OSDN Git Service

x86/fpu: Use task_disable_lazy_fpu_restore() helper
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / arch / x86 / kernel / i387.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21
22 /*
23  * Were we in an interrupt that interrupted kernel mode?
24  *
25  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26  * pair does nothing at all: the thread must not have fpu (so
27  * that we don't try to save the FPU state), and TS must
28  * be set (so that the clts/stts pair does nothing that is
29  * visible in the interrupted kernel thread).
30  *
31  * Except for the eagerfpu case when we return 1 unless we've already
32  * been eager and saved the state in kernel_fpu_begin().
33  */
34 static inline bool interrupted_kernel_fpu_idle(void)
35 {
36         if (use_eager_fpu())
37                 return __thread_has_fpu(current);
38
39         return !__thread_has_fpu(current) &&
40                 (read_cr0() & X86_CR0_TS);
41 }
42
43 /*
44  * Were we in user mode (or vm86 mode) when we were
45  * interrupted?
46  *
47  * Doing kernel_fpu_begin/end() is ok if we are running
48  * in an interrupt context from user mode - we'll just
49  * save the FPU state as required.
50  */
51 static inline bool interrupted_user_mode(void)
52 {
53         struct pt_regs *regs = get_irq_regs();
54         return regs && user_mode_vm(regs);
55 }
56
57 /*
58  * Can we use the FPU in kernel mode with the
59  * whole "kernel_fpu_begin/end()" sequence?
60  *
61  * It's always ok in process context (ie "not interrupt")
62  * but it is sometimes ok even from an irq.
63  */
64 bool irq_fpu_usable(void)
65 {
66         return !in_interrupt() ||
67                 interrupted_user_mode() ||
68                 interrupted_kernel_fpu_idle();
69 }
70 EXPORT_SYMBOL(irq_fpu_usable);
71
72 void __kernel_fpu_begin(void)
73 {
74         struct task_struct *me = current;
75
76         if (__thread_has_fpu(me)) {
77                 __thread_clear_has_fpu(me);
78                 __save_init_fpu(me);
79                 /* We do 'stts()' in __kernel_fpu_end() */
80         } else if (!use_eager_fpu()) {
81                 this_cpu_write(fpu_owner_task, NULL);
82                 clts();
83         }
84 }
85 EXPORT_SYMBOL(__kernel_fpu_begin);
86
87 void __kernel_fpu_end(void)
88 {
89         if (use_eager_fpu()) {
90                 /*
91                  * For eager fpu, most the time, tsk_used_math() is true.
92                  * Restore the user math as we are done with the kernel usage.
93                  * At few instances during thread exit, signal handling etc,
94                  * tsk_used_math() is false. Those few places will take proper
95                  * actions, so we don't need to restore the math here.
96                  */
97                 if (likely(tsk_used_math(current)))
98                         math_state_restore();
99         } else {
100                 stts();
101         }
102 }
103 EXPORT_SYMBOL(__kernel_fpu_end);
104
105 void unlazy_fpu(struct task_struct *tsk)
106 {
107         preempt_disable();
108         if (__thread_has_fpu(tsk)) {
109                 if (use_eager_fpu()) {
110                         __save_fpu(tsk);
111                 } else {
112                         __save_init_fpu(tsk);
113                         __thread_fpu_end(tsk);
114                 }
115         }
116         preempt_enable();
117 }
118 EXPORT_SYMBOL(unlazy_fpu);
119
120 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
121 unsigned int xstate_size;
122 EXPORT_SYMBOL_GPL(xstate_size);
123 static struct i387_fxsave_struct fx_scratch;
124
125 static void mxcsr_feature_mask_init(void)
126 {
127         unsigned long mask = 0;
128
129         if (cpu_has_fxsr) {
130                 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
131                 asm volatile("fxsave %0" : "+m" (fx_scratch));
132                 mask = fx_scratch.mxcsr_mask;
133                 if (mask == 0)
134                         mask = 0x0000ffbf;
135         }
136         mxcsr_feature_mask &= mask;
137 }
138
139 static void init_thread_xstate(void)
140 {
141         /*
142          * Note that xstate_size might be overwriten later during
143          * xsave_init().
144          */
145
146         if (!cpu_has_fpu) {
147                 /*
148                  * Disable xsave as we do not support it if i387
149                  * emulation is enabled.
150                  */
151                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
152                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
153                 xstate_size = sizeof(struct i387_soft_struct);
154                 return;
155         }
156
157         if (cpu_has_fxsr)
158                 xstate_size = sizeof(struct i387_fxsave_struct);
159         else
160                 xstate_size = sizeof(struct i387_fsave_struct);
161 }
162
163 /*
164  * Called at bootup to set up the initial FPU state that is later cloned
165  * into all processes.
166  */
167
168 void fpu_init(void)
169 {
170         unsigned long cr0;
171         unsigned long cr4_mask = 0;
172
173 #ifndef CONFIG_MATH_EMULATION
174         if (!cpu_has_fpu) {
175                 pr_emerg("No FPU found and no math emulation present\n");
176                 pr_emerg("Giving up\n");
177                 for (;;)
178                         asm volatile("hlt");
179         }
180 #endif
181         if (cpu_has_fxsr)
182                 cr4_mask |= X86_CR4_OSFXSR;
183         if (cpu_has_xmm)
184                 cr4_mask |= X86_CR4_OSXMMEXCPT;
185         if (cr4_mask)
186                 set_in_cr4(cr4_mask);
187
188         cr0 = read_cr0();
189         cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
190         if (!cpu_has_fpu)
191                 cr0 |= X86_CR0_EM;
192         write_cr0(cr0);
193
194         /*
195          * init_thread_xstate is only called once to avoid overriding
196          * xstate_size during boot time or during CPU hotplug.
197          */
198         if (xstate_size == 0)
199                 init_thread_xstate();
200
201         mxcsr_feature_mask_init();
202         xsave_init();
203         eager_fpu_init();
204 }
205
206 void fpu_finit(struct fpu *fpu)
207 {
208         if (!cpu_has_fpu) {
209                 finit_soft_fpu(&fpu->state->soft);
210                 return;
211         }
212
213         if (cpu_has_fxsr) {
214                 fx_finit(&fpu->state->fxsave);
215         } else {
216                 struct i387_fsave_struct *fp = &fpu->state->fsave;
217                 memset(fp, 0, xstate_size);
218                 fp->cwd = 0xffff037fu;
219                 fp->swd = 0xffff0000u;
220                 fp->twd = 0xffffffffu;
221                 fp->fos = 0xffff0000u;
222         }
223 }
224 EXPORT_SYMBOL_GPL(fpu_finit);
225
226 /*
227  * The _current_ task is using the FPU for the first time
228  * so initialize it and set the mxcsr to its default
229  * value at reset if we support XMM instructions and then
230  * remember the current task has used the FPU.
231  */
232 int init_fpu(struct task_struct *tsk)
233 {
234         int ret;
235
236         if (tsk_used_math(tsk)) {
237                 if (cpu_has_fpu && tsk == current)
238                         unlazy_fpu(tsk);
239                 task_disable_lazy_fpu_restore(tsk);
240                 return 0;
241         }
242
243         /*
244          * Memory allocation at the first usage of the FPU and other state.
245          */
246         ret = fpu_alloc(&tsk->thread.fpu);
247         if (ret)
248                 return ret;
249
250         fpu_finit(&tsk->thread.fpu);
251
252         set_stopped_child_used_math(tsk);
253         return 0;
254 }
255 EXPORT_SYMBOL_GPL(init_fpu);
256
257 /*
258  * The xstateregs_active() routine is the same as the fpregs_active() routine,
259  * as the "regset->n" for the xstate regset will be updated based on the feature
260  * capabilites supported by the xsave.
261  */
262 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
263 {
264         return tsk_used_math(target) ? regset->n : 0;
265 }
266
267 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
268 {
269         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
270 }
271
272 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
273                 unsigned int pos, unsigned int count,
274                 void *kbuf, void __user *ubuf)
275 {
276         int ret;
277
278         if (!cpu_has_fxsr)
279                 return -ENODEV;
280
281         ret = init_fpu(target);
282         if (ret)
283                 return ret;
284
285         sanitize_i387_state(target);
286
287         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
288                                    &target->thread.fpu.state->fxsave, 0, -1);
289 }
290
291 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
292                 unsigned int pos, unsigned int count,
293                 const void *kbuf, const void __user *ubuf)
294 {
295         int ret;
296
297         if (!cpu_has_fxsr)
298                 return -ENODEV;
299
300         ret = init_fpu(target);
301         if (ret)
302                 return ret;
303
304         sanitize_i387_state(target);
305
306         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
307                                  &target->thread.fpu.state->fxsave, 0, -1);
308
309         /*
310          * mxcsr reserved bits must be masked to zero for security reasons.
311          */
312         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
313
314         /*
315          * update the header bits in the xsave header, indicating the
316          * presence of FP and SSE state.
317          */
318         if (cpu_has_xsave)
319                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
320
321         return ret;
322 }
323
324 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
325                 unsigned int pos, unsigned int count,
326                 void *kbuf, void __user *ubuf)
327 {
328         int ret;
329
330         if (!cpu_has_xsave)
331                 return -ENODEV;
332
333         ret = init_fpu(target);
334         if (ret)
335                 return ret;
336
337         /*
338          * Copy the 48bytes defined by the software first into the xstate
339          * memory layout in the thread struct, so that we can copy the entire
340          * xstateregs to the user using one user_regset_copyout().
341          */
342         memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
343                xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
344
345         /*
346          * Copy the xstate memory layout.
347          */
348         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
349                                   &target->thread.fpu.state->xsave, 0, -1);
350         return ret;
351 }
352
353 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
354                   unsigned int pos, unsigned int count,
355                   const void *kbuf, const void __user *ubuf)
356 {
357         int ret;
358         struct xsave_hdr_struct *xsave_hdr;
359
360         if (!cpu_has_xsave)
361                 return -ENODEV;
362
363         ret = init_fpu(target);
364         if (ret)
365                 return ret;
366
367         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
368                                  &target->thread.fpu.state->xsave, 0, -1);
369
370         /*
371          * mxcsr reserved bits must be masked to zero for security reasons.
372          */
373         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
374
375         xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
376
377         xsave_hdr->xstate_bv &= pcntxt_mask;
378         /*
379          * These bits must be zero.
380          */
381         memset(xsave_hdr->reserved, 0, 48);
382
383         return ret;
384 }
385
386 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
387
388 /*
389  * FPU tag word conversions.
390  */
391
392 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
393 {
394         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
395
396         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
397         tmp = ~twd;
398         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
399         /* and move the valid bits to the lower byte. */
400         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
401         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
402         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
403
404         return tmp;
405 }
406
407 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
408 #define FP_EXP_TAG_VALID        0
409 #define FP_EXP_TAG_ZERO         1
410 #define FP_EXP_TAG_SPECIAL      2
411 #define FP_EXP_TAG_EMPTY        3
412
413 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
414 {
415         struct _fpxreg *st;
416         u32 tos = (fxsave->swd >> 11) & 7;
417         u32 twd = (unsigned long) fxsave->twd;
418         u32 tag;
419         u32 ret = 0xffff0000u;
420         int i;
421
422         for (i = 0; i < 8; i++, twd >>= 1) {
423                 if (twd & 0x1) {
424                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
425
426                         switch (st->exponent & 0x7fff) {
427                         case 0x7fff:
428                                 tag = FP_EXP_TAG_SPECIAL;
429                                 break;
430                         case 0x0000:
431                                 if (!st->significand[0] &&
432                                     !st->significand[1] &&
433                                     !st->significand[2] &&
434                                     !st->significand[3])
435                                         tag = FP_EXP_TAG_ZERO;
436                                 else
437                                         tag = FP_EXP_TAG_SPECIAL;
438                                 break;
439                         default:
440                                 if (st->significand[3] & 0x8000)
441                                         tag = FP_EXP_TAG_VALID;
442                                 else
443                                         tag = FP_EXP_TAG_SPECIAL;
444                                 break;
445                         }
446                 } else {
447                         tag = FP_EXP_TAG_EMPTY;
448                 }
449                 ret |= tag << (2 * i);
450         }
451         return ret;
452 }
453
454 /*
455  * FXSR floating point environment conversions.
456  */
457
458 void
459 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
460 {
461         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
462         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
463         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
464         int i;
465
466         env->cwd = fxsave->cwd | 0xffff0000u;
467         env->swd = fxsave->swd | 0xffff0000u;
468         env->twd = twd_fxsr_to_i387(fxsave);
469
470 #ifdef CONFIG_X86_64
471         env->fip = fxsave->rip;
472         env->foo = fxsave->rdp;
473         /*
474          * should be actually ds/cs at fpu exception time, but
475          * that information is not available in 64bit mode.
476          */
477         env->fcs = task_pt_regs(tsk)->cs;
478         if (tsk == current) {
479                 savesegment(ds, env->fos);
480         } else {
481                 env->fos = tsk->thread.ds;
482         }
483         env->fos |= 0xffff0000;
484 #else
485         env->fip = fxsave->fip;
486         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
487         env->foo = fxsave->foo;
488         env->fos = fxsave->fos;
489 #endif
490
491         for (i = 0; i < 8; ++i)
492                 memcpy(&to[i], &from[i], sizeof(to[0]));
493 }
494
495 void convert_to_fxsr(struct task_struct *tsk,
496                      const struct user_i387_ia32_struct *env)
497
498 {
499         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
500         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
501         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
502         int i;
503
504         fxsave->cwd = env->cwd;
505         fxsave->swd = env->swd;
506         fxsave->twd = twd_i387_to_fxsr(env->twd);
507         fxsave->fop = (u16) ((u32) env->fcs >> 16);
508 #ifdef CONFIG_X86_64
509         fxsave->rip = env->fip;
510         fxsave->rdp = env->foo;
511         /* cs and ds ignored */
512 #else
513         fxsave->fip = env->fip;
514         fxsave->fcs = (env->fcs & 0xffff);
515         fxsave->foo = env->foo;
516         fxsave->fos = env->fos;
517 #endif
518
519         for (i = 0; i < 8; ++i)
520                 memcpy(&to[i], &from[i], sizeof(from[0]));
521 }
522
523 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
524                unsigned int pos, unsigned int count,
525                void *kbuf, void __user *ubuf)
526 {
527         struct user_i387_ia32_struct env;
528         int ret;
529
530         ret = init_fpu(target);
531         if (ret)
532                 return ret;
533
534         if (!static_cpu_has(X86_FEATURE_FPU))
535                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
536
537         if (!cpu_has_fxsr)
538                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
539                                            &target->thread.fpu.state->fsave, 0,
540                                            -1);
541
542         sanitize_i387_state(target);
543
544         if (kbuf && pos == 0 && count == sizeof(env)) {
545                 convert_from_fxsr(kbuf, target);
546                 return 0;
547         }
548
549         convert_from_fxsr(&env, target);
550
551         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
552 }
553
554 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
555                unsigned int pos, unsigned int count,
556                const void *kbuf, const void __user *ubuf)
557 {
558         struct user_i387_ia32_struct env;
559         int ret;
560
561         ret = init_fpu(target);
562         if (ret)
563                 return ret;
564
565         sanitize_i387_state(target);
566
567         if (!static_cpu_has(X86_FEATURE_FPU))
568                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
569
570         if (!cpu_has_fxsr)
571                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
572                                           &target->thread.fpu.state->fsave, 0,
573                                           -1);
574
575         if (pos > 0 || count < sizeof(env))
576                 convert_from_fxsr(&env, target);
577
578         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
579         if (!ret)
580                 convert_to_fxsr(target, &env);
581
582         /*
583          * update the header bit in the xsave header, indicating the
584          * presence of FP.
585          */
586         if (cpu_has_xsave)
587                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
588         return ret;
589 }
590
591 /*
592  * FPU state for core dumps.
593  * This is only used for a.out dumps now.
594  * It is declared generically using elf_fpregset_t (which is
595  * struct user_i387_struct) but is in fact only used for 32-bit
596  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
597  */
598 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
599 {
600         struct task_struct *tsk = current;
601         int fpvalid;
602
603         fpvalid = !!used_math();
604         if (fpvalid)
605                 fpvalid = !fpregs_get(tsk, NULL,
606                                       0, sizeof(struct user_i387_ia32_struct),
607                                       fpu, NULL);
608
609         return fpvalid;
610 }
611 EXPORT_SYMBOL(dump_fpu);
612
613 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
614
615 static int __init no_387(char *s)
616 {
617         setup_clear_cpu_cap(X86_FEATURE_FPU);
618         return 1;
619 }
620
621 __setup("no387", no_387);
622
623 void fpu_detect(struct cpuinfo_x86 *c)
624 {
625         unsigned long cr0;
626         u16 fsw, fcw;
627
628         fsw = fcw = 0xffff;
629
630         cr0 = read_cr0();
631         cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
632         write_cr0(cr0);
633
634         asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
635                      : "+m" (fsw), "+m" (fcw));
636
637         if (fsw == 0 && (fcw & 0x103f) == 0x003f)
638                 set_cpu_cap(c, X86_FEATURE_FPU);
639         else
640                 clear_cpu_cap(c, X86_FEATURE_FPU);
641
642         /* The final cr0 value is set in fpu_init() */
643 }