ifdef CONFIG_HPET_EMULATE_RTC
984
985 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
986  * is enabled, we support RTC interrupt functionality in software.
987  * RTC has 3 kinds of interrupts:
988  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
989  *    is updated
990  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
991  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
992  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
993  * (1) and (2) above are implemented using polling at a frequency of
994  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
995  * overhead. (DEFAULT_RTC_INT_FREQ)
996  * For (3), we use interrupts at 64Hz or user specified periodic
997  * frequency, whichever is higher.
998  */
999 #include <linux/mc146818rtc.h>
1000 #include <linux/rtc.h>
1001 #include <asm/rtc.h>
1002
1003 #define DEFAULT_RTC_INT_FREQ    64
1004 #define DEFAULT_RTC_SHIFT       6
1005 #define RTC_NUM_INTS            1
1006
1007 static unsigned long hpet_rtc_flags;
1008 static int hpet_prev_update_sec;
1009 static struct rtc_time hpet_alarm_time;
1010 static unsigned long hpet_pie_count;
1011 static u32 hpet_t1_cmp;
1012 static u32 hpet_default_delta;
1013 static u32 hpet_pie_delta;
1014 static unsigned long hpet_pie_limit;
1015
1016 static rtc_irq_handler irq_handler;
1017
1018 /*
1019  * Check that the hpet counter c1 is ahead of the c2
1020  */
1021 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1022 {
1023         return (s32)(c2 - c1) < 0;
1024 }
1025
1026 /*
1027  * Registers a IRQ handler.
1028  */
1029 int hpet_register_irq_handler(rtc_irq_handler handler)
1030 {
1031         if (!is_hpet_enabled())
1032                 return -ENODEV;
1033         if (irq_handler)
1034                 return -EBUSY;
1035
1036         irq_handler = handler;
1037
1038         return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1041
1042 /*
1043  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1044  * and does cleanup.
1045  */
1046 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1047 {
1048         if (!is_hpet_enabled())
1049                 return;
1050
1051         irq_handler = NULL;
1052         hpet_rtc_flags = 0;
1053 }
1054 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1055
1056 /*
1057  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1058  * is not supported by all HPET implementations for timer 1.
1059  *
1060  * hpet_rtc_timer_init() is called when the rtc is initialized.
1061  */
1062 int hpet_rtc_timer_init(void)
1063 {
1064         unsigned int cfg, cnt, delta;
1065         unsigned long flags;
1066
1067         if (!is_hpet_enabled())
1068                 return 0;
1069
1070         if (!hpet_default_delta) {
1071                 uint64_t clc;
1072
1073                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1074                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1075                 hpet_default_delta = clc;
1076         }
1077
1078         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1079                 delta = hpet_default_delta;
1080         else
1081                 delta = hpet_pie_delta;
1082
1083         local_irq_save(flags);
1084
1085         cnt = delta + hpet_readl(HPET_COUNTER);
1086         hpet_writel(cnt, HPET_T1_CMP);
1087         hpet_t1_cmp = cnt;
1088
1089         cfg = hpet_readl(HPET_T1_CFG);
1090         cfg &= ~HPET_TN_PERIODIC;
1091         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1092         hpet_writel(cfg, HPET_T1_CFG);
1093
1094         local_irq_restore(flags);
1095
1096         return 1;
1097 }
1098 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1099
1100 static void hpet_disable_rtc_channel(void)
1101 {
1102         unsigned long cfg;
1103         cfg = hpet_readl(HPET_T1_CFG);
1104         cfg &= ~HPET_TN_ENABLE;
1105         hpet_writel(cfg, HPET_T1_CFG);
1106 }
1107
1108 /*
1109  * The functions below are called from rtc driver.
1110  * Return 0 if HPET is not being used.
1111  * Otherwise do the necessary changes and return 1.
1112  */
1113 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1114 {
1115         if (!is_hpet_enabled())
1116                 return 0;
1117
1118         hpet_rtc_flags &= ~bit_mask;
1119         if (unlikely(!hpet_rtc_flags))
1120                 hpet_disable_rtc_channel();
1121
1122         return 1;
1123 }
1124 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1125
1126 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1127 {
1128         unsigned long oldbits = hpet_rtc_flags;
1129
1130         if (!is_hpet_enabled())
1131                 return 0;
1132
1133         hpet_rtc_flags |= bit_mask;
1134
1135         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1136                 hpet_prev_update_sec = -1;
1137
1138         if (!oldbits)
1139                 hpet_rtc_timer_init();
1140
1141         return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1144
1145 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1146                         unsigned char sec)
1147 {
1148         if (!is_hpet_enabled())
1149                 return 0;
1150
1151         hpet_alarm_time.tm_hour = hrs;
1152         hpet_alarm_time.tm_min = min;
1153         hpet_alarm_time.tm_sec = sec;
1154
1155         return 1;
1156 }
1157 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1158
1159 int hpet_set_periodic_freq(unsigned long freq)
1160 {
1161         uint64_t clc;
1162
1163         if (!is_hpet_enabled())
1164                 return 0;
1165
1166         if (freq <= DEFAULT_RTC_INT_FREQ)
1167                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1168         else {
1169                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1170                 do_div(clc, freq);
1171                 clc >>= hpet_clockevent.shift;
1172                 hpet_pie_delta = clc;
1173                 hpet_pie_limit = 0;
1174         }
1175         return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1178
1179 int hpet_rtc_dropped_irq(void)
1180 {
1181         return is_hpet_enabled();
1182 }
1183 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1184
1185 static void hpet_rtc_timer_reinit(void)
1186 {
1187         unsigned int delta;
1188         int lost_ints = -1;
1189
1190         if (unlikely(!hpet_rtc_flags))
1191                 hpet_disable_rtc_channel();
1192
1193         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1194                 delta = hpet_default_delta;
1195         else
1196                 delta = hpet_pie_delta;
1197
1198         /*
1199          * Increment the comparator value until we are ahead of the
1200          * current count.
1201          */
1202         do {
1203                 hpet_t1_cmp += delta;
1204                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1205                 lost_ints++;
1206         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1207
1208         if (lost_ints) {
1209                 if (hpet_rtc_flags & RTC_PIE)
1210                         hpet_pie_count += lost_ints;
1211                 if (printk_ratelimit())
1212                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1213                                 lost_ints);
1214         }
1215 }
1216
1217 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1218 {
1219         struct rtc_time curr_time;
1220         unsigned long rtc_int_flag = 0;
1221
1222         hpet_rtc_timer_reinit();
1223         memset(&curr_time, 0, sizeof(struct rtc_time));
1224
1225         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1226                 get_rtc_time(&curr_time);
1227
1228         if (hpet_rtc_flags & RTC_UIE &&
1229             curr_time.tm_sec != hpet_prev_update_sec) {
1230                 if (hpet_prev_update_sec >= 0)
1231                         rtc_int_flag = RTC_UF;
1232                 hpet_prev_update_sec = curr_time.tm_sec;
1233         }
1234
1235         if (hpet_rtc_flags & RTC_PIE &&
1236             ++hpet_pie_count >= hpet_pie_limit) {
1237                 rtc_int_flag |= RTC_PF;
1238                 hpet_pie_count = 0;
1239         }
1240
1241         if (hpet_rtc_flags & RTC_AIE &&
1242             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1243             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1244             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1245                         rtc_int_flag |= RTC_AF;
1246
1247         if (rtc_int_flag) {
1248                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1249                 if (irq_handler)
1250                         irq_handler(rtc_int_flag, dev_id);
1251         }
1252         return IRQ_HANDLED;
1253 }
1254 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1255 #endif