OSDN Git Service

Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         best->edx &= ~F(APIC);
84         if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85                 best->edx |= F(APIC);
86
87         if (apic) {
88                 if (best->ecx & F(TSC_DEADLINE_TIMER))
89                         apic->lapic_timer.timer_mode_mask = 3 << 17;
90                 else
91                         apic->lapic_timer.timer_mode_mask = 1 << 17;
92         }
93
94         best = kvm_find_cpuid_entry(vcpu, 7, 0);
95         if (best) {
96                 /* Update OSPKE bit */
97                 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98                         best->ecx &= ~F(OSPKE);
99                         if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100                                 best->ecx |= F(OSPKE);
101                 }
102         }
103
104         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105         if (!best) {
106                 vcpu->arch.guest_supported_xcr0 = 0;
107                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108         } else {
109                 vcpu->arch.guest_supported_xcr0 =
110                         (best->eax | ((u64)best->edx << 32)) &
111                         kvm_supported_xcr0();
112                 vcpu->arch.guest_xstate_size = best->ebx =
113                         xstate_required_size(vcpu->arch.xcr0, false);
114         }
115
116         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120         /*
121          * The existing code assumes virtual address is 48-bit or 57-bit in the
122          * canonical address checks; exit if it is ever changed.
123          */
124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125         if (best) {
126                 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129                         return -EINVAL;
130         }
131
132         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139                 if (best) {
140                         if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141                                 best->ecx |= F(MWAIT);
142                         else
143                                 best->ecx &= ~F(MWAIT);
144                 }
145         }
146
147         /* Update physical-address width */
148         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149         kvm_mmu_reset_context(vcpu);
150
151         kvm_pmu_refresh(vcpu);
152         return 0;
153 }
154
155 static int is_efer_nx(void)
156 {
157         unsigned long long efer = 0;
158
159         rdmsrl_safe(MSR_EFER, &efer);
160         return efer & EFER_NX;
161 }
162
163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         struct kvm_cpuid_entry2 *e, *entry;
167
168         entry = NULL;
169         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170                 e = &vcpu->arch.cpuid_entries[i];
171                 if (e->function == 0x80000001) {
172                         entry = e;
173                         break;
174                 }
175         }
176         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177                 entry->edx &= ~F(NX);
178                 printk(KERN_INFO "kvm: guest NX capability removed\n");
179         }
180 }
181
182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183 {
184         struct kvm_cpuid_entry2 *best;
185
186         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187         if (!best || best->eax < 0x80000008)
188                 goto not_found;
189         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190         if (best)
191                 return best->eax & 0xff;
192 not_found:
193         return 36;
194 }
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197 /* when an old userspace process fills a new kernel module */
198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199                              struct kvm_cpuid *cpuid,
200                              struct kvm_cpuid_entry __user *entries)
201 {
202         int r, i;
203         struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205         r = -E2BIG;
206         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207                 goto out;
208         r = -ENOMEM;
209         if (cpuid->nent) {
210                 cpuid_entries =
211                         vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212                                            cpuid->nent));
213                 if (!cpuid_entries)
214                         goto out;
215                 r = -EFAULT;
216                 if (copy_from_user(cpuid_entries, entries,
217                                    cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218                         goto out;
219         }
220         for (i = 0; i < cpuid->nent; i++) {
221                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226                 vcpu->arch.cpuid_entries[i].index = 0;
227                 vcpu->arch.cpuid_entries[i].flags = 0;
228                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231         }
232         vcpu->arch.cpuid_nent = cpuid->nent;
233         cpuid_fix_nx_cap(vcpu);
234         kvm_apic_set_version(vcpu);
235         kvm_x86_ops->cpuid_update(vcpu);
236         r = kvm_update_cpuid(vcpu);
237
238 out:
239         vfree(cpuid_entries);
240         return r;
241 }
242
243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244                               struct kvm_cpuid2 *cpuid,
245                               struct kvm_cpuid_entry2 __user *entries)
246 {
247         int r;
248
249         r = -E2BIG;
250         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251                 goto out;
252         r = -EFAULT;
253         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255                 goto out;
256         vcpu->arch.cpuid_nent = cpuid->nent;
257         kvm_apic_set_version(vcpu);
258         kvm_x86_ops->cpuid_update(vcpu);
259         r = kvm_update_cpuid(vcpu);
260 out:
261         return r;
262 }
263
264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265                               struct kvm_cpuid2 *cpuid,
266                               struct kvm_cpuid_entry2 __user *entries)
267 {
268         int r;
269
270         r = -E2BIG;
271         if (cpuid->nent < vcpu->arch.cpuid_nent)
272                 goto out;
273         r = -EFAULT;
274         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276                 goto out;
277         return 0;
278
279 out:
280         cpuid->nent = vcpu->arch.cpuid_nent;
281         return r;
282 }
283
284 static void cpuid_mask(u32 *word, int wordnum)
285 {
286         *word &= boot_cpu_data.x86_capability[wordnum];
287 }
288
289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290                            u32 index)
291 {
292         entry->function = function;
293         entry->index = index;
294         entry->flags = 0;
295
296         cpuid_count(entry->function, entry->index,
297                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299         switch (function) {
300         case 2:
301                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302                 break;
303         case 4:
304         case 7:
305         case 0xb:
306         case 0xd:
307         case 0x14:
308         case 0x8000001d:
309                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
310                 break;
311         }
312 }
313
314 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
315                                     u32 func, int *nent, int maxnent)
316 {
317         entry->function = func;
318         entry->index = 0;
319         entry->flags = 0;
320
321         switch (func) {
322         case 0:
323                 entry->eax = 7;
324                 ++*nent;
325                 break;
326         case 1:
327                 entry->ecx = F(MOVBE);
328                 ++*nent;
329                 break;
330         case 7:
331                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
332                 entry->eax = 0;
333                 entry->ecx = F(RDPID);
334                 ++*nent;
335         default:
336                 break;
337         }
338
339         return 0;
340 }
341
342 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
343 {
344         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
345         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
346         unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
347         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
348         unsigned f_la57;
349
350         /* cpuid 7.0.ebx */
351         const u32 kvm_cpuid_7_0_ebx_x86_features =
352                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
353                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
354                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
355                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
356                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
357
358         /* cpuid 7.0.ecx*/
359         const u32 kvm_cpuid_7_0_ecx_x86_features =
360                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
361                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
362                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
363                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
364
365         /* cpuid 7.0.edx*/
366         const u32 kvm_cpuid_7_0_edx_x86_features =
367                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
368                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
369                 F(MD_CLEAR);
370
371         switch (index) {
372         case 0:
373                 entry->eax = 0;
374                 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
375                 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
376                 /* TSC_ADJUST is emulated */
377                 entry->ebx |= F(TSC_ADJUST);
378
379                 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
380                 f_la57 = entry->ecx & F(LA57);
381                 cpuid_mask(&entry->ecx, CPUID_7_ECX);
382                 /* Set LA57 based on hardware capability. */
383                 entry->ecx |= f_la57;
384                 entry->ecx |= f_umip;
385                 /* PKU is not yet implemented for shadow paging. */
386                 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
387                         entry->ecx &= ~F(PKU);
388
389                 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
390                 cpuid_mask(&entry->edx, CPUID_7_EDX);
391                 /*
392                  * We emulate ARCH_CAPABILITIES in software even
393                  * if the host doesn't support it.
394                  */
395                 entry->edx |= F(ARCH_CAPABILITIES);
396                 break;
397         default:
398                 WARN_ON_ONCE(1);
399                 entry->eax = 0;
400                 entry->ebx = 0;
401                 entry->ecx = 0;
402                 entry->edx = 0;
403                 break;
404         }
405 }
406
407 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
408                                   int *nent, int maxnent)
409 {
410         int r;
411         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
412 #ifdef CONFIG_X86_64
413         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
414                                 ? F(GBPAGES) : 0;
415         unsigned f_lm = F(LM);
416 #else
417         unsigned f_gbpages = 0;
418         unsigned f_lm = 0;
419 #endif
420         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
421         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
422         unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
423
424         /* cpuid 1.edx */
425         const u32 kvm_cpuid_1_edx_x86_features =
426                 F(FPU) | F(VME) | F(DE) | F(PSE) |
427                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
428                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
429                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
430                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
431                 0 /* Reserved, DS, ACPI */ | F(MMX) |
432                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
433                 0 /* HTT, TM, Reserved, PBE */;
434         /* cpuid 0x80000001.edx */
435         const u32 kvm_cpuid_8000_0001_edx_x86_features =
436                 F(FPU) | F(VME) | F(DE) | F(PSE) |
437                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
438                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
439                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
440                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
441                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
442                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
443                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
444         /* cpuid 1.ecx */
445         const u32 kvm_cpuid_1_ecx_x86_features =
446                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
447                  * but *not* advertised to guests via CPUID ! */
448                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
449                 0 /* DS-CPL, VMX, SMX, EST */ |
450                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
451                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
452                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
453                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
454                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
455                 F(F16C) | F(RDRAND);
456         /* cpuid 0x80000001.ecx */
457         const u32 kvm_cpuid_8000_0001_ecx_x86_features =
458                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
459                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
460                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
461                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
462                 F(TOPOEXT) | F(PERFCTR_CORE);
463
464         /* cpuid 0x80000008.ebx */
465         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
466                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
467                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
468
469         /* cpuid 0xC0000001.edx */
470         const u32 kvm_cpuid_C000_0001_edx_x86_features =
471                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
472                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
473                 F(PMM) | F(PMM_EN);
474
475         /* cpuid 0xD.1.eax */
476         const u32 kvm_cpuid_D_1_eax_x86_features =
477                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
478
479         /* all calls to cpuid_count() should be made on the same cpu */
480         get_cpu();
481
482         r = -E2BIG;
483
484         if (*nent >= maxnent)
485                 goto out;
486
487         do_host_cpuid(entry, function, 0);
488         ++*nent;
489
490         switch (function) {
491         case 0:
492                 /* Limited to the highest leaf implemented in KVM. */
493                 entry->eax = min(entry->eax, 0x1fU);
494                 break;
495         case 1:
496                 entry->edx &= kvm_cpuid_1_edx_x86_features;
497                 cpuid_mask(&entry->edx, CPUID_1_EDX);
498                 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
499                 cpuid_mask(&entry->ecx, CPUID_1_ECX);
500                 /* we support x2apic emulation even if host does not support
501                  * it since we emulate x2apic in software */
502                 entry->ecx |= F(X2APIC);
503                 break;
504         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
505          * may return different values. This forces us to get_cpu() before
506          * issuing the first command, and also to emulate this annoying behavior
507          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
508         case 2: {
509                 int t, times = entry->eax & 0xff;
510
511                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
512                 for (t = 1; t < times; ++t) {
513                         if (*nent >= maxnent)
514                                 goto out;
515
516                         do_host_cpuid(&entry[t], function, 0);
517                         ++*nent;
518                 }
519                 break;
520         }
521         /* functions 4 and 0x8000001d have additional index. */
522         case 4:
523         case 0x8000001d: {
524                 int i, cache_type;
525
526                 /* read more entries until cache_type is zero */
527                 for (i = 1; ; ++i) {
528                         if (*nent >= maxnent)
529                                 goto out;
530
531                         cache_type = entry[i - 1].eax & 0x1f;
532                         if (!cache_type)
533                                 break;
534                         do_host_cpuid(&entry[i], function, i);
535                         ++*nent;
536                 }
537                 break;
538         }
539         case 6: /* Thermal management */
540                 entry->eax = 0x4; /* allow ARAT */
541                 entry->ebx = 0;
542                 entry->ecx = 0;
543                 entry->edx = 0;
544                 break;
545         /* function 7 has additional index. */
546         case 7: {
547                 int i;
548
549                 for (i = 0; ; ) {
550                         do_cpuid_7_mask(&entry[i], i);
551                         if (i == entry->eax)
552                                 break;
553                         if (*nent >= maxnent)
554                                 goto out;
555
556                         ++i;
557                         do_host_cpuid(&entry[i], function, i);
558                         ++*nent;
559                 }
560                 break;
561         }
562         case 9:
563                 break;
564         case 0xa: { /* Architectural Performance Monitoring */
565                 struct x86_pmu_capability cap;
566                 union cpuid10_eax eax;
567                 union cpuid10_edx edx;
568
569                 perf_get_x86_pmu_capability(&cap);
570
571                 /*
572                  * Only support guest architectural pmu on a host
573                  * with architectural pmu.
574                  */
575                 if (!cap.version)
576                         memset(&cap, 0, sizeof(cap));
577
578                 eax.split.version_id = min(cap.version, 2);
579                 eax.split.num_counters = cap.num_counters_gp;
580                 eax.split.bit_width = cap.bit_width_gp;
581                 eax.split.mask_length = cap.events_mask_len;
582
583                 edx.split.num_counters_fixed = cap.num_counters_fixed;
584                 edx.split.bit_width_fixed = cap.bit_width_fixed;
585                 edx.split.reserved = 0;
586
587                 entry->eax = eax.full;
588                 entry->ebx = cap.events_mask;
589                 entry->ecx = 0;
590                 entry->edx = edx.full;
591                 break;
592         }
593         /*
594          * Per Intel's SDM, the 0x1f is a superset of 0xb,
595          * thus they can be handled by common code.
596          */
597         case 0x1f:
598         case 0xb: {
599                 int i, level_type;
600
601                 /* read more entries until level_type is zero */
602                 for (i = 1; ; ++i) {
603                         if (*nent >= maxnent)
604                                 goto out;
605
606                         level_type = entry[i - 1].ecx & 0xff00;
607                         if (!level_type)
608                                 break;
609                         do_host_cpuid(&entry[i], function, i);
610                         ++*nent;
611                 }
612                 break;
613         }
614         case 0xd: {
615                 int idx, i;
616                 u64 supported = kvm_supported_xcr0();
617
618                 entry->eax &= supported;
619                 entry->ebx = xstate_required_size(supported, false);
620                 entry->ecx = entry->ebx;
621                 entry->edx &= supported >> 32;
622                 if (!supported)
623                         break;
624
625                 for (idx = 1, i = 1; idx < 64; ++idx) {
626                         u64 mask = ((u64)1 << idx);
627                         if (*nent >= maxnent)
628                                 goto out;
629
630                         do_host_cpuid(&entry[i], function, idx);
631                         if (idx == 1) {
632                                 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
633                                 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
634                                 entry[i].ebx = 0;
635                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
636                                         entry[i].ebx =
637                                                 xstate_required_size(supported,
638                                                                      true);
639                         } else {
640                                 if (entry[i].eax == 0 || !(supported & mask))
641                                         continue;
642                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
643                                         continue;
644                         }
645                         entry[i].ecx = 0;
646                         entry[i].edx = 0;
647                         ++*nent;
648                         ++i;
649                 }
650                 break;
651         }
652         /* Intel PT */
653         case 0x14: {
654                 int t, times = entry->eax;
655
656                 if (!f_intel_pt)
657                         break;
658
659                 for (t = 1; t <= times; ++t) {
660                         if (*nent >= maxnent)
661                                 goto out;
662                         do_host_cpuid(&entry[t], function, t);
663                         ++*nent;
664                 }
665                 break;
666         }
667         case KVM_CPUID_SIGNATURE: {
668                 static const char signature[12] = "KVMKVMKVM\0\0";
669                 const u32 *sigptr = (const u32 *)signature;
670                 entry->eax = KVM_CPUID_FEATURES;
671                 entry->ebx = sigptr[0];
672                 entry->ecx = sigptr[1];
673                 entry->edx = sigptr[2];
674                 break;
675         }
676         case KVM_CPUID_FEATURES:
677                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
678                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
679                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
680                              (1 << KVM_FEATURE_ASYNC_PF) |
681                              (1 << KVM_FEATURE_PV_EOI) |
682                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
683                              (1 << KVM_FEATURE_PV_UNHALT) |
684                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
685                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
686                              (1 << KVM_FEATURE_PV_SEND_IPI) |
687                              (1 << KVM_FEATURE_POLL_CONTROL) |
688                              (1 << KVM_FEATURE_PV_SCHED_YIELD);
689
690                 if (sched_info_on())
691                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
692
693                 entry->ebx = 0;
694                 entry->ecx = 0;
695                 entry->edx = 0;
696                 break;
697         case 0x80000000:
698                 entry->eax = min(entry->eax, 0x8000001f);
699                 break;
700         case 0x80000001:
701                 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
702                 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
703                 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
704                 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
705                 break;
706         case 0x80000007: /* Advanced power management */
707                 /* invariant TSC is CPUID.80000007H:EDX[8] */
708                 entry->edx &= (1 << 8);
709                 /* mask against host */
710                 entry->edx &= boot_cpu_data.x86_power;
711                 entry->eax = entry->ebx = entry->ecx = 0;
712                 break;
713         case 0x80000008: {
714                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
715                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
716                 unsigned phys_as = entry->eax & 0xff;
717
718                 if (!g_phys_as)
719                         g_phys_as = phys_as;
720                 entry->eax = g_phys_as | (virt_as << 8);
721                 entry->edx = 0;
722                 /*
723                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
724                  * hardware cpuid
725                  */
726                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
727                         entry->ebx |= F(AMD_IBPB);
728                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
729                         entry->ebx |= F(AMD_IBRS);
730                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
731                         entry->ebx |= F(VIRT_SSBD);
732                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
733                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
734                 /*
735                  * The preference is to use SPEC CTRL MSR instead of the
736                  * VIRT_SPEC MSR.
737                  */
738                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
739                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
740                         entry->ebx |= F(VIRT_SSBD);
741                 break;
742         }
743         case 0x80000019:
744                 entry->ecx = entry->edx = 0;
745                 break;
746         case 0x8000001a:
747         case 0x8000001e:
748                 break;
749         /*Add support for Centaur's CPUID instruction*/
750         case 0xC0000000:
751                 /*Just support up to 0xC0000004 now*/
752                 entry->eax = min(entry->eax, 0xC0000004);
753                 break;
754         case 0xC0000001:
755                 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
756                 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
757                 break;
758         case 3: /* Processor serial number */
759         case 5: /* MONITOR/MWAIT */
760         case 0xC0000002:
761         case 0xC0000003:
762         case 0xC0000004:
763         default:
764                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
765                 break;
766         }
767
768         kvm_x86_ops->set_supported_cpuid(function, entry);
769
770         r = 0;
771
772 out:
773         put_cpu();
774
775         return r;
776 }
777
778 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
779                          int *nent, int maxnent, unsigned int type)
780 {
781         if (type == KVM_GET_EMULATED_CPUID)
782                 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
783
784         return __do_cpuid_func(entry, func, nent, maxnent);
785 }
786
787 #undef F
788
789 struct kvm_cpuid_param {
790         u32 func;
791         bool (*qualifier)(const struct kvm_cpuid_param *param);
792 };
793
794 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
795 {
796         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
797 }
798
799 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
800                                  __u32 num_entries, unsigned int ioctl_type)
801 {
802         int i;
803         __u32 pad[3];
804
805         if (ioctl_type != KVM_GET_EMULATED_CPUID)
806                 return false;
807
808         /*
809          * We want to make sure that ->padding is being passed clean from
810          * userspace in case we want to use it for something in the future.
811          *
812          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
813          * have to give ourselves satisfied only with the emulated side. /me
814          * sheds a tear.
815          */
816         for (i = 0; i < num_entries; i++) {
817                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
818                         return true;
819
820                 if (pad[0] || pad[1] || pad[2])
821                         return true;
822         }
823         return false;
824 }
825
826 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
827                             struct kvm_cpuid_entry2 __user *entries,
828                             unsigned int type)
829 {
830         struct kvm_cpuid_entry2 *cpuid_entries;
831         int limit, nent = 0, r = -E2BIG, i;
832         u32 func;
833         static const struct kvm_cpuid_param param[] = {
834                 { .func = 0 },
835                 { .func = 0x80000000 },
836                 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
837                 { .func = KVM_CPUID_SIGNATURE },
838         };
839
840         if (cpuid->nent < 1)
841                 goto out;
842         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
843                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
844
845         if (sanity_check_entries(entries, cpuid->nent, type))
846                 return -EINVAL;
847
848         r = -ENOMEM;
849         cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
850                                            cpuid->nent));
851         if (!cpuid_entries)
852                 goto out;
853
854         r = 0;
855         for (i = 0; i < ARRAY_SIZE(param); i++) {
856                 const struct kvm_cpuid_param *ent = &param[i];
857
858                 if (ent->qualifier && !ent->qualifier(ent))
859                         continue;
860
861                 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
862                                   &nent, cpuid->nent, type);
863
864                 if (r)
865                         goto out_free;
866
867                 limit = cpuid_entries[nent - 1].eax;
868                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
869                         r = do_cpuid_func(&cpuid_entries[nent], func,
870                                           &nent, cpuid->nent, type);
871
872                 if (r)
873                         goto out_free;
874         }
875
876         r = -EFAULT;
877         if (copy_to_user(entries, cpuid_entries,
878                          nent * sizeof(struct kvm_cpuid_entry2)))
879                 goto out_free;
880         cpuid->nent = nent;
881         r = 0;
882
883 out_free:
884         vfree(cpuid_entries);
885 out:
886         return r;
887 }
888
889 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
890 {
891         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
892         struct kvm_cpuid_entry2 *ej;
893         int j = i;
894         int nent = vcpu->arch.cpuid_nent;
895
896         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
897         /* when no next entry is found, the current entry[i] is reselected */
898         do {
899                 j = (j + 1) % nent;
900                 ej = &vcpu->arch.cpuid_entries[j];
901         } while (ej->function != e->function);
902
903         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
904
905         return j;
906 }
907
908 /* find an entry with matching function, matching index (if needed), and that
909  * should be read next (if it's stateful) */
910 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
911         u32 function, u32 index)
912 {
913         if (e->function != function)
914                 return 0;
915         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
916                 return 0;
917         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
918             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
919                 return 0;
920         return 1;
921 }
922
923 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
924                                               u32 function, u32 index)
925 {
926         int i;
927         struct kvm_cpuid_entry2 *best = NULL;
928
929         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
930                 struct kvm_cpuid_entry2 *e;
931
932                 e = &vcpu->arch.cpuid_entries[i];
933                 if (is_matching_cpuid_entry(e, function, index)) {
934                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
935                                 move_to_next_stateful_cpuid_entry(vcpu, i);
936                         best = e;
937                         break;
938                 }
939         }
940         return best;
941 }
942 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
943
944 /*
945  * If no match is found, check whether we exceed the vCPU's limit
946  * and return the content of the highest valid _standard_ leaf instead.
947  * This is to satisfy the CPUID specification.
948  */
949 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
950                                                   u32 function, u32 index)
951 {
952         struct kvm_cpuid_entry2 *maxlevel;
953
954         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
955         if (!maxlevel || maxlevel->eax >= function)
956                 return NULL;
957         if (function & 0x80000000) {
958                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
959                 if (!maxlevel)
960                         return NULL;
961         }
962         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
963 }
964
965 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
966                u32 *ecx, u32 *edx, bool check_limit)
967 {
968         u32 function = *eax, index = *ecx;
969         struct kvm_cpuid_entry2 *best;
970         bool entry_found = true;
971
972         best = kvm_find_cpuid_entry(vcpu, function, index);
973
974         if (!best) {
975                 entry_found = false;
976                 if (!check_limit)
977                         goto out;
978
979                 best = check_cpuid_limit(vcpu, function, index);
980         }
981
982 out:
983         if (best) {
984                 *eax = best->eax;
985                 *ebx = best->ebx;
986                 *ecx = best->ecx;
987                 *edx = best->edx;
988         } else
989                 *eax = *ebx = *ecx = *edx = 0;
990         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
991         return entry_found;
992 }
993 EXPORT_SYMBOL_GPL(kvm_cpuid);
994
995 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
996 {
997         u32 eax, ebx, ecx, edx;
998
999         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1000                 return 1;
1001
1002         eax = kvm_rax_read(vcpu);
1003         ecx = kvm_rcx_read(vcpu);
1004         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1005         kvm_rax_write(vcpu, eax);
1006         kvm_rbx_write(vcpu, ebx);
1007         kvm_rcx_write(vcpu, ecx);
1008         kvm_rdx_write(vcpu, edx);
1009         return kvm_skip_emulated_instruction(vcpu);
1010 }
1011 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);