OSDN Git Service

KVM: x86: Emulate IA32_TSC_ADJUST MSR
[uclinux-h8/linux.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
27 {
28         struct kvm_cpuid_entry2 *best;
29         struct kvm_lapic *apic = vcpu->arch.apic;
30
31         best = kvm_find_cpuid_entry(vcpu, 1, 0);
32         if (!best)
33                 return;
34
35         /* Update OSXSAVE bit */
36         if (cpu_has_xsave && best->function == 0x1) {
37                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
40         }
41
42         if (apic) {
43                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44                         apic->lapic_timer.timer_mode_mask = 3 << 17;
45                 else
46                         apic->lapic_timer.timer_mode_mask = 1 << 17;
47         }
48
49         kvm_pmu_cpuid_update(vcpu);
50 }
51
52 static int is_efer_nx(void)
53 {
54         unsigned long long efer = 0;
55
56         rdmsrl_safe(MSR_EFER, &efer);
57         return efer & EFER_NX;
58 }
59
60 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
61 {
62         int i;
63         struct kvm_cpuid_entry2 *e, *entry;
64
65         entry = NULL;
66         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
67                 e = &vcpu->arch.cpuid_entries[i];
68                 if (e->function == 0x80000001) {
69                         entry = e;
70                         break;
71                 }
72         }
73         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
74                 entry->edx &= ~(1 << 20);
75                 printk(KERN_INFO "kvm: guest NX capability removed\n");
76         }
77 }
78
79 /* when an old userspace process fills a new kernel module */
80 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
81                              struct kvm_cpuid *cpuid,
82                              struct kvm_cpuid_entry __user *entries)
83 {
84         int r, i;
85         struct kvm_cpuid_entry *cpuid_entries;
86
87         r = -E2BIG;
88         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
89                 goto out;
90         r = -ENOMEM;
91         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
92         if (!cpuid_entries)
93                 goto out;
94         r = -EFAULT;
95         if (copy_from_user(cpuid_entries, entries,
96                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
97                 goto out_free;
98         for (i = 0; i < cpuid->nent; i++) {
99                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
100                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
101                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
102                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
103                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
104                 vcpu->arch.cpuid_entries[i].index = 0;
105                 vcpu->arch.cpuid_entries[i].flags = 0;
106                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
107                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
108                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
109         }
110         vcpu->arch.cpuid_nent = cpuid->nent;
111         cpuid_fix_nx_cap(vcpu);
112         r = 0;
113         kvm_apic_set_version(vcpu);
114         kvm_x86_ops->cpuid_update(vcpu);
115         kvm_update_cpuid(vcpu);
116
117 out_free:
118         vfree(cpuid_entries);
119 out:
120         return r;
121 }
122
123 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
124                               struct kvm_cpuid2 *cpuid,
125                               struct kvm_cpuid_entry2 __user *entries)
126 {
127         int r;
128
129         r = -E2BIG;
130         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131                 goto out;
132         r = -EFAULT;
133         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
134                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
135                 goto out;
136         vcpu->arch.cpuid_nent = cpuid->nent;
137         kvm_apic_set_version(vcpu);
138         kvm_x86_ops->cpuid_update(vcpu);
139         kvm_update_cpuid(vcpu);
140         return 0;
141
142 out:
143         return r;
144 }
145
146 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
147                               struct kvm_cpuid2 *cpuid,
148                               struct kvm_cpuid_entry2 __user *entries)
149 {
150         int r;
151
152         r = -E2BIG;
153         if (cpuid->nent < vcpu->arch.cpuid_nent)
154                 goto out;
155         r = -EFAULT;
156         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
157                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
158                 goto out;
159         return 0;
160
161 out:
162         cpuid->nent = vcpu->arch.cpuid_nent;
163         return r;
164 }
165
166 static void cpuid_mask(u32 *word, int wordnum)
167 {
168         *word &= boot_cpu_data.x86_capability[wordnum];
169 }
170
171 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
172                            u32 index)
173 {
174         entry->function = function;
175         entry->index = index;
176         cpuid_count(entry->function, entry->index,
177                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
178         entry->flags = 0;
179 }
180
181 static bool supported_xcr0_bit(unsigned bit)
182 {
183         u64 mask = ((u64)1 << bit);
184
185         return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
186 }
187
188 #define F(x) bit(X86_FEATURE_##x)
189
190 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
191                          u32 index, int *nent, int maxnent)
192 {
193         int r;
194         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
195 #ifdef CONFIG_X86_64
196         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
197                                 ? F(GBPAGES) : 0;
198         unsigned f_lm = F(LM);
199 #else
200         unsigned f_gbpages = 0;
201         unsigned f_lm = 0;
202 #endif
203         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
204         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
205
206         /* cpuid 1.edx */
207         const u32 kvm_supported_word0_x86_features =
208                 F(FPU) | F(VME) | F(DE) | F(PSE) |
209                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
210                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
211                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
212                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
213                 0 /* Reserved, DS, ACPI */ | F(MMX) |
214                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
215                 0 /* HTT, TM, Reserved, PBE */;
216         /* cpuid 0x80000001.edx */
217         const u32 kvm_supported_word1_x86_features =
218                 F(FPU) | F(VME) | F(DE) | F(PSE) |
219                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
220                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
221                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
222                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
223                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
224                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
225                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
226         /* cpuid 1.ecx */
227         const u32 kvm_supported_word4_x86_features =
228                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
229                 0 /* DS-CPL, VMX, SMX, EST */ |
230                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
231                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
232                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
233                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
234                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
235                 F(F16C) | F(RDRAND);
236         /* cpuid 0x80000001.ecx */
237         const u32 kvm_supported_word6_x86_features =
238                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
239                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
240                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
241                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
242
243         /* cpuid 0xC0000001.edx */
244         const u32 kvm_supported_word5_x86_features =
245                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
246                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
247                 F(PMM) | F(PMM_EN);
248
249         /* cpuid 7.0.ebx */
250         const u32 kvm_supported_word9_x86_features =
251                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
252                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
253
254         /* all calls to cpuid_count() should be made on the same cpu */
255         get_cpu();
256
257         r = -E2BIG;
258
259         if (*nent >= maxnent)
260                 goto out;
261
262         do_cpuid_1_ent(entry, function, index);
263         ++*nent;
264
265         switch (function) {
266         case 0:
267                 entry->eax = min(entry->eax, (u32)0xd);
268                 break;
269         case 1:
270                 entry->edx &= kvm_supported_word0_x86_features;
271                 cpuid_mask(&entry->edx, 0);
272                 entry->ecx &= kvm_supported_word4_x86_features;
273                 cpuid_mask(&entry->ecx, 4);
274                 /* we support x2apic emulation even if host does not support
275                  * it since we emulate x2apic in software */
276                 entry->ecx |= F(X2APIC);
277                 break;
278         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
279          * may return different values. This forces us to get_cpu() before
280          * issuing the first command, and also to emulate this annoying behavior
281          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
282         case 2: {
283                 int t, times = entry->eax & 0xff;
284
285                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
286                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
287                 for (t = 1; t < times; ++t) {
288                         if (*nent >= maxnent)
289                                 goto out;
290
291                         do_cpuid_1_ent(&entry[t], function, 0);
292                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
293                         ++*nent;
294                 }
295                 break;
296         }
297         /* function 4 has additional index. */
298         case 4: {
299                 int i, cache_type;
300
301                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
302                 /* read more entries until cache_type is zero */
303                 for (i = 1; ; ++i) {
304                         if (*nent >= maxnent)
305                                 goto out;
306
307                         cache_type = entry[i - 1].eax & 0x1f;
308                         if (!cache_type)
309                                 break;
310                         do_cpuid_1_ent(&entry[i], function, i);
311                         entry[i].flags |=
312                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
313                         ++*nent;
314                 }
315                 break;
316         }
317         case 7: {
318                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
319                 /* Mask ebx against host capability word 9 */
320                 if (index == 0) {
321                         entry->ebx &= kvm_supported_word9_x86_features;
322                         cpuid_mask(&entry->ebx, 9);
323                         // TSC_ADJUST is emulated
324                         entry->ebx |= F(TSC_ADJUST);
325                 } else
326                         entry->ebx = 0;
327                 entry->eax = 0;
328                 entry->ecx = 0;
329                 entry->edx = 0;
330                 break;
331         }
332         case 9:
333                 break;
334         case 0xa: { /* Architectural Performance Monitoring */
335                 struct x86_pmu_capability cap;
336                 union cpuid10_eax eax;
337                 union cpuid10_edx edx;
338
339                 perf_get_x86_pmu_capability(&cap);
340
341                 /*
342                  * Only support guest architectural pmu on a host
343                  * with architectural pmu.
344                  */
345                 if (!cap.version)
346                         memset(&cap, 0, sizeof(cap));
347
348                 eax.split.version_id = min(cap.version, 2);
349                 eax.split.num_counters = cap.num_counters_gp;
350                 eax.split.bit_width = cap.bit_width_gp;
351                 eax.split.mask_length = cap.events_mask_len;
352
353                 edx.split.num_counters_fixed = cap.num_counters_fixed;
354                 edx.split.bit_width_fixed = cap.bit_width_fixed;
355                 edx.split.reserved = 0;
356
357                 entry->eax = eax.full;
358                 entry->ebx = cap.events_mask;
359                 entry->ecx = 0;
360                 entry->edx = edx.full;
361                 break;
362         }
363         /* function 0xb has additional index. */
364         case 0xb: {
365                 int i, level_type;
366
367                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
368                 /* read more entries until level_type is zero */
369                 for (i = 1; ; ++i) {
370                         if (*nent >= maxnent)
371                                 goto out;
372
373                         level_type = entry[i - 1].ecx & 0xff00;
374                         if (!level_type)
375                                 break;
376                         do_cpuid_1_ent(&entry[i], function, i);
377                         entry[i].flags |=
378                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
379                         ++*nent;
380                 }
381                 break;
382         }
383         case 0xd: {
384                 int idx, i;
385
386                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387                 for (idx = 1, i = 1; idx < 64; ++idx) {
388                         if (*nent >= maxnent)
389                                 goto out;
390
391                         do_cpuid_1_ent(&entry[i], function, idx);
392                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
393                                 continue;
394                         entry[i].flags |=
395                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
396                         ++*nent;
397                         ++i;
398                 }
399                 break;
400         }
401         case KVM_CPUID_SIGNATURE: {
402                 static const char signature[12] = "KVMKVMKVM\0\0";
403                 const u32 *sigptr = (const u32 *)signature;
404                 entry->eax = KVM_CPUID_FEATURES;
405                 entry->ebx = sigptr[0];
406                 entry->ecx = sigptr[1];
407                 entry->edx = sigptr[2];
408                 break;
409         }
410         case KVM_CPUID_FEATURES:
411                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
412                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
413                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
414                              (1 << KVM_FEATURE_ASYNC_PF) |
415                              (1 << KVM_FEATURE_PV_EOI) |
416                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
417
418                 if (sched_info_on())
419                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
420
421                 entry->ebx = 0;
422                 entry->ecx = 0;
423                 entry->edx = 0;
424                 break;
425         case 0x80000000:
426                 entry->eax = min(entry->eax, 0x8000001a);
427                 break;
428         case 0x80000001:
429                 entry->edx &= kvm_supported_word1_x86_features;
430                 cpuid_mask(&entry->edx, 1);
431                 entry->ecx &= kvm_supported_word6_x86_features;
432                 cpuid_mask(&entry->ecx, 6);
433                 break;
434         case 0x80000008: {
435                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
436                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
437                 unsigned phys_as = entry->eax & 0xff;
438
439                 if (!g_phys_as)
440                         g_phys_as = phys_as;
441                 entry->eax = g_phys_as | (virt_as << 8);
442                 entry->ebx = entry->edx = 0;
443                 break;
444         }
445         case 0x80000019:
446                 entry->ecx = entry->edx = 0;
447                 break;
448         case 0x8000001a:
449                 break;
450         case 0x8000001d:
451                 break;
452         /*Add support for Centaur's CPUID instruction*/
453         case 0xC0000000:
454                 /*Just support up to 0xC0000004 now*/
455                 entry->eax = min(entry->eax, 0xC0000004);
456                 break;
457         case 0xC0000001:
458                 entry->edx &= kvm_supported_word5_x86_features;
459                 cpuid_mask(&entry->edx, 5);
460                 break;
461         case 3: /* Processor serial number */
462         case 5: /* MONITOR/MWAIT */
463         case 6: /* Thermal management */
464         case 0x80000007: /* Advanced power management */
465         case 0xC0000002:
466         case 0xC0000003:
467         case 0xC0000004:
468         default:
469                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
470                 break;
471         }
472
473         kvm_x86_ops->set_supported_cpuid(function, entry);
474
475         r = 0;
476
477 out:
478         put_cpu();
479
480         return r;
481 }
482
483 #undef F
484
485 struct kvm_cpuid_param {
486         u32 func;
487         u32 idx;
488         bool has_leaf_count;
489         bool (*qualifier)(const struct kvm_cpuid_param *param);
490 };
491
492 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
493 {
494         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
495 }
496
497 int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
498                                       struct kvm_cpuid_entry2 __user *entries)
499 {
500         struct kvm_cpuid_entry2 *cpuid_entries;
501         int limit, nent = 0, r = -E2BIG, i;
502         u32 func;
503         static const struct kvm_cpuid_param param[] = {
504                 { .func = 0, .has_leaf_count = true },
505                 { .func = 0x80000000, .has_leaf_count = true },
506                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
507                 { .func = KVM_CPUID_SIGNATURE },
508                 { .func = KVM_CPUID_FEATURES },
509         };
510
511         if (cpuid->nent < 1)
512                 goto out;
513         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
514                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
515         r = -ENOMEM;
516         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
517         if (!cpuid_entries)
518                 goto out;
519
520         r = 0;
521         for (i = 0; i < ARRAY_SIZE(param); i++) {
522                 const struct kvm_cpuid_param *ent = &param[i];
523
524                 if (ent->qualifier && !ent->qualifier(ent))
525                         continue;
526
527                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
528                                 &nent, cpuid->nent);
529
530                 if (r)
531                         goto out_free;
532
533                 if (!ent->has_leaf_count)
534                         continue;
535
536                 limit = cpuid_entries[nent - 1].eax;
537                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
538                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
539                                      &nent, cpuid->nent);
540
541                 if (r)
542                         goto out_free;
543         }
544
545         r = -EFAULT;
546         if (copy_to_user(entries, cpuid_entries,
547                          nent * sizeof(struct kvm_cpuid_entry2)))
548                 goto out_free;
549         cpuid->nent = nent;
550         r = 0;
551
552 out_free:
553         vfree(cpuid_entries);
554 out:
555         return r;
556 }
557
558 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
559 {
560         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
561         int j, nent = vcpu->arch.cpuid_nent;
562
563         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
564         /* when no next entry is found, the current entry[i] is reselected */
565         for (j = i + 1; ; j = (j + 1) % nent) {
566                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
567                 if (ej->function == e->function) {
568                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
569                         return j;
570                 }
571         }
572         return 0; /* silence gcc, even though control never reaches here */
573 }
574
575 /* find an entry with matching function, matching index (if needed), and that
576  * should be read next (if it's stateful) */
577 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
578         u32 function, u32 index)
579 {
580         if (e->function != function)
581                 return 0;
582         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
583                 return 0;
584         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
585             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
586                 return 0;
587         return 1;
588 }
589
590 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
591                                               u32 function, u32 index)
592 {
593         int i;
594         struct kvm_cpuid_entry2 *best = NULL;
595
596         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
597                 struct kvm_cpuid_entry2 *e;
598
599                 e = &vcpu->arch.cpuid_entries[i];
600                 if (is_matching_cpuid_entry(e, function, index)) {
601                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
602                                 move_to_next_stateful_cpuid_entry(vcpu, i);
603                         best = e;
604                         break;
605                 }
606         }
607         return best;
608 }
609 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
610
611 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
612 {
613         struct kvm_cpuid_entry2 *best;
614
615         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
616         if (!best || best->eax < 0x80000008)
617                 goto not_found;
618         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
619         if (best)
620                 return best->eax & 0xff;
621 not_found:
622         return 36;
623 }
624
625 /*
626  * If no match is found, check whether we exceed the vCPU's limit
627  * and return the content of the highest valid _standard_ leaf instead.
628  * This is to satisfy the CPUID specification.
629  */
630 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
631                                                   u32 function, u32 index)
632 {
633         struct kvm_cpuid_entry2 *maxlevel;
634
635         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
636         if (!maxlevel || maxlevel->eax >= function)
637                 return NULL;
638         if (function & 0x80000000) {
639                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
640                 if (!maxlevel)
641                         return NULL;
642         }
643         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
644 }
645
646 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
647 {
648         u32 function = *eax, index = *ecx;
649         struct kvm_cpuid_entry2 *best;
650
651         best = kvm_find_cpuid_entry(vcpu, function, index);
652
653         if (!best)
654                 best = check_cpuid_limit(vcpu, function, index);
655
656         if (best) {
657                 *eax = best->eax;
658                 *ebx = best->ebx;
659                 *ecx = best->ecx;
660                 *edx = best->edx;
661         } else
662                 *eax = *ebx = *ecx = *edx = 0;
663 }
664
665 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
666 {
667         u32 function, eax, ebx, ecx, edx;
668
669         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
670         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
671         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
672         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
673         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
674         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
675         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
676         kvm_x86_ops->skip_emulated_instruction(vcpu);
677         trace_kvm_cpuid(function, eax, ebx, ecx, edx);
678 }
679 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);