OSDN Git Service

a65ce12470f8df8fcc818116a0e2fa67093b5567
[uclinux-h8/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(kvm);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(kvm, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(kvm);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363         /* It is valid if the spte is zapped. */
364         return spte == 0ull;
365 }
366 #else
367 union split_spte {
368         struct {
369                 u32 spte_low;
370                 u32 spte_high;
371         };
372         u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
378
379         if (is_shadow_present_pte(spte))
380                 return;
381
382         /* Ensure the spte is completely set before we increase the count */
383         smp_wmb();
384         sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389         union split_spte *ssptep, sspte;
390
391         ssptep = (union split_spte *)sptep;
392         sspte = (union split_spte)spte;
393
394         ssptep->spte_high = sspte.spte_high;
395
396         /*
397          * If we map the spte from nonpresent to present, We should store
398          * the high bits firstly, then set present bit, so cpu can not
399          * fetch this spte while we are setting the spte.
400          */
401         smp_wmb();
402
403         ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408         union split_spte *ssptep, sspte;
409
410         ssptep = (union split_spte *)sptep;
411         sspte = (union split_spte)spte;
412
413         ssptep->spte_low = sspte.spte_low;
414
415         /*
416          * If we map the spte from present to nonpresent, we should clear
417          * present bit firstly to avoid vcpu fetch the old high bits.
418          */
419         smp_wmb();
420
421         ssptep->spte_high = sspte.spte_high;
422         count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427         union split_spte *ssptep, sspte, orig;
428
429         ssptep = (union split_spte *)sptep;
430         sspte = (union split_spte)spte;
431
432         /* xchg acts as a barrier before the setting of the high bits */
433         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434         orig.spte_high = ssptep->spte_high;
435         ssptep->spte_high = sspte.spte_high;
436         count_spte_clear(sptep, spte);
437
438         return orig.spte;
439 }
440
441 /*
442  * The idea using the light way get the spte on x86_32 guest is from
443  * gup_get_pte(arch/x86/mm/gup.c).
444  *
445  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446  * coalesces them and we are running out of the MMU lock.  Therefore
447  * we need to protect against in-progress updates of the spte.
448  *
449  * Reading the spte while an update is in progress may get the old value
450  * for the high part of the spte.  The race is fine for a present->non-present
451  * change (because the high part of the spte is ignored for non-present spte),
452  * but for a present->present change we must reread the spte.
453  *
454  * All such changes are done in two steps (present->non-present and
455  * non-present->present), hence it is enough to count the number of
456  * present->non-present updates: if it changed while reading the spte,
457  * we might have hit the race.  This is done using clear_spte_count.
458  */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
462         union split_spte spte, *orig = (union split_spte *)sptep;
463         int count;
464
465 retry:
466         count = sp->clear_spte_count;
467         smp_rmb();
468
469         spte.spte_low = orig->spte_low;
470         smp_rmb();
471
472         spte.spte_high = orig->spte_high;
473         smp_rmb();
474
475         if (unlikely(spte.spte_low != orig->spte_low ||
476               count != sp->clear_spte_count))
477                 goto retry;
478
479         return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484         union split_spte sspte = (union split_spte)spte;
485         u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487         /* It is valid if the spte is zapped. */
488         if (spte == 0ull)
489                 return true;
490
491         /* It is valid if the spte is being zapped. */
492         if (sspte.spte_low == 0ull &&
493             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494                 return true;
495
496         return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508         /*
509          * Always atomicly update spte if it can be updated
510          * out of mmu-lock, it can ensure dirty bit is not lost,
511          * also, it can help us to get a stable is_writable_pte()
512          * to ensure tlb flush is not missed.
513          */
514         if (spte_is_locklessly_modifiable(spte))
515                 return true;
516
517         if (!shadow_accessed_mask)
518                 return false;
519
520         if (!is_shadow_present_pte(spte))
521                 return false;
522
523         if ((spte & shadow_accessed_mask) &&
524               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525                 return false;
526
527         return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532         return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537         return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541  * Set the sptep from nonpresent to present.
542  * Note: the sptep being assigned *must* be either not present
543  * or in a state where the hardware will not attempt to update
544  * the spte.
545  */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548         WARN_ON(is_shadow_present_pte(*sptep));
549         __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553  * Update the state bits, it means the mapped pfn is not changged.
554  *
555  * Whenever we overwrite a writable spte with a read-only one we
556  * should flush remote TLBs. Otherwise rmap_write_protect
557  * will find a read-only spte, even though the writable spte
558  * might be cached on a CPU's TLB, the return value indicates this
559  * case.
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         u64 old_spte = *sptep;
564         bool ret = false;
565
566         WARN_ON(!is_rmap_spte(new_spte));
567
568         if (!is_shadow_present_pte(old_spte)) {
569                 mmu_spte_set(sptep, new_spte);
570                 return ret;
571         }
572
573         if (!spte_has_volatile_bits(old_spte))
574                 __update_clear_spte_fast(sptep, new_spte);
575         else
576                 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578         /*
579          * For the spte updated out of mmu-lock is safe, since
580          * we always atomicly update it, see the comments in
581          * spte_has_volatile_bits().
582          */
583         if (spte_is_locklessly_modifiable(old_spte) &&
584               !is_writable_pte(new_spte))
585                 ret = true;
586
587         if (!shadow_accessed_mask)
588                 return ret;
589
590         /*
591          * Flush TLB when accessed/dirty bits are changed in the page tables,
592          * to guarantee consistency between TLB and page tables.
593          */
594         if (spte_is_bit_changed(old_spte, new_spte,
595                                 shadow_accessed_mask | shadow_dirty_mask))
596                 ret = true;
597
598         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603         return ret;
604 }
605
606 /*
607  * Rules for using mmu_spte_clear_track_bits:
608  * It sets the sptep from present to nonpresent, and track the
609  * state bits, it is used to clear the last level sptep.
610  */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613         pfn_t pfn;
614         u64 old_spte = *sptep;
615
616         if (!spte_has_volatile_bits(old_spte))
617                 __update_clear_spte_fast(sptep, 0ull);
618         else
619                 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621         if (!is_rmap_spte(old_spte))
622                 return 0;
623
624         pfn = spte_to_pfn(old_spte);
625
626         /*
627          * KVM does not hold the refcount of the page used by
628          * kvm mmu, before reclaiming the page, we should
629          * unmap it from mmu first.
630          */
631         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634                 kvm_set_pfn_accessed(pfn);
635         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636                 kvm_set_pfn_dirty(pfn);
637         return 1;
638 }
639
640 /*
641  * Rules for using mmu_spte_clear_no_track:
642  * Directly clear spte without caring the state bits of sptep,
643  * it is used to set the upper level spte.
644  */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647         __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652         return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Prevent page table teardown by making any free-er wait during
659          * kvm_flush_remote_tlbs() IPI to all active vcpus.
660          */
661         local_irq_disable();
662         vcpu->mode = READING_SHADOW_PAGE_TABLES;
663         /*
664          * Make sure a following spte read is not reordered ahead of the write
665          * to vcpu->mode.
666          */
667         smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672         /*
673          * Make sure the write to vcpu->mode is not reordered in front of
674          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
675          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676          */
677         smp_mb();
678         vcpu->mode = OUTSIDE_GUEST_MODE;
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683                                   struct kmem_cache *base_cache, int min)
684 {
685         void *obj;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691                 if (!obj)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = obj;
694         }
695         return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700         return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704                                   struct kmem_cache *cache)
705 {
706         while (mc->nobjs)
707                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711                                        int min)
712 {
713         void *page;
714
715         if (cache->nobjs >= min)
716                 return 0;
717         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718                 page = (void *)__get_free_page(GFP_KERNEL);
719                 if (!page)
720                         return -ENOMEM;
721                 cache->objects[cache->nobjs++] = page;
722         }
723         return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728         while (mc->nobjs)
729                 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734         int r;
735
736         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741         if (r)
742                 goto out;
743         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744                                    mmu_page_header_cache, 4);
745 out:
746         return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752                                 pte_list_desc_cache);
753         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760         void *p;
761
762         BUG_ON(!mc->nobjs);
763         p = mc->objects[--mc->nobjs];
764         return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779         if (!sp->role.direct)
780                 return sp->gfns[index];
781
782         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787         if (sp->role.direct)
788                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789         else
790                 sp->gfns[index] = gfn;
791 }
792
793 /*
794  * Return the pointer to the large page information for a given gfn,
795  * handling slots that are not large page aligned.
796  */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798                                               struct kvm_memory_slot *slot,
799                                               int level)
800 {
801         unsigned long idx;
802
803         idx = gfn_to_index(gfn, slot->base_gfn, level);
804         return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         struct kvm_memory_slot *slot;
810         struct kvm_lpage_info *linfo;
811         gfn_t gfn;
812         int i;
813
814         gfn = sp->gfn;
815         slot = gfn_to_memslot(kvm, gfn);
816         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
817                 linfo = lpage_info_slot(gfn, slot, i);
818                 linfo->write_count += 1;
819         }
820         kvm->arch.indirect_shadow_pages++;
821 }
822
823 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
824 {
825         struct kvm_memory_slot *slot;
826         struct kvm_lpage_info *linfo;
827         gfn_t gfn;
828         int i;
829
830         gfn = sp->gfn;
831         slot = gfn_to_memslot(kvm, gfn);
832         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
833                 linfo = lpage_info_slot(gfn, slot, i);
834                 linfo->write_count -= 1;
835                 WARN_ON(linfo->write_count < 0);
836         }
837         kvm->arch.indirect_shadow_pages--;
838 }
839
840 static int has_wrprotected_page(struct kvm *kvm,
841                                 gfn_t gfn,
842                                 int level)
843 {
844         struct kvm_memory_slot *slot;
845         struct kvm_lpage_info *linfo;
846
847         slot = gfn_to_memslot(kvm, gfn);
848         if (slot) {
849                 linfo = lpage_info_slot(gfn, slot, level);
850                 return linfo->write_count;
851         }
852
853         return 1;
854 }
855
856 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
857 {
858         unsigned long page_size;
859         int i, ret = 0;
860
861         page_size = kvm_host_page_size(kvm, gfn);
862
863         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
864                 if (page_size >= KVM_HPAGE_SIZE(i))
865                         ret = i;
866                 else
867                         break;
868         }
869
870         return ret;
871 }
872
873 static struct kvm_memory_slot *
874 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
875                             bool no_dirty_log)
876 {
877         struct kvm_memory_slot *slot;
878
879         slot = gfn_to_memslot(vcpu->kvm, gfn);
880         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
881               (no_dirty_log && slot->dirty_bitmap))
882                 slot = NULL;
883
884         return slot;
885 }
886
887 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
888 {
889         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
890 }
891
892 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893 {
894         int host_level, level, max_level;
895
896         host_level = host_mapping_level(vcpu->kvm, large_gfn);
897
898         if (host_level == PT_PAGE_TABLE_LEVEL)
899                 return host_level;
900
901         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
902
903         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
904                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
905                         break;
906
907         return level - 1;
908 }
909
910 /*
911  * Pte mapping structures:
912  *
913  * If pte_list bit zero is zero, then pte_list point to the spte.
914  *
915  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916  * pte_list_desc containing more mappings.
917  *
918  * Returns the number of pte entries before the spte was added or zero if
919  * the spte was not added.
920  *
921  */
922 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923                         unsigned long *pte_list)
924 {
925         struct pte_list_desc *desc;
926         int i, count = 0;
927
928         if (!*pte_list) {
929                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930                 *pte_list = (unsigned long)spte;
931         } else if (!(*pte_list & 1)) {
932                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933                 desc = mmu_alloc_pte_list_desc(vcpu);
934                 desc->sptes[0] = (u64 *)*pte_list;
935                 desc->sptes[1] = spte;
936                 *pte_list = (unsigned long)desc | 1;
937                 ++count;
938         } else {
939                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
942                         desc = desc->more;
943                         count += PTE_LIST_EXT;
944                 }
945                 if (desc->sptes[PTE_LIST_EXT-1]) {
946                         desc->more = mmu_alloc_pte_list_desc(vcpu);
947                         desc = desc->more;
948                 }
949                 for (i = 0; desc->sptes[i]; ++i)
950                         ++count;
951                 desc->sptes[i] = spte;
952         }
953         return count;
954 }
955
956 static void
957 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
958                            int i, struct pte_list_desc *prev_desc)
959 {
960         int j;
961
962         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
963                 ;
964         desc->sptes[i] = desc->sptes[j];
965         desc->sptes[j] = NULL;
966         if (j != 0)
967                 return;
968         if (!prev_desc && !desc->more)
969                 *pte_list = (unsigned long)desc->sptes[0];
970         else
971                 if (prev_desc)
972                         prev_desc->more = desc->more;
973                 else
974                         *pte_list = (unsigned long)desc->more | 1;
975         mmu_free_pte_list_desc(desc);
976 }
977
978 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
979 {
980         struct pte_list_desc *desc;
981         struct pte_list_desc *prev_desc;
982         int i;
983
984         if (!*pte_list) {
985                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
986                 BUG();
987         } else if (!(*pte_list & 1)) {
988                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
989                 if ((u64 *)*pte_list != spte) {
990                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
991                         BUG();
992                 }
993                 *pte_list = 0;
994         } else {
995                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
996                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
997                 prev_desc = NULL;
998                 while (desc) {
999                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1000                                 if (desc->sptes[i] == spte) {
1001                                         pte_list_desc_remove_entry(pte_list,
1002                                                                desc, i,
1003                                                                prev_desc);
1004                                         return;
1005                                 }
1006                         prev_desc = desc;
1007                         desc = desc->more;
1008                 }
1009                 pr_err("pte_list_remove: %p many->many\n", spte);
1010                 BUG();
1011         }
1012 }
1013
1014 typedef void (*pte_list_walk_fn) (u64 *spte);
1015 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1016 {
1017         struct pte_list_desc *desc;
1018         int i;
1019
1020         if (!*pte_list)
1021                 return;
1022
1023         if (!(*pte_list & 1))
1024                 return fn((u64 *)*pte_list);
1025
1026         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1027         while (desc) {
1028                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1029                         fn(desc->sptes[i]);
1030                 desc = desc->more;
1031         }
1032 }
1033
1034 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1035                                     struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 /*
1044  * Take gfn and return the reverse mapping to it.
1045  */
1046 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1047 {
1048         struct kvm_memory_slot *slot;
1049
1050         slot = gfn_to_memslot(kvm, gfn);
1051         return __gfn_to_rmap(gfn, level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         unsigned long *rmapp;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1070         return pte_list_add(vcpu, spte, rmapp);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         unsigned long *rmapp;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1082         pte_list_remove(spte, rmapp);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1103 {
1104         if (!rmap)
1105                 return NULL;
1106
1107         if (!(rmap & 1)) {
1108                 iter->desc = NULL;
1109                 return (u64 *)rmap;
1110         }
1111
1112         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1113         iter->pos = 0;
1114         return iter->desc->sptes[iter->pos];
1115 }
1116
1117 /*
1118  * Must be used with a valid iterator: e.g. after rmap_get_first().
1119  *
1120  * Returns sptep if found, NULL otherwise.
1121  */
1122 static u64 *rmap_get_next(struct rmap_iterator *iter)
1123 {
1124         if (iter->desc) {
1125                 if (iter->pos < PTE_LIST_EXT - 1) {
1126                         u64 *sptep;
1127
1128                         ++iter->pos;
1129                         sptep = iter->desc->sptes[iter->pos];
1130                         if (sptep)
1131                                 return sptep;
1132                 }
1133
1134                 iter->desc = iter->desc->more;
1135
1136                 if (iter->desc) {
1137                         iter->pos = 0;
1138                         /* desc->sptes[0] cannot be NULL */
1139                         return iter->desc->sptes[iter->pos];
1140                 }
1141         }
1142
1143         return NULL;
1144 }
1145
1146 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1147            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1148                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1149                         _spte_ = rmap_get_next(_iter_))
1150
1151 static void drop_spte(struct kvm *kvm, u64 *sptep)
1152 {
1153         if (mmu_spte_clear_track_bits(sptep))
1154                 rmap_remove(kvm, sptep);
1155 }
1156
1157
1158 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159 {
1160         if (is_large_pte(*sptep)) {
1161                 WARN_ON(page_header(__pa(sptep))->role.level ==
1162                         PT_PAGE_TABLE_LEVEL);
1163                 drop_spte(kvm, sptep);
1164                 --kvm->stat.lpages;
1165                 return true;
1166         }
1167
1168         return false;
1169 }
1170
1171 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172 {
1173         if (__drop_large_spte(vcpu->kvm, sptep))
1174                 kvm_flush_remote_tlbs(vcpu->kvm);
1175 }
1176
1177 /*
1178  * Write-protect on the specified @sptep, @pt_protect indicates whether
1179  * spte write-protection is caused by protecting shadow page table.
1180  *
1181  * Note: write protection is difference between dirty logging and spte
1182  * protection:
1183  * - for dirty logging, the spte can be set to writable at anytime if
1184  *   its dirty bitmap is properly set.
1185  * - for spte protection, the spte can be writable only after unsync-ing
1186  *   shadow page.
1187  *
1188  * Return true if tlb need be flushed.
1189  */
1190 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1191 {
1192         u64 spte = *sptep;
1193
1194         if (!is_writable_pte(spte) &&
1195               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1196                 return false;
1197
1198         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1199
1200         if (pt_protect)
1201                 spte &= ~SPTE_MMU_WRITEABLE;
1202         spte = spte & ~PT_WRITABLE_MASK;
1203
1204         return mmu_spte_update(sptep, spte);
1205 }
1206
1207 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1208                                  bool pt_protect)
1209 {
1210         u64 *sptep;
1211         struct rmap_iterator iter;
1212         bool flush = false;
1213
1214         for_each_rmap_spte(rmapp, &iter, sptep)
1215                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1216
1217         return flush;
1218 }
1219
1220 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1221 {
1222         u64 spte = *sptep;
1223
1224         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1225
1226         spte &= ~shadow_dirty_mask;
1227
1228         return mmu_spte_update(sptep, spte);
1229 }
1230
1231 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1232 {
1233         u64 *sptep;
1234         struct rmap_iterator iter;
1235         bool flush = false;
1236
1237         for_each_rmap_spte(rmapp, &iter, sptep)
1238                 flush |= spte_clear_dirty(kvm, sptep);
1239
1240         return flush;
1241 }
1242
1243 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1244 {
1245         u64 spte = *sptep;
1246
1247         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1248
1249         spte |= shadow_dirty_mask;
1250
1251         return mmu_spte_update(sptep, spte);
1252 }
1253
1254 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1255 {
1256         u64 *sptep;
1257         struct rmap_iterator iter;
1258         bool flush = false;
1259
1260         for_each_rmap_spte(rmapp, &iter, sptep)
1261                 flush |= spte_set_dirty(kvm, sptep);
1262
1263         return flush;
1264 }
1265
1266 /**
1267  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1268  * @kvm: kvm instance
1269  * @slot: slot to protect
1270  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1271  * @mask: indicates which pages we should protect
1272  *
1273  * Used when we do not need to care about huge page mappings: e.g. during dirty
1274  * logging we do not have any such mappings.
1275  */
1276 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1277                                      struct kvm_memory_slot *slot,
1278                                      gfn_t gfn_offset, unsigned long mask)
1279 {
1280         unsigned long *rmapp;
1281
1282         while (mask) {
1283                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1284                                       PT_PAGE_TABLE_LEVEL, slot);
1285                 __rmap_write_protect(kvm, rmapp, false);
1286
1287                 /* clear the first set bit */
1288                 mask &= mask - 1;
1289         }
1290 }
1291
1292 /**
1293  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1294  * @kvm: kvm instance
1295  * @slot: slot to clear D-bit
1296  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1297  * @mask: indicates which pages we should clear D-bit
1298  *
1299  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1300  */
1301 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1302                                      struct kvm_memory_slot *slot,
1303                                      gfn_t gfn_offset, unsigned long mask)
1304 {
1305         unsigned long *rmapp;
1306
1307         while (mask) {
1308                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1309                                       PT_PAGE_TABLE_LEVEL, slot);
1310                 __rmap_clear_dirty(kvm, rmapp);
1311
1312                 /* clear the first set bit */
1313                 mask &= mask - 1;
1314         }
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1317
1318 /**
1319  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1320  * PT level pages.
1321  *
1322  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1323  * enable dirty logging for them.
1324  *
1325  * Used when we do not need to care about huge page mappings: e.g. during dirty
1326  * logging we do not have any such mappings.
1327  */
1328 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1329                                 struct kvm_memory_slot *slot,
1330                                 gfn_t gfn_offset, unsigned long mask)
1331 {
1332         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1333                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1334                                 mask);
1335         else
1336                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1337 }
1338
1339 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1340 {
1341         struct kvm_memory_slot *slot;
1342         unsigned long *rmapp;
1343         int i;
1344         bool write_protected = false;
1345
1346         slot = gfn_to_memslot(kvm, gfn);
1347
1348         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1349                 rmapp = __gfn_to_rmap(gfn, i, slot);
1350                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1351         }
1352
1353         return write_protected;
1354 }
1355
1356 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1357 {
1358         u64 *sptep;
1359         struct rmap_iterator iter;
1360         bool flush = false;
1361
1362         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1363                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1364                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1365
1366                 drop_spte(kvm, sptep);
1367                 flush = true;
1368         }
1369
1370         return flush;
1371 }
1372
1373 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1374                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1375                            unsigned long data)
1376 {
1377         return kvm_zap_rmapp(kvm, rmapp);
1378 }
1379
1380 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1381                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1382                              unsigned long data)
1383 {
1384         u64 *sptep;
1385         struct rmap_iterator iter;
1386         int need_flush = 0;
1387         u64 new_spte;
1388         pte_t *ptep = (pte_t *)data;
1389         pfn_t new_pfn;
1390
1391         WARN_ON(pte_huge(*ptep));
1392         new_pfn = pte_pfn(*ptep);
1393
1394 restart:
1395         for_each_rmap_spte(rmapp, &iter, sptep) {
1396                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1397                              sptep, *sptep, gfn, level);
1398
1399                 need_flush = 1;
1400
1401                 if (pte_write(*ptep)) {
1402                         drop_spte(kvm, sptep);
1403                         goto restart;
1404                 } else {
1405                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1406                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1407
1408                         new_spte &= ~PT_WRITABLE_MASK;
1409                         new_spte &= ~SPTE_HOST_WRITEABLE;
1410                         new_spte &= ~shadow_accessed_mask;
1411
1412                         mmu_spte_clear_track_bits(sptep);
1413                         mmu_spte_set(sptep, new_spte);
1414                 }
1415         }
1416
1417         if (need_flush)
1418                 kvm_flush_remote_tlbs(kvm);
1419
1420         return 0;
1421 }
1422
1423 struct slot_rmap_walk_iterator {
1424         /* input fields. */
1425         struct kvm_memory_slot *slot;
1426         gfn_t start_gfn;
1427         gfn_t end_gfn;
1428         int start_level;
1429         int end_level;
1430
1431         /* output fields. */
1432         gfn_t gfn;
1433         unsigned long *rmap;
1434         int level;
1435
1436         /* private field. */
1437         unsigned long *end_rmap;
1438 };
1439
1440 static void
1441 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1442 {
1443         iterator->level = level;
1444         iterator->gfn = iterator->start_gfn;
1445         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1446         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1447                                            iterator->slot);
1448 }
1449
1450 static void
1451 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1452                     struct kvm_memory_slot *slot, int start_level,
1453                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1454 {
1455         iterator->slot = slot;
1456         iterator->start_level = start_level;
1457         iterator->end_level = end_level;
1458         iterator->start_gfn = start_gfn;
1459         iterator->end_gfn = end_gfn;
1460
1461         rmap_walk_init_level(iterator, iterator->start_level);
1462 }
1463
1464 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1465 {
1466         return !!iterator->rmap;
1467 }
1468
1469 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1470 {
1471         if (++iterator->rmap <= iterator->end_rmap) {
1472                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1473                 return;
1474         }
1475
1476         if (++iterator->level > iterator->end_level) {
1477                 iterator->rmap = NULL;
1478                 return;
1479         }
1480
1481         rmap_walk_init_level(iterator, iterator->level);
1482 }
1483
1484 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1485            _start_gfn, _end_gfn, _iter_)                                \
1486         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1487                                  _end_level_, _start_gfn, _end_gfn);    \
1488              slot_rmap_walk_okay(_iter_);                               \
1489              slot_rmap_walk_next(_iter_))
1490
1491 static int kvm_handle_hva_range(struct kvm *kvm,
1492                                 unsigned long start,
1493                                 unsigned long end,
1494                                 unsigned long data,
1495                                 int (*handler)(struct kvm *kvm,
1496                                                unsigned long *rmapp,
1497                                                struct kvm_memory_slot *slot,
1498                                                gfn_t gfn,
1499                                                int level,
1500                                                unsigned long data))
1501 {
1502         struct kvm_memslots *slots;
1503         struct kvm_memory_slot *memslot;
1504         struct slot_rmap_walk_iterator iterator;
1505         int ret = 0;
1506
1507         slots = kvm_memslots(kvm);
1508
1509         kvm_for_each_memslot(memslot, slots) {
1510                 unsigned long hva_start, hva_end;
1511                 gfn_t gfn_start, gfn_end;
1512
1513                 hva_start = max(start, memslot->userspace_addr);
1514                 hva_end = min(end, memslot->userspace_addr +
1515                                         (memslot->npages << PAGE_SHIFT));
1516                 if (hva_start >= hva_end)
1517                         continue;
1518                 /*
1519                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1520                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1521                  */
1522                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1523                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1524
1525                 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1526                                 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1527                                 &iterator)
1528                         ret |= handler(kvm, iterator.rmap, memslot,
1529                                        iterator.gfn, iterator.level, data);
1530         }
1531
1532         return ret;
1533 }
1534
1535 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1536                           unsigned long data,
1537                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1538                                          struct kvm_memory_slot *slot,
1539                                          gfn_t gfn, int level,
1540                                          unsigned long data))
1541 {
1542         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1543 }
1544
1545 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1546 {
1547         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1548 }
1549
1550 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1551 {
1552         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1553 }
1554
1555 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1556 {
1557         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1558 }
1559
1560 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1561                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1562                          unsigned long data)
1563 {
1564         u64 *sptep;
1565         struct rmap_iterator uninitialized_var(iter);
1566         int young = 0;
1567
1568         BUG_ON(!shadow_accessed_mask);
1569
1570         for_each_rmap_spte(rmapp, &iter, sptep)
1571                 if (*sptep & shadow_accessed_mask) {
1572                         young = 1;
1573                         clear_bit((ffs(shadow_accessed_mask) - 1),
1574                                  (unsigned long *)sptep);
1575                 }
1576
1577         trace_kvm_age_page(gfn, level, slot, young);
1578         return young;
1579 }
1580
1581 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1582                               struct kvm_memory_slot *slot, gfn_t gfn,
1583                               int level, unsigned long data)
1584 {
1585         u64 *sptep;
1586         struct rmap_iterator iter;
1587         int young = 0;
1588
1589         /*
1590          * If there's no access bit in the secondary pte set by the
1591          * hardware it's up to gup-fast/gup to set the access bit in
1592          * the primary pte or in the page structure.
1593          */
1594         if (!shadow_accessed_mask)
1595                 goto out;
1596
1597         for_each_rmap_spte(rmapp, &iter, sptep)
1598                 if (*sptep & shadow_accessed_mask) {
1599                         young = 1;
1600                         break;
1601                 }
1602 out:
1603         return young;
1604 }
1605
1606 #define RMAP_RECYCLE_THRESHOLD 1000
1607
1608 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1609 {
1610         unsigned long *rmapp;
1611         struct kvm_mmu_page *sp;
1612
1613         sp = page_header(__pa(spte));
1614
1615         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1616
1617         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1618         kvm_flush_remote_tlbs(vcpu->kvm);
1619 }
1620
1621 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1622 {
1623         /*
1624          * In case of absence of EPT Access and Dirty Bits supports,
1625          * emulate the accessed bit for EPT, by checking if this page has
1626          * an EPT mapping, and clearing it if it does. On the next access,
1627          * a new EPT mapping will be established.
1628          * This has some overhead, but not as much as the cost of swapping
1629          * out actively used pages or breaking up actively used hugepages.
1630          */
1631         if (!shadow_accessed_mask) {
1632                 /*
1633                  * We are holding the kvm->mmu_lock, and we are blowing up
1634                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1635                  * This is correct as long as we don't decouple the mmu_lock
1636                  * protected regions (like invalidate_range_start|end does).
1637                  */
1638                 kvm->mmu_notifier_seq++;
1639                 return kvm_handle_hva_range(kvm, start, end, 0,
1640                                             kvm_unmap_rmapp);
1641         }
1642
1643         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1644 }
1645
1646 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1647 {
1648         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1649 }
1650
1651 #ifdef MMU_DEBUG
1652 static int is_empty_shadow_page(u64 *spt)
1653 {
1654         u64 *pos;
1655         u64 *end;
1656
1657         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1658                 if (is_shadow_present_pte(*pos)) {
1659                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1660                                pos, *pos);
1661                         return 0;
1662                 }
1663         return 1;
1664 }
1665 #endif
1666
1667 /*
1668  * This value is the sum of all of the kvm instances's
1669  * kvm->arch.n_used_mmu_pages values.  We need a global,
1670  * aggregate version in order to make the slab shrinker
1671  * faster
1672  */
1673 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1674 {
1675         kvm->arch.n_used_mmu_pages += nr;
1676         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1677 }
1678
1679 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1680 {
1681         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1682         hlist_del(&sp->hash_link);
1683         list_del(&sp->link);
1684         free_page((unsigned long)sp->spt);
1685         if (!sp->role.direct)
1686                 free_page((unsigned long)sp->gfns);
1687         kmem_cache_free(mmu_page_header_cache, sp);
1688 }
1689
1690 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1691 {
1692         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1693 }
1694
1695 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1696                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1697 {
1698         if (!parent_pte)
1699                 return;
1700
1701         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1702 }
1703
1704 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1705                                        u64 *parent_pte)
1706 {
1707         pte_list_remove(parent_pte, &sp->parent_ptes);
1708 }
1709
1710 static void drop_parent_pte(struct kvm_mmu_page *sp,
1711                             u64 *parent_pte)
1712 {
1713         mmu_page_remove_parent_pte(sp, parent_pte);
1714         mmu_spte_clear_no_track(parent_pte);
1715 }
1716
1717 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1718                                                u64 *parent_pte, int direct)
1719 {
1720         struct kvm_mmu_page *sp;
1721
1722         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1723         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1724         if (!direct)
1725                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1726         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1727
1728         /*
1729          * The active_mmu_pages list is the FIFO list, do not move the
1730          * page until it is zapped. kvm_zap_obsolete_pages depends on
1731          * this feature. See the comments in kvm_zap_obsolete_pages().
1732          */
1733         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1734         sp->parent_ptes = 0;
1735         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1736         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1737         return sp;
1738 }
1739
1740 static void mark_unsync(u64 *spte);
1741 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1742 {
1743         pte_list_walk(&sp->parent_ptes, mark_unsync);
1744 }
1745
1746 static void mark_unsync(u64 *spte)
1747 {
1748         struct kvm_mmu_page *sp;
1749         unsigned int index;
1750
1751         sp = page_header(__pa(spte));
1752         index = spte - sp->spt;
1753         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1754                 return;
1755         if (sp->unsync_children++)
1756                 return;
1757         kvm_mmu_mark_parents_unsync(sp);
1758 }
1759
1760 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1761                                struct kvm_mmu_page *sp)
1762 {
1763         return 1;
1764 }
1765
1766 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1767 {
1768 }
1769
1770 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1771                                  struct kvm_mmu_page *sp, u64 *spte,
1772                                  const void *pte)
1773 {
1774         WARN_ON(1);
1775 }
1776
1777 #define KVM_PAGE_ARRAY_NR 16
1778
1779 struct kvm_mmu_pages {
1780         struct mmu_page_and_offset {
1781                 struct kvm_mmu_page *sp;
1782                 unsigned int idx;
1783         } page[KVM_PAGE_ARRAY_NR];
1784         unsigned int nr;
1785 };
1786
1787 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1788                          int idx)
1789 {
1790         int i;
1791
1792         if (sp->unsync)
1793                 for (i=0; i < pvec->nr; i++)
1794                         if (pvec->page[i].sp == sp)
1795                                 return 0;
1796
1797         pvec->page[pvec->nr].sp = sp;
1798         pvec->page[pvec->nr].idx = idx;
1799         pvec->nr++;
1800         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1801 }
1802
1803 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1804                            struct kvm_mmu_pages *pvec)
1805 {
1806         int i, ret, nr_unsync_leaf = 0;
1807
1808         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1809                 struct kvm_mmu_page *child;
1810                 u64 ent = sp->spt[i];
1811
1812                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1813                         goto clear_child_bitmap;
1814
1815                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1816
1817                 if (child->unsync_children) {
1818                         if (mmu_pages_add(pvec, child, i))
1819                                 return -ENOSPC;
1820
1821                         ret = __mmu_unsync_walk(child, pvec);
1822                         if (!ret)
1823                                 goto clear_child_bitmap;
1824                         else if (ret > 0)
1825                                 nr_unsync_leaf += ret;
1826                         else
1827                                 return ret;
1828                 } else if (child->unsync) {
1829                         nr_unsync_leaf++;
1830                         if (mmu_pages_add(pvec, child, i))
1831                                 return -ENOSPC;
1832                 } else
1833                          goto clear_child_bitmap;
1834
1835                 continue;
1836
1837 clear_child_bitmap:
1838                 __clear_bit(i, sp->unsync_child_bitmap);
1839                 sp->unsync_children--;
1840                 WARN_ON((int)sp->unsync_children < 0);
1841         }
1842
1843
1844         return nr_unsync_leaf;
1845 }
1846
1847 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1848                            struct kvm_mmu_pages *pvec)
1849 {
1850         if (!sp->unsync_children)
1851                 return 0;
1852
1853         mmu_pages_add(pvec, sp, 0);
1854         return __mmu_unsync_walk(sp, pvec);
1855 }
1856
1857 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1858 {
1859         WARN_ON(!sp->unsync);
1860         trace_kvm_mmu_sync_page(sp);
1861         sp->unsync = 0;
1862         --kvm->stat.mmu_unsync;
1863 }
1864
1865 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1866                                     struct list_head *invalid_list);
1867 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1868                                     struct list_head *invalid_list);
1869
1870 /*
1871  * NOTE: we should pay more attention on the zapped-obsolete page
1872  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1873  * since it has been deleted from active_mmu_pages but still can be found
1874  * at hast list.
1875  *
1876  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1877  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1878  * all the obsolete pages.
1879  */
1880 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1881         hlist_for_each_entry(_sp,                                       \
1882           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1883                 if ((_sp)->gfn != (_gfn)) {} else
1884
1885 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1886         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1887                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1888
1889 /* @sp->gfn should be write-protected at the call site */
1890 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1891                            struct list_head *invalid_list, bool clear_unsync)
1892 {
1893         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1894                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1895                 return 1;
1896         }
1897
1898         if (clear_unsync)
1899                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1900
1901         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1902                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1903                 return 1;
1904         }
1905
1906         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1907         return 0;
1908 }
1909
1910 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1911                                    struct kvm_mmu_page *sp)
1912 {
1913         LIST_HEAD(invalid_list);
1914         int ret;
1915
1916         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1917         if (ret)
1918                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1919
1920         return ret;
1921 }
1922
1923 #ifdef CONFIG_KVM_MMU_AUDIT
1924 #include "mmu_audit.c"
1925 #else
1926 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1927 static void mmu_audit_disable(void) { }
1928 #endif
1929
1930 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1931                          struct list_head *invalid_list)
1932 {
1933         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1934 }
1935
1936 /* @gfn should be write-protected at the call site */
1937 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1938 {
1939         struct kvm_mmu_page *s;
1940         LIST_HEAD(invalid_list);
1941         bool flush = false;
1942
1943         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1944                 if (!s->unsync)
1945                         continue;
1946
1947                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1948                 kvm_unlink_unsync_page(vcpu->kvm, s);
1949                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1950                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1951                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1952                         continue;
1953                 }
1954                 flush = true;
1955         }
1956
1957         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1958         if (flush)
1959                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1960 }
1961
1962 struct mmu_page_path {
1963         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1964         unsigned int idx[PT64_ROOT_LEVEL-1];
1965 };
1966
1967 #define for_each_sp(pvec, sp, parents, i)                       \
1968                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1969                         sp = pvec.page[i].sp;                   \
1970                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1971                         i = mmu_pages_next(&pvec, &parents, i))
1972
1973 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1974                           struct mmu_page_path *parents,
1975                           int i)
1976 {
1977         int n;
1978
1979         for (n = i+1; n < pvec->nr; n++) {
1980                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1981
1982                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1983                         parents->idx[0] = pvec->page[n].idx;
1984                         return n;
1985                 }
1986
1987                 parents->parent[sp->role.level-2] = sp;
1988                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1989         }
1990
1991         return n;
1992 }
1993
1994 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1995 {
1996         struct kvm_mmu_page *sp;
1997         unsigned int level = 0;
1998
1999         do {
2000                 unsigned int idx = parents->idx[level];
2001
2002                 sp = parents->parent[level];
2003                 if (!sp)
2004                         return;
2005
2006                 --sp->unsync_children;
2007                 WARN_ON((int)sp->unsync_children < 0);
2008                 __clear_bit(idx, sp->unsync_child_bitmap);
2009                 level++;
2010         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2011 }
2012
2013 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2014                                struct mmu_page_path *parents,
2015                                struct kvm_mmu_pages *pvec)
2016 {
2017         parents->parent[parent->role.level-1] = NULL;
2018         pvec->nr = 0;
2019 }
2020
2021 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2022                               struct kvm_mmu_page *parent)
2023 {
2024         int i;
2025         struct kvm_mmu_page *sp;
2026         struct mmu_page_path parents;
2027         struct kvm_mmu_pages pages;
2028         LIST_HEAD(invalid_list);
2029
2030         kvm_mmu_pages_init(parent, &parents, &pages);
2031         while (mmu_unsync_walk(parent, &pages)) {
2032                 bool protected = false;
2033
2034                 for_each_sp(pages, sp, parents, i)
2035                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2036
2037                 if (protected)
2038                         kvm_flush_remote_tlbs(vcpu->kvm);
2039
2040                 for_each_sp(pages, sp, parents, i) {
2041                         kvm_sync_page(vcpu, sp, &invalid_list);
2042                         mmu_pages_clear_parents(&parents);
2043                 }
2044                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2045                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2046                 kvm_mmu_pages_init(parent, &parents, &pages);
2047         }
2048 }
2049
2050 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2051 {
2052         int i;
2053
2054         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2055                 sp->spt[i] = 0ull;
2056 }
2057
2058 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2059 {
2060         sp->write_flooding_count = 0;
2061 }
2062
2063 static void clear_sp_write_flooding_count(u64 *spte)
2064 {
2065         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2066
2067         __clear_sp_write_flooding_count(sp);
2068 }
2069
2070 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2071 {
2072         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2073 }
2074
2075 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2076                                              gfn_t gfn,
2077                                              gva_t gaddr,
2078                                              unsigned level,
2079                                              int direct,
2080                                              unsigned access,
2081                                              u64 *parent_pte)
2082 {
2083         union kvm_mmu_page_role role;
2084         unsigned quadrant;
2085         struct kvm_mmu_page *sp;
2086         bool need_sync = false;
2087
2088         role = vcpu->arch.mmu.base_role;
2089         role.level = level;
2090         role.direct = direct;
2091         if (role.direct)
2092                 role.cr4_pae = 0;
2093         role.access = access;
2094         if (!vcpu->arch.mmu.direct_map
2095             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2096                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2097                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2098                 role.quadrant = quadrant;
2099         }
2100         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2101                 if (is_obsolete_sp(vcpu->kvm, sp))
2102                         continue;
2103
2104                 if (!need_sync && sp->unsync)
2105                         need_sync = true;
2106
2107                 if (sp->role.word != role.word)
2108                         continue;
2109
2110                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2111                         break;
2112
2113                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2114                 if (sp->unsync_children) {
2115                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2116                         kvm_mmu_mark_parents_unsync(sp);
2117                 } else if (sp->unsync)
2118                         kvm_mmu_mark_parents_unsync(sp);
2119
2120                 __clear_sp_write_flooding_count(sp);
2121                 trace_kvm_mmu_get_page(sp, false);
2122                 return sp;
2123         }
2124         ++vcpu->kvm->stat.mmu_cache_miss;
2125         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2126         if (!sp)
2127                 return sp;
2128         sp->gfn = gfn;
2129         sp->role = role;
2130         hlist_add_head(&sp->hash_link,
2131                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2132         if (!direct) {
2133                 if (rmap_write_protect(vcpu->kvm, gfn))
2134                         kvm_flush_remote_tlbs(vcpu->kvm);
2135                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2136                         kvm_sync_pages(vcpu, gfn);
2137
2138                 account_shadowed(vcpu->kvm, sp);
2139         }
2140         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2141         init_shadow_page_table(sp);
2142         trace_kvm_mmu_get_page(sp, true);
2143         return sp;
2144 }
2145
2146 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2147                              struct kvm_vcpu *vcpu, u64 addr)
2148 {
2149         iterator->addr = addr;
2150         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2151         iterator->level = vcpu->arch.mmu.shadow_root_level;
2152
2153         if (iterator->level == PT64_ROOT_LEVEL &&
2154             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2155             !vcpu->arch.mmu.direct_map)
2156                 --iterator->level;
2157
2158         if (iterator->level == PT32E_ROOT_LEVEL) {
2159                 iterator->shadow_addr
2160                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2161                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2162                 --iterator->level;
2163                 if (!iterator->shadow_addr)
2164                         iterator->level = 0;
2165         }
2166 }
2167
2168 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2169 {
2170         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2171                 return false;
2172
2173         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2174         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2175         return true;
2176 }
2177
2178 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2179                                u64 spte)
2180 {
2181         if (is_last_spte(spte, iterator->level)) {
2182                 iterator->level = 0;
2183                 return;
2184         }
2185
2186         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2187         --iterator->level;
2188 }
2189
2190 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2191 {
2192         return __shadow_walk_next(iterator, *iterator->sptep);
2193 }
2194
2195 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2196 {
2197         u64 spte;
2198
2199         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2200                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2201
2202         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2203                shadow_user_mask | shadow_x_mask;
2204
2205         if (accessed)
2206                 spte |= shadow_accessed_mask;
2207
2208         mmu_spte_set(sptep, spte);
2209 }
2210
2211 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2212                                    unsigned direct_access)
2213 {
2214         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2215                 struct kvm_mmu_page *child;
2216
2217                 /*
2218                  * For the direct sp, if the guest pte's dirty bit
2219                  * changed form clean to dirty, it will corrupt the
2220                  * sp's access: allow writable in the read-only sp,
2221                  * so we should update the spte at this point to get
2222                  * a new sp with the correct access.
2223                  */
2224                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2225                 if (child->role.access == direct_access)
2226                         return;
2227
2228                 drop_parent_pte(child, sptep);
2229                 kvm_flush_remote_tlbs(vcpu->kvm);
2230         }
2231 }
2232
2233 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2234                              u64 *spte)
2235 {
2236         u64 pte;
2237         struct kvm_mmu_page *child;
2238
2239         pte = *spte;
2240         if (is_shadow_present_pte(pte)) {
2241                 if (is_last_spte(pte, sp->role.level)) {
2242                         drop_spte(kvm, spte);
2243                         if (is_large_pte(pte))
2244                                 --kvm->stat.lpages;
2245                 } else {
2246                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2247                         drop_parent_pte(child, spte);
2248                 }
2249                 return true;
2250         }
2251
2252         if (is_mmio_spte(pte))
2253                 mmu_spte_clear_no_track(spte);
2254
2255         return false;
2256 }
2257
2258 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2259                                          struct kvm_mmu_page *sp)
2260 {
2261         unsigned i;
2262
2263         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2264                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2265 }
2266
2267 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2268 {
2269         mmu_page_remove_parent_pte(sp, parent_pte);
2270 }
2271
2272 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273 {
2274         u64 *sptep;
2275         struct rmap_iterator iter;
2276
2277         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2278                 drop_parent_pte(sp, sptep);
2279 }
2280
2281 static int mmu_zap_unsync_children(struct kvm *kvm,
2282                                    struct kvm_mmu_page *parent,
2283                                    struct list_head *invalid_list)
2284 {
2285         int i, zapped = 0;
2286         struct mmu_page_path parents;
2287         struct kvm_mmu_pages pages;
2288
2289         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2290                 return 0;
2291
2292         kvm_mmu_pages_init(parent, &parents, &pages);
2293         while (mmu_unsync_walk(parent, &pages)) {
2294                 struct kvm_mmu_page *sp;
2295
2296                 for_each_sp(pages, sp, parents, i) {
2297                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2298                         mmu_pages_clear_parents(&parents);
2299                         zapped++;
2300                 }
2301                 kvm_mmu_pages_init(parent, &parents, &pages);
2302         }
2303
2304         return zapped;
2305 }
2306
2307 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308                                     struct list_head *invalid_list)
2309 {
2310         int ret;
2311
2312         trace_kvm_mmu_prepare_zap_page(sp);
2313         ++kvm->stat.mmu_shadow_zapped;
2314         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315         kvm_mmu_page_unlink_children(kvm, sp);
2316         kvm_mmu_unlink_parents(kvm, sp);
2317
2318         if (!sp->role.invalid && !sp->role.direct)
2319                 unaccount_shadowed(kvm, sp);
2320
2321         if (sp->unsync)
2322                 kvm_unlink_unsync_page(kvm, sp);
2323         if (!sp->root_count) {
2324                 /* Count self */
2325                 ret++;
2326                 list_move(&sp->link, invalid_list);
2327                 kvm_mod_used_mmu_pages(kvm, -1);
2328         } else {
2329                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2330
2331                 /*
2332                  * The obsolete pages can not be used on any vcpus.
2333                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334                  */
2335                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336                         kvm_reload_remote_mmus(kvm);
2337         }
2338
2339         sp->role.invalid = 1;
2340         return ret;
2341 }
2342
2343 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344                                     struct list_head *invalid_list)
2345 {
2346         struct kvm_mmu_page *sp, *nsp;
2347
2348         if (list_empty(invalid_list))
2349                 return;
2350
2351         /*
2352          * wmb: make sure everyone sees our modifications to the page tables
2353          * rmb: make sure we see changes to vcpu->mode
2354          */
2355         smp_mb();
2356
2357         /*
2358          * Wait for all vcpus to exit guest mode and/or lockless shadow
2359          * page table walks.
2360          */
2361         kvm_flush_remote_tlbs(kvm);
2362
2363         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364                 WARN_ON(!sp->role.invalid || sp->root_count);
2365                 kvm_mmu_free_page(sp);
2366         }
2367 }
2368
2369 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370                                         struct list_head *invalid_list)
2371 {
2372         struct kvm_mmu_page *sp;
2373
2374         if (list_empty(&kvm->arch.active_mmu_pages))
2375                 return false;
2376
2377         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2378                         struct kvm_mmu_page, link);
2379         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381         return true;
2382 }
2383
2384 /*
2385  * Changing the number of mmu pages allocated to the vm
2386  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2387  */
2388 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2389 {
2390         LIST_HEAD(invalid_list);
2391
2392         spin_lock(&kvm->mmu_lock);
2393
2394         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395                 /* Need to free some mmu pages to achieve the goal. */
2396                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398                                 break;
2399
2400                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2402         }
2403
2404         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2405
2406         spin_unlock(&kvm->mmu_lock);
2407 }
2408
2409 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2410 {
2411         struct kvm_mmu_page *sp;
2412         LIST_HEAD(invalid_list);
2413         int r;
2414
2415         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2416         r = 0;
2417         spin_lock(&kvm->mmu_lock);
2418         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2419                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2420                          sp->role.word);
2421                 r = 1;
2422                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2423         }
2424         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425         spin_unlock(&kvm->mmu_lock);
2426
2427         return r;
2428 }
2429 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2430
2431 /*
2432  * The function is based on mtrr_type_lookup() in
2433  * arch/x86/kernel/cpu/mtrr/generic.c
2434  */
2435 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2436                          u64 start, u64 end)
2437 {
2438         u64 base, mask;
2439         u8 prev_match, curr_match;
2440         int i, num_var_ranges = KVM_NR_VAR_MTRR;
2441
2442         /* MTRR is completely disabled, use UC for all of physical memory. */
2443         if (!(mtrr_state->enabled & 0x2))
2444                 return MTRR_TYPE_UNCACHABLE;
2445
2446         /* Make end inclusive end, instead of exclusive */
2447         end--;
2448
2449         /* Look in fixed ranges. Just return the type as per start */
2450         if (mtrr_state->have_fixed && (mtrr_state->enabled & 0x1) &&
2451               (start < 0x100000)) {
2452                 int idx;
2453
2454                 if (start < 0x80000) {
2455                         idx = 0;
2456                         idx += (start >> 16);
2457                         return mtrr_state->fixed_ranges[idx];
2458                 } else if (start < 0xC0000) {
2459                         idx = 1 * 8;
2460                         idx += ((start - 0x80000) >> 14);
2461                         return mtrr_state->fixed_ranges[idx];
2462                 } else if (start < 0x1000000) {
2463                         idx = 3 * 8;
2464                         idx += ((start - 0xC0000) >> 12);
2465                         return mtrr_state->fixed_ranges[idx];
2466                 }
2467         }
2468
2469         /*
2470          * Look in variable ranges
2471          * Look of multiple ranges matching this address and pick type
2472          * as per MTRR precedence
2473          */
2474         prev_match = 0xFF;
2475         for (i = 0; i < num_var_ranges; ++i) {
2476                 unsigned short start_state, end_state;
2477
2478                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2479                         continue;
2480
2481                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2482                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2483                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2484                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2485
2486                 start_state = ((start & mask) == (base & mask));
2487                 end_state = ((end & mask) == (base & mask));
2488                 if (start_state != end_state)
2489                         return 0xFE;
2490
2491                 if ((start & mask) != (base & mask))
2492                         continue;
2493
2494                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2495                 if (prev_match == 0xFF) {
2496                         prev_match = curr_match;
2497                         continue;
2498                 }
2499
2500                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2501                     curr_match == MTRR_TYPE_UNCACHABLE)
2502                         return MTRR_TYPE_UNCACHABLE;
2503
2504                 if ((prev_match == MTRR_TYPE_WRBACK &&
2505                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2506                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2507                      curr_match == MTRR_TYPE_WRBACK)) {
2508                         prev_match = MTRR_TYPE_WRTHROUGH;
2509                         curr_match = MTRR_TYPE_WRTHROUGH;
2510                 }
2511
2512                 if (prev_match != curr_match)
2513                         return MTRR_TYPE_UNCACHABLE;
2514         }
2515
2516         if (prev_match != 0xFF)
2517                 return prev_match;
2518
2519         return mtrr_state->def_type;
2520 }
2521
2522 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2523 {
2524         u8 mtrr;
2525
2526         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2527                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2528         if (mtrr == 0xfe || mtrr == 0xff)
2529                 mtrr = MTRR_TYPE_WRBACK;
2530         return mtrr;
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2533
2534 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2535 {
2536         trace_kvm_mmu_unsync_page(sp);
2537         ++vcpu->kvm->stat.mmu_unsync;
2538         sp->unsync = 1;
2539
2540         kvm_mmu_mark_parents_unsync(sp);
2541 }
2542
2543 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2544 {
2545         struct kvm_mmu_page *s;
2546
2547         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2548                 if (s->unsync)
2549                         continue;
2550                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2551                 __kvm_unsync_page(vcpu, s);
2552         }
2553 }
2554
2555 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2556                                   bool can_unsync)
2557 {
2558         struct kvm_mmu_page *s;
2559         bool need_unsync = false;
2560
2561         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2562                 if (!can_unsync)
2563                         return 1;
2564
2565                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2566                         return 1;
2567
2568                 if (!s->unsync)
2569                         need_unsync = true;
2570         }
2571         if (need_unsync)
2572                 kvm_unsync_pages(vcpu, gfn);
2573         return 0;
2574 }
2575
2576 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2577                     unsigned pte_access, int level,
2578                     gfn_t gfn, pfn_t pfn, bool speculative,
2579                     bool can_unsync, bool host_writable)
2580 {
2581         u64 spte;
2582         int ret = 0;
2583
2584         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2585                 return 0;
2586
2587         spte = PT_PRESENT_MASK;
2588         if (!speculative)
2589                 spte |= shadow_accessed_mask;
2590
2591         if (pte_access & ACC_EXEC_MASK)
2592                 spte |= shadow_x_mask;
2593         else
2594                 spte |= shadow_nx_mask;
2595
2596         if (pte_access & ACC_USER_MASK)
2597                 spte |= shadow_user_mask;
2598
2599         if (level > PT_PAGE_TABLE_LEVEL)
2600                 spte |= PT_PAGE_SIZE_MASK;
2601         if (tdp_enabled)
2602                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2603                         kvm_is_reserved_pfn(pfn));
2604
2605         if (host_writable)
2606                 spte |= SPTE_HOST_WRITEABLE;
2607         else
2608                 pte_access &= ~ACC_WRITE_MASK;
2609
2610         spte |= (u64)pfn << PAGE_SHIFT;
2611
2612         if (pte_access & ACC_WRITE_MASK) {
2613
2614                 /*
2615                  * Other vcpu creates new sp in the window between
2616                  * mapping_level() and acquiring mmu-lock. We can
2617                  * allow guest to retry the access, the mapping can
2618                  * be fixed if guest refault.
2619                  */
2620                 if (level > PT_PAGE_TABLE_LEVEL &&
2621                     has_wrprotected_page(vcpu->kvm, gfn, level))
2622                         goto done;
2623
2624                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2625
2626                 /*
2627                  * Optimization: for pte sync, if spte was writable the hash
2628                  * lookup is unnecessary (and expensive). Write protection
2629                  * is responsibility of mmu_get_page / kvm_sync_page.
2630                  * Same reasoning can be applied to dirty page accounting.
2631                  */
2632                 if (!can_unsync && is_writable_pte(*sptep))
2633                         goto set_pte;
2634
2635                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2636                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2637                                  __func__, gfn);
2638                         ret = 1;
2639                         pte_access &= ~ACC_WRITE_MASK;
2640                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2641                 }
2642         }
2643
2644         if (pte_access & ACC_WRITE_MASK) {
2645                 mark_page_dirty(vcpu->kvm, gfn);
2646                 spte |= shadow_dirty_mask;
2647         }
2648
2649 set_pte:
2650         if (mmu_spte_update(sptep, spte))
2651                 kvm_flush_remote_tlbs(vcpu->kvm);
2652 done:
2653         return ret;
2654 }
2655
2656 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2657                          unsigned pte_access, int write_fault, int *emulate,
2658                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2659                          bool host_writable)
2660 {
2661         int was_rmapped = 0;
2662         int rmap_count;
2663
2664         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2665                  *sptep, write_fault, gfn);
2666
2667         if (is_rmap_spte(*sptep)) {
2668                 /*
2669                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2670                  * the parent of the now unreachable PTE.
2671                  */
2672                 if (level > PT_PAGE_TABLE_LEVEL &&
2673                     !is_large_pte(*sptep)) {
2674                         struct kvm_mmu_page *child;
2675                         u64 pte = *sptep;
2676
2677                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2678                         drop_parent_pte(child, sptep);
2679                         kvm_flush_remote_tlbs(vcpu->kvm);
2680                 } else if (pfn != spte_to_pfn(*sptep)) {
2681                         pgprintk("hfn old %llx new %llx\n",
2682                                  spte_to_pfn(*sptep), pfn);
2683                         drop_spte(vcpu->kvm, sptep);
2684                         kvm_flush_remote_tlbs(vcpu->kvm);
2685                 } else
2686                         was_rmapped = 1;
2687         }
2688
2689         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2690               true, host_writable)) {
2691                 if (write_fault)
2692                         *emulate = 1;
2693                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2694         }
2695
2696         if (unlikely(is_mmio_spte(*sptep) && emulate))
2697                 *emulate = 1;
2698
2699         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2700         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2701                  is_large_pte(*sptep)? "2MB" : "4kB",
2702                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2703                  *sptep, sptep);
2704         if (!was_rmapped && is_large_pte(*sptep))
2705                 ++vcpu->kvm->stat.lpages;
2706
2707         if (is_shadow_present_pte(*sptep)) {
2708                 if (!was_rmapped) {
2709                         rmap_count = rmap_add(vcpu, sptep, gfn);
2710                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2711                                 rmap_recycle(vcpu, sptep, gfn);
2712                 }
2713         }
2714
2715         kvm_release_pfn_clean(pfn);
2716 }
2717
2718 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2719                                      bool no_dirty_log)
2720 {
2721         struct kvm_memory_slot *slot;
2722
2723         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2724         if (!slot)
2725                 return KVM_PFN_ERR_FAULT;
2726
2727         return gfn_to_pfn_memslot_atomic(slot, gfn);
2728 }
2729
2730 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2731                                     struct kvm_mmu_page *sp,
2732                                     u64 *start, u64 *end)
2733 {
2734         struct page *pages[PTE_PREFETCH_NUM];
2735         struct kvm_memory_slot *slot;
2736         unsigned access = sp->role.access;
2737         int i, ret;
2738         gfn_t gfn;
2739
2740         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2741         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2742         if (!slot)
2743                 return -1;
2744
2745         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2746         if (ret <= 0)
2747                 return -1;
2748
2749         for (i = 0; i < ret; i++, gfn++, start++)
2750                 mmu_set_spte(vcpu, start, access, 0, NULL,
2751                              sp->role.level, gfn, page_to_pfn(pages[i]),
2752                              true, true);
2753
2754         return 0;
2755 }
2756
2757 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2758                                   struct kvm_mmu_page *sp, u64 *sptep)
2759 {
2760         u64 *spte, *start = NULL;
2761         int i;
2762
2763         WARN_ON(!sp->role.direct);
2764
2765         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2766         spte = sp->spt + i;
2767
2768         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2769                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2770                         if (!start)
2771                                 continue;
2772                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2773                                 break;
2774                         start = NULL;
2775                 } else if (!start)
2776                         start = spte;
2777         }
2778 }
2779
2780 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2781 {
2782         struct kvm_mmu_page *sp;
2783
2784         /*
2785          * Since it's no accessed bit on EPT, it's no way to
2786          * distinguish between actually accessed translations
2787          * and prefetched, so disable pte prefetch if EPT is
2788          * enabled.
2789          */
2790         if (!shadow_accessed_mask)
2791                 return;
2792
2793         sp = page_header(__pa(sptep));
2794         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2795                 return;
2796
2797         __direct_pte_prefetch(vcpu, sp, sptep);
2798 }
2799
2800 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2801                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2802                         bool prefault)
2803 {
2804         struct kvm_shadow_walk_iterator iterator;
2805         struct kvm_mmu_page *sp;
2806         int emulate = 0;
2807         gfn_t pseudo_gfn;
2808
2809         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2810                 return 0;
2811
2812         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2813                 if (iterator.level == level) {
2814                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2815                                      write, &emulate, level, gfn, pfn,
2816                                      prefault, map_writable);
2817                         direct_pte_prefetch(vcpu, iterator.sptep);
2818                         ++vcpu->stat.pf_fixed;
2819                         break;
2820                 }
2821
2822                 drop_large_spte(vcpu, iterator.sptep);
2823                 if (!is_shadow_present_pte(*iterator.sptep)) {
2824                         u64 base_addr = iterator.addr;
2825
2826                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2827                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2828                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2829                                               iterator.level - 1,
2830                                               1, ACC_ALL, iterator.sptep);
2831
2832                         link_shadow_page(iterator.sptep, sp, true);
2833                 }
2834         }
2835         return emulate;
2836 }
2837
2838 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2839 {
2840         siginfo_t info;
2841
2842         info.si_signo   = SIGBUS;
2843         info.si_errno   = 0;
2844         info.si_code    = BUS_MCEERR_AR;
2845         info.si_addr    = (void __user *)address;
2846         info.si_addr_lsb = PAGE_SHIFT;
2847
2848         send_sig_info(SIGBUS, &info, tsk);
2849 }
2850
2851 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2852 {
2853         /*
2854          * Do not cache the mmio info caused by writing the readonly gfn
2855          * into the spte otherwise read access on readonly gfn also can
2856          * caused mmio page fault and treat it as mmio access.
2857          * Return 1 to tell kvm to emulate it.
2858          */
2859         if (pfn == KVM_PFN_ERR_RO_FAULT)
2860                 return 1;
2861
2862         if (pfn == KVM_PFN_ERR_HWPOISON) {
2863                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2864                 return 0;
2865         }
2866
2867         return -EFAULT;
2868 }
2869
2870 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2871                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2872 {
2873         pfn_t pfn = *pfnp;
2874         gfn_t gfn = *gfnp;
2875         int level = *levelp;
2876
2877         /*
2878          * Check if it's a transparent hugepage. If this would be an
2879          * hugetlbfs page, level wouldn't be set to
2880          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2881          * here.
2882          */
2883         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2884             level == PT_PAGE_TABLE_LEVEL &&
2885             PageTransCompound(pfn_to_page(pfn)) &&
2886             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2887                 unsigned long mask;
2888                 /*
2889                  * mmu_notifier_retry was successful and we hold the
2890                  * mmu_lock here, so the pmd can't become splitting
2891                  * from under us, and in turn
2892                  * __split_huge_page_refcount() can't run from under
2893                  * us and we can safely transfer the refcount from
2894                  * PG_tail to PG_head as we switch the pfn to tail to
2895                  * head.
2896                  */
2897                 *levelp = level = PT_DIRECTORY_LEVEL;
2898                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2899                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2900                 if (pfn & mask) {
2901                         gfn &= ~mask;
2902                         *gfnp = gfn;
2903                         kvm_release_pfn_clean(pfn);
2904                         pfn &= ~mask;
2905                         kvm_get_pfn(pfn);
2906                         *pfnp = pfn;
2907                 }
2908         }
2909 }
2910
2911 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2912                                 pfn_t pfn, unsigned access, int *ret_val)
2913 {
2914         bool ret = true;
2915
2916         /* The pfn is invalid, report the error! */
2917         if (unlikely(is_error_pfn(pfn))) {
2918                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2919                 goto exit;
2920         }
2921
2922         if (unlikely(is_noslot_pfn(pfn)))
2923                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2924
2925         ret = false;
2926 exit:
2927         return ret;
2928 }
2929
2930 static bool page_fault_can_be_fast(u32 error_code)
2931 {
2932         /*
2933          * Do not fix the mmio spte with invalid generation number which
2934          * need to be updated by slow page fault path.
2935          */
2936         if (unlikely(error_code & PFERR_RSVD_MASK))
2937                 return false;
2938
2939         /*
2940          * #PF can be fast only if the shadow page table is present and it
2941          * is caused by write-protect, that means we just need change the
2942          * W bit of the spte which can be done out of mmu-lock.
2943          */
2944         if (!(error_code & PFERR_PRESENT_MASK) ||
2945               !(error_code & PFERR_WRITE_MASK))
2946                 return false;
2947
2948         return true;
2949 }
2950
2951 static bool
2952 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2953                         u64 *sptep, u64 spte)
2954 {
2955         gfn_t gfn;
2956
2957         WARN_ON(!sp->role.direct);
2958
2959         /*
2960          * The gfn of direct spte is stable since it is calculated
2961          * by sp->gfn.
2962          */
2963         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2964
2965         /*
2966          * Theoretically we could also set dirty bit (and flush TLB) here in
2967          * order to eliminate unnecessary PML logging. See comments in
2968          * set_spte. But fast_page_fault is very unlikely to happen with PML
2969          * enabled, so we do not do this. This might result in the same GPA
2970          * to be logged in PML buffer again when the write really happens, and
2971          * eventually to be called by mark_page_dirty twice. But it's also no
2972          * harm. This also avoids the TLB flush needed after setting dirty bit
2973          * so non-PML cases won't be impacted.
2974          *
2975          * Compare with set_spte where instead shadow_dirty_mask is set.
2976          */
2977         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2978                 mark_page_dirty(vcpu->kvm, gfn);
2979
2980         return true;
2981 }
2982
2983 /*
2984  * Return value:
2985  * - true: let the vcpu to access on the same address again.
2986  * - false: let the real page fault path to fix it.
2987  */
2988 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2989                             u32 error_code)
2990 {
2991         struct kvm_shadow_walk_iterator iterator;
2992         struct kvm_mmu_page *sp;
2993         bool ret = false;
2994         u64 spte = 0ull;
2995
2996         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2997                 return false;
2998
2999         if (!page_fault_can_be_fast(error_code))
3000                 return false;
3001
3002         walk_shadow_page_lockless_begin(vcpu);
3003         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3004                 if (!is_shadow_present_pte(spte) || iterator.level < level)
3005                         break;
3006
3007         /*
3008          * If the mapping has been changed, let the vcpu fault on the
3009          * same address again.
3010          */
3011         if (!is_rmap_spte(spte)) {
3012                 ret = true;
3013                 goto exit;
3014         }
3015
3016         sp = page_header(__pa(iterator.sptep));
3017         if (!is_last_spte(spte, sp->role.level))
3018                 goto exit;
3019
3020         /*
3021          * Check if it is a spurious fault caused by TLB lazily flushed.
3022          *
3023          * Need not check the access of upper level table entries since
3024          * they are always ACC_ALL.
3025          */
3026          if (is_writable_pte(spte)) {
3027                 ret = true;
3028                 goto exit;
3029         }
3030
3031         /*
3032          * Currently, to simplify the code, only the spte write-protected
3033          * by dirty-log can be fast fixed.
3034          */
3035         if (!spte_is_locklessly_modifiable(spte))
3036                 goto exit;
3037
3038         /*
3039          * Do not fix write-permission on the large spte since we only dirty
3040          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3041          * that means other pages are missed if its slot is dirty-logged.
3042          *
3043          * Instead, we let the slow page fault path create a normal spte to
3044          * fix the access.
3045          *
3046          * See the comments in kvm_arch_commit_memory_region().
3047          */
3048         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3049                 goto exit;
3050
3051         /*
3052          * Currently, fast page fault only works for direct mapping since
3053          * the gfn is not stable for indirect shadow page.
3054          * See Documentation/virtual/kvm/locking.txt to get more detail.
3055          */
3056         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3057 exit:
3058         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3059                               spte, ret);
3060         walk_shadow_page_lockless_end(vcpu);
3061
3062         return ret;
3063 }
3064
3065 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3066                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
3067 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3068
3069 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3070                          gfn_t gfn, bool prefault)
3071 {
3072         int r;
3073         int level;
3074         int force_pt_level;
3075         pfn_t pfn;
3076         unsigned long mmu_seq;
3077         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3078
3079         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3080         if (likely(!force_pt_level)) {
3081                 level = mapping_level(vcpu, gfn);
3082                 /*
3083                  * This path builds a PAE pagetable - so we can map
3084                  * 2mb pages at maximum. Therefore check if the level
3085                  * is larger than that.
3086                  */
3087                 if (level > PT_DIRECTORY_LEVEL)
3088                         level = PT_DIRECTORY_LEVEL;
3089
3090                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3091         } else
3092                 level = PT_PAGE_TABLE_LEVEL;
3093
3094         if (fast_page_fault(vcpu, v, level, error_code))
3095                 return 0;
3096
3097         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3098         smp_rmb();
3099
3100         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3101                 return 0;
3102
3103         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3104                 return r;
3105
3106         spin_lock(&vcpu->kvm->mmu_lock);
3107         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3108                 goto out_unlock;
3109         make_mmu_pages_available(vcpu);
3110         if (likely(!force_pt_level))
3111                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3112         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3113                          prefault);
3114         spin_unlock(&vcpu->kvm->mmu_lock);
3115
3116
3117         return r;
3118
3119 out_unlock:
3120         spin_unlock(&vcpu->kvm->mmu_lock);
3121         kvm_release_pfn_clean(pfn);
3122         return 0;
3123 }
3124
3125
3126 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3127 {
3128         int i;
3129         struct kvm_mmu_page *sp;
3130         LIST_HEAD(invalid_list);
3131
3132         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3133                 return;
3134
3135         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3136             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3137              vcpu->arch.mmu.direct_map)) {
3138                 hpa_t root = vcpu->arch.mmu.root_hpa;
3139
3140                 spin_lock(&vcpu->kvm->mmu_lock);
3141                 sp = page_header(root);
3142                 --sp->root_count;
3143                 if (!sp->root_count && sp->role.invalid) {
3144                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3145                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3146                 }
3147                 spin_unlock(&vcpu->kvm->mmu_lock);
3148                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3149                 return;
3150         }
3151
3152         spin_lock(&vcpu->kvm->mmu_lock);
3153         for (i = 0; i < 4; ++i) {
3154                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3155
3156                 if (root) {
3157                         root &= PT64_BASE_ADDR_MASK;
3158                         sp = page_header(root);
3159                         --sp->root_count;
3160                         if (!sp->root_count && sp->role.invalid)
3161                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3162                                                          &invalid_list);
3163                 }
3164                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3165         }
3166         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3167         spin_unlock(&vcpu->kvm->mmu_lock);
3168         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3169 }
3170
3171 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3172 {
3173         int ret = 0;
3174
3175         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3176                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3177                 ret = 1;
3178         }
3179
3180         return ret;
3181 }
3182
3183 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3184 {
3185         struct kvm_mmu_page *sp;
3186         unsigned i;
3187
3188         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3189                 spin_lock(&vcpu->kvm->mmu_lock);
3190                 make_mmu_pages_available(vcpu);
3191                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3192                                       1, ACC_ALL, NULL);
3193                 ++sp->root_count;
3194                 spin_unlock(&vcpu->kvm->mmu_lock);
3195                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3196         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3197                 for (i = 0; i < 4; ++i) {
3198                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3199
3200                         MMU_WARN_ON(VALID_PAGE(root));
3201                         spin_lock(&vcpu->kvm->mmu_lock);
3202                         make_mmu_pages_available(vcpu);
3203                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3204                                               i << 30,
3205                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3206                                               NULL);
3207                         root = __pa(sp->spt);
3208                         ++sp->root_count;
3209                         spin_unlock(&vcpu->kvm->mmu_lock);
3210                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3211                 }
3212                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3213         } else
3214                 BUG();
3215
3216         return 0;
3217 }
3218
3219 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3220 {
3221         struct kvm_mmu_page *sp;
3222         u64 pdptr, pm_mask;
3223         gfn_t root_gfn;
3224         int i;
3225
3226         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3227
3228         if (mmu_check_root(vcpu, root_gfn))
3229                 return 1;
3230
3231         /*
3232          * Do we shadow a long mode page table? If so we need to
3233          * write-protect the guests page table root.
3234          */
3235         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3236                 hpa_t root = vcpu->arch.mmu.root_hpa;
3237
3238                 MMU_WARN_ON(VALID_PAGE(root));
3239
3240                 spin_lock(&vcpu->kvm->mmu_lock);
3241                 make_mmu_pages_available(vcpu);
3242                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3243                                       0, ACC_ALL, NULL);
3244                 root = __pa(sp->spt);
3245                 ++sp->root_count;
3246                 spin_unlock(&vcpu->kvm->mmu_lock);
3247                 vcpu->arch.mmu.root_hpa = root;
3248                 return 0;
3249         }
3250
3251         /*
3252          * We shadow a 32 bit page table. This may be a legacy 2-level
3253          * or a PAE 3-level page table. In either case we need to be aware that
3254          * the shadow page table may be a PAE or a long mode page table.
3255          */
3256         pm_mask = PT_PRESENT_MASK;
3257         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3258                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3259
3260         for (i = 0; i < 4; ++i) {
3261                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3262
3263                 MMU_WARN_ON(VALID_PAGE(root));
3264                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3265                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3266                         if (!is_present_gpte(pdptr)) {
3267                                 vcpu->arch.mmu.pae_root[i] = 0;
3268                                 continue;
3269                         }
3270                         root_gfn = pdptr >> PAGE_SHIFT;
3271                         if (mmu_check_root(vcpu, root_gfn))
3272                                 return 1;
3273                 }
3274                 spin_lock(&vcpu->kvm->mmu_lock);
3275                 make_mmu_pages_available(vcpu);
3276                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3277                                       PT32_ROOT_LEVEL, 0,
3278                                       ACC_ALL, NULL);
3279                 root = __pa(sp->spt);
3280                 ++sp->root_count;
3281                 spin_unlock(&vcpu->kvm->mmu_lock);
3282
3283                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3284         }
3285         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3286
3287         /*
3288          * If we shadow a 32 bit page table with a long mode page
3289          * table we enter this path.
3290          */
3291         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3292                 if (vcpu->arch.mmu.lm_root == NULL) {
3293                         /*
3294                          * The additional page necessary for this is only
3295                          * allocated on demand.
3296                          */
3297
3298                         u64 *lm_root;
3299
3300                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3301                         if (lm_root == NULL)
3302                                 return 1;
3303
3304                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3305
3306                         vcpu->arch.mmu.lm_root = lm_root;
3307                 }
3308
3309                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3310         }
3311
3312         return 0;
3313 }
3314
3315 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3316 {
3317         if (vcpu->arch.mmu.direct_map)
3318                 return mmu_alloc_direct_roots(vcpu);
3319         else
3320                 return mmu_alloc_shadow_roots(vcpu);
3321 }
3322
3323 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3324 {
3325         int i;
3326         struct kvm_mmu_page *sp;
3327
3328         if (vcpu->arch.mmu.direct_map)
3329                 return;
3330
3331         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3332                 return;
3333
3334         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3335         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3336         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3337                 hpa_t root = vcpu->arch.mmu.root_hpa;
3338                 sp = page_header(root);
3339                 mmu_sync_children(vcpu, sp);
3340                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3341                 return;
3342         }
3343         for (i = 0; i < 4; ++i) {
3344                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3345
3346                 if (root && VALID_PAGE(root)) {
3347                         root &= PT64_BASE_ADDR_MASK;
3348                         sp = page_header(root);
3349                         mmu_sync_children(vcpu, sp);
3350                 }
3351         }
3352         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3353 }
3354
3355 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3356 {
3357         spin_lock(&vcpu->kvm->mmu_lock);
3358         mmu_sync_roots(vcpu);
3359         spin_unlock(&vcpu->kvm->mmu_lock);
3360 }
3361 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3362
3363 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3364                                   u32 access, struct x86_exception *exception)
3365 {
3366         if (exception)
3367                 exception->error_code = 0;
3368         return vaddr;
3369 }
3370
3371 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3372                                          u32 access,
3373                                          struct x86_exception *exception)
3374 {
3375         if (exception)
3376                 exception->error_code = 0;
3377         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3378 }
3379
3380 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3381 {
3382         if (direct)
3383                 return vcpu_match_mmio_gpa(vcpu, addr);
3384
3385         return vcpu_match_mmio_gva(vcpu, addr);
3386 }
3387
3388
3389 /*
3390  * On direct hosts, the last spte is only allows two states
3391  * for mmio page fault:
3392  *   - It is the mmio spte
3393  *   - It is zapped or it is being zapped.
3394  *
3395  * This function completely checks the spte when the last spte
3396  * is not the mmio spte.
3397  */
3398 static bool check_direct_spte_mmio_pf(u64 spte)
3399 {
3400         return __check_direct_spte_mmio_pf(spte);
3401 }
3402
3403 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3404 {
3405         struct kvm_shadow_walk_iterator iterator;
3406         u64 spte = 0ull;
3407
3408         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3409                 return spte;
3410
3411         walk_shadow_page_lockless_begin(vcpu);
3412         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3413                 if (!is_shadow_present_pte(spte))
3414                         break;
3415         walk_shadow_page_lockless_end(vcpu);
3416
3417         return spte;
3418 }
3419
3420 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3421 {
3422         u64 spte;
3423
3424         if (quickly_check_mmio_pf(vcpu, addr, direct))
3425                 return RET_MMIO_PF_EMULATE;
3426
3427         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3428
3429         if (is_mmio_spte(spte)) {
3430                 gfn_t gfn = get_mmio_spte_gfn(spte);
3431                 unsigned access = get_mmio_spte_access(spte);
3432
3433                 if (!check_mmio_spte(vcpu->kvm, spte))
3434                         return RET_MMIO_PF_INVALID;
3435
3436                 if (direct)
3437                         addr = 0;
3438
3439                 trace_handle_mmio_page_fault(addr, gfn, access);
3440                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3441                 return RET_MMIO_PF_EMULATE;
3442         }
3443
3444         /*
3445          * It's ok if the gva is remapped by other cpus on shadow guest,
3446          * it's a BUG if the gfn is not a mmio page.
3447          */
3448         if (direct && !check_direct_spte_mmio_pf(spte))
3449                 return RET_MMIO_PF_BUG;
3450
3451         /*
3452          * If the page table is zapped by other cpus, let CPU fault again on
3453          * the address.
3454          */
3455         return RET_MMIO_PF_RETRY;
3456 }
3457 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3458
3459 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3460                                   u32 error_code, bool direct)
3461 {
3462         int ret;
3463
3464         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3465         WARN_ON(ret == RET_MMIO_PF_BUG);
3466         return ret;
3467 }
3468
3469 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3470                                 u32 error_code, bool prefault)
3471 {
3472         gfn_t gfn;
3473         int r;
3474
3475         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3476
3477         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3478                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3479
3480                 if (likely(r != RET_MMIO_PF_INVALID))
3481                         return r;
3482         }
3483
3484         r = mmu_topup_memory_caches(vcpu);
3485         if (r)
3486                 return r;
3487
3488         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3489
3490         gfn = gva >> PAGE_SHIFT;
3491
3492         return nonpaging_map(vcpu, gva & PAGE_MASK,
3493                              error_code, gfn, prefault);
3494 }
3495
3496 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3497 {
3498         struct kvm_arch_async_pf arch;
3499
3500         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3501         arch.gfn = gfn;
3502         arch.direct_map = vcpu->arch.mmu.direct_map;
3503         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3504
3505         return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3506 }
3507
3508 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3509 {
3510         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3511                      kvm_event_needs_reinjection(vcpu)))
3512                 return false;
3513
3514         return kvm_x86_ops->interrupt_allowed(vcpu);
3515 }
3516
3517 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3518                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3519 {
3520         struct kvm_memory_slot *slot;
3521         bool async;
3522
3523         slot = gfn_to_memslot(vcpu->kvm, gfn);
3524         async = false;
3525         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3526         if (!async)
3527                 return false; /* *pfn has correct page already */
3528
3529         if (!prefault && can_do_async_pf(vcpu)) {
3530                 trace_kvm_try_async_get_page(gva, gfn);
3531                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3532                         trace_kvm_async_pf_doublefault(gva, gfn);
3533                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3534                         return true;
3535                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3536                         return true;
3537         }
3538
3539         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3540         return false;
3541 }
3542
3543 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3544                           bool prefault)
3545 {
3546         pfn_t pfn;
3547         int r;
3548         int level;
3549         int force_pt_level;
3550         gfn_t gfn = gpa >> PAGE_SHIFT;
3551         unsigned long mmu_seq;
3552         int write = error_code & PFERR_WRITE_MASK;
3553         bool map_writable;
3554
3555         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3556
3557         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3558                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3559
3560                 if (likely(r != RET_MMIO_PF_INVALID))
3561                         return r;
3562         }
3563
3564         r = mmu_topup_memory_caches(vcpu);
3565         if (r)
3566                 return r;
3567
3568         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3569         if (likely(!force_pt_level)) {
3570                 level = mapping_level(vcpu, gfn);
3571                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3572         } else
3573                 level = PT_PAGE_TABLE_LEVEL;
3574
3575         if (fast_page_fault(vcpu, gpa, level, error_code))
3576                 return 0;
3577
3578         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3579         smp_rmb();
3580
3581         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3582                 return 0;
3583
3584         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3585                 return r;
3586
3587         spin_lock(&vcpu->kvm->mmu_lock);
3588         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3589                 goto out_unlock;
3590         make_mmu_pages_available(vcpu);
3591         if (likely(!force_pt_level))
3592                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3593         r = __direct_map(vcpu, gpa, write, map_writable,
3594                          level, gfn, pfn, prefault);
3595         spin_unlock(&vcpu->kvm->mmu_lock);
3596
3597         return r;
3598
3599 out_unlock:
3600         spin_unlock(&vcpu->kvm->mmu_lock);
3601         kvm_release_pfn_clean(pfn);
3602         return 0;
3603 }
3604
3605 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3606                                    struct kvm_mmu *context)
3607 {
3608         context->page_fault = nonpaging_page_fault;
3609         context->gva_to_gpa = nonpaging_gva_to_gpa;
3610         context->sync_page = nonpaging_sync_page;
3611         context->invlpg = nonpaging_invlpg;
3612         context->update_pte = nonpaging_update_pte;
3613         context->root_level = 0;
3614         context->shadow_root_level = PT32E_ROOT_LEVEL;
3615         context->root_hpa = INVALID_PAGE;
3616         context->direct_map = true;
3617         context->nx = false;
3618 }
3619
3620 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3621 {
3622         mmu_free_roots(vcpu);
3623 }
3624
3625 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3626 {
3627         return kvm_read_cr3(vcpu);
3628 }
3629
3630 static void inject_page_fault(struct kvm_vcpu *vcpu,
3631                               struct x86_exception *fault)
3632 {
3633         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3634 }
3635
3636 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3637                            unsigned access, int *nr_present)
3638 {
3639         if (unlikely(is_mmio_spte(*sptep))) {
3640                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3641                         mmu_spte_clear_no_track(sptep);
3642                         return true;
3643                 }
3644
3645                 (*nr_present)++;
3646                 mark_mmio_spte(kvm, sptep, gfn, access);
3647                 return true;
3648         }
3649
3650         return false;
3651 }
3652
3653 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3654 {
3655         unsigned index;
3656
3657         index = level - 1;
3658         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3659         return mmu->last_pte_bitmap & (1 << index);
3660 }
3661
3662 #define PTTYPE_EPT 18 /* arbitrary */
3663 #define PTTYPE PTTYPE_EPT
3664 #include "paging_tmpl.h"
3665 #undef PTTYPE
3666
3667 #define PTTYPE 64
3668 #include "paging_tmpl.h"
3669 #undef PTTYPE
3670
3671 #define PTTYPE 32
3672 #include "paging_tmpl.h"
3673 #undef PTTYPE
3674
3675 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3676                                   struct kvm_mmu *context)
3677 {
3678         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3679         u64 exb_bit_rsvd = 0;
3680         u64 gbpages_bit_rsvd = 0;
3681         u64 nonleaf_bit8_rsvd = 0;
3682
3683         context->bad_mt_xwr = 0;
3684
3685         if (!context->nx)
3686                 exb_bit_rsvd = rsvd_bits(63, 63);
3687         if (!guest_cpuid_has_gbpages(vcpu))
3688                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3689
3690         /*
3691          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3692          * leaf entries) on AMD CPUs only.
3693          */
3694         if (guest_cpuid_is_amd(vcpu))
3695                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3696
3697         switch (context->root_level) {
3698         case PT32_ROOT_LEVEL:
3699                 /* no rsvd bits for 2 level 4K page table entries */
3700                 context->rsvd_bits_mask[0][1] = 0;
3701                 context->rsvd_bits_mask[0][0] = 0;
3702                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3703
3704                 if (!is_pse(vcpu)) {
3705                         context->rsvd_bits_mask[1][1] = 0;
3706                         break;
3707                 }
3708
3709                 if (is_cpuid_PSE36())
3710                         /* 36bits PSE 4MB page */
3711                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3712                 else
3713                         /* 32 bits PSE 4MB page */
3714                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3715                 break;
3716         case PT32E_ROOT_LEVEL:
3717                 context->rsvd_bits_mask[0][2] =
3718                         rsvd_bits(maxphyaddr, 63) |
3719                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3720                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3721                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3722                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3723                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3724                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3725                         rsvd_bits(maxphyaddr, 62) |
3726                         rsvd_bits(13, 20);              /* large page */
3727                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3728                 break;
3729         case PT64_ROOT_LEVEL:
3730                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3731                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3732                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3733                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3734                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3735                         rsvd_bits(maxphyaddr, 51);
3736                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3737                         rsvd_bits(maxphyaddr, 51);
3738                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3739                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3740                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3741                         rsvd_bits(13, 29);
3742                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3743                         rsvd_bits(maxphyaddr, 51) |
3744                         rsvd_bits(13, 20);              /* large page */
3745                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3746                 break;
3747         }
3748 }
3749
3750 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3751                 struct kvm_mmu *context, bool execonly)
3752 {
3753         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3754         int pte;
3755
3756         context->rsvd_bits_mask[0][3] =
3757                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3758         context->rsvd_bits_mask[0][2] =
3759                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3760         context->rsvd_bits_mask[0][1] =
3761                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3762         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3763
3764         /* large page */
3765         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3766         context->rsvd_bits_mask[1][2] =
3767                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3768         context->rsvd_bits_mask[1][1] =
3769                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3770         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3771
3772         for (pte = 0; pte < 64; pte++) {
3773                 int rwx_bits = pte & 7;
3774                 int mt = pte >> 3;
3775                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3776                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3777                                 (rwx_bits == 0x4 && !execonly))
3778                         context->bad_mt_xwr |= (1ull << pte);
3779         }
3780 }
3781
3782 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3783                                       struct kvm_mmu *mmu, bool ept)
3784 {
3785         unsigned bit, byte, pfec;
3786         u8 map;
3787         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3788
3789         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3790         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3791         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3792                 pfec = byte << 1;
3793                 map = 0;
3794                 wf = pfec & PFERR_WRITE_MASK;
3795                 uf = pfec & PFERR_USER_MASK;
3796                 ff = pfec & PFERR_FETCH_MASK;
3797                 /*
3798                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3799                  * subject to SMAP restrictions, and cleared otherwise. The
3800                  * bit is only meaningful if the SMAP bit is set in CR4.
3801                  */
3802                 smapf = !(pfec & PFERR_RSVD_MASK);
3803                 for (bit = 0; bit < 8; ++bit) {
3804                         x = bit & ACC_EXEC_MASK;
3805                         w = bit & ACC_WRITE_MASK;
3806                         u = bit & ACC_USER_MASK;
3807
3808                         if (!ept) {
3809                                 /* Not really needed: !nx will cause pte.nx to fault */
3810                                 x |= !mmu->nx;
3811                                 /* Allow supervisor writes if !cr0.wp */
3812                                 w |= !is_write_protection(vcpu) && !uf;
3813                                 /* Disallow supervisor fetches of user code if cr4.smep */
3814                                 x &= !(cr4_smep && u && !uf);
3815
3816                                 /*
3817                                  * SMAP:kernel-mode data accesses from user-mode
3818                                  * mappings should fault. A fault is considered
3819                                  * as a SMAP violation if all of the following
3820                                  * conditions are ture:
3821                                  *   - X86_CR4_SMAP is set in CR4
3822                                  *   - An user page is accessed
3823                                  *   - Page fault in kernel mode
3824                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3825                                  *
3826                                  *   Here, we cover the first three conditions.
3827                                  *   The fourth is computed dynamically in
3828                                  *   permission_fault() and is in smapf.
3829                                  *
3830                                  *   Also, SMAP does not affect instruction
3831                                  *   fetches, add the !ff check here to make it
3832                                  *   clearer.
3833                                  */
3834                                 smap = cr4_smap && u && !uf && !ff;
3835                         } else
3836                                 /* Not really needed: no U/S accesses on ept  */
3837                                 u = 1;
3838
3839                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3840                                 (smapf && smap);
3841                         map |= fault << bit;
3842                 }
3843                 mmu->permissions[byte] = map;
3844         }
3845 }
3846
3847 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3848 {
3849         u8 map;
3850         unsigned level, root_level = mmu->root_level;
3851         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3852
3853         if (root_level == PT32E_ROOT_LEVEL)
3854                 --root_level;
3855         /* PT_PAGE_TABLE_LEVEL always terminates */
3856         map = 1 | (1 << ps_set_index);
3857         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3858                 if (level <= PT_PDPE_LEVEL
3859                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3860                         map |= 1 << (ps_set_index | (level - 1));
3861         }
3862         mmu->last_pte_bitmap = map;
3863 }
3864
3865 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3866                                          struct kvm_mmu *context,
3867                                          int level)
3868 {
3869         context->nx = is_nx(vcpu);
3870         context->root_level = level;
3871
3872         reset_rsvds_bits_mask(vcpu, context);
3873         update_permission_bitmask(vcpu, context, false);
3874         update_last_pte_bitmap(vcpu, context);
3875
3876         MMU_WARN_ON(!is_pae(vcpu));
3877         context->page_fault = paging64_page_fault;
3878         context->gva_to_gpa = paging64_gva_to_gpa;
3879         context->sync_page = paging64_sync_page;
3880         context->invlpg = paging64_invlpg;
3881         context->update_pte = paging64_update_pte;
3882         context->shadow_root_level = level;
3883         context->root_hpa = INVALID_PAGE;
3884         context->direct_map = false;
3885 }
3886
3887 static void paging64_init_context(struct kvm_vcpu *vcpu,
3888                                   struct kvm_mmu *context)
3889 {
3890         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3891 }
3892
3893 static void paging32_init_context(struct kvm_vcpu *vcpu,
3894                                   struct kvm_mmu *context)
3895 {
3896         context->nx = false;
3897         context->root_level = PT32_ROOT_LEVEL;
3898
3899         reset_rsvds_bits_mask(vcpu, context);
3900         update_permission_bitmask(vcpu, context, false);
3901         update_last_pte_bitmap(vcpu, context);
3902
3903         context->page_fault = paging32_page_fault;
3904         context->gva_to_gpa = paging32_gva_to_gpa;
3905         context->sync_page = paging32_sync_page;
3906         context->invlpg = paging32_invlpg;
3907         context->update_pte = paging32_update_pte;
3908         context->shadow_root_level = PT32E_ROOT_LEVEL;
3909         context->root_hpa = INVALID_PAGE;
3910         context->direct_map = false;
3911 }
3912
3913 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3914                                    struct kvm_mmu *context)
3915 {
3916         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3917 }
3918
3919 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3920 {
3921         struct kvm_mmu *context = &vcpu->arch.mmu;
3922
3923         context->base_role.word = 0;
3924         context->page_fault = tdp_page_fault;
3925         context->sync_page = nonpaging_sync_page;
3926         context->invlpg = nonpaging_invlpg;
3927         context->update_pte = nonpaging_update_pte;
3928         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3929         context->root_hpa = INVALID_PAGE;
3930         context->direct_map = true;
3931         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3932         context->get_cr3 = get_cr3;
3933         context->get_pdptr = kvm_pdptr_read;
3934         context->inject_page_fault = kvm_inject_page_fault;
3935
3936         if (!is_paging(vcpu)) {
3937                 context->nx = false;
3938                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3939                 context->root_level = 0;
3940         } else if (is_long_mode(vcpu)) {
3941                 context->nx = is_nx(vcpu);
3942                 context->root_level = PT64_ROOT_LEVEL;
3943                 reset_rsvds_bits_mask(vcpu, context);
3944                 context->gva_to_gpa = paging64_gva_to_gpa;
3945         } else if (is_pae(vcpu)) {
3946                 context->nx = is_nx(vcpu);
3947                 context->root_level = PT32E_ROOT_LEVEL;
3948                 reset_rsvds_bits_mask(vcpu, context);
3949                 context->gva_to_gpa = paging64_gva_to_gpa;
3950         } else {
3951                 context->nx = false;
3952                 context->root_level = PT32_ROOT_LEVEL;
3953                 reset_rsvds_bits_mask(vcpu, context);
3954                 context->gva_to_gpa = paging32_gva_to_gpa;
3955         }
3956
3957         update_permission_bitmask(vcpu, context, false);
3958         update_last_pte_bitmap(vcpu, context);
3959 }
3960
3961 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3962 {
3963         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3964         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3965         struct kvm_mmu *context = &vcpu->arch.mmu;
3966
3967         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3968
3969         if (!is_paging(vcpu))
3970                 nonpaging_init_context(vcpu, context);
3971         else if (is_long_mode(vcpu))
3972                 paging64_init_context(vcpu, context);
3973         else if (is_pae(vcpu))
3974                 paging32E_init_context(vcpu, context);
3975         else
3976                 paging32_init_context(vcpu, context);
3977
3978         context->base_role.nxe = is_nx(vcpu);
3979         context->base_role.cr4_pae = !!is_pae(vcpu);
3980         context->base_role.cr0_wp  = is_write_protection(vcpu);
3981         context->base_role.smep_andnot_wp
3982                 = smep && !is_write_protection(vcpu);
3983         context->base_role.smap_andnot_wp
3984                 = smap && !is_write_protection(vcpu);
3985 }
3986 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3987
3988 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3989 {
3990         struct kvm_mmu *context = &vcpu->arch.mmu;
3991
3992         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3993
3994         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3995
3996         context->nx = true;
3997         context->page_fault = ept_page_fault;
3998         context->gva_to_gpa = ept_gva_to_gpa;
3999         context->sync_page = ept_sync_page;
4000         context->invlpg = ept_invlpg;
4001         context->update_pte = ept_update_pte;
4002         context->root_level = context->shadow_root_level;
4003         context->root_hpa = INVALID_PAGE;
4004         context->direct_map = false;
4005
4006         update_permission_bitmask(vcpu, context, true);
4007         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4008 }
4009 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4010
4011 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4012 {
4013         struct kvm_mmu *context = &vcpu->arch.mmu;
4014
4015         kvm_init_shadow_mmu(vcpu);
4016         context->set_cr3           = kvm_x86_ops->set_cr3;
4017         context->get_cr3           = get_cr3;
4018         context->get_pdptr         = kvm_pdptr_read;
4019         context->inject_page_fault = kvm_inject_page_fault;
4020 }
4021
4022 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4023 {
4024         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4025
4026         g_context->get_cr3           = get_cr3;
4027         g_context->get_pdptr         = kvm_pdptr_read;
4028         g_context->inject_page_fault = kvm_inject_page_fault;
4029
4030         /*
4031          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4032          * translation of l2_gpa to l1_gpa addresses is done using the
4033          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4034          * functions between mmu and nested_mmu are swapped.
4035          */
4036         if (!is_paging(vcpu)) {
4037                 g_context->nx = false;
4038                 g_context->root_level = 0;
4039                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4040         } else if (is_long_mode(vcpu)) {
4041                 g_context->nx = is_nx(vcpu);
4042                 g_context->root_level = PT64_ROOT_LEVEL;
4043                 reset_rsvds_bits_mask(vcpu, g_context);
4044                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4045         } else if (is_pae(vcpu)) {
4046                 g_context->nx = is_nx(vcpu);
4047                 g_context->root_level = PT32E_ROOT_LEVEL;
4048                 reset_rsvds_bits_mask(vcpu, g_context);
4049                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4050         } else {
4051                 g_context->nx = false;
4052                 g_context->root_level = PT32_ROOT_LEVEL;
4053                 reset_rsvds_bits_mask(vcpu, g_context);
4054                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4055         }
4056
4057         update_permission_bitmask(vcpu, g_context, false);
4058         update_last_pte_bitmap(vcpu, g_context);
4059 }
4060
4061 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4062 {
4063         if (mmu_is_nested(vcpu))
4064                 init_kvm_nested_mmu(vcpu);
4065         else if (tdp_enabled)
4066                 init_kvm_tdp_mmu(vcpu);
4067         else
4068                 init_kvm_softmmu(vcpu);
4069 }
4070
4071 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4072 {
4073         kvm_mmu_unload(vcpu);
4074         init_kvm_mmu(vcpu);
4075 }
4076 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4077
4078 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4079 {
4080         int r;
4081
4082         r = mmu_topup_memory_caches(vcpu);
4083         if (r)
4084                 goto out;
4085         r = mmu_alloc_roots(vcpu);
4086         kvm_mmu_sync_roots(vcpu);
4087         if (r)
4088                 goto out;
4089         /* set_cr3() should ensure TLB has been flushed */
4090         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4091 out:
4092         return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4095
4096 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4097 {
4098         mmu_free_roots(vcpu);
4099         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4102
4103 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4104                                   struct kvm_mmu_page *sp, u64 *spte,
4105                                   const void *new)
4106 {
4107         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4108                 ++vcpu->kvm->stat.mmu_pde_zapped;
4109                 return;
4110         }
4111
4112         ++vcpu->kvm->stat.mmu_pte_updated;
4113         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4114 }
4115
4116 static bool need_remote_flush(u64 old, u64 new)
4117 {
4118         if (!is_shadow_present_pte(old))
4119                 return false;
4120         if (!is_shadow_present_pte(new))
4121                 return true;
4122         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4123                 return true;
4124         old ^= shadow_nx_mask;
4125         new ^= shadow_nx_mask;
4126         return (old & ~new & PT64_PERM_MASK) != 0;
4127 }
4128
4129 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4130                                     bool remote_flush, bool local_flush)
4131 {
4132         if (zap_page)
4133                 return;
4134
4135         if (remote_flush)
4136                 kvm_flush_remote_tlbs(vcpu->kvm);
4137         else if (local_flush)
4138                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4139 }
4140
4141 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4142                                     const u8 *new, int *bytes)
4143 {
4144         u64 gentry;
4145         int r;
4146
4147         /*
4148          * Assume that the pte write on a page table of the same type
4149          * as the current vcpu paging mode since we update the sptes only
4150          * when they have the same mode.
4151          */
4152         if (is_pae(vcpu) && *bytes == 4) {
4153                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4154                 *gpa &= ~(gpa_t)7;
4155                 *bytes = 8;
4156                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4157                 if (r)
4158                         gentry = 0;
4159                 new = (const u8 *)&gentry;
4160         }
4161
4162         switch (*bytes) {
4163         case 4:
4164                 gentry = *(const u32 *)new;
4165                 break;
4166         case 8:
4167                 gentry = *(const u64 *)new;
4168                 break;
4169         default:
4170                 gentry = 0;
4171                 break;
4172         }
4173
4174         return gentry;
4175 }
4176
4177 /*
4178  * If we're seeing too many writes to a page, it may no longer be a page table,
4179  * or we may be forking, in which case it is better to unmap the page.
4180  */
4181 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4182 {
4183         /*
4184          * Skip write-flooding detected for the sp whose level is 1, because
4185          * it can become unsync, then the guest page is not write-protected.
4186          */
4187         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4188                 return false;
4189
4190         return ++sp->write_flooding_count >= 3;
4191 }
4192
4193 /*
4194  * Misaligned accesses are too much trouble to fix up; also, they usually
4195  * indicate a page is not used as a page table.
4196  */
4197 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4198                                     int bytes)
4199 {
4200         unsigned offset, pte_size, misaligned;
4201
4202         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4203                  gpa, bytes, sp->role.word);
4204
4205         offset = offset_in_page(gpa);
4206         pte_size = sp->role.cr4_pae ? 8 : 4;
4207
4208         /*
4209          * Sometimes, the OS only writes the last one bytes to update status
4210          * bits, for example, in linux, andb instruction is used in clear_bit().
4211          */
4212         if (!(offset & (pte_size - 1)) && bytes == 1)
4213                 return false;
4214
4215         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4216         misaligned |= bytes < 4;
4217
4218         return misaligned;
4219 }
4220
4221 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4222 {
4223         unsigned page_offset, quadrant;
4224         u64 *spte;
4225         int level;
4226
4227         page_offset = offset_in_page(gpa);
4228         level = sp->role.level;
4229         *nspte = 1;
4230         if (!sp->role.cr4_pae) {
4231                 page_offset <<= 1;      /* 32->64 */
4232                 /*
4233                  * A 32-bit pde maps 4MB while the shadow pdes map
4234                  * only 2MB.  So we need to double the offset again
4235                  * and zap two pdes instead of one.
4236                  */
4237                 if (level == PT32_ROOT_LEVEL) {
4238                         page_offset &= ~7; /* kill rounding error */
4239                         page_offset <<= 1;
4240                         *nspte = 2;
4241                 }
4242                 quadrant = page_offset >> PAGE_SHIFT;
4243                 page_offset &= ~PAGE_MASK;
4244                 if (quadrant != sp->role.quadrant)
4245                         return NULL;
4246         }
4247
4248         spte = &sp->spt[page_offset / sizeof(*spte)];
4249         return spte;
4250 }
4251
4252 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4253                        const u8 *new, int bytes)
4254 {
4255         gfn_t gfn = gpa >> PAGE_SHIFT;
4256         struct kvm_mmu_page *sp;
4257         LIST_HEAD(invalid_list);
4258         u64 entry, gentry, *spte;
4259         int npte;
4260         bool remote_flush, local_flush, zap_page;
4261         union kvm_mmu_page_role mask = { };
4262
4263         mask.cr0_wp = 1;
4264         mask.cr4_pae = 1;
4265         mask.nxe = 1;
4266         mask.smep_andnot_wp = 1;
4267         mask.smap_andnot_wp = 1;
4268
4269         /*
4270          * If we don't have indirect shadow pages, it means no page is
4271          * write-protected, so we can exit simply.
4272          */
4273         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4274                 return;
4275
4276         zap_page = remote_flush = local_flush = false;
4277
4278         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4279
4280         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4281
4282         /*
4283          * No need to care whether allocation memory is successful
4284          * or not since pte prefetch is skiped if it does not have
4285          * enough objects in the cache.
4286          */
4287         mmu_topup_memory_caches(vcpu);
4288
4289         spin_lock(&vcpu->kvm->mmu_lock);
4290         ++vcpu->kvm->stat.mmu_pte_write;
4291         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4292
4293         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4294                 if (detect_write_misaligned(sp, gpa, bytes) ||
4295                       detect_write_flooding(sp)) {
4296                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4297                                                      &invalid_list);
4298                         ++vcpu->kvm->stat.mmu_flooded;
4299                         continue;
4300                 }
4301
4302                 spte = get_written_sptes(sp, gpa, &npte);
4303                 if (!spte)
4304                         continue;
4305
4306                 local_flush = true;
4307                 while (npte--) {
4308                         entry = *spte;
4309                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4310                         if (gentry &&
4311                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4312                               & mask.word) && rmap_can_add(vcpu))
4313                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4314                         if (need_remote_flush(entry, *spte))
4315                                 remote_flush = true;
4316                         ++spte;
4317                 }
4318         }
4319         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4320         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4321         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4322         spin_unlock(&vcpu->kvm->mmu_lock);
4323 }
4324
4325 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4326 {
4327         gpa_t gpa;
4328         int r;
4329
4330         if (vcpu->arch.mmu.direct_map)
4331                 return 0;
4332
4333         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4334
4335         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4336
4337         return r;
4338 }
4339 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4340
4341 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4342 {
4343         LIST_HEAD(invalid_list);
4344
4345         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4346                 return;
4347
4348         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4349                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4350                         break;
4351
4352                 ++vcpu->kvm->stat.mmu_recycled;
4353         }
4354         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4355 }
4356
4357 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4358 {
4359         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4360                 return vcpu_match_mmio_gpa(vcpu, addr);
4361
4362         return vcpu_match_mmio_gva(vcpu, addr);
4363 }
4364
4365 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4366                        void *insn, int insn_len)
4367 {
4368         int r, emulation_type = EMULTYPE_RETRY;
4369         enum emulation_result er;
4370
4371         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4372         if (r < 0)
4373                 goto out;
4374
4375         if (!r) {
4376                 r = 1;
4377                 goto out;
4378         }
4379
4380         if (is_mmio_page_fault(vcpu, cr2))
4381                 emulation_type = 0;
4382
4383         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4384
4385         switch (er) {
4386         case EMULATE_DONE:
4387                 return 1;
4388         case EMULATE_USER_EXIT:
4389                 ++vcpu->stat.mmio_exits;
4390                 /* fall through */
4391         case EMULATE_FAIL:
4392                 return 0;
4393         default:
4394                 BUG();
4395         }
4396 out:
4397         return r;
4398 }
4399 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4400
4401 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4402 {
4403         vcpu->arch.mmu.invlpg(vcpu, gva);
4404         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4405         ++vcpu->stat.invlpg;
4406 }
4407 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4408
4409 void kvm_enable_tdp(void)
4410 {
4411         tdp_enabled = true;
4412 }
4413 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4414
4415 void kvm_disable_tdp(void)
4416 {
4417         tdp_enabled = false;
4418 }
4419 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4420
4421 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4422 {
4423         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4424         if (vcpu->arch.mmu.lm_root != NULL)
4425                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4426 }
4427
4428 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4429 {
4430         struct page *page;
4431         int i;
4432
4433         /*
4434          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4435          * Therefore we need to allocate shadow page tables in the first
4436          * 4GB of memory, which happens to fit the DMA32 zone.
4437          */
4438         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4439         if (!page)
4440                 return -ENOMEM;
4441
4442         vcpu->arch.mmu.pae_root = page_address(page);
4443         for (i = 0; i < 4; ++i)
4444                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4445
4446         return 0;
4447 }
4448
4449 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4450 {
4451         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4452         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4453         vcpu->arch.mmu.translate_gpa = translate_gpa;
4454         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4455
4456         return alloc_mmu_pages(vcpu);
4457 }
4458
4459 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4460 {
4461         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4462
4463         init_kvm_mmu(vcpu);
4464 }
4465
4466 /* The return value indicates if tlb flush on all vcpus is needed. */
4467 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4468
4469 /* The caller should hold mmu-lock before calling this function. */
4470 static bool
4471 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4472                         slot_level_handler fn, int start_level, int end_level,
4473                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4474 {
4475         struct slot_rmap_walk_iterator iterator;
4476         bool flush = false;
4477
4478         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4479                         end_gfn, &iterator) {
4480                 if (iterator.rmap)
4481                         flush |= fn(kvm, iterator.rmap);
4482
4483                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4484                         if (flush && lock_flush_tlb) {
4485                                 kvm_flush_remote_tlbs(kvm);
4486                                 flush = false;
4487                         }
4488                         cond_resched_lock(&kvm->mmu_lock);
4489                 }
4490         }
4491
4492         if (flush && lock_flush_tlb) {
4493                 kvm_flush_remote_tlbs(kvm);
4494                 flush = false;
4495         }
4496
4497         return flush;
4498 }
4499
4500 static bool
4501 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4502                   slot_level_handler fn, int start_level, int end_level,
4503                   bool lock_flush_tlb)
4504 {
4505         return slot_handle_level_range(kvm, memslot, fn, start_level,
4506                         end_level, memslot->base_gfn,
4507                         memslot->base_gfn + memslot->npages - 1,
4508                         lock_flush_tlb);
4509 }
4510
4511 static bool
4512 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4513                       slot_level_handler fn, bool lock_flush_tlb)
4514 {
4515         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4516                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4517 }
4518
4519 static bool
4520 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4521                         slot_level_handler fn, bool lock_flush_tlb)
4522 {
4523         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4524                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4525 }
4526
4527 static bool
4528 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4529                  slot_level_handler fn, bool lock_flush_tlb)
4530 {
4531         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4532                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4533 }
4534
4535 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4536 {
4537         struct kvm_memslots *slots;
4538         struct kvm_memory_slot *memslot;
4539
4540         slots = kvm_memslots(kvm);
4541
4542         spin_lock(&kvm->mmu_lock);
4543         kvm_for_each_memslot(memslot, slots) {
4544                 gfn_t start, end;
4545
4546                 start = max(gfn_start, memslot->base_gfn);
4547                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4548                 if (start >= end)
4549                         continue;
4550
4551                 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4552                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4553                                 start, end - 1, true);
4554         }
4555
4556         spin_unlock(&kvm->mmu_lock);
4557 }
4558
4559 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4560 {
4561         return __rmap_write_protect(kvm, rmapp, false);
4562 }
4563
4564 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4565                                       struct kvm_memory_slot *memslot)
4566 {
4567         bool flush;
4568
4569         spin_lock(&kvm->mmu_lock);
4570         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4571                                       false);
4572         spin_unlock(&kvm->mmu_lock);
4573
4574         /*
4575          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4576          * which do tlb flush out of mmu-lock should be serialized by
4577          * kvm->slots_lock otherwise tlb flush would be missed.
4578          */
4579         lockdep_assert_held(&kvm->slots_lock);
4580
4581         /*
4582          * We can flush all the TLBs out of the mmu lock without TLB
4583          * corruption since we just change the spte from writable to
4584          * readonly so that we only need to care the case of changing
4585          * spte from present to present (changing the spte from present
4586          * to nonpresent will flush all the TLBs immediately), in other
4587          * words, the only case we care is mmu_spte_update() where we
4588          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4589          * instead of PT_WRITABLE_MASK, that means it does not depend
4590          * on PT_WRITABLE_MASK anymore.
4591          */
4592         if (flush)
4593                 kvm_flush_remote_tlbs(kvm);
4594 }
4595
4596 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4597                 unsigned long *rmapp)
4598 {
4599         u64 *sptep;
4600         struct rmap_iterator iter;
4601         int need_tlb_flush = 0;
4602         pfn_t pfn;
4603         struct kvm_mmu_page *sp;
4604
4605 restart:
4606         for_each_rmap_spte(rmapp, &iter, sptep) {
4607                 sp = page_header(__pa(sptep));
4608                 pfn = spte_to_pfn(*sptep);
4609
4610                 /*
4611                  * We cannot do huge page mapping for indirect shadow pages,
4612                  * which are found on the last rmap (level = 1) when not using
4613                  * tdp; such shadow pages are synced with the page table in
4614                  * the guest, and the guest page table is using 4K page size
4615                  * mapping if the indirect sp has level = 1.
4616                  */
4617                 if (sp->role.direct &&
4618                         !kvm_is_reserved_pfn(pfn) &&
4619                         PageTransCompound(pfn_to_page(pfn))) {
4620                         drop_spte(kvm, sptep);
4621                         need_tlb_flush = 1;
4622                         goto restart;
4623                 }
4624         }
4625
4626         return need_tlb_flush;
4627 }
4628
4629 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4630                                    const struct kvm_memory_slot *memslot)
4631 {
4632         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4633         spin_lock(&kvm->mmu_lock);
4634         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4635                          kvm_mmu_zap_collapsible_spte, true);
4636         spin_unlock(&kvm->mmu_lock);
4637 }
4638
4639 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4640                                    struct kvm_memory_slot *memslot)
4641 {
4642         bool flush;
4643
4644         spin_lock(&kvm->mmu_lock);
4645         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4646         spin_unlock(&kvm->mmu_lock);
4647
4648         lockdep_assert_held(&kvm->slots_lock);
4649
4650         /*
4651          * It's also safe to flush TLBs out of mmu lock here as currently this
4652          * function is only used for dirty logging, in which case flushing TLB
4653          * out of mmu lock also guarantees no dirty pages will be lost in
4654          * dirty_bitmap.
4655          */
4656         if (flush)
4657                 kvm_flush_remote_tlbs(kvm);
4658 }
4659 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4660
4661 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4662                                         struct kvm_memory_slot *memslot)
4663 {
4664         bool flush;
4665
4666         spin_lock(&kvm->mmu_lock);
4667         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4668                                         false);
4669         spin_unlock(&kvm->mmu_lock);
4670
4671         /* see kvm_mmu_slot_remove_write_access */
4672         lockdep_assert_held(&kvm->slots_lock);
4673
4674         if (flush)
4675                 kvm_flush_remote_tlbs(kvm);
4676 }
4677 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4678
4679 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4680                             struct kvm_memory_slot *memslot)
4681 {
4682         bool flush;
4683
4684         spin_lock(&kvm->mmu_lock);
4685         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4686         spin_unlock(&kvm->mmu_lock);
4687
4688         lockdep_assert_held(&kvm->slots_lock);
4689
4690         /* see kvm_mmu_slot_leaf_clear_dirty */
4691         if (flush)
4692                 kvm_flush_remote_tlbs(kvm);
4693 }
4694 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4695
4696 #define BATCH_ZAP_PAGES 10
4697 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4698 {
4699         struct kvm_mmu_page *sp, *node;
4700         int batch = 0;
4701
4702 restart:
4703         list_for_each_entry_safe_reverse(sp, node,
4704               &kvm->arch.active_mmu_pages, link) {
4705                 int ret;
4706
4707                 /*
4708                  * No obsolete page exists before new created page since
4709                  * active_mmu_pages is the FIFO list.
4710                  */
4711                 if (!is_obsolete_sp(kvm, sp))
4712                         break;
4713
4714                 /*
4715                  * Since we are reversely walking the list and the invalid
4716                  * list will be moved to the head, skip the invalid page
4717                  * can help us to avoid the infinity list walking.
4718                  */
4719                 if (sp->role.invalid)
4720                         continue;
4721
4722                 /*
4723                  * Need not flush tlb since we only zap the sp with invalid
4724                  * generation number.
4725                  */
4726                 if (batch >= BATCH_ZAP_PAGES &&
4727                       cond_resched_lock(&kvm->mmu_lock)) {
4728                         batch = 0;
4729                         goto restart;
4730                 }
4731
4732                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4733                                 &kvm->arch.zapped_obsolete_pages);
4734                 batch += ret;
4735
4736                 if (ret)
4737                         goto restart;
4738         }
4739
4740         /*
4741          * Should flush tlb before free page tables since lockless-walking
4742          * may use the pages.
4743          */
4744         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4745 }
4746
4747 /*
4748  * Fast invalidate all shadow pages and use lock-break technique
4749  * to zap obsolete pages.
4750  *
4751  * It's required when memslot is being deleted or VM is being
4752  * destroyed, in these cases, we should ensure that KVM MMU does
4753  * not use any resource of the being-deleted slot or all slots
4754  * after calling the function.
4755  */
4756 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4757 {
4758         spin_lock(&kvm->mmu_lock);
4759         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4760         kvm->arch.mmu_valid_gen++;
4761
4762         /*
4763          * Notify all vcpus to reload its shadow page table
4764          * and flush TLB. Then all vcpus will switch to new
4765          * shadow page table with the new mmu_valid_gen.
4766          *
4767          * Note: we should do this under the protection of
4768          * mmu-lock, otherwise, vcpu would purge shadow page
4769          * but miss tlb flush.
4770          */
4771         kvm_reload_remote_mmus(kvm);
4772
4773         kvm_zap_obsolete_pages(kvm);
4774         spin_unlock(&kvm->mmu_lock);
4775 }
4776
4777 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4778 {
4779         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4780 }
4781
4782 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4783 {
4784         /*
4785          * The very rare case: if the generation-number is round,
4786          * zap all shadow pages.
4787          */
4788         if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4789                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4790                 kvm_mmu_invalidate_zap_all_pages(kvm);
4791         }
4792 }
4793
4794 static unsigned long
4795 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4796 {
4797         struct kvm *kvm;
4798         int nr_to_scan = sc->nr_to_scan;
4799         unsigned long freed = 0;
4800
4801         spin_lock(&kvm_lock);
4802
4803         list_for_each_entry(kvm, &vm_list, vm_list) {
4804                 int idx;
4805                 LIST_HEAD(invalid_list);
4806
4807                 /*
4808                  * Never scan more than sc->nr_to_scan VM instances.
4809                  * Will not hit this condition practically since we do not try
4810                  * to shrink more than one VM and it is very unlikely to see
4811                  * !n_used_mmu_pages so many times.
4812                  */
4813                 if (!nr_to_scan--)
4814                         break;
4815                 /*
4816                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4817                  * here. We may skip a VM instance errorneosly, but we do not
4818                  * want to shrink a VM that only started to populate its MMU
4819                  * anyway.
4820                  */
4821                 if (!kvm->arch.n_used_mmu_pages &&
4822                       !kvm_has_zapped_obsolete_pages(kvm))
4823                         continue;
4824
4825                 idx = srcu_read_lock(&kvm->srcu);
4826                 spin_lock(&kvm->mmu_lock);
4827
4828                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4829                         kvm_mmu_commit_zap_page(kvm,
4830                               &kvm->arch.zapped_obsolete_pages);
4831                         goto unlock;
4832                 }
4833
4834                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4835                         freed++;
4836                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4837
4838 unlock:
4839                 spin_unlock(&kvm->mmu_lock);
4840                 srcu_read_unlock(&kvm->srcu, idx);
4841
4842                 /*
4843                  * unfair on small ones
4844                  * per-vm shrinkers cry out
4845                  * sadness comes quickly
4846                  */
4847                 list_move_tail(&kvm->vm_list, &vm_list);
4848                 break;
4849         }
4850
4851         spin_unlock(&kvm_lock);
4852         return freed;
4853 }
4854
4855 static unsigned long
4856 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4857 {
4858         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4859 }
4860
4861 static struct shrinker mmu_shrinker = {
4862         .count_objects = mmu_shrink_count,
4863         .scan_objects = mmu_shrink_scan,
4864         .seeks = DEFAULT_SEEKS * 10,
4865 };
4866
4867 static void mmu_destroy_caches(void)
4868 {
4869         if (pte_list_desc_cache)
4870                 kmem_cache_destroy(pte_list_desc_cache);
4871         if (mmu_page_header_cache)
4872                 kmem_cache_destroy(mmu_page_header_cache);
4873 }
4874
4875 int kvm_mmu_module_init(void)
4876 {
4877         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4878                                             sizeof(struct pte_list_desc),
4879                                             0, 0, NULL);
4880         if (!pte_list_desc_cache)
4881                 goto nomem;
4882
4883         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4884                                                   sizeof(struct kvm_mmu_page),
4885                                                   0, 0, NULL);
4886         if (!mmu_page_header_cache)
4887                 goto nomem;
4888
4889         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4890                 goto nomem;
4891
4892         register_shrinker(&mmu_shrinker);
4893
4894         return 0;
4895
4896 nomem:
4897         mmu_destroy_caches();
4898         return -ENOMEM;
4899 }
4900
4901 /*
4902  * Caculate mmu pages needed for kvm.
4903  */
4904 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4905 {
4906         unsigned int nr_mmu_pages;
4907         unsigned int  nr_pages = 0;
4908         struct kvm_memslots *slots;
4909         struct kvm_memory_slot *memslot;
4910
4911         slots = kvm_memslots(kvm);
4912
4913         kvm_for_each_memslot(memslot, slots)
4914                 nr_pages += memslot->npages;
4915
4916         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4917         nr_mmu_pages = max(nr_mmu_pages,
4918                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4919
4920         return nr_mmu_pages;
4921 }
4922
4923 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4924 {
4925         struct kvm_shadow_walk_iterator iterator;
4926         u64 spte;
4927         int nr_sptes = 0;
4928
4929         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4930                 return nr_sptes;
4931
4932         walk_shadow_page_lockless_begin(vcpu);
4933         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4934                 sptes[iterator.level-1] = spte;
4935                 nr_sptes++;
4936                 if (!is_shadow_present_pte(spte))
4937                         break;
4938         }
4939         walk_shadow_page_lockless_end(vcpu);
4940
4941         return nr_sptes;
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4944
4945 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4946 {
4947         kvm_mmu_unload(vcpu);
4948         free_mmu_pages(vcpu);
4949         mmu_free_memory_caches(vcpu);
4950 }
4951
4952 void kvm_mmu_module_exit(void)
4953 {
4954         mmu_destroy_caches();
4955         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4956         unregister_shrinker(&mmu_shrinker);
4957         mmu_audit_disable();
4958 }