OSDN Git Service

Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[tomoyo/tomoyo-test1.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113
114 int arch_update_cpu_topology(void)
115 {
116         int retval = x86_topology_update;
117
118         x86_topology_update = false;
119         return retval;
120 }
121
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124         unsigned long flags;
125
126         spin_lock_irqsave(&rtc_lock, flags);
127         CMOS_WRITE(0xa, 0xf);
128         spin_unlock_irqrestore(&rtc_lock, flags);
129         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130                                                         start_eip >> 4;
131         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132                                                         start_eip & 0xf;
133 }
134
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137         unsigned long flags;
138
139         /*
140          * Paranoid:  Set warm reset code and vector here back
141          * to default values.
142          */
143         spin_lock_irqsave(&rtc_lock, flags);
144         CMOS_WRITE(0, 0xf);
145         spin_unlock_irqrestore(&rtc_lock, flags);
146
147         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149
150 static void init_freq_invariance(bool secondary);
151
152 /*
153  * Report back to the Boot Processor during boot time or to the caller processor
154  * during CPU online.
155  */
156 static void smp_callin(void)
157 {
158         int cpuid;
159
160         /*
161          * If waken up by an INIT in an 82489DX configuration
162          * cpu_callout_mask guarantees we don't get here before
163          * an INIT_deassert IPI reaches our local APIC, so it is
164          * now safe to touch our local APIC.
165          */
166         cpuid = smp_processor_id();
167
168         /*
169          * the boot CPU has finished the init stage and is spinning
170          * on callin_map until we finish. We are free to set up this
171          * CPU, first the APIC. (this is probably redundant on most
172          * boards)
173          */
174         apic_ap_setup();
175
176         /*
177          * Save our processor parameters. Note: this information
178          * is needed for clock calibration.
179          */
180         smp_store_cpu_info(cpuid);
181
182         /*
183          * The topology information must be up to date before
184          * calibrate_delay() and notify_cpu_starting().
185          */
186         set_cpu_sibling_map(raw_smp_processor_id());
187
188         init_freq_invariance(true);
189
190         /*
191          * Get our bogomips.
192          * Update loops_per_jiffy in cpu_data. Previous call to
193          * smp_store_cpu_info() stored a value that is close but not as
194          * accurate as the value just calculated.
195          */
196         calibrate_delay();
197         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198         pr_debug("Stack at about %p\n", &cpuid);
199
200         wmb();
201
202         notify_cpu_starting(cpuid);
203
204         /*
205          * Allow the master to continue.
206          */
207         cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213  * Activate a secondary processor.
214  */
215 static void notrace start_secondary(void *unused)
216 {
217         /*
218          * Don't put *anything* except direct CPU state initialization
219          * before cpu_init(), SMP booting is too fragile that we want to
220          * limit the things done here to the most necessary things.
221          */
222         cr4_init();
223
224 #ifdef CONFIG_X86_32
225         /* switch away from the initial page table */
226         load_cr3(swapper_pg_dir);
227         __flush_tlb_all();
228 #endif
229         load_current_idt();
230         cpu_init();
231         x86_cpuinit.early_percpu_clock_init();
232         preempt_disable();
233         smp_callin();
234
235         enable_start_cpu0 = 0;
236
237         /* otherwise gcc will move up smp_processor_id before the cpu_init */
238         barrier();
239         /*
240          * Check TSC synchronization with the boot CPU:
241          */
242         check_tsc_sync_target();
243
244         speculative_store_bypass_ht_init();
245
246         /*
247          * Lock vector_lock, set CPU online and bring the vector
248          * allocator online. Online must be set with vector_lock held
249          * to prevent a concurrent irq setup/teardown from seeing a
250          * half valid vector space.
251          */
252         lock_vector_lock();
253         set_cpu_online(smp_processor_id(), true);
254         lapic_online();
255         unlock_vector_lock();
256         cpu_set_state_online(smp_processor_id());
257         x86_platform.nmi_init();
258
259         /* enable local interrupts */
260         local_irq_enable();
261
262         /* to prevent fake stack check failure in clock setup */
263         boot_init_stack_canary();
264
265         x86_cpuinit.setup_percpu_clockev();
266
267         wmb();
268         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
269 }
270
271 /**
272  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
273  * @cpu:        CPU to check
274  */
275 bool topology_is_primary_thread(unsigned int cpu)
276 {
277         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
278 }
279
280 /**
281  * topology_smt_supported - Check whether SMT is supported by the CPUs
282  */
283 bool topology_smt_supported(void)
284 {
285         return smp_num_siblings > 1;
286 }
287
288 /**
289  * topology_phys_to_logical_pkg - Map a physical package id to a logical
290  *
291  * Returns logical package id or -1 if not found
292  */
293 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
294 {
295         int cpu;
296
297         for_each_possible_cpu(cpu) {
298                 struct cpuinfo_x86 *c = &cpu_data(cpu);
299
300                 if (c->initialized && c->phys_proc_id == phys_pkg)
301                         return c->logical_proc_id;
302         }
303         return -1;
304 }
305 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
306 /**
307  * topology_phys_to_logical_die - Map a physical die id to logical
308  *
309  * Returns logical die id or -1 if not found
310  */
311 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
312 {
313         int cpu;
314         int proc_id = cpu_data(cur_cpu).phys_proc_id;
315
316         for_each_possible_cpu(cpu) {
317                 struct cpuinfo_x86 *c = &cpu_data(cpu);
318
319                 if (c->initialized && c->cpu_die_id == die_id &&
320                     c->phys_proc_id == proc_id)
321                         return c->logical_die_id;
322         }
323         return -1;
324 }
325 EXPORT_SYMBOL(topology_phys_to_logical_die);
326
327 /**
328  * topology_update_package_map - Update the physical to logical package map
329  * @pkg:        The physical package id as retrieved via CPUID
330  * @cpu:        The cpu for which this is updated
331  */
332 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
333 {
334         int new;
335
336         /* Already available somewhere? */
337         new = topology_phys_to_logical_pkg(pkg);
338         if (new >= 0)
339                 goto found;
340
341         new = logical_packages++;
342         if (new != pkg) {
343                 pr_info("CPU %u Converting physical %u to logical package %u\n",
344                         cpu, pkg, new);
345         }
346 found:
347         cpu_data(cpu).logical_proc_id = new;
348         return 0;
349 }
350 /**
351  * topology_update_die_map - Update the physical to logical die map
352  * @die:        The die id as retrieved via CPUID
353  * @cpu:        The cpu for which this is updated
354  */
355 int topology_update_die_map(unsigned int die, unsigned int cpu)
356 {
357         int new;
358
359         /* Already available somewhere? */
360         new = topology_phys_to_logical_die(die, cpu);
361         if (new >= 0)
362                 goto found;
363
364         new = logical_die++;
365         if (new != die) {
366                 pr_info("CPU %u Converting physical %u to logical die %u\n",
367                         cpu, die, new);
368         }
369 found:
370         cpu_data(cpu).logical_die_id = new;
371         return 0;
372 }
373
374 void __init smp_store_boot_cpu_info(void)
375 {
376         int id = 0; /* CPU 0 */
377         struct cpuinfo_x86 *c = &cpu_data(id);
378
379         *c = boot_cpu_data;
380         c->cpu_index = id;
381         topology_update_package_map(c->phys_proc_id, id);
382         topology_update_die_map(c->cpu_die_id, id);
383         c->initialized = true;
384 }
385
386 /*
387  * The bootstrap kernel entry code has set these up. Save them for
388  * a given CPU
389  */
390 void smp_store_cpu_info(int id)
391 {
392         struct cpuinfo_x86 *c = &cpu_data(id);
393
394         /* Copy boot_cpu_data only on the first bringup */
395         if (!c->initialized)
396                 *c = boot_cpu_data;
397         c->cpu_index = id;
398         /*
399          * During boot time, CPU0 has this setup already. Save the info when
400          * bringing up AP or offlined CPU0.
401          */
402         identify_secondary_cpu(c);
403         c->initialized = true;
404 }
405
406 static bool
407 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
408 {
409         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
410
411         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
412 }
413
414 static bool
415 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
416 {
417         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418
419         return !WARN_ONCE(!topology_same_node(c, o),
420                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
421                 "[node: %d != %d]. Ignoring dependency.\n",
422                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
423 }
424
425 #define link_mask(mfunc, c1, c2)                                        \
426 do {                                                                    \
427         cpumask_set_cpu((c1), mfunc(c2));                               \
428         cpumask_set_cpu((c2), mfunc(c1));                               \
429 } while (0)
430
431 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
432 {
433         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
434                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
435
436                 if (c->phys_proc_id == o->phys_proc_id &&
437                     c->cpu_die_id == o->cpu_die_id &&
438                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
439                         if (c->cpu_core_id == o->cpu_core_id)
440                                 return topology_sane(c, o, "smt");
441
442                         if ((c->cu_id != 0xff) &&
443                             (o->cu_id != 0xff) &&
444                             (c->cu_id == o->cu_id))
445                                 return topology_sane(c, o, "smt");
446                 }
447
448         } else if (c->phys_proc_id == o->phys_proc_id &&
449                    c->cpu_die_id == o->cpu_die_id &&
450                    c->cpu_core_id == o->cpu_core_id) {
451                 return topology_sane(c, o, "smt");
452         }
453
454         return false;
455 }
456
457 /*
458  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
459  *
460  * These are Intel CPUs that enumerate an LLC that is shared by
461  * multiple NUMA nodes. The LLC on these systems is shared for
462  * off-package data access but private to the NUMA node (half
463  * of the package) for on-package access.
464  *
465  * CPUID (the source of the information about the LLC) can only
466  * enumerate the cache as being shared *or* unshared, but not
467  * this particular configuration. The CPU in this case enumerates
468  * the cache to be shared across the entire package (spanning both
469  * NUMA nodes).
470  */
471
472 static const struct x86_cpu_id snc_cpu[] = {
473         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
474         {}
475 };
476
477 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
478 {
479         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
480
481         /* Do not match if we do not have a valid APICID for cpu: */
482         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
483                 return false;
484
485         /* Do not match if LLC id does not match: */
486         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
487                 return false;
488
489         /*
490          * Allow the SNC topology without warning. Return of false
491          * means 'c' does not share the LLC of 'o'. This will be
492          * reflected to userspace.
493          */
494         if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
495                 return false;
496
497         return topology_sane(c, o, "llc");
498 }
499
500 /*
501  * Unlike the other levels, we do not enforce keeping a
502  * multicore group inside a NUMA node.  If this happens, we will
503  * discard the MC level of the topology later.
504  */
505 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
506 {
507         if (c->phys_proc_id == o->phys_proc_id)
508                 return true;
509         return false;
510 }
511
512 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
513 {
514         if ((c->phys_proc_id == o->phys_proc_id) &&
515                 (c->cpu_die_id == o->cpu_die_id))
516                 return true;
517         return false;
518 }
519
520
521 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
522 static inline int x86_sched_itmt_flags(void)
523 {
524         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
525 }
526
527 #ifdef CONFIG_SCHED_MC
528 static int x86_core_flags(void)
529 {
530         return cpu_core_flags() | x86_sched_itmt_flags();
531 }
532 #endif
533 #ifdef CONFIG_SCHED_SMT
534 static int x86_smt_flags(void)
535 {
536         return cpu_smt_flags() | x86_sched_itmt_flags();
537 }
538 #endif
539 #endif
540
541 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
542 #ifdef CONFIG_SCHED_SMT
543         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
544 #endif
545 #ifdef CONFIG_SCHED_MC
546         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
547 #endif
548         { NULL, },
549 };
550
551 static struct sched_domain_topology_level x86_topology[] = {
552 #ifdef CONFIG_SCHED_SMT
553         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
554 #endif
555 #ifdef CONFIG_SCHED_MC
556         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
557 #endif
558         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
559         { NULL, },
560 };
561
562 /*
563  * Set if a package/die has multiple NUMA nodes inside.
564  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
565  * Sub-NUMA Clustering have this.
566  */
567 static bool x86_has_numa_in_package;
568
569 void set_cpu_sibling_map(int cpu)
570 {
571         bool has_smt = smp_num_siblings > 1;
572         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
573         struct cpuinfo_x86 *c = &cpu_data(cpu);
574         struct cpuinfo_x86 *o;
575         int i, threads;
576
577         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
578
579         if (!has_mp) {
580                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
581                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
582                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
583                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
584                 c->booted_cores = 1;
585                 return;
586         }
587
588         for_each_cpu(i, cpu_sibling_setup_mask) {
589                 o = &cpu_data(i);
590
591                 if ((i == cpu) || (has_smt && match_smt(c, o)))
592                         link_mask(topology_sibling_cpumask, cpu, i);
593
594                 if ((i == cpu) || (has_mp && match_llc(c, o)))
595                         link_mask(cpu_llc_shared_mask, cpu, i);
596
597         }
598
599         /*
600          * This needs a separate iteration over the cpus because we rely on all
601          * topology_sibling_cpumask links to be set-up.
602          */
603         for_each_cpu(i, cpu_sibling_setup_mask) {
604                 o = &cpu_data(i);
605
606                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
607                         link_mask(topology_core_cpumask, cpu, i);
608
609                         /*
610                          *  Does this new cpu bringup a new core?
611                          */
612                         if (cpumask_weight(
613                             topology_sibling_cpumask(cpu)) == 1) {
614                                 /*
615                                  * for each core in package, increment
616                                  * the booted_cores for this new cpu
617                                  */
618                                 if (cpumask_first(
619                                     topology_sibling_cpumask(i)) == i)
620                                         c->booted_cores++;
621                                 /*
622                                  * increment the core count for all
623                                  * the other cpus in this package
624                                  */
625                                 if (i != cpu)
626                                         cpu_data(i).booted_cores++;
627                         } else if (i != cpu && !c->booted_cores)
628                                 c->booted_cores = cpu_data(i).booted_cores;
629                 }
630                 if (match_pkg(c, o) && !topology_same_node(c, o))
631                         x86_has_numa_in_package = true;
632
633                 if ((i == cpu) || (has_mp && match_die(c, o)))
634                         link_mask(topology_die_cpumask, cpu, i);
635         }
636
637         threads = cpumask_weight(topology_sibling_cpumask(cpu));
638         if (threads > __max_smt_threads)
639                 __max_smt_threads = threads;
640 }
641
642 /* maps the cpu to the sched domain representing multi-core */
643 const struct cpumask *cpu_coregroup_mask(int cpu)
644 {
645         return cpu_llc_shared_mask(cpu);
646 }
647
648 static void impress_friends(void)
649 {
650         int cpu;
651         unsigned long bogosum = 0;
652         /*
653          * Allow the user to impress friends.
654          */
655         pr_debug("Before bogomips\n");
656         for_each_possible_cpu(cpu)
657                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
658                         bogosum += cpu_data(cpu).loops_per_jiffy;
659         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
660                 num_online_cpus(),
661                 bogosum/(500000/HZ),
662                 (bogosum/(5000/HZ))%100);
663
664         pr_debug("Before bogocount - setting activated=1\n");
665 }
666
667 void __inquire_remote_apic(int apicid)
668 {
669         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
670         const char * const names[] = { "ID", "VERSION", "SPIV" };
671         int timeout;
672         u32 status;
673
674         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
675
676         for (i = 0; i < ARRAY_SIZE(regs); i++) {
677                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
678
679                 /*
680                  * Wait for idle.
681                  */
682                 status = safe_apic_wait_icr_idle();
683                 if (status)
684                         pr_cont("a previous APIC delivery may have failed\n");
685
686                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
687
688                 timeout = 0;
689                 do {
690                         udelay(100);
691                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
692                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
693
694                 switch (status) {
695                 case APIC_ICR_RR_VALID:
696                         status = apic_read(APIC_RRR);
697                         pr_cont("%08x\n", status);
698                         break;
699                 default:
700                         pr_cont("failed\n");
701                 }
702         }
703 }
704
705 /*
706  * The Multiprocessor Specification 1.4 (1997) example code suggests
707  * that there should be a 10ms delay between the BSP asserting INIT
708  * and de-asserting INIT, when starting a remote processor.
709  * But that slows boot and resume on modern processors, which include
710  * many cores and don't require that delay.
711  *
712  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
713  * Modern processor families are quirked to remove the delay entirely.
714  */
715 #define UDELAY_10MS_DEFAULT 10000
716
717 static unsigned int init_udelay = UINT_MAX;
718
719 static int __init cpu_init_udelay(char *str)
720 {
721         get_option(&str, &init_udelay);
722
723         return 0;
724 }
725 early_param("cpu_init_udelay", cpu_init_udelay);
726
727 static void __init smp_quirk_init_udelay(void)
728 {
729         /* if cmdline changed it from default, leave it alone */
730         if (init_udelay != UINT_MAX)
731                 return;
732
733         /* if modern processor, use no delay */
734         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
735             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
736             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
737                 init_udelay = 0;
738                 return;
739         }
740         /* else, use legacy delay */
741         init_udelay = UDELAY_10MS_DEFAULT;
742 }
743
744 /*
745  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
746  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
747  * won't ... remember to clear down the APIC, etc later.
748  */
749 int
750 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
751 {
752         unsigned long send_status, accept_status = 0;
753         int maxlvt;
754
755         /* Target chip */
756         /* Boot on the stack */
757         /* Kick the second */
758         apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
759
760         pr_debug("Waiting for send to finish...\n");
761         send_status = safe_apic_wait_icr_idle();
762
763         /*
764          * Give the other CPU some time to accept the IPI.
765          */
766         udelay(200);
767         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
768                 maxlvt = lapic_get_maxlvt();
769                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
770                         apic_write(APIC_ESR, 0);
771                 accept_status = (apic_read(APIC_ESR) & 0xEF);
772         }
773         pr_debug("NMI sent\n");
774
775         if (send_status)
776                 pr_err("APIC never delivered???\n");
777         if (accept_status)
778                 pr_err("APIC delivery error (%lx)\n", accept_status);
779
780         return (send_status | accept_status);
781 }
782
783 static int
784 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
785 {
786         unsigned long send_status = 0, accept_status = 0;
787         int maxlvt, num_starts, j;
788
789         maxlvt = lapic_get_maxlvt();
790
791         /*
792          * Be paranoid about clearing APIC errors.
793          */
794         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
795                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
796                         apic_write(APIC_ESR, 0);
797                 apic_read(APIC_ESR);
798         }
799
800         pr_debug("Asserting INIT\n");
801
802         /*
803          * Turn INIT on target chip
804          */
805         /*
806          * Send IPI
807          */
808         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
809                        phys_apicid);
810
811         pr_debug("Waiting for send to finish...\n");
812         send_status = safe_apic_wait_icr_idle();
813
814         udelay(init_udelay);
815
816         pr_debug("Deasserting INIT\n");
817
818         /* Target chip */
819         /* Send IPI */
820         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
821
822         pr_debug("Waiting for send to finish...\n");
823         send_status = safe_apic_wait_icr_idle();
824
825         mb();
826
827         /*
828          * Should we send STARTUP IPIs ?
829          *
830          * Determine this based on the APIC version.
831          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
832          */
833         if (APIC_INTEGRATED(boot_cpu_apic_version))
834                 num_starts = 2;
835         else
836                 num_starts = 0;
837
838         /*
839          * Run STARTUP IPI loop.
840          */
841         pr_debug("#startup loops: %d\n", num_starts);
842
843         for (j = 1; j <= num_starts; j++) {
844                 pr_debug("Sending STARTUP #%d\n", j);
845                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
846                         apic_write(APIC_ESR, 0);
847                 apic_read(APIC_ESR);
848                 pr_debug("After apic_write\n");
849
850                 /*
851                  * STARTUP IPI
852                  */
853
854                 /* Target chip */
855                 /* Boot on the stack */
856                 /* Kick the second */
857                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
858                                phys_apicid);
859
860                 /*
861                  * Give the other CPU some time to accept the IPI.
862                  */
863                 if (init_udelay == 0)
864                         udelay(10);
865                 else
866                         udelay(300);
867
868                 pr_debug("Startup point 1\n");
869
870                 pr_debug("Waiting for send to finish...\n");
871                 send_status = safe_apic_wait_icr_idle();
872
873                 /*
874                  * Give the other CPU some time to accept the IPI.
875                  */
876                 if (init_udelay == 0)
877                         udelay(10);
878                 else
879                         udelay(200);
880
881                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
882                         apic_write(APIC_ESR, 0);
883                 accept_status = (apic_read(APIC_ESR) & 0xEF);
884                 if (send_status || accept_status)
885                         break;
886         }
887         pr_debug("After Startup\n");
888
889         if (send_status)
890                 pr_err("APIC never delivered???\n");
891         if (accept_status)
892                 pr_err("APIC delivery error (%lx)\n", accept_status);
893
894         return (send_status | accept_status);
895 }
896
897 /* reduce the number of lines printed when booting a large cpu count system */
898 static void announce_cpu(int cpu, int apicid)
899 {
900         static int current_node = NUMA_NO_NODE;
901         int node = early_cpu_to_node(cpu);
902         static int width, node_width;
903
904         if (!width)
905                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
906
907         if (!node_width)
908                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
909
910         if (cpu == 1)
911                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
912
913         if (system_state < SYSTEM_RUNNING) {
914                 if (node != current_node) {
915                         if (current_node > (-1))
916                                 pr_cont("\n");
917                         current_node = node;
918
919                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
920                                node_width - num_digits(node), " ", node);
921                 }
922
923                 /* Add padding for the BSP */
924                 if (cpu == 1)
925                         pr_cont("%*s", width + 1, " ");
926
927                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
928
929         } else
930                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
931                         node, cpu, apicid);
932 }
933
934 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
935 {
936         int cpu;
937
938         cpu = smp_processor_id();
939         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
940                 return NMI_HANDLED;
941
942         return NMI_DONE;
943 }
944
945 /*
946  * Wake up AP by INIT, INIT, STARTUP sequence.
947  *
948  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
949  * boot-strap code which is not a desired behavior for waking up BSP. To
950  * void the boot-strap code, wake up CPU0 by NMI instead.
951  *
952  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
953  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
954  * We'll change this code in the future to wake up hard offlined CPU0 if
955  * real platform and request are available.
956  */
957 static int
958 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
959                int *cpu0_nmi_registered)
960 {
961         int id;
962         int boot_error;
963
964         preempt_disable();
965
966         /*
967          * Wake up AP by INIT, INIT, STARTUP sequence.
968          */
969         if (cpu) {
970                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
971                 goto out;
972         }
973
974         /*
975          * Wake up BSP by nmi.
976          *
977          * Register a NMI handler to help wake up CPU0.
978          */
979         boot_error = register_nmi_handler(NMI_LOCAL,
980                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
981
982         if (!boot_error) {
983                 enable_start_cpu0 = 1;
984                 *cpu0_nmi_registered = 1;
985                 if (apic->dest_logical == APIC_DEST_LOGICAL)
986                         id = cpu0_logical_apicid;
987                 else
988                         id = apicid;
989                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
990         }
991
992 out:
993         preempt_enable();
994
995         return boot_error;
996 }
997
998 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
999 {
1000         int ret;
1001
1002         /* Just in case we booted with a single CPU. */
1003         alternatives_enable_smp();
1004
1005         per_cpu(current_task, cpu) = idle;
1006
1007         /* Initialize the interrupt stack(s) */
1008         ret = irq_init_percpu_irqstack(cpu);
1009         if (ret)
1010                 return ret;
1011
1012 #ifdef CONFIG_X86_32
1013         /* Stack for startup_32 can be just as for start_secondary onwards */
1014         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1015 #else
1016         initial_gs = per_cpu_offset(cpu);
1017 #endif
1018         return 0;
1019 }
1020
1021 /*
1022  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1024  * Returns zero if CPU booted OK, else error code from
1025  * ->wakeup_secondary_cpu.
1026  */
1027 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028                        int *cpu0_nmi_registered)
1029 {
1030         /* start_ip had better be page-aligned! */
1031         unsigned long start_ip = real_mode_header->trampoline_start;
1032
1033         unsigned long boot_error = 0;
1034         unsigned long timeout;
1035
1036         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1037         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1038         initial_code = (unsigned long)start_secondary;
1039         initial_stack  = idle->thread.sp;
1040
1041         /* Enable the espfix hack for this CPU */
1042         init_espfix_ap(cpu);
1043
1044         /* So we see what's up */
1045         announce_cpu(cpu, apicid);
1046
1047         /*
1048          * This grunge runs the startup process for
1049          * the targeted processor.
1050          */
1051
1052         if (x86_platform.legacy.warm_reset) {
1053
1054                 pr_debug("Setting warm reset code and vector.\n");
1055
1056                 smpboot_setup_warm_reset_vector(start_ip);
1057                 /*
1058                  * Be paranoid about clearing APIC errors.
1059                 */
1060                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061                         apic_write(APIC_ESR, 0);
1062                         apic_read(APIC_ESR);
1063                 }
1064         }
1065
1066         /*
1067          * AP might wait on cpu_callout_mask in cpu_init() with
1068          * cpu_initialized_mask set if previous attempt to online
1069          * it timed-out. Clear cpu_initialized_mask so that after
1070          * INIT/SIPI it could start with a clean state.
1071          */
1072         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073         smp_mb();
1074
1075         /*
1076          * Wake up a CPU in difference cases:
1077          * - Use the method in the APIC driver if it's defined
1078          * Otherwise,
1079          * - Use an INIT boot APIC message for APs or NMI for BSP.
1080          */
1081         if (apic->wakeup_secondary_cpu)
1082                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083         else
1084                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1085                                                      cpu0_nmi_registered);
1086
1087         if (!boot_error) {
1088                 /*
1089                  * Wait 10s total for first sign of life from AP
1090                  */
1091                 boot_error = -1;
1092                 timeout = jiffies + 10*HZ;
1093                 while (time_before(jiffies, timeout)) {
1094                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095                                 /*
1096                                  * Tell AP to proceed with initialization
1097                                  */
1098                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1099                                 boot_error = 0;
1100                                 break;
1101                         }
1102                         schedule();
1103                 }
1104         }
1105
1106         if (!boot_error) {
1107                 /*
1108                  * Wait till AP completes initial initialization
1109                  */
1110                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111                         /*
1112                          * Allow other tasks to run while we wait for the
1113                          * AP to come online. This also gives a chance
1114                          * for the MTRR work(triggered by the AP coming online)
1115                          * to be completed in the stop machine context.
1116                          */
1117                         schedule();
1118                 }
1119         }
1120
1121         if (x86_platform.legacy.warm_reset) {
1122                 /*
1123                  * Cleanup possible dangling ends...
1124                  */
1125                 smpboot_restore_warm_reset_vector();
1126         }
1127
1128         return boot_error;
1129 }
1130
1131 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1132 {
1133         int apicid = apic->cpu_present_to_apicid(cpu);
1134         int cpu0_nmi_registered = 0;
1135         unsigned long flags;
1136         int err, ret = 0;
1137
1138         lockdep_assert_irqs_enabled();
1139
1140         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1141
1142         if (apicid == BAD_APICID ||
1143             !physid_isset(apicid, phys_cpu_present_map) ||
1144             !apic->apic_id_valid(apicid)) {
1145                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1146                 return -EINVAL;
1147         }
1148
1149         /*
1150          * Already booted CPU?
1151          */
1152         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1153                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1154                 return -ENOSYS;
1155         }
1156
1157         /*
1158          * Save current MTRR state in case it was changed since early boot
1159          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160          */
1161         mtrr_save_state();
1162
1163         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1164         err = cpu_check_up_prepare(cpu);
1165         if (err && err != -EBUSY)
1166                 return err;
1167
1168         /* the FPU context is blank, nobody can own it */
1169         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1170
1171         err = common_cpu_up(cpu, tidle);
1172         if (err)
1173                 return err;
1174
1175         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1176         if (err) {
1177                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1178                 ret = -EIO;
1179                 goto unreg_nmi;
1180         }
1181
1182         /*
1183          * Check TSC synchronization with the AP (keep irqs disabled
1184          * while doing so):
1185          */
1186         local_irq_save(flags);
1187         check_tsc_sync_source(cpu);
1188         local_irq_restore(flags);
1189
1190         while (!cpu_online(cpu)) {
1191                 cpu_relax();
1192                 touch_nmi_watchdog();
1193         }
1194
1195 unreg_nmi:
1196         /*
1197          * Clean up the nmi handler. Do this after the callin and callout sync
1198          * to avoid impact of possible long unregister time.
1199          */
1200         if (cpu0_nmi_registered)
1201                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202
1203         return ret;
1204 }
1205
1206 /**
1207  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208  */
1209 void arch_disable_smp_support(void)
1210 {
1211         disable_ioapic_support();
1212 }
1213
1214 /*
1215  * Fall back to non SMP mode after errors.
1216  *
1217  * RED-PEN audit/test this more. I bet there is more state messed up here.
1218  */
1219 static __init void disable_smp(void)
1220 {
1221         pr_info("SMP disabled\n");
1222
1223         disable_ioapic_support();
1224
1225         init_cpu_present(cpumask_of(0));
1226         init_cpu_possible(cpumask_of(0));
1227
1228         if (smp_found_config)
1229                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1230         else
1231                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1232         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233         cpumask_set_cpu(0, topology_core_cpumask(0));
1234         cpumask_set_cpu(0, topology_die_cpumask(0));
1235 }
1236
1237 /*
1238  * Various sanity checks.
1239  */
1240 static void __init smp_sanity_check(void)
1241 {
1242         preempt_disable();
1243
1244 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1245         if (def_to_bigsmp && nr_cpu_ids > 8) {
1246                 unsigned int cpu;
1247                 unsigned nr;
1248
1249                 pr_warn("More than 8 CPUs detected - skipping them\n"
1250                         "Use CONFIG_X86_BIGSMP\n");
1251
1252                 nr = 0;
1253                 for_each_present_cpu(cpu) {
1254                         if (nr >= 8)
1255                                 set_cpu_present(cpu, false);
1256                         nr++;
1257                 }
1258
1259                 nr = 0;
1260                 for_each_possible_cpu(cpu) {
1261                         if (nr >= 8)
1262                                 set_cpu_possible(cpu, false);
1263                         nr++;
1264                 }
1265
1266                 nr_cpu_ids = 8;
1267         }
1268 #endif
1269
1270         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1271                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1272                         hard_smp_processor_id());
1273
1274                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275         }
1276
1277         /*
1278          * Should not be necessary because the MP table should list the boot
1279          * CPU too, but we do it for the sake of robustness anyway.
1280          */
1281         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1282                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283                           boot_cpu_physical_apicid);
1284                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285         }
1286         preempt_enable();
1287 }
1288
1289 static void __init smp_cpu_index_default(void)
1290 {
1291         int i;
1292         struct cpuinfo_x86 *c;
1293
1294         for_each_possible_cpu(i) {
1295                 c = &cpu_data(i);
1296                 /* mark all to hotplug */
1297                 c->cpu_index = nr_cpu_ids;
1298         }
1299 }
1300
1301 static void __init smp_get_logical_apicid(void)
1302 {
1303         if (x2apic_mode)
1304                 cpu0_logical_apicid = apic_read(APIC_LDR);
1305         else
1306                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307 }
1308
1309 /*
1310  * Prepare for SMP bootup.
1311  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312  *            for common interface support.
1313  */
1314 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316         unsigned int i;
1317
1318         smp_cpu_index_default();
1319
1320         /*
1321          * Setup boot CPU information
1322          */
1323         smp_store_boot_cpu_info(); /* Final full version of the data */
1324         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325         mb();
1326
1327         for_each_possible_cpu(i) {
1328                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1330                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1331                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1332         }
1333
1334         /*
1335          * Set 'default' x86 topology, this matches default_topology() in that
1336          * it has NUMA nodes as a topology level. See also
1337          * native_smp_cpus_done().
1338          *
1339          * Must be done before set_cpus_sibling_map() is ran.
1340          */
1341         set_sched_topology(x86_topology);
1342
1343         set_cpu_sibling_map(0);
1344         init_freq_invariance(false);
1345         smp_sanity_check();
1346
1347         switch (apic_intr_mode) {
1348         case APIC_PIC:
1349         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1350                 disable_smp();
1351                 return;
1352         case APIC_SYMMETRIC_IO_NO_ROUTING:
1353                 disable_smp();
1354                 /* Setup local timer */
1355                 x86_init.timers.setup_percpu_clockev();
1356                 return;
1357         case APIC_VIRTUAL_WIRE:
1358         case APIC_SYMMETRIC_IO:
1359                 break;
1360         }
1361
1362         /* Setup local timer */
1363         x86_init.timers.setup_percpu_clockev();
1364
1365         smp_get_logical_apicid();
1366
1367         pr_info("CPU0: ");
1368         print_cpu_info(&cpu_data(0));
1369
1370         uv_system_init();
1371
1372         set_mtrr_aps_delayed_init();
1373
1374         smp_quirk_init_udelay();
1375
1376         speculative_store_bypass_ht_init();
1377 }
1378
1379 void arch_enable_nonboot_cpus_begin(void)
1380 {
1381         set_mtrr_aps_delayed_init();
1382 }
1383
1384 void arch_enable_nonboot_cpus_end(void)
1385 {
1386         mtrr_aps_init();
1387 }
1388
1389 /*
1390  * Early setup to make printk work.
1391  */
1392 void __init native_smp_prepare_boot_cpu(void)
1393 {
1394         int me = smp_processor_id();
1395         switch_to_new_gdt(me);
1396         /* already set me in cpu_online_mask in boot_cpu_init() */
1397         cpumask_set_cpu(me, cpu_callout_mask);
1398         cpu_set_state_online(me);
1399         native_pv_lock_init();
1400 }
1401
1402 void __init calculate_max_logical_packages(void)
1403 {
1404         int ncpus;
1405
1406         /*
1407          * Today neither Intel nor AMD support heterogenous systems so
1408          * extrapolate the boot cpu's data to all packages.
1409          */
1410         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1411         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1412         pr_info("Max logical packages: %u\n", __max_logical_packages);
1413 }
1414
1415 void __init native_smp_cpus_done(unsigned int max_cpus)
1416 {
1417         pr_debug("Boot done\n");
1418
1419         calculate_max_logical_packages();
1420
1421         if (x86_has_numa_in_package)
1422                 set_sched_topology(x86_numa_in_package_topology);
1423
1424         nmi_selftest();
1425         impress_friends();
1426         mtrr_aps_init();
1427 }
1428
1429 static int __initdata setup_possible_cpus = -1;
1430 static int __init _setup_possible_cpus(char *str)
1431 {
1432         get_option(&str, &setup_possible_cpus);
1433         return 0;
1434 }
1435 early_param("possible_cpus", _setup_possible_cpus);
1436
1437
1438 /*
1439  * cpu_possible_mask should be static, it cannot change as cpu's
1440  * are onlined, or offlined. The reason is per-cpu data-structures
1441  * are allocated by some modules at init time, and don't expect to
1442  * do this dynamically on cpu arrival/departure.
1443  * cpu_present_mask on the other hand can change dynamically.
1444  * In case when cpu_hotplug is not compiled, then we resort to current
1445  * behaviour, which is cpu_possible == cpu_present.
1446  * - Ashok Raj
1447  *
1448  * Three ways to find out the number of additional hotplug CPUs:
1449  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1450  * - The user can overwrite it with possible_cpus=NUM
1451  * - Otherwise don't reserve additional CPUs.
1452  * We do this because additional CPUs waste a lot of memory.
1453  * -AK
1454  */
1455 __init void prefill_possible_map(void)
1456 {
1457         int i, possible;
1458
1459         /* No boot processor was found in mptable or ACPI MADT */
1460         if (!num_processors) {
1461                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1462                         int apicid = boot_cpu_physical_apicid;
1463                         int cpu = hard_smp_processor_id();
1464
1465                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1466
1467                         /* Make sure boot cpu is enumerated */
1468                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469                             apic->apic_id_valid(apicid))
1470                                 generic_processor_info(apicid, boot_cpu_apic_version);
1471                 }
1472
1473                 if (!num_processors)
1474                         num_processors = 1;
1475         }
1476
1477         i = setup_max_cpus ?: 1;
1478         if (setup_possible_cpus == -1) {
1479                 possible = num_processors;
1480 #ifdef CONFIG_HOTPLUG_CPU
1481                 if (setup_max_cpus)
1482                         possible += disabled_cpus;
1483 #else
1484                 if (possible > i)
1485                         possible = i;
1486 #endif
1487         } else
1488                 possible = setup_possible_cpus;
1489
1490         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491
1492         /* nr_cpu_ids could be reduced via nr_cpus= */
1493         if (possible > nr_cpu_ids) {
1494                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1495                         possible, nr_cpu_ids);
1496                 possible = nr_cpu_ids;
1497         }
1498
1499 #ifdef CONFIG_HOTPLUG_CPU
1500         if (!setup_max_cpus)
1501 #endif
1502         if (possible > i) {
1503                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1504                         possible, setup_max_cpus);
1505                 possible = i;
1506         }
1507
1508         nr_cpu_ids = possible;
1509
1510         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1511                 possible, max_t(int, possible - num_processors, 0));
1512
1513         reset_cpu_possible_mask();
1514
1515         for (i = 0; i < possible; i++)
1516                 set_cpu_possible(i, true);
1517 }
1518
1519 #ifdef CONFIG_HOTPLUG_CPU
1520
1521 /* Recompute SMT state for all CPUs on offline */
1522 static void recompute_smt_state(void)
1523 {
1524         int max_threads, cpu;
1525
1526         max_threads = 0;
1527         for_each_online_cpu (cpu) {
1528                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529
1530                 if (threads > max_threads)
1531                         max_threads = threads;
1532         }
1533         __max_smt_threads = max_threads;
1534 }
1535
1536 static void remove_siblinginfo(int cpu)
1537 {
1538         int sibling;
1539         struct cpuinfo_x86 *c = &cpu_data(cpu);
1540
1541         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1543                 /*/
1544                  * last thread sibling in this cpu core going down
1545                  */
1546                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1547                         cpu_data(sibling).booted_cores--;
1548         }
1549
1550         for_each_cpu(sibling, topology_die_cpumask(cpu))
1551                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1552         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1554         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556         cpumask_clear(cpu_llc_shared_mask(cpu));
1557         cpumask_clear(topology_sibling_cpumask(cpu));
1558         cpumask_clear(topology_core_cpumask(cpu));
1559         cpumask_clear(topology_die_cpumask(cpu));
1560         c->cpu_core_id = 0;
1561         c->booted_cores = 0;
1562         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1563         recompute_smt_state();
1564 }
1565
1566 static void remove_cpu_from_maps(int cpu)
1567 {
1568         set_cpu_online(cpu, false);
1569         cpumask_clear_cpu(cpu, cpu_callout_mask);
1570         cpumask_clear_cpu(cpu, cpu_callin_mask);
1571         /* was set by cpu_init() */
1572         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1573         numa_remove_cpu(cpu);
1574 }
1575
1576 void cpu_disable_common(void)
1577 {
1578         int cpu = smp_processor_id();
1579
1580         remove_siblinginfo(cpu);
1581
1582         /* It's now safe to remove this processor from the online map */
1583         lock_vector_lock();
1584         remove_cpu_from_maps(cpu);
1585         unlock_vector_lock();
1586         fixup_irqs();
1587         lapic_offline();
1588 }
1589
1590 int native_cpu_disable(void)
1591 {
1592         int ret;
1593
1594         ret = lapic_can_unplug_cpu();
1595         if (ret)
1596                 return ret;
1597
1598         /*
1599          * Disable the local APIC. Otherwise IPI broadcasts will reach
1600          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1601          * messages.
1602          */
1603         apic_soft_disable();
1604         cpu_disable_common();
1605
1606         return 0;
1607 }
1608
1609 int common_cpu_die(unsigned int cpu)
1610 {
1611         int ret = 0;
1612
1613         /* We don't do anything here: idle task is faking death itself. */
1614
1615         /* They ack this in play_dead() by setting CPU_DEAD */
1616         if (cpu_wait_death(cpu, 5)) {
1617                 if (system_state == SYSTEM_RUNNING)
1618                         pr_info("CPU %u is now offline\n", cpu);
1619         } else {
1620                 pr_err("CPU %u didn't die...\n", cpu);
1621                 ret = -1;
1622         }
1623
1624         return ret;
1625 }
1626
1627 void native_cpu_die(unsigned int cpu)
1628 {
1629         common_cpu_die(cpu);
1630 }
1631
1632 void play_dead_common(void)
1633 {
1634         idle_task_exit();
1635
1636         /* Ack it */
1637         (void)cpu_report_death();
1638
1639         /*
1640          * With physical CPU hotplug, we should halt the cpu
1641          */
1642         local_irq_disable();
1643 }
1644
1645 static bool wakeup_cpu0(void)
1646 {
1647         if (smp_processor_id() == 0 && enable_start_cpu0)
1648                 return true;
1649
1650         return false;
1651 }
1652
1653 /*
1654  * We need to flush the caches before going to sleep, lest we have
1655  * dirty data in our caches when we come back up.
1656  */
1657 static inline void mwait_play_dead(void)
1658 {
1659         unsigned int eax, ebx, ecx, edx;
1660         unsigned int highest_cstate = 0;
1661         unsigned int highest_subcstate = 0;
1662         void *mwait_ptr;
1663         int i;
1664
1665         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1666             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1667                 return;
1668         if (!this_cpu_has(X86_FEATURE_MWAIT))
1669                 return;
1670         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1671                 return;
1672         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1673                 return;
1674
1675         eax = CPUID_MWAIT_LEAF;
1676         ecx = 0;
1677         native_cpuid(&eax, &ebx, &ecx, &edx);
1678
1679         /*
1680          * eax will be 0 if EDX enumeration is not valid.
1681          * Initialized below to cstate, sub_cstate value when EDX is valid.
1682          */
1683         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1684                 eax = 0;
1685         } else {
1686                 edx >>= MWAIT_SUBSTATE_SIZE;
1687                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1688                         if (edx & MWAIT_SUBSTATE_MASK) {
1689                                 highest_cstate = i;
1690                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1691                         }
1692                 }
1693                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1694                         (highest_subcstate - 1);
1695         }
1696
1697         /*
1698          * This should be a memory location in a cache line which is
1699          * unlikely to be touched by other processors.  The actual
1700          * content is immaterial as it is not actually modified in any way.
1701          */
1702         mwait_ptr = &current_thread_info()->flags;
1703
1704         wbinvd();
1705
1706         while (1) {
1707                 /*
1708                  * The CLFLUSH is a workaround for erratum AAI65 for
1709                  * the Xeon 7400 series.  It's not clear it is actually
1710                  * needed, but it should be harmless in either case.
1711                  * The WBINVD is insufficient due to the spurious-wakeup
1712                  * case where we return around the loop.
1713                  */
1714                 mb();
1715                 clflush(mwait_ptr);
1716                 mb();
1717                 __monitor(mwait_ptr, 0, 0);
1718                 mb();
1719                 __mwait(eax, 0);
1720                 /*
1721                  * If NMI wants to wake up CPU0, start CPU0.
1722                  */
1723                 if (wakeup_cpu0())
1724                         start_cpu0();
1725         }
1726 }
1727
1728 void hlt_play_dead(void)
1729 {
1730         if (__this_cpu_read(cpu_info.x86) >= 4)
1731                 wbinvd();
1732
1733         while (1) {
1734                 native_halt();
1735                 /*
1736                  * If NMI wants to wake up CPU0, start CPU0.
1737                  */
1738                 if (wakeup_cpu0())
1739                         start_cpu0();
1740         }
1741 }
1742
1743 void native_play_dead(void)
1744 {
1745         play_dead_common();
1746         tboot_shutdown(TB_SHUTDOWN_WFS);
1747
1748         mwait_play_dead();      /* Only returns on failure */
1749         if (cpuidle_play_dead())
1750                 hlt_play_dead();
1751 }
1752
1753 #else /* ... !CONFIG_HOTPLUG_CPU */
1754 int native_cpu_disable(void)
1755 {
1756         return -ENOSYS;
1757 }
1758
1759 void native_cpu_die(unsigned int cpu)
1760 {
1761         /* We said "no" in __cpu_disable */
1762         BUG();
1763 }
1764
1765 void native_play_dead(void)
1766 {
1767         BUG();
1768 }
1769
1770 #endif
1771
1772 /*
1773  * APERF/MPERF frequency ratio computation.
1774  *
1775  * The scheduler wants to do frequency invariant accounting and needs a <1
1776  * ratio to account for the 'current' frequency, corresponding to
1777  * freq_curr / freq_max.
1778  *
1779  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1780  * our P-state setting is little more than a request/hint, we need to observe
1781  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1782  * interval after discarding idle time. This is given by:
1783  *
1784  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1785  *
1786  * where freq_base is the max non-turbo P-state.
1787  *
1788  * The freq_max term has to be set to a somewhat arbitrary value, because we
1789  * can't know which turbo states will be available at a given point in time:
1790  * it all depends on the thermal headroom of the entire package. We set it to
1791  * the turbo level with 4 cores active.
1792  *
1793  * Benchmarks show that's a good compromise between the 1C turbo ratio
1794  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1795  * which would ignore the entire turbo range (a conspicuous part, making
1796  * freq_curr/freq_max always maxed out).
1797  *
1798  * An exception to the heuristic above is the Atom uarch, where we choose the
1799  * highest turbo level for freq_max since Atom's are generally oriented towards
1800  * power efficiency.
1801  *
1802  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1803  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1804  */
1805
1806 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1807
1808 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1809 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1810 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1811 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1812
1813 void arch_set_max_freq_ratio(bool turbo_disabled)
1814 {
1815         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1816                                         arch_turbo_freq_ratio;
1817 }
1818
1819 static bool turbo_disabled(void)
1820 {
1821         u64 misc_en;
1822         int err;
1823
1824         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1825         if (err)
1826                 return false;
1827
1828         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1829 }
1830
1831 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1832 {
1833         int err;
1834
1835         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1836         if (err)
1837                 return false;
1838
1839         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1840         if (err)
1841                 return false;
1842
1843         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1844         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1845
1846         return true;
1847 }
1848
1849 #include <asm/cpu_device_id.h>
1850 #include <asm/intel-family.h>
1851
1852 #define ICPU(model) \
1853         {X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF, 0}
1854
1855 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1856         ICPU(INTEL_FAM6_XEON_PHI_KNL),
1857         ICPU(INTEL_FAM6_XEON_PHI_KNM),
1858         {}
1859 };
1860
1861 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1862         ICPU(INTEL_FAM6_SKYLAKE_X),
1863         {}
1864 };
1865
1866 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1867         ICPU(INTEL_FAM6_ATOM_GOLDMONT),
1868         ICPU(INTEL_FAM6_ATOM_GOLDMONT_D),
1869         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS),
1870         {}
1871 };
1872
1873 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1874                                 int num_delta_fratio)
1875 {
1876         int fratio, delta_fratio, found;
1877         int err, i;
1878         u64 msr;
1879
1880         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1881         if (err)
1882                 return false;
1883
1884         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1885
1886         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1887         if (err)
1888                 return false;
1889
1890         fratio = (msr >> 8) & 0xFF;
1891         i = 16;
1892         found = 0;
1893         do {
1894                 if (found >= num_delta_fratio) {
1895                         *turbo_freq = fratio;
1896                         return true;
1897                 }
1898
1899                 delta_fratio = (msr >> (i + 5)) & 0x7;
1900
1901                 if (delta_fratio) {
1902                         found += 1;
1903                         fratio -= delta_fratio;
1904                 }
1905
1906                 i += 8;
1907         } while (i < 64);
1908
1909         return true;
1910 }
1911
1912 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1913 {
1914         u64 ratios, counts;
1915         u32 group_size;
1916         int err, i;
1917
1918         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1919         if (err)
1920                 return false;
1921
1922         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1923
1924         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1925         if (err)
1926                 return false;
1927
1928         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1929         if (err)
1930                 return false;
1931
1932         for (i = 0; i < 64; i += 8) {
1933                 group_size = (counts >> i) & 0xFF;
1934                 if (group_size >= size) {
1935                         *turbo_freq = (ratios >> i) & 0xFF;
1936                         return true;
1937                 }
1938         }
1939
1940         return false;
1941 }
1942
1943 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1944 {
1945         u64 msr;
1946         int err;
1947
1948         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1949         if (err)
1950                 return false;
1951
1952         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1953         if (err)
1954                 return false;
1955
1956         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1957         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1958
1959         /* The CPU may have less than 4 cores */
1960         if (!*turbo_freq)
1961                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1962
1963         return true;
1964 }
1965
1966 static bool intel_set_max_freq_ratio(void)
1967 {
1968         u64 base_freq, turbo_freq;
1969
1970         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1971                 goto out;
1972
1973         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1974             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1975                 goto out;
1976
1977         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1978             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1979                 goto out;
1980
1981         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1982             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1983                 goto out;
1984
1985         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1986                 goto out;
1987
1988         return false;
1989
1990 out:
1991         /*
1992          * Some hypervisors advertise X86_FEATURE_APERFMPERF
1993          * but then fill all MSR's with zeroes.
1994          */
1995         if (!base_freq) {
1996                 pr_debug("Couldn't determine cpu base frequency, necessary for scale-invariant accounting.\n");
1997                 return false;
1998         }
1999
2000         arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
2001                                         base_freq);
2002         arch_set_max_freq_ratio(turbo_disabled());
2003         return true;
2004 }
2005
2006 static void init_counter_refs(void)
2007 {
2008         u64 aperf, mperf;
2009
2010         rdmsrl(MSR_IA32_APERF, aperf);
2011         rdmsrl(MSR_IA32_MPERF, mperf);
2012
2013         this_cpu_write(arch_prev_aperf, aperf);
2014         this_cpu_write(arch_prev_mperf, mperf);
2015 }
2016
2017 static void init_freq_invariance(bool secondary)
2018 {
2019         bool ret = false;
2020
2021         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2022                 return;
2023
2024         if (secondary) {
2025                 if (static_branch_likely(&arch_scale_freq_key)) {
2026                         init_counter_refs();
2027                 }
2028                 return;
2029         }
2030
2031         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2032                 ret = intel_set_max_freq_ratio();
2033
2034         if (ret) {
2035                 init_counter_refs();
2036                 static_branch_enable(&arch_scale_freq_key);
2037         } else {
2038                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2039         }
2040 }
2041
2042 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2043
2044 void arch_scale_freq_tick(void)
2045 {
2046         u64 freq_scale;
2047         u64 aperf, mperf;
2048         u64 acnt, mcnt;
2049
2050         if (!arch_scale_freq_invariant())
2051                 return;
2052
2053         rdmsrl(MSR_IA32_APERF, aperf);
2054         rdmsrl(MSR_IA32_MPERF, mperf);
2055
2056         acnt = aperf - this_cpu_read(arch_prev_aperf);
2057         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2058         if (!mcnt)
2059                 return;
2060
2061         this_cpu_write(arch_prev_aperf, aperf);
2062         this_cpu_write(arch_prev_mperf, mperf);
2063
2064         acnt <<= 2*SCHED_CAPACITY_SHIFT;
2065         mcnt *= arch_max_freq_ratio;
2066
2067         freq_scale = div64_u64(acnt, mcnt);
2068
2069         if (freq_scale > SCHED_CAPACITY_SCALE)
2070                 freq_scale = SCHED_CAPACITY_SCALE;
2071
2072         this_cpu_write(arch_freq_scale, freq_scale);
2073 }