OSDN Git Service

KVM: x86: Refactor picdev_write() to prevent Spectre-v1/L1TF attacks
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29         int feature_bit = 0;
30         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32         xstate_bv &= XFEATURE_MASK_EXTEND;
33         while (xstate_bv) {
34                 if (xstate_bv & 0x1) {
35                         u32 eax, ebx, ecx, edx, offset;
36                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37                         offset = compacted ? ret : ebx;
38                         ret = max(ret, offset + eax);
39                 }
40
41                 xstate_bv >>= 1;
42                 feature_bit++;
43         }
44
45         return ret;
46 }
47
48 bool kvm_mpx_supported(void)
49 {
50         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51                  && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55 u64 kvm_supported_xcr0(void)
56 {
57         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59         if (!kvm_mpx_supported())
60                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62         return xcr0;
63 }
64
65 #define F(x) bit(X86_FEATURE_##x)
66
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69         struct kvm_cpuid_entry2 *best;
70         struct kvm_lapic *apic = vcpu->arch.apic;
71
72         best = kvm_find_cpuid_entry(vcpu, 1, 0);
73         if (!best)
74                 return 0;
75
76         /* Update OSXSAVE bit */
77         if (cpu_has_xsave && best->function == 0x1) {
78                 best->ecx &= ~F(OSXSAVE);
79                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80                         best->ecx |= F(OSXSAVE);
81         }
82
83         if (apic) {
84                 if (best->ecx & F(TSC_DEADLINE_TIMER))
85                         apic->lapic_timer.timer_mode_mask = 3 << 17;
86                 else
87                         apic->lapic_timer.timer_mode_mask = 1 << 17;
88         }
89
90         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
91         if (!best) {
92                 vcpu->arch.guest_supported_xcr0 = 0;
93                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
94         } else {
95                 vcpu->arch.guest_supported_xcr0 =
96                         (best->eax | ((u64)best->edx << 32)) &
97                         kvm_supported_xcr0();
98                 vcpu->arch.guest_xstate_size = best->ebx =
99                         xstate_required_size(vcpu->arch.xcr0, false);
100         }
101
102         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
103         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
104                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
105
106         kvm_x86_ops->fpu_activate(vcpu);
107
108         /*
109          * The existing code assumes virtual address is 48-bit in the canonical
110          * address checks; exit if it is ever changed.
111          */
112         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
113         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
114                 ((best->eax & 0xff00) >> 8) != 0)
115                 return -EINVAL;
116
117         /* Update physical-address width */
118         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
119
120         kvm_pmu_refresh(vcpu);
121         return 0;
122 }
123
124 static int is_efer_nx(void)
125 {
126         unsigned long long efer = 0;
127
128         rdmsrl_safe(MSR_EFER, &efer);
129         return efer & EFER_NX;
130 }
131
132 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
133 {
134         int i;
135         struct kvm_cpuid_entry2 *e, *entry;
136
137         entry = NULL;
138         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
139                 e = &vcpu->arch.cpuid_entries[i];
140                 if (e->function == 0x80000001) {
141                         entry = e;
142                         break;
143                 }
144         }
145         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
146                 entry->edx &= ~F(NX);
147                 printk(KERN_INFO "kvm: guest NX capability removed\n");
148         }
149 }
150
151 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
152 {
153         struct kvm_cpuid_entry2 *best;
154
155         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
156         if (!best || best->eax < 0x80000008)
157                 goto not_found;
158         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
159         if (best)
160                 return best->eax & 0xff;
161 not_found:
162         return 36;
163 }
164 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
165
166 /* when an old userspace process fills a new kernel module */
167 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
168                              struct kvm_cpuid *cpuid,
169                              struct kvm_cpuid_entry __user *entries)
170 {
171         int r, i;
172         struct kvm_cpuid_entry *cpuid_entries;
173
174         r = -E2BIG;
175         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
176                 goto out;
177         r = -ENOMEM;
178         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
179         if (!cpuid_entries)
180                 goto out;
181         r = -EFAULT;
182         if (copy_from_user(cpuid_entries, entries,
183                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
184                 goto out_free;
185         for (i = 0; i < cpuid->nent; i++) {
186                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
187                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
188                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
189                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
190                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
191                 vcpu->arch.cpuid_entries[i].index = 0;
192                 vcpu->arch.cpuid_entries[i].flags = 0;
193                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
194                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
195                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
196         }
197         vcpu->arch.cpuid_nent = cpuid->nent;
198         cpuid_fix_nx_cap(vcpu);
199         kvm_apic_set_version(vcpu);
200         kvm_x86_ops->cpuid_update(vcpu);
201         r = kvm_update_cpuid(vcpu);
202
203 out_free:
204         vfree(cpuid_entries);
205 out:
206         return r;
207 }
208
209 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
210                               struct kvm_cpuid2 *cpuid,
211                               struct kvm_cpuid_entry2 __user *entries)
212 {
213         int r;
214
215         r = -E2BIG;
216         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
217                 goto out;
218         r = -EFAULT;
219         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
220                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
221                 goto out;
222         vcpu->arch.cpuid_nent = cpuid->nent;
223         kvm_apic_set_version(vcpu);
224         kvm_x86_ops->cpuid_update(vcpu);
225         r = kvm_update_cpuid(vcpu);
226 out:
227         return r;
228 }
229
230 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
231                               struct kvm_cpuid2 *cpuid,
232                               struct kvm_cpuid_entry2 __user *entries)
233 {
234         int r;
235
236         r = -E2BIG;
237         if (cpuid->nent < vcpu->arch.cpuid_nent)
238                 goto out;
239         r = -EFAULT;
240         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
241                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
242                 goto out;
243         return 0;
244
245 out:
246         cpuid->nent = vcpu->arch.cpuid_nent;
247         return r;
248 }
249
250 static void cpuid_mask(u32 *word, int wordnum)
251 {
252         *word &= boot_cpu_data.x86_capability[wordnum];
253 }
254
255 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
256                            u32 index)
257 {
258         entry->function = function;
259         entry->index = index;
260         cpuid_count(entry->function, entry->index,
261                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
262         entry->flags = 0;
263 }
264
265 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
266                                    u32 func, u32 index, int *nent, int maxnent)
267 {
268         switch (func) {
269         case 0:
270                 entry->eax = 1;         /* only one leaf currently */
271                 ++*nent;
272                 break;
273         case 1:
274                 entry->ecx = F(MOVBE);
275                 ++*nent;
276                 break;
277         default:
278                 break;
279         }
280
281         entry->function = func;
282         entry->index = index;
283
284         return 0;
285 }
286
287 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
288                                  u32 index, int *nent, int maxnent)
289 {
290         int r;
291         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
292 #ifdef CONFIG_X86_64
293         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
294                                 ? F(GBPAGES) : 0;
295         unsigned f_lm = F(LM);
296 #else
297         unsigned f_gbpages = 0;
298         unsigned f_lm = 0;
299 #endif
300         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
301         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
302         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
303         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
304
305         /* cpuid 1.edx */
306         const u32 kvm_supported_word0_x86_features =
307                 F(FPU) | F(VME) | F(DE) | F(PSE) |
308                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
309                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
310                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
311                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
312                 0 /* Reserved, DS, ACPI */ | F(MMX) |
313                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
314                 0 /* HTT, TM, Reserved, PBE */;
315         /* cpuid 0x80000001.edx */
316         const u32 kvm_supported_word1_x86_features =
317                 F(FPU) | F(VME) | F(DE) | F(PSE) |
318                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
319                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
320                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
321                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
322                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
323                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
324                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
325         /* cpuid 1.ecx */
326         const u32 kvm_supported_word4_x86_features =
327                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
328                  * but *not* advertised to guests via CPUID ! */
329                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
330                 0 /* DS-CPL, VMX, SMX, EST */ |
331                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
332                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
333                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
334                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
335                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
336                 F(F16C) | F(RDRAND);
337         /* cpuid 0x80000001.ecx */
338         const u32 kvm_supported_word6_x86_features =
339                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
340                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
341                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
342                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
343
344         /* cpuid 0x80000008.ebx */
345         const u32 kvm_cpuid_8000_0008_ebx_x86_features =
346                 F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
347                 F(AMD_SSB_NO) | F(AMD_STIBP);
348
349         /* cpuid 0xC0000001.edx */
350         const u32 kvm_supported_word5_x86_features =
351                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
352                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
353                 F(PMM) | F(PMM_EN);
354
355         /* cpuid 7.0.ebx */
356         const u32 kvm_supported_word9_x86_features =
357                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
358                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
359                 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
360                 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
361
362         /* cpuid 0xD.1.eax */
363         const u32 kvm_supported_word10_x86_features =
364                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
365
366         /* cpuid 7.0.edx*/
367         const u32 kvm_cpuid_7_0_edx_x86_features =
368                 F(SPEC_CTRL) | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) |
369                 F(INTEL_STIBP) | F(MD_CLEAR);
370
371         /* all calls to cpuid_count() should be made on the same cpu */
372         get_cpu();
373
374         r = -E2BIG;
375
376         if (WARN_ON(*nent >= maxnent))
377                 goto out;
378
379         do_cpuid_1_ent(entry, function, index);
380         ++*nent;
381
382         switch (function) {
383         case 0:
384                 entry->eax = min(entry->eax, (u32)0xd);
385                 break;
386         case 1:
387                 entry->edx &= kvm_supported_word0_x86_features;
388                 cpuid_mask(&entry->edx, 0);
389                 entry->ecx &= kvm_supported_word4_x86_features;
390                 cpuid_mask(&entry->ecx, 4);
391                 /* we support x2apic emulation even if host does not support
392                  * it since we emulate x2apic in software */
393                 entry->ecx |= F(X2APIC);
394                 break;
395         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
396          * may return different values. This forces us to get_cpu() before
397          * issuing the first command, and also to emulate this annoying behavior
398          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
399         case 2: {
400                 int t, times = entry->eax & 0xff;
401
402                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
403                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
404                 for (t = 1; t < times; ++t) {
405                         if (*nent >= maxnent)
406                                 goto out;
407
408                         do_cpuid_1_ent(&entry[t], function, 0);
409                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
410                         ++*nent;
411                 }
412                 break;
413         }
414         /* function 4 has additional index. */
415         case 4: {
416                 int i, cache_type;
417
418                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
419                 /* read more entries until cache_type is zero */
420                 for (i = 1; ; ++i) {
421                         if (*nent >= maxnent)
422                                 goto out;
423
424                         cache_type = entry[i - 1].eax & 0x1f;
425                         if (!cache_type)
426                                 break;
427                         do_cpuid_1_ent(&entry[i], function, i);
428                         entry[i].flags |=
429                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
430                         ++*nent;
431                 }
432                 break;
433         }
434         case 6: /* Thermal management */
435                 entry->eax = 0x4; /* allow ARAT */
436                 entry->ebx = 0;
437                 entry->ecx = 0;
438                 entry->edx = 0;
439                 break;
440         case 7: {
441                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
442                 /* Mask ebx against host capability word 9 */
443                 if (index == 0) {
444                         entry->ebx &= kvm_supported_word9_x86_features;
445                         cpuid_mask(&entry->ebx, 9);
446                         // TSC_ADJUST is emulated
447                         entry->ebx |= F(TSC_ADJUST);
448                         entry->edx &= kvm_cpuid_7_0_edx_x86_features;
449                         cpuid_mask(&entry->edx, CPUID_7_EDX);
450                         if (boot_cpu_has(X86_FEATURE_IBPB) &&
451                             boot_cpu_has(X86_FEATURE_IBRS))
452                                 entry->edx |= F(SPEC_CTRL);
453                         if (boot_cpu_has(X86_FEATURE_STIBP))
454                                 entry->edx |= F(INTEL_STIBP);
455                         if (boot_cpu_has(X86_FEATURE_SSBD))
456                                 entry->edx |= F(SPEC_CTRL_SSBD);
457                         /*
458                          * We emulate ARCH_CAPABILITIES in software even
459                          * if the host doesn't support it.
460                          */
461                         entry->edx |= F(ARCH_CAPABILITIES);
462                 } else {
463                         entry->ebx = 0;
464                         entry->edx = 0;
465                 }
466                 entry->eax = 0;
467                 entry->ecx = 0;
468                 break;
469         }
470         case 9:
471                 break;
472         case 0xa: { /* Architectural Performance Monitoring */
473                 struct x86_pmu_capability cap;
474                 union cpuid10_eax eax;
475                 union cpuid10_edx edx;
476
477                 perf_get_x86_pmu_capability(&cap);
478
479                 /*
480                  * Only support guest architectural pmu on a host
481                  * with architectural pmu.
482                  */
483                 if (!cap.version)
484                         memset(&cap, 0, sizeof(cap));
485
486                 eax.split.version_id = min(cap.version, 2);
487                 eax.split.num_counters = cap.num_counters_gp;
488                 eax.split.bit_width = cap.bit_width_gp;
489                 eax.split.mask_length = cap.events_mask_len;
490
491                 edx.split.num_counters_fixed = cap.num_counters_fixed;
492                 edx.split.bit_width_fixed = cap.bit_width_fixed;
493                 edx.split.reserved = 0;
494
495                 entry->eax = eax.full;
496                 entry->ebx = cap.events_mask;
497                 entry->ecx = 0;
498                 entry->edx = edx.full;
499                 break;
500         }
501         /* function 0xb has additional index. */
502         case 0xb: {
503                 int i, level_type;
504
505                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
506                 /* read more entries until level_type is zero */
507                 for (i = 1; ; ++i) {
508                         if (*nent >= maxnent)
509                                 goto out;
510
511                         level_type = entry[i - 1].ecx & 0xff00;
512                         if (!level_type)
513                                 break;
514                         do_cpuid_1_ent(&entry[i], function, i);
515                         entry[i].flags |=
516                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
517                         ++*nent;
518                 }
519                 break;
520         }
521         case 0xd: {
522                 int idx, i;
523                 u64 supported = kvm_supported_xcr0();
524
525                 entry->eax &= supported;
526                 entry->ebx = xstate_required_size(supported, false);
527                 entry->ecx = entry->ebx;
528                 entry->edx &= supported >> 32;
529                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
530                 if (!supported)
531                         break;
532
533                 for (idx = 1, i = 1; idx < 64; ++idx) {
534                         u64 mask = ((u64)1 << idx);
535                         if (*nent >= maxnent)
536                                 goto out;
537
538                         do_cpuid_1_ent(&entry[i], function, idx);
539                         if (idx == 1) {
540                                 entry[i].eax &= kvm_supported_word10_x86_features;
541                                 cpuid_mask(&entry[i].eax, 10);
542                                 entry[i].ebx = 0;
543                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
544                                         entry[i].ebx =
545                                                 xstate_required_size(supported,
546                                                                      true);
547                         } else {
548                                 if (entry[i].eax == 0 || !(supported & mask))
549                                         continue;
550                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
551                                         continue;
552                         }
553                         entry[i].ecx = 0;
554                         entry[i].edx = 0;
555                         entry[i].flags |=
556                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
557                         ++*nent;
558                         ++i;
559                 }
560                 break;
561         }
562         case KVM_CPUID_SIGNATURE: {
563                 static const char signature[12] = "KVMKVMKVM\0\0";
564                 const u32 *sigptr = (const u32 *)signature;
565                 entry->eax = KVM_CPUID_FEATURES;
566                 entry->ebx = sigptr[0];
567                 entry->ecx = sigptr[1];
568                 entry->edx = sigptr[2];
569                 break;
570         }
571         case KVM_CPUID_FEATURES:
572                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
573                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
574                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
575                              (1 << KVM_FEATURE_ASYNC_PF) |
576                              (1 << KVM_FEATURE_PV_EOI) |
577                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
578                              (1 << KVM_FEATURE_PV_UNHALT);
579
580                 if (sched_info_on())
581                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
582
583                 entry->ebx = 0;
584                 entry->ecx = 0;
585                 entry->edx = 0;
586                 break;
587         case 0x80000000:
588                 entry->eax = min(entry->eax, 0x8000001a);
589                 break;
590         case 0x80000001:
591                 entry->edx &= kvm_supported_word1_x86_features;
592                 cpuid_mask(&entry->edx, 1);
593                 entry->ecx &= kvm_supported_word6_x86_features;
594                 cpuid_mask(&entry->ecx, 6);
595                 break;
596         case 0x80000007: /* Advanced power management */
597                 /* invariant TSC is CPUID.80000007H:EDX[8] */
598                 entry->edx &= (1 << 8);
599                 /* mask against host */
600                 entry->edx &= boot_cpu_data.x86_power;
601                 entry->eax = entry->ebx = entry->ecx = 0;
602                 break;
603         case 0x80000008: {
604                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
605                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
606                 unsigned phys_as = entry->eax & 0xff;
607
608                 if (!g_phys_as)
609                         g_phys_as = phys_as;
610                 entry->eax = g_phys_as | (virt_as << 8);
611                 entry->edx = 0;
612                 /*
613                  * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
614                  * hardware cpuid
615                  */
616                 if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
617                         entry->ebx |= F(AMD_IBPB);
618                 if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
619                         entry->ebx |= F(AMD_IBRS);
620                 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
621                         entry->ebx |= F(VIRT_SSBD);
622                 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
623                 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
624                 /*
625                  * The preference is to use SPEC CTRL MSR instead of the
626                  * VIRT_SPEC MSR.
627                  */
628                 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
629                     !boot_cpu_has(X86_FEATURE_AMD_SSBD))
630                         entry->ebx |= F(VIRT_SSBD);
631                 break;
632         }
633         case 0x80000019:
634                 entry->ecx = entry->edx = 0;
635                 break;
636         case 0x8000001a:
637                 break;
638         case 0x8000001d:
639                 break;
640         /*Add support for Centaur's CPUID instruction*/
641         case 0xC0000000:
642                 /*Just support up to 0xC0000004 now*/
643                 entry->eax = min(entry->eax, 0xC0000004);
644                 break;
645         case 0xC0000001:
646                 entry->edx &= kvm_supported_word5_x86_features;
647                 cpuid_mask(&entry->edx, 5);
648                 break;
649         case 3: /* Processor serial number */
650         case 5: /* MONITOR/MWAIT */
651         case 0xC0000002:
652         case 0xC0000003:
653         case 0xC0000004:
654         default:
655                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
656                 break;
657         }
658
659         kvm_x86_ops->set_supported_cpuid(function, entry);
660
661         r = 0;
662
663 out:
664         put_cpu();
665
666         return r;
667 }
668
669 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
670                         u32 idx, int *nent, int maxnent, unsigned int type)
671 {
672         if (*nent >= maxnent)
673                 return -E2BIG;
674
675         if (type == KVM_GET_EMULATED_CPUID)
676                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
677
678         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
679 }
680
681 #undef F
682
683 struct kvm_cpuid_param {
684         u32 func;
685         u32 idx;
686         bool has_leaf_count;
687         bool (*qualifier)(const struct kvm_cpuid_param *param);
688 };
689
690 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
691 {
692         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
693 }
694
695 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
696                                  __u32 num_entries, unsigned int ioctl_type)
697 {
698         int i;
699         __u32 pad[3];
700
701         if (ioctl_type != KVM_GET_EMULATED_CPUID)
702                 return false;
703
704         /*
705          * We want to make sure that ->padding is being passed clean from
706          * userspace in case we want to use it for something in the future.
707          *
708          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
709          * have to give ourselves satisfied only with the emulated side. /me
710          * sheds a tear.
711          */
712         for (i = 0; i < num_entries; i++) {
713                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
714                         return true;
715
716                 if (pad[0] || pad[1] || pad[2])
717                         return true;
718         }
719         return false;
720 }
721
722 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
723                             struct kvm_cpuid_entry2 __user *entries,
724                             unsigned int type)
725 {
726         struct kvm_cpuid_entry2 *cpuid_entries;
727         int limit, nent = 0, r = -E2BIG, i;
728         u32 func;
729         static const struct kvm_cpuid_param param[] = {
730                 { .func = 0, .has_leaf_count = true },
731                 { .func = 0x80000000, .has_leaf_count = true },
732                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
733                 { .func = KVM_CPUID_SIGNATURE },
734                 { .func = KVM_CPUID_FEATURES },
735         };
736
737         if (cpuid->nent < 1)
738                 goto out;
739         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
740                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
741
742         if (sanity_check_entries(entries, cpuid->nent, type))
743                 return -EINVAL;
744
745         r = -ENOMEM;
746         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
747         if (!cpuid_entries)
748                 goto out;
749
750         r = 0;
751         for (i = 0; i < ARRAY_SIZE(param); i++) {
752                 const struct kvm_cpuid_param *ent = &param[i];
753
754                 if (ent->qualifier && !ent->qualifier(ent))
755                         continue;
756
757                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
758                                 &nent, cpuid->nent, type);
759
760                 if (r)
761                         goto out_free;
762
763                 if (!ent->has_leaf_count)
764                         continue;
765
766                 limit = cpuid_entries[nent - 1].eax;
767                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
768                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
769                                      &nent, cpuid->nent, type);
770
771                 if (r)
772                         goto out_free;
773         }
774
775         r = -EFAULT;
776         if (copy_to_user(entries, cpuid_entries,
777                          nent * sizeof(struct kvm_cpuid_entry2)))
778                 goto out_free;
779         cpuid->nent = nent;
780         r = 0;
781
782 out_free:
783         vfree(cpuid_entries);
784 out:
785         return r;
786 }
787
788 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
789 {
790         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
791         struct kvm_cpuid_entry2 *ej;
792         int j = i;
793         int nent = vcpu->arch.cpuid_nent;
794
795         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
796         /* when no next entry is found, the current entry[i] is reselected */
797         do {
798                 j = (j + 1) % nent;
799                 ej = &vcpu->arch.cpuid_entries[j];
800         } while (ej->function != e->function);
801
802         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
803
804         return j;
805 }
806
807 /* find an entry with matching function, matching index (if needed), and that
808  * should be read next (if it's stateful) */
809 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
810         u32 function, u32 index)
811 {
812         if (e->function != function)
813                 return 0;
814         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
815                 return 0;
816         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
817             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
818                 return 0;
819         return 1;
820 }
821
822 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
823                                               u32 function, u32 index)
824 {
825         int i;
826         struct kvm_cpuid_entry2 *best = NULL;
827
828         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
829                 struct kvm_cpuid_entry2 *e;
830
831                 e = &vcpu->arch.cpuid_entries[i];
832                 if (is_matching_cpuid_entry(e, function, index)) {
833                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
834                                 move_to_next_stateful_cpuid_entry(vcpu, i);
835                         best = e;
836                         break;
837                 }
838         }
839         return best;
840 }
841 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
842
843 /*
844  * If no match is found, check whether we exceed the vCPU's limit
845  * and return the content of the highest valid _standard_ leaf instead.
846  * This is to satisfy the CPUID specification.
847  */
848 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
849                                                   u32 function, u32 index)
850 {
851         struct kvm_cpuid_entry2 *maxlevel;
852
853         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
854         if (!maxlevel || maxlevel->eax >= function)
855                 return NULL;
856         if (function & 0x80000000) {
857                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
858                 if (!maxlevel)
859                         return NULL;
860         }
861         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
862 }
863
864 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
865 {
866         u32 function = *eax, index = *ecx;
867         struct kvm_cpuid_entry2 *best;
868
869         best = kvm_find_cpuid_entry(vcpu, function, index);
870
871         if (!best)
872                 best = check_cpuid_limit(vcpu, function, index);
873
874         if (best) {
875                 *eax = best->eax;
876                 *ebx = best->ebx;
877                 *ecx = best->ecx;
878                 *edx = best->edx;
879         } else
880                 *eax = *ebx = *ecx = *edx = 0;
881         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
882 }
883 EXPORT_SYMBOL_GPL(kvm_cpuid);
884
885 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
886 {
887         u32 function, eax, ebx, ecx, edx;
888
889         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
890         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
891         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
892         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
893         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
894         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
895         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
896         kvm_x86_ops->skip_emulated_instruction(vcpu);
897 }
898 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);