OSDN Git Service

KVM: x86: Fix kernel info-leak in KVM_HC_CLOCK_PAIRING hypercall
[uclinux-h8/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53  * When setting this variable to true it enables Two-Dimensional-Paging
54  * where the hardware walks 2 page tables:
55  * 1. the guest-virtual to guest-physical
56  * 2. while doing 1. it walks guest-physical to host-physical
57  * If the hardware supports that we don't need to do shadow paging.
58  */
59 bool tdp_enabled = false;
60
61 enum {
62         AUDIT_PRE_PAGE_FAULT,
63         AUDIT_POST_PAGE_FAULT,
64         AUDIT_PRE_PTE_WRITE,
65         AUDIT_POST_PTE_WRITE,
66         AUDIT_PRE_SYNC,
67         AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM                8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106                                                 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117                                                 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                                 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                             * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130                         | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK    1
133 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
134 #define ACC_USER_MASK    PT_USER_MASK
135 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK                  0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK                0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155  * Return values of handle_mmio_page_fault and mmu.page_fault:
156  * RET_PF_RETRY: let CPU fault again on the address.
157  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158  *
159  * For handle_mmio_page_fault only:
160  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161  */
162 enum {
163         RET_PF_RETRY = 0,
164         RET_PF_EMULATE = 1,
165         RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169         u64 *sptes[PTE_LIST_EXT];
170         struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174         u64 addr;
175         hpa_t shadow_addr;
176         u64 *sptep;
177         int level;
178         unsigned index;
179 };
180
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182         .cr0_wp = 1,
183         .cr4_pae = 1,
184         .nxe = 1,
185         .smep_andnot_wp = 1,
186         .smap_andnot_wp = 1,
187         .smm = 1,
188         .guest_mode = 1,
189         .ad_disabled = 1,
190 };
191
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
193         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
194                                          (_root), (_addr));                \
195              shadow_walk_okay(&(_walker));                                 \
196              shadow_walk_next(&(_walker)))
197
198 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
199         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
200              shadow_walk_okay(&(_walker));                      \
201              shadow_walk_next(&(_walker)))
202
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
204         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
205              shadow_walk_okay(&(_walker)) &&                            \
206                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
207              __shadow_walk_next(&(_walker), spte))
208
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
212
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
222
223 /*
224  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225  * Non-present SPTEs with shadow_acc_track_value set are in place for access
226  * tracking.
227  */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231 /*
232  * The mask/shift to use for saving the original R/X bits when marking the PTE
233  * as not-present for access tracking purposes. We do not save the W bit as the
234  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235  * restored only when a write is attempted to the page.
236  */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238                                                     PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241 /*
242  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243  * to guard against L1TF attacks.
244  */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247 /*
248  * The number of high-order 1 bits to use in the mask above.
249  */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252 /*
253  * In some cases, we need to preserve the GFN of a non-present or reserved
254  * SPTE when we usurp the upper five bits of the physical address space to
255  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
256  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258  * high and low parts.  This mask covers the lower bits of the GFN.
259  */
260 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
263 static void mmu_spte_set(u64 *sptep, u64 spte);
264 static union kvm_mmu_page_role
265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
266
267 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
268 {
269         BUG_ON((mmio_mask & mmio_value) != mmio_value);
270         shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
271         shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
272 }
273 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
274
275 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
276 {
277         return sp->role.ad_disabled;
278 }
279
280 static inline bool spte_ad_enabled(u64 spte)
281 {
282         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283         return !(spte & shadow_acc_track_value);
284 }
285
286 static inline u64 spte_shadow_accessed_mask(u64 spte)
287 {
288         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289         return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
290 }
291
292 static inline u64 spte_shadow_dirty_mask(u64 spte)
293 {
294         MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295         return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
296 }
297
298 static inline bool is_access_track_spte(u64 spte)
299 {
300         return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
301 }
302
303 /*
304  * the low bit of the generation number is always presumed to be zero.
305  * This disables mmio caching during memslot updates.  The concept is
306  * similar to a seqcount but instead of retrying the access we just punt
307  * and ignore the cache.
308  *
309  * spte bits 3-11 are used as bits 1-9 of the generation number,
310  * the bits 52-61 are used as bits 10-19 of the generation number.
311  */
312 #define MMIO_SPTE_GEN_LOW_SHIFT         2
313 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
314
315 #define MMIO_GEN_SHIFT                  20
316 #define MMIO_GEN_LOW_SHIFT              10
317 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
318 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
319
320 static u64 generation_mmio_spte_mask(unsigned int gen)
321 {
322         u64 mask;
323
324         WARN_ON(gen & ~MMIO_GEN_MASK);
325
326         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
328         return mask;
329 }
330
331 static unsigned int get_mmio_spte_generation(u64 spte)
332 {
333         unsigned int gen;
334
335         spte &= ~shadow_mmio_mask;
336
337         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
339         return gen;
340 }
341
342 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
343 {
344         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
345 }
346
347 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
348                            unsigned access)
349 {
350         unsigned int gen = kvm_current_mmio_generation(vcpu);
351         u64 mask = generation_mmio_spte_mask(gen);
352         u64 gpa = gfn << PAGE_SHIFT;
353
354         access &= ACC_WRITE_MASK | ACC_USER_MASK;
355         mask |= shadow_mmio_value | access;
356         mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357         mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358                 << shadow_nonpresent_or_rsvd_mask_len;
359
360         trace_mark_mmio_spte(sptep, gfn, access, gen);
361         mmu_spte_set(sptep, mask);
362 }
363
364 static bool is_mmio_spte(u64 spte)
365 {
366         return (spte & shadow_mmio_mask) == shadow_mmio_value;
367 }
368
369 static gfn_t get_mmio_spte_gfn(u64 spte)
370 {
371         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
372
373         gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374                & shadow_nonpresent_or_rsvd_mask;
375
376         return gpa >> PAGE_SHIFT;
377 }
378
379 static unsigned get_mmio_spte_access(u64 spte)
380 {
381         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
382         return (spte & ~mask) & ~PAGE_MASK;
383 }
384
385 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
386                           kvm_pfn_t pfn, unsigned access)
387 {
388         if (unlikely(is_noslot_pfn(pfn))) {
389                 mark_mmio_spte(vcpu, sptep, gfn, access);
390                 return true;
391         }
392
393         return false;
394 }
395
396 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
397 {
398         unsigned int kvm_gen, spte_gen;
399
400         kvm_gen = kvm_current_mmio_generation(vcpu);
401         spte_gen = get_mmio_spte_generation(spte);
402
403         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404         return likely(kvm_gen == spte_gen);
405 }
406
407 /*
408  * Sets the shadow PTE masks used by the MMU.
409  *
410  * Assumptions:
411  *  - Setting either @accessed_mask or @dirty_mask requires setting both
412  *  - At least one of @accessed_mask or @acc_track_mask must be set
413  */
414 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
415                 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
416                 u64 acc_track_mask, u64 me_mask)
417 {
418         BUG_ON(!dirty_mask != !accessed_mask);
419         BUG_ON(!accessed_mask && !acc_track_mask);
420         BUG_ON(acc_track_mask & shadow_acc_track_value);
421
422         shadow_user_mask = user_mask;
423         shadow_accessed_mask = accessed_mask;
424         shadow_dirty_mask = dirty_mask;
425         shadow_nx_mask = nx_mask;
426         shadow_x_mask = x_mask;
427         shadow_present_mask = p_mask;
428         shadow_acc_track_mask = acc_track_mask;
429         shadow_me_mask = me_mask;
430 }
431 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
432
433 static void kvm_mmu_reset_all_pte_masks(void)
434 {
435         u8 low_phys_bits;
436
437         shadow_user_mask = 0;
438         shadow_accessed_mask = 0;
439         shadow_dirty_mask = 0;
440         shadow_nx_mask = 0;
441         shadow_x_mask = 0;
442         shadow_mmio_mask = 0;
443         shadow_present_mask = 0;
444         shadow_acc_track_mask = 0;
445
446         /*
447          * If the CPU has 46 or less physical address bits, then set an
448          * appropriate mask to guard against L1TF attacks. Otherwise, it is
449          * assumed that the CPU is not vulnerable to L1TF.
450          */
451         low_phys_bits = boot_cpu_data.x86_phys_bits;
452         if (boot_cpu_data.x86_phys_bits <
453             52 - shadow_nonpresent_or_rsvd_mask_len) {
454                 shadow_nonpresent_or_rsvd_mask =
455                         rsvd_bits(boot_cpu_data.x86_phys_bits -
456                                   shadow_nonpresent_or_rsvd_mask_len,
457                                   boot_cpu_data.x86_phys_bits - 1);
458                 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
459         }
460         shadow_nonpresent_or_rsvd_lower_gfn_mask =
461                 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
462 }
463
464 static int is_cpuid_PSE36(void)
465 {
466         return 1;
467 }
468
469 static int is_nx(struct kvm_vcpu *vcpu)
470 {
471         return vcpu->arch.efer & EFER_NX;
472 }
473
474 static int is_shadow_present_pte(u64 pte)
475 {
476         return (pte != 0) && !is_mmio_spte(pte);
477 }
478
479 static int is_large_pte(u64 pte)
480 {
481         return pte & PT_PAGE_SIZE_MASK;
482 }
483
484 static int is_last_spte(u64 pte, int level)
485 {
486         if (level == PT_PAGE_TABLE_LEVEL)
487                 return 1;
488         if (is_large_pte(pte))
489                 return 1;
490         return 0;
491 }
492
493 static bool is_executable_pte(u64 spte)
494 {
495         return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
496 }
497
498 static kvm_pfn_t spte_to_pfn(u64 pte)
499 {
500         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
501 }
502
503 static gfn_t pse36_gfn_delta(u32 gpte)
504 {
505         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
506
507         return (gpte & PT32_DIR_PSE36_MASK) << shift;
508 }
509
510 #ifdef CONFIG_X86_64
511 static void __set_spte(u64 *sptep, u64 spte)
512 {
513         WRITE_ONCE(*sptep, spte);
514 }
515
516 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
517 {
518         WRITE_ONCE(*sptep, spte);
519 }
520
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522 {
523         return xchg(sptep, spte);
524 }
525
526 static u64 __get_spte_lockless(u64 *sptep)
527 {
528         return READ_ONCE(*sptep);
529 }
530 #else
531 union split_spte {
532         struct {
533                 u32 spte_low;
534                 u32 spte_high;
535         };
536         u64 spte;
537 };
538
539 static void count_spte_clear(u64 *sptep, u64 spte)
540 {
541         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
542
543         if (is_shadow_present_pte(spte))
544                 return;
545
546         /* Ensure the spte is completely set before we increase the count */
547         smp_wmb();
548         sp->clear_spte_count++;
549 }
550
551 static void __set_spte(u64 *sptep, u64 spte)
552 {
553         union split_spte *ssptep, sspte;
554
555         ssptep = (union split_spte *)sptep;
556         sspte = (union split_spte)spte;
557
558         ssptep->spte_high = sspte.spte_high;
559
560         /*
561          * If we map the spte from nonpresent to present, We should store
562          * the high bits firstly, then set present bit, so cpu can not
563          * fetch this spte while we are setting the spte.
564          */
565         smp_wmb();
566
567         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
568 }
569
570 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
571 {
572         union split_spte *ssptep, sspte;
573
574         ssptep = (union split_spte *)sptep;
575         sspte = (union split_spte)spte;
576
577         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
578
579         /*
580          * If we map the spte from present to nonpresent, we should clear
581          * present bit firstly to avoid vcpu fetch the old high bits.
582          */
583         smp_wmb();
584
585         ssptep->spte_high = sspte.spte_high;
586         count_spte_clear(sptep, spte);
587 }
588
589 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
590 {
591         union split_spte *ssptep, sspte, orig;
592
593         ssptep = (union split_spte *)sptep;
594         sspte = (union split_spte)spte;
595
596         /* xchg acts as a barrier before the setting of the high bits */
597         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
598         orig.spte_high = ssptep->spte_high;
599         ssptep->spte_high = sspte.spte_high;
600         count_spte_clear(sptep, spte);
601
602         return orig.spte;
603 }
604
605 /*
606  * The idea using the light way get the spte on x86_32 guest is from
607  * gup_get_pte(arch/x86/mm/gup.c).
608  *
609  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610  * coalesces them and we are running out of the MMU lock.  Therefore
611  * we need to protect against in-progress updates of the spte.
612  *
613  * Reading the spte while an update is in progress may get the old value
614  * for the high part of the spte.  The race is fine for a present->non-present
615  * change (because the high part of the spte is ignored for non-present spte),
616  * but for a present->present change we must reread the spte.
617  *
618  * All such changes are done in two steps (present->non-present and
619  * non-present->present), hence it is enough to count the number of
620  * present->non-present updates: if it changed while reading the spte,
621  * we might have hit the race.  This is done using clear_spte_count.
622  */
623 static u64 __get_spte_lockless(u64 *sptep)
624 {
625         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
626         union split_spte spte, *orig = (union split_spte *)sptep;
627         int count;
628
629 retry:
630         count = sp->clear_spte_count;
631         smp_rmb();
632
633         spte.spte_low = orig->spte_low;
634         smp_rmb();
635
636         spte.spte_high = orig->spte_high;
637         smp_rmb();
638
639         if (unlikely(spte.spte_low != orig->spte_low ||
640               count != sp->clear_spte_count))
641                 goto retry;
642
643         return spte.spte;
644 }
645 #endif
646
647 static bool spte_can_locklessly_be_made_writable(u64 spte)
648 {
649         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
651 }
652
653 static bool spte_has_volatile_bits(u64 spte)
654 {
655         if (!is_shadow_present_pte(spte))
656                 return false;
657
658         /*
659          * Always atomically update spte if it can be updated
660          * out of mmu-lock, it can ensure dirty bit is not lost,
661          * also, it can help us to get a stable is_writable_pte()
662          * to ensure tlb flush is not missed.
663          */
664         if (spte_can_locklessly_be_made_writable(spte) ||
665             is_access_track_spte(spte))
666                 return true;
667
668         if (spte_ad_enabled(spte)) {
669                 if ((spte & shadow_accessed_mask) == 0 ||
670                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
671                         return true;
672         }
673
674         return false;
675 }
676
677 static bool is_accessed_spte(u64 spte)
678 {
679         u64 accessed_mask = spte_shadow_accessed_mask(spte);
680
681         return accessed_mask ? spte & accessed_mask
682                              : !is_access_track_spte(spte);
683 }
684
685 static bool is_dirty_spte(u64 spte)
686 {
687         u64 dirty_mask = spte_shadow_dirty_mask(spte);
688
689         return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
690 }
691
692 /* Rules for using mmu_spte_set:
693  * Set the sptep from nonpresent to present.
694  * Note: the sptep being assigned *must* be either not present
695  * or in a state where the hardware will not attempt to update
696  * the spte.
697  */
698 static void mmu_spte_set(u64 *sptep, u64 new_spte)
699 {
700         WARN_ON(is_shadow_present_pte(*sptep));
701         __set_spte(sptep, new_spte);
702 }
703
704 /*
705  * Update the SPTE (excluding the PFN), but do not track changes in its
706  * accessed/dirty status.
707  */
708 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
709 {
710         u64 old_spte = *sptep;
711
712         WARN_ON(!is_shadow_present_pte(new_spte));
713
714         if (!is_shadow_present_pte(old_spte)) {
715                 mmu_spte_set(sptep, new_spte);
716                 return old_spte;
717         }
718
719         if (!spte_has_volatile_bits(old_spte))
720                 __update_clear_spte_fast(sptep, new_spte);
721         else
722                 old_spte = __update_clear_spte_slow(sptep, new_spte);
723
724         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
725
726         return old_spte;
727 }
728
729 /* Rules for using mmu_spte_update:
730  * Update the state bits, it means the mapped pfn is not changed.
731  *
732  * Whenever we overwrite a writable spte with a read-only one we
733  * should flush remote TLBs. Otherwise rmap_write_protect
734  * will find a read-only spte, even though the writable spte
735  * might be cached on a CPU's TLB, the return value indicates this
736  * case.
737  *
738  * Returns true if the TLB needs to be flushed
739  */
740 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
741 {
742         bool flush = false;
743         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
744
745         if (!is_shadow_present_pte(old_spte))
746                 return false;
747
748         /*
749          * For the spte updated out of mmu-lock is safe, since
750          * we always atomically update it, see the comments in
751          * spte_has_volatile_bits().
752          */
753         if (spte_can_locklessly_be_made_writable(old_spte) &&
754               !is_writable_pte(new_spte))
755                 flush = true;
756
757         /*
758          * Flush TLB when accessed/dirty states are changed in the page tables,
759          * to guarantee consistency between TLB and page tables.
760          */
761
762         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
763                 flush = true;
764                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
765         }
766
767         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
768                 flush = true;
769                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
770         }
771
772         return flush;
773 }
774
775 /*
776  * Rules for using mmu_spte_clear_track_bits:
777  * It sets the sptep from present to nonpresent, and track the
778  * state bits, it is used to clear the last level sptep.
779  * Returns non-zero if the PTE was previously valid.
780  */
781 static int mmu_spte_clear_track_bits(u64 *sptep)
782 {
783         kvm_pfn_t pfn;
784         u64 old_spte = *sptep;
785
786         if (!spte_has_volatile_bits(old_spte))
787                 __update_clear_spte_fast(sptep, 0ull);
788         else
789                 old_spte = __update_clear_spte_slow(sptep, 0ull);
790
791         if (!is_shadow_present_pte(old_spte))
792                 return 0;
793
794         pfn = spte_to_pfn(old_spte);
795
796         /*
797          * KVM does not hold the refcount of the page used by
798          * kvm mmu, before reclaiming the page, we should
799          * unmap it from mmu first.
800          */
801         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
802
803         if (is_accessed_spte(old_spte))
804                 kvm_set_pfn_accessed(pfn);
805
806         if (is_dirty_spte(old_spte))
807                 kvm_set_pfn_dirty(pfn);
808
809         return 1;
810 }
811
812 /*
813  * Rules for using mmu_spte_clear_no_track:
814  * Directly clear spte without caring the state bits of sptep,
815  * it is used to set the upper level spte.
816  */
817 static void mmu_spte_clear_no_track(u64 *sptep)
818 {
819         __update_clear_spte_fast(sptep, 0ull);
820 }
821
822 static u64 mmu_spte_get_lockless(u64 *sptep)
823 {
824         return __get_spte_lockless(sptep);
825 }
826
827 static u64 mark_spte_for_access_track(u64 spte)
828 {
829         if (spte_ad_enabled(spte))
830                 return spte & ~shadow_accessed_mask;
831
832         if (is_access_track_spte(spte))
833                 return spte;
834
835         /*
836          * Making an Access Tracking PTE will result in removal of write access
837          * from the PTE. So, verify that we will be able to restore the write
838          * access in the fast page fault path later on.
839          */
840         WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841                   !spte_can_locklessly_be_made_writable(spte),
842                   "kvm: Writable SPTE is not locklessly dirty-trackable\n");
843
844         WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845                           shadow_acc_track_saved_bits_shift),
846                   "kvm: Access Tracking saved bit locations are not zero\n");
847
848         spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849                 shadow_acc_track_saved_bits_shift;
850         spte &= ~shadow_acc_track_mask;
851
852         return spte;
853 }
854
855 /* Restore an acc-track PTE back to a regular PTE */
856 static u64 restore_acc_track_spte(u64 spte)
857 {
858         u64 new_spte = spte;
859         u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860                          & shadow_acc_track_saved_bits_mask;
861
862         WARN_ON_ONCE(spte_ad_enabled(spte));
863         WARN_ON_ONCE(!is_access_track_spte(spte));
864
865         new_spte &= ~shadow_acc_track_mask;
866         new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867                       shadow_acc_track_saved_bits_shift);
868         new_spte |= saved_bits;
869
870         return new_spte;
871 }
872
873 /* Returns the Accessed status of the PTE and resets it at the same time. */
874 static bool mmu_spte_age(u64 *sptep)
875 {
876         u64 spte = mmu_spte_get_lockless(sptep);
877
878         if (!is_accessed_spte(spte))
879                 return false;
880
881         if (spte_ad_enabled(spte)) {
882                 clear_bit((ffs(shadow_accessed_mask) - 1),
883                           (unsigned long *)sptep);
884         } else {
885                 /*
886                  * Capture the dirty status of the page, so that it doesn't get
887                  * lost when the SPTE is marked for access tracking.
888                  */
889                 if (is_writable_pte(spte))
890                         kvm_set_pfn_dirty(spte_to_pfn(spte));
891
892                 spte = mark_spte_for_access_track(spte);
893                 mmu_spte_update_no_track(sptep, spte);
894         }
895
896         return true;
897 }
898
899 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
900 {
901         /*
902          * Prevent page table teardown by making any free-er wait during
903          * kvm_flush_remote_tlbs() IPI to all active vcpus.
904          */
905         local_irq_disable();
906
907         /*
908          * Make sure a following spte read is not reordered ahead of the write
909          * to vcpu->mode.
910          */
911         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
912 }
913
914 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
915 {
916         /*
917          * Make sure the write to vcpu->mode is not reordered in front of
918          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
919          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
920          */
921         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
922         local_irq_enable();
923 }
924
925 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
926                                   struct kmem_cache *base_cache, int min)
927 {
928         void *obj;
929
930         if (cache->nobjs >= min)
931                 return 0;
932         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
933                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
934                 if (!obj)
935                         return cache->nobjs >= min ? 0 : -ENOMEM;
936                 cache->objects[cache->nobjs++] = obj;
937         }
938         return 0;
939 }
940
941 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
942 {
943         return cache->nobjs;
944 }
945
946 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947                                   struct kmem_cache *cache)
948 {
949         while (mc->nobjs)
950                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
951 }
952
953 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
954                                        int min)
955 {
956         void *page;
957
958         if (cache->nobjs >= min)
959                 return 0;
960         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
961                 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
962                 if (!page)
963                         return cache->nobjs >= min ? 0 : -ENOMEM;
964                 cache->objects[cache->nobjs++] = page;
965         }
966         return 0;
967 }
968
969 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
970 {
971         while (mc->nobjs)
972                 free_page((unsigned long)mc->objects[--mc->nobjs]);
973 }
974
975 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
976 {
977         int r;
978
979         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
980                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
981         if (r)
982                 goto out;
983         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
984         if (r)
985                 goto out;
986         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
987                                    mmu_page_header_cache, 4);
988 out:
989         return r;
990 }
991
992 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
993 {
994         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995                                 pte_list_desc_cache);
996         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
997         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998                                 mmu_page_header_cache);
999 }
1000
1001 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1002 {
1003         void *p;
1004
1005         BUG_ON(!mc->nobjs);
1006         p = mc->objects[--mc->nobjs];
1007         return p;
1008 }
1009
1010 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1011 {
1012         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1013 }
1014
1015 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1016 {
1017         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1018 }
1019
1020 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1021 {
1022         if (!sp->role.direct)
1023                 return sp->gfns[index];
1024
1025         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1026 }
1027
1028 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1029 {
1030         if (sp->role.direct)
1031                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1032         else
1033                 sp->gfns[index] = gfn;
1034 }
1035
1036 /*
1037  * Return the pointer to the large page information for a given gfn,
1038  * handling slots that are not large page aligned.
1039  */
1040 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041                                               struct kvm_memory_slot *slot,
1042                                               int level)
1043 {
1044         unsigned long idx;
1045
1046         idx = gfn_to_index(gfn, slot->base_gfn, level);
1047         return &slot->arch.lpage_info[level - 2][idx];
1048 }
1049
1050 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051                                             gfn_t gfn, int count)
1052 {
1053         struct kvm_lpage_info *linfo;
1054         int i;
1055
1056         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057                 linfo = lpage_info_slot(gfn, slot, i);
1058                 linfo->disallow_lpage += count;
1059                 WARN_ON(linfo->disallow_lpage < 0);
1060         }
1061 }
1062
1063 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1064 {
1065         update_gfn_disallow_lpage_count(slot, gfn, 1);
1066 }
1067
1068 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1069 {
1070         update_gfn_disallow_lpage_count(slot, gfn, -1);
1071 }
1072
1073 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1074 {
1075         struct kvm_memslots *slots;
1076         struct kvm_memory_slot *slot;
1077         gfn_t gfn;
1078
1079         kvm->arch.indirect_shadow_pages++;
1080         gfn = sp->gfn;
1081         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082         slot = __gfn_to_memslot(slots, gfn);
1083
1084         /* the non-leaf shadow pages are keeping readonly. */
1085         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087                                                     KVM_PAGE_TRACK_WRITE);
1088
1089         kvm_mmu_gfn_disallow_lpage(slot, gfn);
1090 }
1091
1092 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1093 {
1094         struct kvm_memslots *slots;
1095         struct kvm_memory_slot *slot;
1096         gfn_t gfn;
1097
1098         kvm->arch.indirect_shadow_pages--;
1099         gfn = sp->gfn;
1100         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101         slot = __gfn_to_memslot(slots, gfn);
1102         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104                                                        KVM_PAGE_TRACK_WRITE);
1105
1106         kvm_mmu_gfn_allow_lpage(slot, gfn);
1107 }
1108
1109 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110                                           struct kvm_memory_slot *slot)
1111 {
1112         struct kvm_lpage_info *linfo;
1113
1114         if (slot) {
1115                 linfo = lpage_info_slot(gfn, slot, level);
1116                 return !!linfo->disallow_lpage;
1117         }
1118
1119         return true;
1120 }
1121
1122 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1123                                         int level)
1124 {
1125         struct kvm_memory_slot *slot;
1126
1127         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1128         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1129 }
1130
1131 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1132 {
1133         unsigned long page_size;
1134         int i, ret = 0;
1135
1136         page_size = kvm_host_page_size(kvm, gfn);
1137
1138         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1139                 if (page_size >= KVM_HPAGE_SIZE(i))
1140                         ret = i;
1141                 else
1142                         break;
1143         }
1144
1145         return ret;
1146 }
1147
1148 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1149                                           bool no_dirty_log)
1150 {
1151         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1152                 return false;
1153         if (no_dirty_log && slot->dirty_bitmap)
1154                 return false;
1155
1156         return true;
1157 }
1158
1159 static struct kvm_memory_slot *
1160 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1161                             bool no_dirty_log)
1162 {
1163         struct kvm_memory_slot *slot;
1164
1165         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1166         if (!memslot_valid_for_gpte(slot, no_dirty_log))
1167                 slot = NULL;
1168
1169         return slot;
1170 }
1171
1172 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173                          bool *force_pt_level)
1174 {
1175         int host_level, level, max_level;
1176         struct kvm_memory_slot *slot;
1177
1178         if (unlikely(*force_pt_level))
1179                 return PT_PAGE_TABLE_LEVEL;
1180
1181         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182         *force_pt_level = !memslot_valid_for_gpte(slot, true);
1183         if (unlikely(*force_pt_level))
1184                 return PT_PAGE_TABLE_LEVEL;
1185
1186         host_level = host_mapping_level(vcpu->kvm, large_gfn);
1187
1188         if (host_level == PT_PAGE_TABLE_LEVEL)
1189                 return host_level;
1190
1191         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1192
1193         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1194                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1195                         break;
1196
1197         return level - 1;
1198 }
1199
1200 /*
1201  * About rmap_head encoding:
1202  *
1203  * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1205  * pte_list_desc containing more mappings.
1206  */
1207
1208 /*
1209  * Returns the number of pointers in the rmap chain, not counting the new one.
1210  */
1211 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1212                         struct kvm_rmap_head *rmap_head)
1213 {
1214         struct pte_list_desc *desc;
1215         int i, count = 0;
1216
1217         if (!rmap_head->val) {
1218                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1219                 rmap_head->val = (unsigned long)spte;
1220         } else if (!(rmap_head->val & 1)) {
1221                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222                 desc = mmu_alloc_pte_list_desc(vcpu);
1223                 desc->sptes[0] = (u64 *)rmap_head->val;
1224                 desc->sptes[1] = spte;
1225                 rmap_head->val = (unsigned long)desc | 1;
1226                 ++count;
1227         } else {
1228                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1229                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1230                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1231                         desc = desc->more;
1232                         count += PTE_LIST_EXT;
1233                 }
1234                 if (desc->sptes[PTE_LIST_EXT-1]) {
1235                         desc->more = mmu_alloc_pte_list_desc(vcpu);
1236                         desc = desc->more;
1237                 }
1238                 for (i = 0; desc->sptes[i]; ++i)
1239                         ++count;
1240                 desc->sptes[i] = spte;
1241         }
1242         return count;
1243 }
1244
1245 static void
1246 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247                            struct pte_list_desc *desc, int i,
1248                            struct pte_list_desc *prev_desc)
1249 {
1250         int j;
1251
1252         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1253                 ;
1254         desc->sptes[i] = desc->sptes[j];
1255         desc->sptes[j] = NULL;
1256         if (j != 0)
1257                 return;
1258         if (!prev_desc && !desc->more)
1259                 rmap_head->val = (unsigned long)desc->sptes[0];
1260         else
1261                 if (prev_desc)
1262                         prev_desc->more = desc->more;
1263                 else
1264                         rmap_head->val = (unsigned long)desc->more | 1;
1265         mmu_free_pte_list_desc(desc);
1266 }
1267
1268 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1269 {
1270         struct pte_list_desc *desc;
1271         struct pte_list_desc *prev_desc;
1272         int i;
1273
1274         if (!rmap_head->val) {
1275                 pr_err("%s: %p 0->BUG\n", __func__, spte);
1276                 BUG();
1277         } else if (!(rmap_head->val & 1)) {
1278                 rmap_printk("%s:  %p 1->0\n", __func__, spte);
1279                 if ((u64 *)rmap_head->val != spte) {
1280                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
1281                         BUG();
1282                 }
1283                 rmap_head->val = 0;
1284         } else {
1285                 rmap_printk("%s:  %p many->many\n", __func__, spte);
1286                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1287                 prev_desc = NULL;
1288                 while (desc) {
1289                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1290                                 if (desc->sptes[i] == spte) {
1291                                         pte_list_desc_remove_entry(rmap_head,
1292                                                         desc, i, prev_desc);
1293                                         return;
1294                                 }
1295                         }
1296                         prev_desc = desc;
1297                         desc = desc->more;
1298                 }
1299                 pr_err("%s: %p many->many\n", __func__, spte);
1300                 BUG();
1301         }
1302 }
1303
1304 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1305 {
1306         mmu_spte_clear_track_bits(sptep);
1307         __pte_list_remove(sptep, rmap_head);
1308 }
1309
1310 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1311                                            struct kvm_memory_slot *slot)
1312 {
1313         unsigned long idx;
1314
1315         idx = gfn_to_index(gfn, slot->base_gfn, level);
1316         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1317 }
1318
1319 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1320                                          struct kvm_mmu_page *sp)
1321 {
1322         struct kvm_memslots *slots;
1323         struct kvm_memory_slot *slot;
1324
1325         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1326         slot = __gfn_to_memslot(slots, gfn);
1327         return __gfn_to_rmap(gfn, sp->role.level, slot);
1328 }
1329
1330 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1331 {
1332         struct kvm_mmu_memory_cache *cache;
1333
1334         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1335         return mmu_memory_cache_free_objects(cache);
1336 }
1337
1338 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1339 {
1340         struct kvm_mmu_page *sp;
1341         struct kvm_rmap_head *rmap_head;
1342
1343         sp = page_header(__pa(spte));
1344         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1345         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1346         return pte_list_add(vcpu, spte, rmap_head);
1347 }
1348
1349 static void rmap_remove(struct kvm *kvm, u64 *spte)
1350 {
1351         struct kvm_mmu_page *sp;
1352         gfn_t gfn;
1353         struct kvm_rmap_head *rmap_head;
1354
1355         sp = page_header(__pa(spte));
1356         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1357         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1358         __pte_list_remove(spte, rmap_head);
1359 }
1360
1361 /*
1362  * Used by the following functions to iterate through the sptes linked by a
1363  * rmap.  All fields are private and not assumed to be used outside.
1364  */
1365 struct rmap_iterator {
1366         /* private fields */
1367         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1368         int pos;                        /* index of the sptep */
1369 };
1370
1371 /*
1372  * Iteration must be started by this function.  This should also be used after
1373  * removing/dropping sptes from the rmap link because in such cases the
1374  * information in the itererator may not be valid.
1375  *
1376  * Returns sptep if found, NULL otherwise.
1377  */
1378 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1379                            struct rmap_iterator *iter)
1380 {
1381         u64 *sptep;
1382
1383         if (!rmap_head->val)
1384                 return NULL;
1385
1386         if (!(rmap_head->val & 1)) {
1387                 iter->desc = NULL;
1388                 sptep = (u64 *)rmap_head->val;
1389                 goto out;
1390         }
1391
1392         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1393         iter->pos = 0;
1394         sptep = iter->desc->sptes[iter->pos];
1395 out:
1396         BUG_ON(!is_shadow_present_pte(*sptep));
1397         return sptep;
1398 }
1399
1400 /*
1401  * Must be used with a valid iterator: e.g. after rmap_get_first().
1402  *
1403  * Returns sptep if found, NULL otherwise.
1404  */
1405 static u64 *rmap_get_next(struct rmap_iterator *iter)
1406 {
1407         u64 *sptep;
1408
1409         if (iter->desc) {
1410                 if (iter->pos < PTE_LIST_EXT - 1) {
1411                         ++iter->pos;
1412                         sptep = iter->desc->sptes[iter->pos];
1413                         if (sptep)
1414                                 goto out;
1415                 }
1416
1417                 iter->desc = iter->desc->more;
1418
1419                 if (iter->desc) {
1420                         iter->pos = 0;
1421                         /* desc->sptes[0] cannot be NULL */
1422                         sptep = iter->desc->sptes[iter->pos];
1423                         goto out;
1424                 }
1425         }
1426
1427         return NULL;
1428 out:
1429         BUG_ON(!is_shadow_present_pte(*sptep));
1430         return sptep;
1431 }
1432
1433 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1434         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1435              _spte_; _spte_ = rmap_get_next(_iter_))
1436
1437 static void drop_spte(struct kvm *kvm, u64 *sptep)
1438 {
1439         if (mmu_spte_clear_track_bits(sptep))
1440                 rmap_remove(kvm, sptep);
1441 }
1442
1443
1444 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1445 {
1446         if (is_large_pte(*sptep)) {
1447                 WARN_ON(page_header(__pa(sptep))->role.level ==
1448                         PT_PAGE_TABLE_LEVEL);
1449                 drop_spte(kvm, sptep);
1450                 --kvm->stat.lpages;
1451                 return true;
1452         }
1453
1454         return false;
1455 }
1456
1457 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1458 {
1459         if (__drop_large_spte(vcpu->kvm, sptep))
1460                 kvm_flush_remote_tlbs(vcpu->kvm);
1461 }
1462
1463 /*
1464  * Write-protect on the specified @sptep, @pt_protect indicates whether
1465  * spte write-protection is caused by protecting shadow page table.
1466  *
1467  * Note: write protection is difference between dirty logging and spte
1468  * protection:
1469  * - for dirty logging, the spte can be set to writable at anytime if
1470  *   its dirty bitmap is properly set.
1471  * - for spte protection, the spte can be writable only after unsync-ing
1472  *   shadow page.
1473  *
1474  * Return true if tlb need be flushed.
1475  */
1476 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1477 {
1478         u64 spte = *sptep;
1479
1480         if (!is_writable_pte(spte) &&
1481               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1482                 return false;
1483
1484         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1485
1486         if (pt_protect)
1487                 spte &= ~SPTE_MMU_WRITEABLE;
1488         spte = spte & ~PT_WRITABLE_MASK;
1489
1490         return mmu_spte_update(sptep, spte);
1491 }
1492
1493 static bool __rmap_write_protect(struct kvm *kvm,
1494                                  struct kvm_rmap_head *rmap_head,
1495                                  bool pt_protect)
1496 {
1497         u64 *sptep;
1498         struct rmap_iterator iter;
1499         bool flush = false;
1500
1501         for_each_rmap_spte(rmap_head, &iter, sptep)
1502                 flush |= spte_write_protect(sptep, pt_protect);
1503
1504         return flush;
1505 }
1506
1507 static bool spte_clear_dirty(u64 *sptep)
1508 {
1509         u64 spte = *sptep;
1510
1511         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1512
1513         spte &= ~shadow_dirty_mask;
1514
1515         return mmu_spte_update(sptep, spte);
1516 }
1517
1518 static bool wrprot_ad_disabled_spte(u64 *sptep)
1519 {
1520         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1521                                                (unsigned long *)sptep);
1522         if (was_writable)
1523                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1524
1525         return was_writable;
1526 }
1527
1528 /*
1529  * Gets the GFN ready for another round of dirty logging by clearing the
1530  *      - D bit on ad-enabled SPTEs, and
1531  *      - W bit on ad-disabled SPTEs.
1532  * Returns true iff any D or W bits were cleared.
1533  */
1534 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1535 {
1536         u64 *sptep;
1537         struct rmap_iterator iter;
1538         bool flush = false;
1539
1540         for_each_rmap_spte(rmap_head, &iter, sptep)
1541                 if (spte_ad_enabled(*sptep))
1542                         flush |= spte_clear_dirty(sptep);
1543                 else
1544                         flush |= wrprot_ad_disabled_spte(sptep);
1545
1546         return flush;
1547 }
1548
1549 static bool spte_set_dirty(u64 *sptep)
1550 {
1551         u64 spte = *sptep;
1552
1553         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1554
1555         spte |= shadow_dirty_mask;
1556
1557         return mmu_spte_update(sptep, spte);
1558 }
1559
1560 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1561 {
1562         u64 *sptep;
1563         struct rmap_iterator iter;
1564         bool flush = false;
1565
1566         for_each_rmap_spte(rmap_head, &iter, sptep)
1567                 if (spte_ad_enabled(*sptep))
1568                         flush |= spte_set_dirty(sptep);
1569
1570         return flush;
1571 }
1572
1573 /**
1574  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1575  * @kvm: kvm instance
1576  * @slot: slot to protect
1577  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1578  * @mask: indicates which pages we should protect
1579  *
1580  * Used when we do not need to care about huge page mappings: e.g. during dirty
1581  * logging we do not have any such mappings.
1582  */
1583 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1584                                      struct kvm_memory_slot *slot,
1585                                      gfn_t gfn_offset, unsigned long mask)
1586 {
1587         struct kvm_rmap_head *rmap_head;
1588
1589         while (mask) {
1590                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1591                                           PT_PAGE_TABLE_LEVEL, slot);
1592                 __rmap_write_protect(kvm, rmap_head, false);
1593
1594                 /* clear the first set bit */
1595                 mask &= mask - 1;
1596         }
1597 }
1598
1599 /**
1600  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1601  * protect the page if the D-bit isn't supported.
1602  * @kvm: kvm instance
1603  * @slot: slot to clear D-bit
1604  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1605  * @mask: indicates which pages we should clear D-bit
1606  *
1607  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1608  */
1609 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1610                                      struct kvm_memory_slot *slot,
1611                                      gfn_t gfn_offset, unsigned long mask)
1612 {
1613         struct kvm_rmap_head *rmap_head;
1614
1615         while (mask) {
1616                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1617                                           PT_PAGE_TABLE_LEVEL, slot);
1618                 __rmap_clear_dirty(kvm, rmap_head);
1619
1620                 /* clear the first set bit */
1621                 mask &= mask - 1;
1622         }
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1625
1626 /**
1627  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1628  * PT level pages.
1629  *
1630  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1631  * enable dirty logging for them.
1632  *
1633  * Used when we do not need to care about huge page mappings: e.g. during dirty
1634  * logging we do not have any such mappings.
1635  */
1636 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1637                                 struct kvm_memory_slot *slot,
1638                                 gfn_t gfn_offset, unsigned long mask)
1639 {
1640         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1641                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1642                                 mask);
1643         else
1644                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1645 }
1646
1647 /**
1648  * kvm_arch_write_log_dirty - emulate dirty page logging
1649  * @vcpu: Guest mode vcpu
1650  *
1651  * Emulate arch specific page modification logging for the
1652  * nested hypervisor
1653  */
1654 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1655 {
1656         if (kvm_x86_ops->write_log_dirty)
1657                 return kvm_x86_ops->write_log_dirty(vcpu);
1658
1659         return 0;
1660 }
1661
1662 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1663                                     struct kvm_memory_slot *slot, u64 gfn)
1664 {
1665         struct kvm_rmap_head *rmap_head;
1666         int i;
1667         bool write_protected = false;
1668
1669         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1670                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1671                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1672         }
1673
1674         return write_protected;
1675 }
1676
1677 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1678 {
1679         struct kvm_memory_slot *slot;
1680
1681         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1682         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1683 }
1684
1685 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1686 {
1687         u64 *sptep;
1688         struct rmap_iterator iter;
1689         bool flush = false;
1690
1691         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1692                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1693
1694                 pte_list_remove(rmap_head, sptep);
1695                 flush = true;
1696         }
1697
1698         return flush;
1699 }
1700
1701 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1702                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1703                            unsigned long data)
1704 {
1705         return kvm_zap_rmapp(kvm, rmap_head);
1706 }
1707
1708 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1709                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1710                              unsigned long data)
1711 {
1712         u64 *sptep;
1713         struct rmap_iterator iter;
1714         int need_flush = 0;
1715         u64 new_spte;
1716         pte_t *ptep = (pte_t *)data;
1717         kvm_pfn_t new_pfn;
1718
1719         WARN_ON(pte_huge(*ptep));
1720         new_pfn = pte_pfn(*ptep);
1721
1722 restart:
1723         for_each_rmap_spte(rmap_head, &iter, sptep) {
1724                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1725                             sptep, *sptep, gfn, level);
1726
1727                 need_flush = 1;
1728
1729                 if (pte_write(*ptep)) {
1730                         pte_list_remove(rmap_head, sptep);
1731                         goto restart;
1732                 } else {
1733                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1734                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1735
1736                         new_spte &= ~PT_WRITABLE_MASK;
1737                         new_spte &= ~SPTE_HOST_WRITEABLE;
1738
1739                         new_spte = mark_spte_for_access_track(new_spte);
1740
1741                         mmu_spte_clear_track_bits(sptep);
1742                         mmu_spte_set(sptep, new_spte);
1743                 }
1744         }
1745
1746         if (need_flush)
1747                 kvm_flush_remote_tlbs(kvm);
1748
1749         return 0;
1750 }
1751
1752 struct slot_rmap_walk_iterator {
1753         /* input fields. */
1754         struct kvm_memory_slot *slot;
1755         gfn_t start_gfn;
1756         gfn_t end_gfn;
1757         int start_level;
1758         int end_level;
1759
1760         /* output fields. */
1761         gfn_t gfn;
1762         struct kvm_rmap_head *rmap;
1763         int level;
1764
1765         /* private field. */
1766         struct kvm_rmap_head *end_rmap;
1767 };
1768
1769 static void
1770 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1771 {
1772         iterator->level = level;
1773         iterator->gfn = iterator->start_gfn;
1774         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1775         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1776                                            iterator->slot);
1777 }
1778
1779 static void
1780 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1781                     struct kvm_memory_slot *slot, int start_level,
1782                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1783 {
1784         iterator->slot = slot;
1785         iterator->start_level = start_level;
1786         iterator->end_level = end_level;
1787         iterator->start_gfn = start_gfn;
1788         iterator->end_gfn = end_gfn;
1789
1790         rmap_walk_init_level(iterator, iterator->start_level);
1791 }
1792
1793 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1794 {
1795         return !!iterator->rmap;
1796 }
1797
1798 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1799 {
1800         if (++iterator->rmap <= iterator->end_rmap) {
1801                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1802                 return;
1803         }
1804
1805         if (++iterator->level > iterator->end_level) {
1806                 iterator->rmap = NULL;
1807                 return;
1808         }
1809
1810         rmap_walk_init_level(iterator, iterator->level);
1811 }
1812
1813 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1814            _start_gfn, _end_gfn, _iter_)                                \
1815         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1816                                  _end_level_, _start_gfn, _end_gfn);    \
1817              slot_rmap_walk_okay(_iter_);                               \
1818              slot_rmap_walk_next(_iter_))
1819
1820 static int kvm_handle_hva_range(struct kvm *kvm,
1821                                 unsigned long start,
1822                                 unsigned long end,
1823                                 unsigned long data,
1824                                 int (*handler)(struct kvm *kvm,
1825                                                struct kvm_rmap_head *rmap_head,
1826                                                struct kvm_memory_slot *slot,
1827                                                gfn_t gfn,
1828                                                int level,
1829                                                unsigned long data))
1830 {
1831         struct kvm_memslots *slots;
1832         struct kvm_memory_slot *memslot;
1833         struct slot_rmap_walk_iterator iterator;
1834         int ret = 0;
1835         int i;
1836
1837         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1838                 slots = __kvm_memslots(kvm, i);
1839                 kvm_for_each_memslot(memslot, slots) {
1840                         unsigned long hva_start, hva_end;
1841                         gfn_t gfn_start, gfn_end;
1842
1843                         hva_start = max(start, memslot->userspace_addr);
1844                         hva_end = min(end, memslot->userspace_addr +
1845                                       (memslot->npages << PAGE_SHIFT));
1846                         if (hva_start >= hva_end)
1847                                 continue;
1848                         /*
1849                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1850                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1851                          */
1852                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1853                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1854
1855                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1856                                                  PT_MAX_HUGEPAGE_LEVEL,
1857                                                  gfn_start, gfn_end - 1,
1858                                                  &iterator)
1859                                 ret |= handler(kvm, iterator.rmap, memslot,
1860                                                iterator.gfn, iterator.level, data);
1861                 }
1862         }
1863
1864         return ret;
1865 }
1866
1867 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1868                           unsigned long data,
1869                           int (*handler)(struct kvm *kvm,
1870                                          struct kvm_rmap_head *rmap_head,
1871                                          struct kvm_memory_slot *slot,
1872                                          gfn_t gfn, int level,
1873                                          unsigned long data))
1874 {
1875         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1876 }
1877
1878 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1879 {
1880         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1881 }
1882
1883 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1884 {
1885         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1886 }
1887
1888 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1889                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1890                          unsigned long data)
1891 {
1892         u64 *sptep;
1893         struct rmap_iterator uninitialized_var(iter);
1894         int young = 0;
1895
1896         for_each_rmap_spte(rmap_head, &iter, sptep)
1897                 young |= mmu_spte_age(sptep);
1898
1899         trace_kvm_age_page(gfn, level, slot, young);
1900         return young;
1901 }
1902
1903 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1904                               struct kvm_memory_slot *slot, gfn_t gfn,
1905                               int level, unsigned long data)
1906 {
1907         u64 *sptep;
1908         struct rmap_iterator iter;
1909
1910         for_each_rmap_spte(rmap_head, &iter, sptep)
1911                 if (is_accessed_spte(*sptep))
1912                         return 1;
1913         return 0;
1914 }
1915
1916 #define RMAP_RECYCLE_THRESHOLD 1000
1917
1918 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1919 {
1920         struct kvm_rmap_head *rmap_head;
1921         struct kvm_mmu_page *sp;
1922
1923         sp = page_header(__pa(spte));
1924
1925         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1926
1927         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1928         kvm_flush_remote_tlbs(vcpu->kvm);
1929 }
1930
1931 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1932 {
1933         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1934 }
1935
1936 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1937 {
1938         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1939 }
1940
1941 #ifdef MMU_DEBUG
1942 static int is_empty_shadow_page(u64 *spt)
1943 {
1944         u64 *pos;
1945         u64 *end;
1946
1947         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1948                 if (is_shadow_present_pte(*pos)) {
1949                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1950                                pos, *pos);
1951                         return 0;
1952                 }
1953         return 1;
1954 }
1955 #endif
1956
1957 /*
1958  * This value is the sum of all of the kvm instances's
1959  * kvm->arch.n_used_mmu_pages values.  We need a global,
1960  * aggregate version in order to make the slab shrinker
1961  * faster
1962  */
1963 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1964 {
1965         kvm->arch.n_used_mmu_pages += nr;
1966         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1967 }
1968
1969 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1970 {
1971         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1972         hlist_del(&sp->hash_link);
1973         list_del(&sp->link);
1974         free_page((unsigned long)sp->spt);
1975         if (!sp->role.direct)
1976                 free_page((unsigned long)sp->gfns);
1977         kmem_cache_free(mmu_page_header_cache, sp);
1978 }
1979
1980 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1981 {
1982         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1983 }
1984
1985 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1986                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1987 {
1988         if (!parent_pte)
1989                 return;
1990
1991         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1992 }
1993
1994 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1995                                        u64 *parent_pte)
1996 {
1997         __pte_list_remove(parent_pte, &sp->parent_ptes);
1998 }
1999
2000 static void drop_parent_pte(struct kvm_mmu_page *sp,
2001                             u64 *parent_pte)
2002 {
2003         mmu_page_remove_parent_pte(sp, parent_pte);
2004         mmu_spte_clear_no_track(parent_pte);
2005 }
2006
2007 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2008 {
2009         struct kvm_mmu_page *sp;
2010
2011         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2012         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2013         if (!direct)
2014                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2015         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2016
2017         /*
2018          * The active_mmu_pages list is the FIFO list, do not move the
2019          * page until it is zapped. kvm_zap_obsolete_pages depends on
2020          * this feature. See the comments in kvm_zap_obsolete_pages().
2021          */
2022         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2023         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2024         return sp;
2025 }
2026
2027 static void mark_unsync(u64 *spte);
2028 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2029 {
2030         u64 *sptep;
2031         struct rmap_iterator iter;
2032
2033         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2034                 mark_unsync(sptep);
2035         }
2036 }
2037
2038 static void mark_unsync(u64 *spte)
2039 {
2040         struct kvm_mmu_page *sp;
2041         unsigned int index;
2042
2043         sp = page_header(__pa(spte));
2044         index = spte - sp->spt;
2045         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2046                 return;
2047         if (sp->unsync_children++)
2048                 return;
2049         kvm_mmu_mark_parents_unsync(sp);
2050 }
2051
2052 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2053                                struct kvm_mmu_page *sp)
2054 {
2055         return 0;
2056 }
2057
2058 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2059 {
2060 }
2061
2062 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2063                                  struct kvm_mmu_page *sp, u64 *spte,
2064                                  const void *pte)
2065 {
2066         WARN_ON(1);
2067 }
2068
2069 #define KVM_PAGE_ARRAY_NR 16
2070
2071 struct kvm_mmu_pages {
2072         struct mmu_page_and_offset {
2073                 struct kvm_mmu_page *sp;
2074                 unsigned int idx;
2075         } page[KVM_PAGE_ARRAY_NR];
2076         unsigned int nr;
2077 };
2078
2079 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2080                          int idx)
2081 {
2082         int i;
2083
2084         if (sp->unsync)
2085                 for (i=0; i < pvec->nr; i++)
2086                         if (pvec->page[i].sp == sp)
2087                                 return 0;
2088
2089         pvec->page[pvec->nr].sp = sp;
2090         pvec->page[pvec->nr].idx = idx;
2091         pvec->nr++;
2092         return (pvec->nr == KVM_PAGE_ARRAY_NR);
2093 }
2094
2095 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2096 {
2097         --sp->unsync_children;
2098         WARN_ON((int)sp->unsync_children < 0);
2099         __clear_bit(idx, sp->unsync_child_bitmap);
2100 }
2101
2102 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2103                            struct kvm_mmu_pages *pvec)
2104 {
2105         int i, ret, nr_unsync_leaf = 0;
2106
2107         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2108                 struct kvm_mmu_page *child;
2109                 u64 ent = sp->spt[i];
2110
2111                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2112                         clear_unsync_child_bit(sp, i);
2113                         continue;
2114                 }
2115
2116                 child = page_header(ent & PT64_BASE_ADDR_MASK);
2117
2118                 if (child->unsync_children) {
2119                         if (mmu_pages_add(pvec, child, i))
2120                                 return -ENOSPC;
2121
2122                         ret = __mmu_unsync_walk(child, pvec);
2123                         if (!ret) {
2124                                 clear_unsync_child_bit(sp, i);
2125                                 continue;
2126                         } else if (ret > 0) {
2127                                 nr_unsync_leaf += ret;
2128                         } else
2129                                 return ret;
2130                 } else if (child->unsync) {
2131                         nr_unsync_leaf++;
2132                         if (mmu_pages_add(pvec, child, i))
2133                                 return -ENOSPC;
2134                 } else
2135                         clear_unsync_child_bit(sp, i);
2136         }
2137
2138         return nr_unsync_leaf;
2139 }
2140
2141 #define INVALID_INDEX (-1)
2142
2143 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2144                            struct kvm_mmu_pages *pvec)
2145 {
2146         pvec->nr = 0;
2147         if (!sp->unsync_children)
2148                 return 0;
2149
2150         mmu_pages_add(pvec, sp, INVALID_INDEX);
2151         return __mmu_unsync_walk(sp, pvec);
2152 }
2153
2154 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2155 {
2156         WARN_ON(!sp->unsync);
2157         trace_kvm_mmu_sync_page(sp);
2158         sp->unsync = 0;
2159         --kvm->stat.mmu_unsync;
2160 }
2161
2162 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163                                     struct list_head *invalid_list);
2164 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2165                                     struct list_head *invalid_list);
2166
2167 /*
2168  * NOTE: we should pay more attention on the zapped-obsolete page
2169  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2170  * since it has been deleted from active_mmu_pages but still can be found
2171  * at hast list.
2172  *
2173  * for_each_valid_sp() has skipped that kind of pages.
2174  */
2175 #define for_each_valid_sp(_kvm, _sp, _gfn)                              \
2176         hlist_for_each_entry(_sp,                                       \
2177           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2178                 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) {    \
2179                 } else
2180
2181 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
2182         for_each_valid_sp(_kvm, _sp, _gfn)                              \
2183                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2184
2185 /* @sp->gfn should be write-protected at the call site */
2186 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2187                             struct list_head *invalid_list)
2188 {
2189         if (sp->role.cr4_pae != !!is_pae(vcpu)
2190             || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2191                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2192                 return false;
2193         }
2194
2195         return true;
2196 }
2197
2198 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2199                                  struct list_head *invalid_list,
2200                                  bool remote_flush, bool local_flush)
2201 {
2202         if (!list_empty(invalid_list)) {
2203                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2204                 return;
2205         }
2206
2207         if (remote_flush)
2208                 kvm_flush_remote_tlbs(vcpu->kvm);
2209         else if (local_flush)
2210                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2211 }
2212
2213 #ifdef CONFIG_KVM_MMU_AUDIT
2214 #include "mmu_audit.c"
2215 #else
2216 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2217 static void mmu_audit_disable(void) { }
2218 #endif
2219
2220 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2221 {
2222         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2223 }
2224
2225 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2226                          struct list_head *invalid_list)
2227 {
2228         kvm_unlink_unsync_page(vcpu->kvm, sp);
2229         return __kvm_sync_page(vcpu, sp, invalid_list);
2230 }
2231
2232 /* @gfn should be write-protected at the call site */
2233 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2234                            struct list_head *invalid_list)
2235 {
2236         struct kvm_mmu_page *s;
2237         bool ret = false;
2238
2239         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2240                 if (!s->unsync)
2241                         continue;
2242
2243                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2244                 ret |= kvm_sync_page(vcpu, s, invalid_list);
2245         }
2246
2247         return ret;
2248 }
2249
2250 struct mmu_page_path {
2251         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2252         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2253 };
2254
2255 #define for_each_sp(pvec, sp, parents, i)                       \
2256                 for (i = mmu_pages_first(&pvec, &parents);      \
2257                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2258                         i = mmu_pages_next(&pvec, &parents, i))
2259
2260 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2261                           struct mmu_page_path *parents,
2262                           int i)
2263 {
2264         int n;
2265
2266         for (n = i+1; n < pvec->nr; n++) {
2267                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2268                 unsigned idx = pvec->page[n].idx;
2269                 int level = sp->role.level;
2270
2271                 parents->idx[level-1] = idx;
2272                 if (level == PT_PAGE_TABLE_LEVEL)
2273                         break;
2274
2275                 parents->parent[level-2] = sp;
2276         }
2277
2278         return n;
2279 }
2280
2281 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2282                            struct mmu_page_path *parents)
2283 {
2284         struct kvm_mmu_page *sp;
2285         int level;
2286
2287         if (pvec->nr == 0)
2288                 return 0;
2289
2290         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2291
2292         sp = pvec->page[0].sp;
2293         level = sp->role.level;
2294         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2295
2296         parents->parent[level-2] = sp;
2297
2298         /* Also set up a sentinel.  Further entries in pvec are all
2299          * children of sp, so this element is never overwritten.
2300          */
2301         parents->parent[level-1] = NULL;
2302         return mmu_pages_next(pvec, parents, 0);
2303 }
2304
2305 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2306 {
2307         struct kvm_mmu_page *sp;
2308         unsigned int level = 0;
2309
2310         do {
2311                 unsigned int idx = parents->idx[level];
2312                 sp = parents->parent[level];
2313                 if (!sp)
2314                         return;
2315
2316                 WARN_ON(idx == INVALID_INDEX);
2317                 clear_unsync_child_bit(sp, idx);
2318                 level++;
2319         } while (!sp->unsync_children);
2320 }
2321
2322 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2323                               struct kvm_mmu_page *parent)
2324 {
2325         int i;
2326         struct kvm_mmu_page *sp;
2327         struct mmu_page_path parents;
2328         struct kvm_mmu_pages pages;
2329         LIST_HEAD(invalid_list);
2330         bool flush = false;
2331
2332         while (mmu_unsync_walk(parent, &pages)) {
2333                 bool protected = false;
2334
2335                 for_each_sp(pages, sp, parents, i)
2336                         protected |= rmap_write_protect(vcpu, sp->gfn);
2337
2338                 if (protected) {
2339                         kvm_flush_remote_tlbs(vcpu->kvm);
2340                         flush = false;
2341                 }
2342
2343                 for_each_sp(pages, sp, parents, i) {
2344                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2345                         mmu_pages_clear_parents(&parents);
2346                 }
2347                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2348                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2349                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2350                         flush = false;
2351                 }
2352         }
2353
2354         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2355 }
2356
2357 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2358 {
2359         atomic_set(&sp->write_flooding_count,  0);
2360 }
2361
2362 static void clear_sp_write_flooding_count(u64 *spte)
2363 {
2364         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2365
2366         __clear_sp_write_flooding_count(sp);
2367 }
2368
2369 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2370                                              gfn_t gfn,
2371                                              gva_t gaddr,
2372                                              unsigned level,
2373                                              int direct,
2374                                              unsigned access)
2375 {
2376         union kvm_mmu_page_role role;
2377         unsigned quadrant;
2378         struct kvm_mmu_page *sp;
2379         bool need_sync = false;
2380         bool flush = false;
2381         int collisions = 0;
2382         LIST_HEAD(invalid_list);
2383
2384         role = vcpu->arch.mmu->mmu_role.base;
2385         role.level = level;
2386         role.direct = direct;
2387         if (role.direct)
2388                 role.cr4_pae = 0;
2389         role.access = access;
2390         if (!vcpu->arch.mmu->direct_map
2391             && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2392                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2393                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2394                 role.quadrant = quadrant;
2395         }
2396         for_each_valid_sp(vcpu->kvm, sp, gfn) {
2397                 if (sp->gfn != gfn) {
2398                         collisions++;
2399                         continue;
2400                 }
2401
2402                 if (!need_sync && sp->unsync)
2403                         need_sync = true;
2404
2405                 if (sp->role.word != role.word)
2406                         continue;
2407
2408                 if (sp->unsync) {
2409                         /* The page is good, but __kvm_sync_page might still end
2410                          * up zapping it.  If so, break in order to rebuild it.
2411                          */
2412                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2413                                 break;
2414
2415                         WARN_ON(!list_empty(&invalid_list));
2416                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2417                 }
2418
2419                 if (sp->unsync_children)
2420                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2421
2422                 __clear_sp_write_flooding_count(sp);
2423                 trace_kvm_mmu_get_page(sp, false);
2424                 goto out;
2425         }
2426
2427         ++vcpu->kvm->stat.mmu_cache_miss;
2428
2429         sp = kvm_mmu_alloc_page(vcpu, direct);
2430
2431         sp->gfn = gfn;
2432         sp->role = role;
2433         hlist_add_head(&sp->hash_link,
2434                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2435         if (!direct) {
2436                 /*
2437                  * we should do write protection before syncing pages
2438                  * otherwise the content of the synced shadow page may
2439                  * be inconsistent with guest page table.
2440                  */
2441                 account_shadowed(vcpu->kvm, sp);
2442                 if (level == PT_PAGE_TABLE_LEVEL &&
2443                       rmap_write_protect(vcpu, gfn))
2444                         kvm_flush_remote_tlbs(vcpu->kvm);
2445
2446                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2447                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2448         }
2449         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2450         clear_page(sp->spt);
2451         trace_kvm_mmu_get_page(sp, true);
2452
2453         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2454 out:
2455         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2456                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2457         return sp;
2458 }
2459
2460 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2461                                         struct kvm_vcpu *vcpu, hpa_t root,
2462                                         u64 addr)
2463 {
2464         iterator->addr = addr;
2465         iterator->shadow_addr = root;
2466         iterator->level = vcpu->arch.mmu->shadow_root_level;
2467
2468         if (iterator->level == PT64_ROOT_4LEVEL &&
2469             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2470             !vcpu->arch.mmu->direct_map)
2471                 --iterator->level;
2472
2473         if (iterator->level == PT32E_ROOT_LEVEL) {
2474                 /*
2475                  * prev_root is currently only used for 64-bit hosts. So only
2476                  * the active root_hpa is valid here.
2477                  */
2478                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2479
2480                 iterator->shadow_addr
2481                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2482                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2483                 --iterator->level;
2484                 if (!iterator->shadow_addr)
2485                         iterator->level = 0;
2486         }
2487 }
2488
2489 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2490                              struct kvm_vcpu *vcpu, u64 addr)
2491 {
2492         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2493                                     addr);
2494 }
2495
2496 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2497 {
2498         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2499                 return false;
2500
2501         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2502         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2503         return true;
2504 }
2505
2506 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2507                                u64 spte)
2508 {
2509         if (is_last_spte(spte, iterator->level)) {
2510                 iterator->level = 0;
2511                 return;
2512         }
2513
2514         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2515         --iterator->level;
2516 }
2517
2518 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2519 {
2520         __shadow_walk_next(iterator, *iterator->sptep);
2521 }
2522
2523 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2524                              struct kvm_mmu_page *sp)
2525 {
2526         u64 spte;
2527
2528         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2529
2530         spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2531                shadow_user_mask | shadow_x_mask | shadow_me_mask;
2532
2533         if (sp_ad_disabled(sp))
2534                 spte |= shadow_acc_track_value;
2535         else
2536                 spte |= shadow_accessed_mask;
2537
2538         mmu_spte_set(sptep, spte);
2539
2540         mmu_page_add_parent_pte(vcpu, sp, sptep);
2541
2542         if (sp->unsync_children || sp->unsync)
2543                 mark_unsync(sptep);
2544 }
2545
2546 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2547                                    unsigned direct_access)
2548 {
2549         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2550                 struct kvm_mmu_page *child;
2551
2552                 /*
2553                  * For the direct sp, if the guest pte's dirty bit
2554                  * changed form clean to dirty, it will corrupt the
2555                  * sp's access: allow writable in the read-only sp,
2556                  * so we should update the spte at this point to get
2557                  * a new sp with the correct access.
2558                  */
2559                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2560                 if (child->role.access == direct_access)
2561                         return;
2562
2563                 drop_parent_pte(child, sptep);
2564                 kvm_flush_remote_tlbs(vcpu->kvm);
2565         }
2566 }
2567
2568 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2569                              u64 *spte)
2570 {
2571         u64 pte;
2572         struct kvm_mmu_page *child;
2573
2574         pte = *spte;
2575         if (is_shadow_present_pte(pte)) {
2576                 if (is_last_spte(pte, sp->role.level)) {
2577                         drop_spte(kvm, spte);
2578                         if (is_large_pte(pte))
2579                                 --kvm->stat.lpages;
2580                 } else {
2581                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2582                         drop_parent_pte(child, spte);
2583                 }
2584                 return true;
2585         }
2586
2587         if (is_mmio_spte(pte))
2588                 mmu_spte_clear_no_track(spte);
2589
2590         return false;
2591 }
2592
2593 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2594                                          struct kvm_mmu_page *sp)
2595 {
2596         unsigned i;
2597
2598         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2599                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2600 }
2601
2602 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2603 {
2604         u64 *sptep;
2605         struct rmap_iterator iter;
2606
2607         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2608                 drop_parent_pte(sp, sptep);
2609 }
2610
2611 static int mmu_zap_unsync_children(struct kvm *kvm,
2612                                    struct kvm_mmu_page *parent,
2613                                    struct list_head *invalid_list)
2614 {
2615         int i, zapped = 0;
2616         struct mmu_page_path parents;
2617         struct kvm_mmu_pages pages;
2618
2619         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2620                 return 0;
2621
2622         while (mmu_unsync_walk(parent, &pages)) {
2623                 struct kvm_mmu_page *sp;
2624
2625                 for_each_sp(pages, sp, parents, i) {
2626                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2627                         mmu_pages_clear_parents(&parents);
2628                         zapped++;
2629                 }
2630         }
2631
2632         return zapped;
2633 }
2634
2635 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2636                                     struct list_head *invalid_list)
2637 {
2638         int ret;
2639
2640         trace_kvm_mmu_prepare_zap_page(sp);
2641         ++kvm->stat.mmu_shadow_zapped;
2642         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2643         kvm_mmu_page_unlink_children(kvm, sp);
2644         kvm_mmu_unlink_parents(kvm, sp);
2645
2646         if (!sp->role.invalid && !sp->role.direct)
2647                 unaccount_shadowed(kvm, sp);
2648
2649         if (sp->unsync)
2650                 kvm_unlink_unsync_page(kvm, sp);
2651         if (!sp->root_count) {
2652                 /* Count self */
2653                 ret++;
2654                 list_move(&sp->link, invalid_list);
2655                 kvm_mod_used_mmu_pages(kvm, -1);
2656         } else {
2657                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2658
2659                 /*
2660                  * The obsolete pages can not be used on any vcpus.
2661                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2662                  */
2663                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2664                         kvm_reload_remote_mmus(kvm);
2665         }
2666
2667         sp->role.invalid = 1;
2668         return ret;
2669 }
2670
2671 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2672                                     struct list_head *invalid_list)
2673 {
2674         struct kvm_mmu_page *sp, *nsp;
2675
2676         if (list_empty(invalid_list))
2677                 return;
2678
2679         /*
2680          * We need to make sure everyone sees our modifications to
2681          * the page tables and see changes to vcpu->mode here. The barrier
2682          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2683          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2684          *
2685          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2686          * guest mode and/or lockless shadow page table walks.
2687          */
2688         kvm_flush_remote_tlbs(kvm);
2689
2690         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2691                 WARN_ON(!sp->role.invalid || sp->root_count);
2692                 kvm_mmu_free_page(sp);
2693         }
2694 }
2695
2696 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2697                                         struct list_head *invalid_list)
2698 {
2699         struct kvm_mmu_page *sp;
2700
2701         if (list_empty(&kvm->arch.active_mmu_pages))
2702                 return false;
2703
2704         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2705                              struct kvm_mmu_page, link);
2706         return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2707 }
2708
2709 /*
2710  * Changing the number of mmu pages allocated to the vm
2711  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2712  */
2713 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2714 {
2715         LIST_HEAD(invalid_list);
2716
2717         spin_lock(&kvm->mmu_lock);
2718
2719         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2720                 /* Need to free some mmu pages to achieve the goal. */
2721                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2722                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2723                                 break;
2724
2725                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2726                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2727         }
2728
2729         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2730
2731         spin_unlock(&kvm->mmu_lock);
2732 }
2733
2734 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2735 {
2736         struct kvm_mmu_page *sp;
2737         LIST_HEAD(invalid_list);
2738         int r;
2739
2740         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2741         r = 0;
2742         spin_lock(&kvm->mmu_lock);
2743         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2744                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2745                          sp->role.word);
2746                 r = 1;
2747                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2748         }
2749         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2750         spin_unlock(&kvm->mmu_lock);
2751
2752         return r;
2753 }
2754 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2755
2756 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2757 {
2758         trace_kvm_mmu_unsync_page(sp);
2759         ++vcpu->kvm->stat.mmu_unsync;
2760         sp->unsync = 1;
2761
2762         kvm_mmu_mark_parents_unsync(sp);
2763 }
2764
2765 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2766                                    bool can_unsync)
2767 {
2768         struct kvm_mmu_page *sp;
2769
2770         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2771                 return true;
2772
2773         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2774                 if (!can_unsync)
2775                         return true;
2776
2777                 if (sp->unsync)
2778                         continue;
2779
2780                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2781                 kvm_unsync_page(vcpu, sp);
2782         }
2783
2784         /*
2785          * We need to ensure that the marking of unsync pages is visible
2786          * before the SPTE is updated to allow writes because
2787          * kvm_mmu_sync_roots() checks the unsync flags without holding
2788          * the MMU lock and so can race with this. If the SPTE was updated
2789          * before the page had been marked as unsync-ed, something like the
2790          * following could happen:
2791          *
2792          * CPU 1                    CPU 2
2793          * ---------------------------------------------------------------------
2794          * 1.2 Host updates SPTE
2795          *     to be writable
2796          *                      2.1 Guest writes a GPTE for GVA X.
2797          *                          (GPTE being in the guest page table shadowed
2798          *                           by the SP from CPU 1.)
2799          *                          This reads SPTE during the page table walk.
2800          *                          Since SPTE.W is read as 1, there is no
2801          *                          fault.
2802          *
2803          *                      2.2 Guest issues TLB flush.
2804          *                          That causes a VM Exit.
2805          *
2806          *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2807          *                          Since it is false, so it just returns.
2808          *
2809          *                      2.4 Guest accesses GVA X.
2810          *                          Since the mapping in the SP was not updated,
2811          *                          so the old mapping for GVA X incorrectly
2812          *                          gets used.
2813          * 1.1 Host marks SP
2814          *     as unsync
2815          *     (sp->unsync = true)
2816          *
2817          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2818          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2819          * pairs with this write barrier.
2820          */
2821         smp_wmb();
2822
2823         return false;
2824 }
2825
2826 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2827 {
2828         if (pfn_valid(pfn))
2829                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2830                         /*
2831                          * Some reserved pages, such as those from NVDIMM
2832                          * DAX devices, are not for MMIO, and can be mapped
2833                          * with cached memory type for better performance.
2834                          * However, the above check misconceives those pages
2835                          * as MMIO, and results in KVM mapping them with UC
2836                          * memory type, which would hurt the performance.
2837                          * Therefore, we check the host memory type in addition
2838                          * and only treat UC/UC-/WC pages as MMIO.
2839                          */
2840                         (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2841
2842         return true;
2843 }
2844
2845 /* Bits which may be returned by set_spte() */
2846 #define SET_SPTE_WRITE_PROTECTED_PT     BIT(0)
2847 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH  BIT(1)
2848
2849 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2850                     unsigned pte_access, int level,
2851                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2852                     bool can_unsync, bool host_writable)
2853 {
2854         u64 spte = 0;
2855         int ret = 0;
2856         struct kvm_mmu_page *sp;
2857
2858         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2859                 return 0;
2860
2861         sp = page_header(__pa(sptep));
2862         if (sp_ad_disabled(sp))
2863                 spte |= shadow_acc_track_value;
2864
2865         /*
2866          * For the EPT case, shadow_present_mask is 0 if hardware
2867          * supports exec-only page table entries.  In that case,
2868          * ACC_USER_MASK and shadow_user_mask are used to represent
2869          * read access.  See FNAME(gpte_access) in paging_tmpl.h.
2870          */
2871         spte |= shadow_present_mask;
2872         if (!speculative)
2873                 spte |= spte_shadow_accessed_mask(spte);
2874
2875         if (pte_access & ACC_EXEC_MASK)
2876                 spte |= shadow_x_mask;
2877         else
2878                 spte |= shadow_nx_mask;
2879
2880         if (pte_access & ACC_USER_MASK)
2881                 spte |= shadow_user_mask;
2882
2883         if (level > PT_PAGE_TABLE_LEVEL)
2884                 spte |= PT_PAGE_SIZE_MASK;
2885         if (tdp_enabled)
2886                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2887                         kvm_is_mmio_pfn(pfn));
2888
2889         if (host_writable)
2890                 spte |= SPTE_HOST_WRITEABLE;
2891         else
2892                 pte_access &= ~ACC_WRITE_MASK;
2893
2894         if (!kvm_is_mmio_pfn(pfn))
2895                 spte |= shadow_me_mask;
2896
2897         spte |= (u64)pfn << PAGE_SHIFT;
2898
2899         if (pte_access & ACC_WRITE_MASK) {
2900
2901                 /*
2902                  * Other vcpu creates new sp in the window between
2903                  * mapping_level() and acquiring mmu-lock. We can
2904                  * allow guest to retry the access, the mapping can
2905                  * be fixed if guest refault.
2906                  */
2907                 if (level > PT_PAGE_TABLE_LEVEL &&
2908                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2909                         goto done;
2910
2911                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2912
2913                 /*
2914                  * Optimization: for pte sync, if spte was writable the hash
2915                  * lookup is unnecessary (and expensive). Write protection
2916                  * is responsibility of mmu_get_page / kvm_sync_page.
2917                  * Same reasoning can be applied to dirty page accounting.
2918                  */
2919                 if (!can_unsync && is_writable_pte(*sptep))
2920                         goto set_pte;
2921
2922                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2923                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2924                                  __func__, gfn);
2925                         ret |= SET_SPTE_WRITE_PROTECTED_PT;
2926                         pte_access &= ~ACC_WRITE_MASK;
2927                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2928                 }
2929         }
2930
2931         if (pte_access & ACC_WRITE_MASK) {
2932                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2933                 spte |= spte_shadow_dirty_mask(spte);
2934         }
2935
2936         if (speculative)
2937                 spte = mark_spte_for_access_track(spte);
2938
2939 set_pte:
2940         if (mmu_spte_update(sptep, spte))
2941                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2942 done:
2943         return ret;
2944 }
2945
2946 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2947                         int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2948                         bool speculative, bool host_writable)
2949 {
2950         int was_rmapped = 0;
2951         int rmap_count;
2952         int set_spte_ret;
2953         int ret = RET_PF_RETRY;
2954         bool flush = false;
2955
2956         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2957                  *sptep, write_fault, gfn);
2958
2959         if (is_shadow_present_pte(*sptep)) {
2960                 /*
2961                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2962                  * the parent of the now unreachable PTE.
2963                  */
2964                 if (level > PT_PAGE_TABLE_LEVEL &&
2965                     !is_large_pte(*sptep)) {
2966                         struct kvm_mmu_page *child;
2967                         u64 pte = *sptep;
2968
2969                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2970                         drop_parent_pte(child, sptep);
2971                         flush = true;
2972                 } else if (pfn != spte_to_pfn(*sptep)) {
2973                         pgprintk("hfn old %llx new %llx\n",
2974                                  spte_to_pfn(*sptep), pfn);
2975                         drop_spte(vcpu->kvm, sptep);
2976                         flush = true;
2977                 } else
2978                         was_rmapped = 1;
2979         }
2980
2981         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2982                                 speculative, true, host_writable);
2983         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2984                 if (write_fault)
2985                         ret = RET_PF_EMULATE;
2986                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2987         }
2988         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2989                 kvm_flush_remote_tlbs(vcpu->kvm);
2990
2991         if (unlikely(is_mmio_spte(*sptep)))
2992                 ret = RET_PF_EMULATE;
2993
2994         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2995         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2996                  is_large_pte(*sptep)? "2MB" : "4kB",
2997                  *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2998                  *sptep, sptep);
2999         if (!was_rmapped && is_large_pte(*sptep))
3000                 ++vcpu->kvm->stat.lpages;
3001
3002         if (is_shadow_present_pte(*sptep)) {
3003                 if (!was_rmapped) {
3004                         rmap_count = rmap_add(vcpu, sptep, gfn);
3005                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3006                                 rmap_recycle(vcpu, sptep, gfn);
3007                 }
3008         }
3009
3010         kvm_release_pfn_clean(pfn);
3011
3012         return ret;
3013 }
3014
3015 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3016                                      bool no_dirty_log)
3017 {
3018         struct kvm_memory_slot *slot;
3019
3020         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3021         if (!slot)
3022                 return KVM_PFN_ERR_FAULT;
3023
3024         return gfn_to_pfn_memslot_atomic(slot, gfn);
3025 }
3026
3027 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3028                                     struct kvm_mmu_page *sp,
3029                                     u64 *start, u64 *end)
3030 {
3031         struct page *pages[PTE_PREFETCH_NUM];
3032         struct kvm_memory_slot *slot;
3033         unsigned access = sp->role.access;
3034         int i, ret;
3035         gfn_t gfn;
3036
3037         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3038         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3039         if (!slot)
3040                 return -1;
3041
3042         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3043         if (ret <= 0)
3044                 return -1;
3045
3046         for (i = 0; i < ret; i++, gfn++, start++)
3047                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3048                              page_to_pfn(pages[i]), true, true);
3049
3050         return 0;
3051 }
3052
3053 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3054                                   struct kvm_mmu_page *sp, u64 *sptep)
3055 {
3056         u64 *spte, *start = NULL;
3057         int i;
3058
3059         WARN_ON(!sp->role.direct);
3060
3061         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3062         spte = sp->spt + i;
3063
3064         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3065                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3066                         if (!start)
3067                                 continue;
3068                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3069                                 break;
3070                         start = NULL;
3071                 } else if (!start)
3072                         start = spte;
3073         }
3074 }
3075
3076 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3077 {
3078         struct kvm_mmu_page *sp;
3079
3080         sp = page_header(__pa(sptep));
3081
3082         /*
3083          * Without accessed bits, there's no way to distinguish between
3084          * actually accessed translations and prefetched, so disable pte
3085          * prefetch if accessed bits aren't available.
3086          */
3087         if (sp_ad_disabled(sp))
3088                 return;
3089
3090         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3091                 return;
3092
3093         __direct_pte_prefetch(vcpu, sp, sptep);
3094 }
3095
3096 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3097                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3098 {
3099         struct kvm_shadow_walk_iterator iterator;
3100         struct kvm_mmu_page *sp;
3101         int emulate = 0;
3102         gfn_t pseudo_gfn;
3103
3104         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3105                 return 0;
3106
3107         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3108                 if (iterator.level == level) {
3109                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3110                                                write, level, gfn, pfn, prefault,
3111                                                map_writable);
3112                         direct_pte_prefetch(vcpu, iterator.sptep);
3113                         ++vcpu->stat.pf_fixed;
3114                         break;
3115                 }
3116
3117                 drop_large_spte(vcpu, iterator.sptep);
3118                 if (!is_shadow_present_pte(*iterator.sptep)) {
3119                         u64 base_addr = iterator.addr;
3120
3121                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3122                         pseudo_gfn = base_addr >> PAGE_SHIFT;
3123                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3124                                               iterator.level - 1, 1, ACC_ALL);
3125
3126                         link_shadow_page(vcpu, iterator.sptep, sp);
3127                 }
3128         }
3129         return emulate;
3130 }
3131
3132 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3133 {
3134         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3135 }
3136
3137 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3138 {
3139         /*
3140          * Do not cache the mmio info caused by writing the readonly gfn
3141          * into the spte otherwise read access on readonly gfn also can
3142          * caused mmio page fault and treat it as mmio access.
3143          */
3144         if (pfn == KVM_PFN_ERR_RO_FAULT)
3145                 return RET_PF_EMULATE;
3146
3147         if (pfn == KVM_PFN_ERR_HWPOISON) {
3148                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3149                 return RET_PF_RETRY;
3150         }
3151
3152         return -EFAULT;
3153 }
3154
3155 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3156                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
3157                                         int *levelp)
3158 {
3159         kvm_pfn_t pfn = *pfnp;
3160         gfn_t gfn = *gfnp;
3161         int level = *levelp;
3162
3163         /*
3164          * Check if it's a transparent hugepage. If this would be an
3165          * hugetlbfs page, level wouldn't be set to
3166          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3167          * here.
3168          */
3169         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3170             level == PT_PAGE_TABLE_LEVEL &&
3171             PageTransCompoundMap(pfn_to_page(pfn)) &&
3172             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3173                 unsigned long mask;
3174                 /*
3175                  * mmu_notifier_retry was successful and we hold the
3176                  * mmu_lock here, so the pmd can't become splitting
3177                  * from under us, and in turn
3178                  * __split_huge_page_refcount() can't run from under
3179                  * us and we can safely transfer the refcount from
3180                  * PG_tail to PG_head as we switch the pfn to tail to
3181                  * head.
3182                  */
3183                 *levelp = level = PT_DIRECTORY_LEVEL;
3184                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3185                 VM_BUG_ON((gfn & mask) != (pfn & mask));
3186                 if (pfn & mask) {
3187                         gfn &= ~mask;
3188                         *gfnp = gfn;
3189                         kvm_release_pfn_clean(pfn);
3190                         pfn &= ~mask;
3191                         kvm_get_pfn(pfn);
3192                         *pfnp = pfn;
3193                 }
3194         }
3195 }
3196
3197 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3198                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
3199 {
3200         /* The pfn is invalid, report the error! */
3201         if (unlikely(is_error_pfn(pfn))) {
3202                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3203                 return true;
3204         }
3205
3206         if (unlikely(is_noslot_pfn(pfn)))
3207                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3208
3209         return false;
3210 }
3211
3212 static bool page_fault_can_be_fast(u32 error_code)
3213 {
3214         /*
3215          * Do not fix the mmio spte with invalid generation number which
3216          * need to be updated by slow page fault path.
3217          */
3218         if (unlikely(error_code & PFERR_RSVD_MASK))
3219                 return false;
3220
3221         /* See if the page fault is due to an NX violation */
3222         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3223                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3224                 return false;
3225
3226         /*
3227          * #PF can be fast if:
3228          * 1. The shadow page table entry is not present, which could mean that
3229          *    the fault is potentially caused by access tracking (if enabled).
3230          * 2. The shadow page table entry is present and the fault
3231          *    is caused by write-protect, that means we just need change the W
3232          *    bit of the spte which can be done out of mmu-lock.
3233          *
3234          * However, if access tracking is disabled we know that a non-present
3235          * page must be a genuine page fault where we have to create a new SPTE.
3236          * So, if access tracking is disabled, we return true only for write
3237          * accesses to a present page.
3238          */
3239
3240         return shadow_acc_track_mask != 0 ||
3241                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3242                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3243 }
3244
3245 /*
3246  * Returns true if the SPTE was fixed successfully. Otherwise,
3247  * someone else modified the SPTE from its original value.
3248  */
3249 static bool
3250 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3251                         u64 *sptep, u64 old_spte, u64 new_spte)
3252 {
3253         gfn_t gfn;
3254
3255         WARN_ON(!sp->role.direct);
3256
3257         /*
3258          * Theoretically we could also set dirty bit (and flush TLB) here in
3259          * order to eliminate unnecessary PML logging. See comments in
3260          * set_spte. But fast_page_fault is very unlikely to happen with PML
3261          * enabled, so we do not do this. This might result in the same GPA
3262          * to be logged in PML buffer again when the write really happens, and
3263          * eventually to be called by mark_page_dirty twice. But it's also no
3264          * harm. This also avoids the TLB flush needed after setting dirty bit
3265          * so non-PML cases won't be impacted.
3266          *
3267          * Compare with set_spte where instead shadow_dirty_mask is set.
3268          */
3269         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3270                 return false;
3271
3272         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3273                 /*
3274                  * The gfn of direct spte is stable since it is
3275                  * calculated by sp->gfn.
3276                  */
3277                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3278                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3279         }
3280
3281         return true;
3282 }
3283
3284 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3285 {
3286         if (fault_err_code & PFERR_FETCH_MASK)
3287                 return is_executable_pte(spte);
3288
3289         if (fault_err_code & PFERR_WRITE_MASK)
3290                 return is_writable_pte(spte);
3291
3292         /* Fault was on Read access */
3293         return spte & PT_PRESENT_MASK;
3294 }
3295
3296 /*
3297  * Return value:
3298  * - true: let the vcpu to access on the same address again.
3299  * - false: let the real page fault path to fix it.
3300  */
3301 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3302                             u32 error_code)
3303 {
3304         struct kvm_shadow_walk_iterator iterator;
3305         struct kvm_mmu_page *sp;
3306         bool fault_handled = false;
3307         u64 spte = 0ull;
3308         uint retry_count = 0;
3309
3310         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3311                 return false;
3312
3313         if (!page_fault_can_be_fast(error_code))
3314                 return false;
3315
3316         walk_shadow_page_lockless_begin(vcpu);
3317
3318         do {
3319                 u64 new_spte;
3320
3321                 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3322                         if (!is_shadow_present_pte(spte) ||
3323                             iterator.level < level)
3324                                 break;
3325
3326                 sp = page_header(__pa(iterator.sptep));
3327                 if (!is_last_spte(spte, sp->role.level))
3328                         break;
3329
3330                 /*
3331                  * Check whether the memory access that caused the fault would
3332                  * still cause it if it were to be performed right now. If not,
3333                  * then this is a spurious fault caused by TLB lazily flushed,
3334                  * or some other CPU has already fixed the PTE after the
3335                  * current CPU took the fault.
3336                  *
3337                  * Need not check the access of upper level table entries since
3338                  * they are always ACC_ALL.
3339                  */
3340                 if (is_access_allowed(error_code, spte)) {
3341                         fault_handled = true;
3342                         break;
3343                 }
3344
3345                 new_spte = spte;
3346
3347                 if (is_access_track_spte(spte))
3348                         new_spte = restore_acc_track_spte(new_spte);
3349
3350                 /*
3351                  * Currently, to simplify the code, write-protection can
3352                  * be removed in the fast path only if the SPTE was
3353                  * write-protected for dirty-logging or access tracking.
3354                  */
3355                 if ((error_code & PFERR_WRITE_MASK) &&
3356                     spte_can_locklessly_be_made_writable(spte))
3357                 {
3358                         new_spte |= PT_WRITABLE_MASK;
3359
3360                         /*
3361                          * Do not fix write-permission on the large spte.  Since
3362                          * we only dirty the first page into the dirty-bitmap in
3363                          * fast_pf_fix_direct_spte(), other pages are missed
3364                          * if its slot has dirty logging enabled.
3365                          *
3366                          * Instead, we let the slow page fault path create a
3367                          * normal spte to fix the access.
3368                          *
3369                          * See the comments in kvm_arch_commit_memory_region().
3370                          */
3371                         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3372                                 break;
3373                 }
3374
3375                 /* Verify that the fault can be handled in the fast path */
3376                 if (new_spte == spte ||
3377                     !is_access_allowed(error_code, new_spte))
3378                         break;
3379
3380                 /*
3381                  * Currently, fast page fault only works for direct mapping
3382                  * since the gfn is not stable for indirect shadow page. See
3383                  * Documentation/virtual/kvm/locking.txt to get more detail.
3384                  */
3385                 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3386                                                         iterator.sptep, spte,
3387                                                         new_spte);
3388                 if (fault_handled)
3389                         break;
3390
3391                 if (++retry_count > 4) {
3392                         printk_once(KERN_WARNING
3393                                 "kvm: Fast #PF retrying more than 4 times.\n");
3394                         break;
3395                 }
3396
3397         } while (true);
3398
3399         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3400                               spte, fault_handled);
3401         walk_shadow_page_lockless_end(vcpu);
3402
3403         return fault_handled;
3404 }
3405
3406 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3407                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3408 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3409
3410 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3411                          gfn_t gfn, bool prefault)
3412 {
3413         int r;
3414         int level;
3415         bool force_pt_level = false;
3416         kvm_pfn_t pfn;
3417         unsigned long mmu_seq;
3418         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3419
3420         level = mapping_level(vcpu, gfn, &force_pt_level);
3421         if (likely(!force_pt_level)) {
3422                 /*
3423                  * This path builds a PAE pagetable - so we can map
3424                  * 2mb pages at maximum. Therefore check if the level
3425                  * is larger than that.
3426                  */
3427                 if (level > PT_DIRECTORY_LEVEL)
3428                         level = PT_DIRECTORY_LEVEL;
3429
3430                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3431         }
3432
3433         if (fast_page_fault(vcpu, v, level, error_code))
3434                 return RET_PF_RETRY;
3435
3436         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3437         smp_rmb();
3438
3439         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3440                 return RET_PF_RETRY;
3441
3442         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3443                 return r;
3444
3445         spin_lock(&vcpu->kvm->mmu_lock);
3446         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3447                 goto out_unlock;
3448         if (make_mmu_pages_available(vcpu) < 0)
3449                 goto out_unlock;
3450         if (likely(!force_pt_level))
3451                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3452         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3453         spin_unlock(&vcpu->kvm->mmu_lock);
3454
3455         return r;
3456
3457 out_unlock:
3458         spin_unlock(&vcpu->kvm->mmu_lock);
3459         kvm_release_pfn_clean(pfn);
3460         return RET_PF_RETRY;
3461 }
3462
3463 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3464                                struct list_head *invalid_list)
3465 {
3466         struct kvm_mmu_page *sp;
3467
3468         if (!VALID_PAGE(*root_hpa))
3469                 return;
3470
3471         sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3472         --sp->root_count;
3473         if (!sp->root_count && sp->role.invalid)
3474                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3475
3476         *root_hpa = INVALID_PAGE;
3477 }
3478
3479 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3480 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3481                         ulong roots_to_free)
3482 {
3483         int i;
3484         LIST_HEAD(invalid_list);
3485         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3486
3487         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3488
3489         /* Before acquiring the MMU lock, see if we need to do any real work. */
3490         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3491                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3492                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3493                             VALID_PAGE(mmu->prev_roots[i].hpa))
3494                                 break;
3495
3496                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3497                         return;
3498         }
3499
3500         spin_lock(&vcpu->kvm->mmu_lock);
3501
3502         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3503                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3504                         mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3505                                            &invalid_list);
3506
3507         if (free_active_root) {
3508                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3509                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3510                         mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3511                                            &invalid_list);
3512                 } else {
3513                         for (i = 0; i < 4; ++i)
3514                                 if (mmu->pae_root[i] != 0)
3515                                         mmu_free_root_page(vcpu->kvm,
3516                                                            &mmu->pae_root[i],
3517                                                            &invalid_list);
3518                         mmu->root_hpa = INVALID_PAGE;
3519                 }
3520         }
3521
3522         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3523         spin_unlock(&vcpu->kvm->mmu_lock);
3524 }
3525 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3526
3527 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3528 {
3529         int ret = 0;
3530
3531         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3532                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3533                 ret = 1;
3534         }
3535
3536         return ret;
3537 }
3538
3539 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3540 {
3541         struct kvm_mmu_page *sp;
3542         unsigned i;
3543
3544         if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3545                 spin_lock(&vcpu->kvm->mmu_lock);
3546                 if(make_mmu_pages_available(vcpu) < 0) {
3547                         spin_unlock(&vcpu->kvm->mmu_lock);
3548                         return -ENOSPC;
3549                 }
3550                 sp = kvm_mmu_get_page(vcpu, 0, 0,
3551                                 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3552                 ++sp->root_count;
3553                 spin_unlock(&vcpu->kvm->mmu_lock);
3554                 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3555         } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3556                 for (i = 0; i < 4; ++i) {
3557                         hpa_t root = vcpu->arch.mmu->pae_root[i];
3558
3559                         MMU_WARN_ON(VALID_PAGE(root));
3560                         spin_lock(&vcpu->kvm->mmu_lock);
3561                         if (make_mmu_pages_available(vcpu) < 0) {
3562                                 spin_unlock(&vcpu->kvm->mmu_lock);
3563                                 return -ENOSPC;
3564                         }
3565                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3566                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3567                         root = __pa(sp->spt);
3568                         ++sp->root_count;
3569                         spin_unlock(&vcpu->kvm->mmu_lock);
3570                         vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3571                 }
3572                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3573         } else
3574                 BUG();
3575
3576         return 0;
3577 }
3578
3579 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3580 {
3581         struct kvm_mmu_page *sp;
3582         u64 pdptr, pm_mask;
3583         gfn_t root_gfn;
3584         int i;
3585
3586         root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
3587
3588         if (mmu_check_root(vcpu, root_gfn))
3589                 return 1;
3590
3591         /*
3592          * Do we shadow a long mode page table? If so we need to
3593          * write-protect the guests page table root.
3594          */
3595         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3596                 hpa_t root = vcpu->arch.mmu->root_hpa;
3597
3598                 MMU_WARN_ON(VALID_PAGE(root));
3599
3600                 spin_lock(&vcpu->kvm->mmu_lock);
3601                 if (make_mmu_pages_available(vcpu) < 0) {
3602                         spin_unlock(&vcpu->kvm->mmu_lock);
3603                         return -ENOSPC;
3604                 }
3605                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3606                                 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3607                 root = __pa(sp->spt);
3608                 ++sp->root_count;
3609                 spin_unlock(&vcpu->kvm->mmu_lock);
3610                 vcpu->arch.mmu->root_hpa = root;
3611                 return 0;
3612         }
3613
3614         /*
3615          * We shadow a 32 bit page table. This may be a legacy 2-level
3616          * or a PAE 3-level page table. In either case we need to be aware that
3617          * the shadow page table may be a PAE or a long mode page table.
3618          */
3619         pm_mask = PT_PRESENT_MASK;
3620         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3621                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3622
3623         for (i = 0; i < 4; ++i) {
3624                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3625
3626                 MMU_WARN_ON(VALID_PAGE(root));
3627                 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3628                         pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3629                         if (!(pdptr & PT_PRESENT_MASK)) {
3630                                 vcpu->arch.mmu->pae_root[i] = 0;
3631                                 continue;
3632                         }
3633                         root_gfn = pdptr >> PAGE_SHIFT;
3634                         if (mmu_check_root(vcpu, root_gfn))
3635                                 return 1;
3636                 }
3637                 spin_lock(&vcpu->kvm->mmu_lock);
3638                 if (make_mmu_pages_available(vcpu) < 0) {
3639                         spin_unlock(&vcpu->kvm->mmu_lock);
3640                         return -ENOSPC;
3641                 }
3642                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3643                                       0, ACC_ALL);
3644                 root = __pa(sp->spt);
3645                 ++sp->root_count;
3646                 spin_unlock(&vcpu->kvm->mmu_lock);
3647
3648                 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3649         }
3650         vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3651
3652         /*
3653          * If we shadow a 32 bit page table with a long mode page
3654          * table we enter this path.
3655          */
3656         if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3657                 if (vcpu->arch.mmu->lm_root == NULL) {
3658                         /*
3659                          * The additional page necessary for this is only
3660                          * allocated on demand.
3661                          */
3662
3663                         u64 *lm_root;
3664
3665                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3666                         if (lm_root == NULL)
3667                                 return 1;
3668
3669                         lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3670
3671                         vcpu->arch.mmu->lm_root = lm_root;
3672                 }
3673
3674                 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3675         }
3676
3677         return 0;
3678 }
3679
3680 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3681 {
3682         if (vcpu->arch.mmu->direct_map)
3683                 return mmu_alloc_direct_roots(vcpu);
3684         else
3685                 return mmu_alloc_shadow_roots(vcpu);
3686 }
3687
3688 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3689 {
3690         int i;
3691         struct kvm_mmu_page *sp;
3692
3693         if (vcpu->arch.mmu->direct_map)
3694                 return;
3695
3696         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3697                 return;
3698
3699         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3700
3701         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3702                 hpa_t root = vcpu->arch.mmu->root_hpa;
3703                 sp = page_header(root);
3704
3705                 /*
3706                  * Even if another CPU was marking the SP as unsync-ed
3707                  * simultaneously, any guest page table changes are not
3708                  * guaranteed to be visible anyway until this VCPU issues a TLB
3709                  * flush strictly after those changes are made. We only need to
3710                  * ensure that the other CPU sets these flags before any actual
3711                  * changes to the page tables are made. The comments in
3712                  * mmu_need_write_protect() describe what could go wrong if this
3713                  * requirement isn't satisfied.
3714                  */
3715                 if (!smp_load_acquire(&sp->unsync) &&
3716                     !smp_load_acquire(&sp->unsync_children))
3717                         return;
3718
3719                 spin_lock(&vcpu->kvm->mmu_lock);
3720                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3721
3722                 mmu_sync_children(vcpu, sp);
3723
3724                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3725                 spin_unlock(&vcpu->kvm->mmu_lock);
3726                 return;
3727         }
3728
3729         spin_lock(&vcpu->kvm->mmu_lock);
3730         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3731
3732         for (i = 0; i < 4; ++i) {
3733                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3734
3735                 if (root && VALID_PAGE(root)) {
3736                         root &= PT64_BASE_ADDR_MASK;
3737                         sp = page_header(root);
3738                         mmu_sync_children(vcpu, sp);
3739                 }
3740         }
3741
3742         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3743         spin_unlock(&vcpu->kvm->mmu_lock);
3744 }
3745 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3746
3747 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3748                                   u32 access, struct x86_exception *exception)
3749 {
3750         if (exception)
3751                 exception->error_code = 0;
3752         return vaddr;
3753 }
3754
3755 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3756                                          u32 access,
3757                                          struct x86_exception *exception)
3758 {
3759         if (exception)
3760                 exception->error_code = 0;
3761         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3762 }
3763
3764 static bool
3765 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3766 {
3767         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3768
3769         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3770                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3771 }
3772
3773 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3774 {
3775         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3776 }
3777
3778 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3779 {
3780         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3781 }
3782
3783 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3784 {
3785         /*
3786          * A nested guest cannot use the MMIO cache if it is using nested
3787          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3788          */
3789         if (mmu_is_nested(vcpu))
3790                 return false;
3791
3792         if (direct)
3793                 return vcpu_match_mmio_gpa(vcpu, addr);
3794
3795         return vcpu_match_mmio_gva(vcpu, addr);
3796 }
3797
3798 /* return true if reserved bit is detected on spte. */
3799 static bool
3800 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3801 {
3802         struct kvm_shadow_walk_iterator iterator;
3803         u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3804         int root, leaf;
3805         bool reserved = false;
3806
3807         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3808                 goto exit;
3809
3810         walk_shadow_page_lockless_begin(vcpu);
3811
3812         for (shadow_walk_init(&iterator, vcpu, addr),
3813                  leaf = root = iterator.level;
3814              shadow_walk_okay(&iterator);
3815              __shadow_walk_next(&iterator, spte)) {
3816                 spte = mmu_spte_get_lockless(iterator.sptep);
3817
3818                 sptes[leaf - 1] = spte;
3819                 leaf--;
3820
3821                 if (!is_shadow_present_pte(spte))
3822                         break;
3823
3824                 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3825                                                     iterator.level);
3826         }
3827
3828         walk_shadow_page_lockless_end(vcpu);
3829
3830         if (reserved) {
3831                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3832                        __func__, addr);
3833                 while (root > leaf) {
3834                         pr_err("------ spte 0x%llx level %d.\n",
3835                                sptes[root - 1], root);
3836                         root--;
3837                 }
3838         }
3839 exit:
3840         *sptep = spte;
3841         return reserved;
3842 }
3843
3844 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3845 {
3846         u64 spte;
3847         bool reserved;
3848
3849         if (mmio_info_in_cache(vcpu, addr, direct))
3850                 return RET_PF_EMULATE;
3851
3852         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3853         if (WARN_ON(reserved))
3854                 return -EINVAL;
3855
3856         if (is_mmio_spte(spte)) {
3857                 gfn_t gfn = get_mmio_spte_gfn(spte);
3858                 unsigned access = get_mmio_spte_access(spte);
3859
3860                 if (!check_mmio_spte(vcpu, spte))
3861                         return RET_PF_INVALID;
3862
3863                 if (direct)
3864                         addr = 0;
3865
3866                 trace_handle_mmio_page_fault(addr, gfn, access);
3867                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3868                 return RET_PF_EMULATE;
3869         }
3870
3871         /*
3872          * If the page table is zapped by other cpus, let CPU fault again on
3873          * the address.
3874          */
3875         return RET_PF_RETRY;
3876 }
3877
3878 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3879                                          u32 error_code, gfn_t gfn)
3880 {
3881         if (unlikely(error_code & PFERR_RSVD_MASK))
3882                 return false;
3883
3884         if (!(error_code & PFERR_PRESENT_MASK) ||
3885               !(error_code & PFERR_WRITE_MASK))
3886                 return false;
3887
3888         /*
3889          * guest is writing the page which is write tracked which can
3890          * not be fixed by page fault handler.
3891          */
3892         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3893                 return true;
3894
3895         return false;
3896 }
3897
3898 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3899 {
3900         struct kvm_shadow_walk_iterator iterator;
3901         u64 spte;
3902
3903         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3904                 return;
3905
3906         walk_shadow_page_lockless_begin(vcpu);
3907         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3908                 clear_sp_write_flooding_count(iterator.sptep);
3909                 if (!is_shadow_present_pte(spte))
3910                         break;
3911         }
3912         walk_shadow_page_lockless_end(vcpu);
3913 }
3914
3915 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3916                                 u32 error_code, bool prefault)
3917 {
3918         gfn_t gfn = gva >> PAGE_SHIFT;
3919         int r;
3920
3921         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3922
3923         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3924                 return RET_PF_EMULATE;
3925
3926         r = mmu_topup_memory_caches(vcpu);
3927         if (r)
3928                 return r;
3929
3930         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
3931
3932
3933         return nonpaging_map(vcpu, gva & PAGE_MASK,
3934                              error_code, gfn, prefault);
3935 }
3936
3937 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3938 {
3939         struct kvm_arch_async_pf arch;
3940
3941         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3942         arch.gfn = gfn;
3943         arch.direct_map = vcpu->arch.mmu->direct_map;
3944         arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3945
3946         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3947 }
3948
3949 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3950 {
3951         if (unlikely(!lapic_in_kernel(vcpu) ||
3952                      kvm_event_needs_reinjection(vcpu) ||
3953                      vcpu->arch.exception.pending))
3954                 return false;
3955
3956         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3957                 return false;
3958
3959         return kvm_x86_ops->interrupt_allowed(vcpu);
3960 }
3961
3962 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3963                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3964 {
3965         struct kvm_memory_slot *slot;
3966         bool async;
3967
3968         /*
3969          * Don't expose private memslots to L2.
3970          */
3971         if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3972                 *pfn = KVM_PFN_NOSLOT;
3973                 return false;
3974         }
3975
3976         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3977         async = false;
3978         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3979         if (!async)
3980                 return false; /* *pfn has correct page already */
3981
3982         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3983                 trace_kvm_try_async_get_page(gva, gfn);
3984                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3985                         trace_kvm_async_pf_doublefault(gva, gfn);
3986                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3987                         return true;
3988                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3989                         return true;
3990         }
3991
3992         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3993         return false;
3994 }
3995
3996 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3997                                 u64 fault_address, char *insn, int insn_len)
3998 {
3999         int r = 1;
4000
4001         vcpu->arch.l1tf_flush_l1d = true;
4002         switch (vcpu->arch.apf.host_apf_reason) {
4003         default:
4004                 trace_kvm_page_fault(fault_address, error_code);
4005
4006                 if (kvm_event_needs_reinjection(vcpu))
4007                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4008                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4009                                 insn_len);
4010                 break;
4011         case KVM_PV_REASON_PAGE_NOT_PRESENT:
4012                 vcpu->arch.apf.host_apf_reason = 0;
4013                 local_irq_disable();
4014                 kvm_async_pf_task_wait(fault_address, 0);
4015                 local_irq_enable();
4016                 break;
4017         case KVM_PV_REASON_PAGE_READY:
4018                 vcpu->arch.apf.host_apf_reason = 0;
4019                 local_irq_disable();
4020                 kvm_async_pf_task_wake(fault_address);
4021                 local_irq_enable();
4022                 break;
4023         }
4024         return r;
4025 }
4026 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4027
4028 static bool
4029 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4030 {
4031         int page_num = KVM_PAGES_PER_HPAGE(level);
4032
4033         gfn &= ~(page_num - 1);
4034
4035         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4036 }
4037
4038 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4039                           bool prefault)
4040 {
4041         kvm_pfn_t pfn;
4042         int r;
4043         int level;
4044         bool force_pt_level;
4045         gfn_t gfn = gpa >> PAGE_SHIFT;
4046         unsigned long mmu_seq;
4047         int write = error_code & PFERR_WRITE_MASK;
4048         bool map_writable;
4049
4050         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4051
4052         if (page_fault_handle_page_track(vcpu, error_code, gfn))
4053                 return RET_PF_EMULATE;
4054
4055         r = mmu_topup_memory_caches(vcpu);
4056         if (r)
4057                 return r;
4058
4059         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4060                                                            PT_DIRECTORY_LEVEL);
4061         level = mapping_level(vcpu, gfn, &force_pt_level);
4062         if (likely(!force_pt_level)) {
4063                 if (level > PT_DIRECTORY_LEVEL &&
4064                     !check_hugepage_cache_consistency(vcpu, gfn, level))
4065                         level = PT_DIRECTORY_LEVEL;
4066                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4067         }
4068
4069         if (fast_page_fault(vcpu, gpa, level, error_code))
4070                 return RET_PF_RETRY;
4071
4072         mmu_seq = vcpu->kvm->mmu_notifier_seq;
4073         smp_rmb();
4074
4075         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4076                 return RET_PF_RETRY;
4077
4078         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4079                 return r;
4080
4081         spin_lock(&vcpu->kvm->mmu_lock);
4082         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4083                 goto out_unlock;
4084         if (make_mmu_pages_available(vcpu) < 0)
4085                 goto out_unlock;
4086         if (likely(!force_pt_level))
4087                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4088         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4089         spin_unlock(&vcpu->kvm->mmu_lock);
4090
4091         return r;
4092
4093 out_unlock:
4094         spin_unlock(&vcpu->kvm->mmu_lock);
4095         kvm_release_pfn_clean(pfn);
4096         return RET_PF_RETRY;
4097 }
4098
4099 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4100                                    struct kvm_mmu *context)
4101 {
4102         context->page_fault = nonpaging_page_fault;
4103         context->gva_to_gpa = nonpaging_gva_to_gpa;
4104         context->sync_page = nonpaging_sync_page;
4105         context->invlpg = nonpaging_invlpg;
4106         context->update_pte = nonpaging_update_pte;
4107         context->root_level = 0;
4108         context->shadow_root_level = PT32E_ROOT_LEVEL;
4109         context->direct_map = true;
4110         context->nx = false;
4111 }
4112
4113 /*
4114  * Find out if a previously cached root matching the new CR3/role is available.
4115  * The current root is also inserted into the cache.
4116  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4117  * returned.
4118  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4119  * false is returned. This root should now be freed by the caller.
4120  */
4121 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4122                                   union kvm_mmu_page_role new_role)
4123 {
4124         uint i;
4125         struct kvm_mmu_root_info root;
4126         struct kvm_mmu *mmu = vcpu->arch.mmu;
4127
4128         root.cr3 = mmu->get_cr3(vcpu);
4129         root.hpa = mmu->root_hpa;
4130
4131         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4132                 swap(root, mmu->prev_roots[i]);
4133
4134                 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4135                     page_header(root.hpa) != NULL &&
4136                     new_role.word == page_header(root.hpa)->role.word)
4137                         break;
4138         }
4139
4140         mmu->root_hpa = root.hpa;
4141
4142         return i < KVM_MMU_NUM_PREV_ROOTS;
4143 }
4144
4145 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4146                             union kvm_mmu_page_role new_role,
4147                             bool skip_tlb_flush)
4148 {
4149         struct kvm_mmu *mmu = vcpu->arch.mmu;
4150
4151         /*
4152          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4153          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4154          * later if necessary.
4155          */
4156         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4157             mmu->root_level >= PT64_ROOT_4LEVEL) {
4158                 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4159                         return false;
4160
4161                 if (cached_root_available(vcpu, new_cr3, new_role)) {
4162                         /*
4163                          * It is possible that the cached previous root page is
4164                          * obsolete because of a change in the MMU
4165                          * generation number. However, that is accompanied by
4166                          * KVM_REQ_MMU_RELOAD, which will free the root that we
4167                          * have set here and allocate a new one.
4168                          */
4169
4170                         kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4171                         if (!skip_tlb_flush) {
4172                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4173                                 kvm_x86_ops->tlb_flush(vcpu, true);
4174                         }
4175
4176                         /*
4177                          * The last MMIO access's GVA and GPA are cached in the
4178                          * VCPU. When switching to a new CR3, that GVA->GPA
4179                          * mapping may no longer be valid. So clear any cached
4180                          * MMIO info even when we don't need to sync the shadow
4181                          * page tables.
4182                          */
4183                         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4184
4185                         __clear_sp_write_flooding_count(
4186                                 page_header(mmu->root_hpa));
4187
4188                         return true;
4189                 }
4190         }
4191
4192         return false;
4193 }
4194
4195 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4196                               union kvm_mmu_page_role new_role,
4197                               bool skip_tlb_flush)
4198 {
4199         if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4200                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4201                                    KVM_MMU_ROOT_CURRENT);
4202 }
4203
4204 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4205 {
4206         __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4207                           skip_tlb_flush);
4208 }
4209 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4210
4211 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4212 {
4213         return kvm_read_cr3(vcpu);
4214 }
4215
4216 static void inject_page_fault(struct kvm_vcpu *vcpu,
4217                               struct x86_exception *fault)
4218 {
4219         vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4220 }
4221
4222 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4223                            unsigned access, int *nr_present)
4224 {
4225         if (unlikely(is_mmio_spte(*sptep))) {
4226                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4227                         mmu_spte_clear_no_track(sptep);
4228                         return true;
4229                 }
4230
4231                 (*nr_present)++;
4232                 mark_mmio_spte(vcpu, sptep, gfn, access);
4233                 return true;
4234         }
4235
4236         return false;
4237 }
4238
4239 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4240                                 unsigned level, unsigned gpte)
4241 {
4242         /*
4243          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4244          * If it is clear, there are no large pages at this level, so clear
4245          * PT_PAGE_SIZE_MASK in gpte if that is the case.
4246          */
4247         gpte &= level - mmu->last_nonleaf_level;
4248
4249         /*
4250          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
4251          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4252          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4253          */
4254         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4255
4256         return gpte & PT_PAGE_SIZE_MASK;
4257 }
4258
4259 #define PTTYPE_EPT 18 /* arbitrary */
4260 #define PTTYPE PTTYPE_EPT
4261 #include "paging_tmpl.h"
4262 #undef PTTYPE
4263
4264 #define PTTYPE 64
4265 #include "paging_tmpl.h"
4266 #undef PTTYPE
4267
4268 #define PTTYPE 32
4269 #include "paging_tmpl.h"
4270 #undef PTTYPE
4271
4272 static void
4273 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4274                         struct rsvd_bits_validate *rsvd_check,
4275                         int maxphyaddr, int level, bool nx, bool gbpages,
4276                         bool pse, bool amd)
4277 {
4278         u64 exb_bit_rsvd = 0;
4279         u64 gbpages_bit_rsvd = 0;
4280         u64 nonleaf_bit8_rsvd = 0;
4281
4282         rsvd_check->bad_mt_xwr = 0;
4283
4284         if (!nx)
4285                 exb_bit_rsvd = rsvd_bits(63, 63);
4286         if (!gbpages)
4287                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4288
4289         /*
4290          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4291          * leaf entries) on AMD CPUs only.
4292          */
4293         if (amd)
4294                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4295
4296         switch (level) {
4297         case PT32_ROOT_LEVEL:
4298                 /* no rsvd bits for 2 level 4K page table entries */
4299                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4300                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4301                 rsvd_check->rsvd_bits_mask[1][0] =
4302                         rsvd_check->rsvd_bits_mask[0][0];
4303
4304                 if (!pse) {
4305                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4306                         break;
4307                 }
4308
4309                 if (is_cpuid_PSE36())
4310                         /* 36bits PSE 4MB page */
4311                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4312                 else
4313                         /* 32 bits PSE 4MB page */
4314                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4315                 break;
4316         case PT32E_ROOT_LEVEL:
4317                 rsvd_check->rsvd_bits_mask[0][2] =
4318                         rsvd_bits(maxphyaddr, 63) |
4319                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
4320                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4321                         rsvd_bits(maxphyaddr, 62);      /* PDE */
4322                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4323                         rsvd_bits(maxphyaddr, 62);      /* PTE */
4324                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4325                         rsvd_bits(maxphyaddr, 62) |
4326                         rsvd_bits(13, 20);              /* large page */
4327                 rsvd_check->rsvd_bits_mask[1][0] =
4328                         rsvd_check->rsvd_bits_mask[0][0];
4329                 break;
4330         case PT64_ROOT_5LEVEL:
4331                 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4332                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4333                         rsvd_bits(maxphyaddr, 51);
4334                 rsvd_check->rsvd_bits_mask[1][4] =
4335                         rsvd_check->rsvd_bits_mask[0][4];
4336         case PT64_ROOT_4LEVEL:
4337                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4338                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4339                         rsvd_bits(maxphyaddr, 51);
4340                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4341                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4342                         rsvd_bits(maxphyaddr, 51);
4343                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4344                         rsvd_bits(maxphyaddr, 51);
4345                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4346                         rsvd_bits(maxphyaddr, 51);
4347                 rsvd_check->rsvd_bits_mask[1][3] =
4348                         rsvd_check->rsvd_bits_mask[0][3];
4349                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4350                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4351                         rsvd_bits(13, 29);
4352                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4353                         rsvd_bits(maxphyaddr, 51) |
4354                         rsvd_bits(13, 20);              /* large page */
4355                 rsvd_check->rsvd_bits_mask[1][0] =
4356                         rsvd_check->rsvd_bits_mask[0][0];
4357                 break;
4358         }
4359 }
4360
4361 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4362                                   struct kvm_mmu *context)
4363 {
4364         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4365                                 cpuid_maxphyaddr(vcpu), context->root_level,
4366                                 context->nx,
4367                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4368                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4369 }
4370
4371 static void
4372 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4373                             int maxphyaddr, bool execonly)
4374 {
4375         u64 bad_mt_xwr;
4376
4377         rsvd_check->rsvd_bits_mask[0][4] =
4378                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4379         rsvd_check->rsvd_bits_mask[0][3] =
4380                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4381         rsvd_check->rsvd_bits_mask[0][2] =
4382                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4383         rsvd_check->rsvd_bits_mask[0][1] =
4384                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4385         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4386
4387         /* large page */
4388         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4389         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4390         rsvd_check->rsvd_bits_mask[1][2] =
4391                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4392         rsvd_check->rsvd_bits_mask[1][1] =
4393                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4394         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4395
4396         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4397         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4398         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4399         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4400         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4401         if (!execonly) {
4402                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4403                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4404         }
4405         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4406 }
4407
4408 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4409                 struct kvm_mmu *context, bool execonly)
4410 {
4411         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4412                                     cpuid_maxphyaddr(vcpu), execonly);
4413 }
4414
4415 /*
4416  * the page table on host is the shadow page table for the page
4417  * table in guest or amd nested guest, its mmu features completely
4418  * follow the features in guest.
4419  */
4420 void
4421 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4422 {
4423         bool uses_nx = context->nx ||
4424                 context->mmu_role.base.smep_andnot_wp;
4425         struct rsvd_bits_validate *shadow_zero_check;
4426         int i;
4427
4428         /*
4429          * Passing "true" to the last argument is okay; it adds a check
4430          * on bit 8 of the SPTEs which KVM doesn't use anyway.
4431          */
4432         shadow_zero_check = &context->shadow_zero_check;
4433         __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4434                                 boot_cpu_data.x86_phys_bits,
4435                                 context->shadow_root_level, uses_nx,
4436                                 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4437                                 is_pse(vcpu), true);
4438
4439         if (!shadow_me_mask)
4440                 return;
4441
4442         for (i = context->shadow_root_level; --i >= 0;) {
4443                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4444                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4445         }
4446
4447 }
4448 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4449
4450 static inline bool boot_cpu_is_amd(void)
4451 {
4452         WARN_ON_ONCE(!tdp_enabled);
4453         return shadow_x_mask == 0;
4454 }
4455
4456 /*
4457  * the direct page table on host, use as much mmu features as
4458  * possible, however, kvm currently does not do execution-protection.
4459  */
4460 static void
4461 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4462                                 struct kvm_mmu *context)
4463 {
4464         struct rsvd_bits_validate *shadow_zero_check;
4465         int i;
4466
4467         shadow_zero_check = &context->shadow_zero_check;
4468
4469         if (boot_cpu_is_amd())
4470                 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4471                                         boot_cpu_data.x86_phys_bits,
4472                                         context->shadow_root_level, false,
4473                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4474                                         true, true);
4475         else
4476                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4477                                             boot_cpu_data.x86_phys_bits,
4478                                             false);
4479
4480         if (!shadow_me_mask)
4481                 return;
4482
4483         for (i = context->shadow_root_level; --i >= 0;) {
4484                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4485                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4486         }
4487 }
4488
4489 /*
4490  * as the comments in reset_shadow_zero_bits_mask() except it
4491  * is the shadow page table for intel nested guest.
4492  */
4493 static void
4494 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4495                                 struct kvm_mmu *context, bool execonly)
4496 {
4497         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4498                                     boot_cpu_data.x86_phys_bits, execonly);
4499 }
4500
4501 #define BYTE_MASK(access) \
4502         ((1 & (access) ? 2 : 0) | \
4503          (2 & (access) ? 4 : 0) | \
4504          (3 & (access) ? 8 : 0) | \
4505          (4 & (access) ? 16 : 0) | \
4506          (5 & (access) ? 32 : 0) | \
4507          (6 & (access) ? 64 : 0) | \
4508          (7 & (access) ? 128 : 0))
4509
4510
4511 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4512                                       struct kvm_mmu *mmu, bool ept)
4513 {
4514         unsigned byte;
4515
4516         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4517         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4518         const u8 u = BYTE_MASK(ACC_USER_MASK);
4519
4520         bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4521         bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4522         bool cr0_wp = is_write_protection(vcpu);
4523
4524         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4525                 unsigned pfec = byte << 1;
4526
4527                 /*
4528                  * Each "*f" variable has a 1 bit for each UWX value
4529                  * that causes a fault with the given PFEC.
4530                  */
4531
4532                 /* Faults from writes to non-writable pages */
4533                 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4534                 /* Faults from user mode accesses to supervisor pages */
4535                 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4536                 /* Faults from fetches of non-executable pages*/
4537                 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4538                 /* Faults from kernel mode fetches of user pages */
4539                 u8 smepf = 0;
4540                 /* Faults from kernel mode accesses of user pages */
4541                 u8 smapf = 0;
4542
4543                 if (!ept) {
4544                         /* Faults from kernel mode accesses to user pages */
4545                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4546
4547                         /* Not really needed: !nx will cause pte.nx to fault */
4548                         if (!mmu->nx)
4549                                 ff = 0;
4550
4551                         /* Allow supervisor writes if !cr0.wp */
4552                         if (!cr0_wp)
4553                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4554
4555                         /* Disallow supervisor fetches of user code if cr4.smep */
4556                         if (cr4_smep)
4557                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4558
4559                         /*
4560                          * SMAP:kernel-mode data accesses from user-mode
4561                          * mappings should fault. A fault is considered
4562                          * as a SMAP violation if all of the following
4563                          * conditions are true:
4564                          *   - X86_CR4_SMAP is set in CR4
4565                          *   - A user page is accessed
4566                          *   - The access is not a fetch
4567                          *   - Page fault in kernel mode
4568                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4569                          *
4570                          * Here, we cover the first three conditions.
4571                          * The fourth is computed dynamically in permission_fault();
4572                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4573                          * *not* subject to SMAP restrictions.
4574                          */
4575                         if (cr4_smap)
4576                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4577                 }
4578
4579                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4580         }
4581 }
4582
4583 /*
4584 * PKU is an additional mechanism by which the paging controls access to
4585 * user-mode addresses based on the value in the PKRU register.  Protection
4586 * key violations are reported through a bit in the page fault error code.
4587 * Unlike other bits of the error code, the PK bit is not known at the
4588 * call site of e.g. gva_to_gpa; it must be computed directly in
4589 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4590 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4591 *
4592 * In particular the following conditions come from the error code, the
4593 * page tables and the machine state:
4594 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4595 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4596 * - PK is always zero if U=0 in the page tables
4597 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4598 *
4599 * The PKRU bitmask caches the result of these four conditions.  The error
4600 * code (minus the P bit) and the page table's U bit form an index into the
4601 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4602 * with the two bits of the PKRU register corresponding to the protection key.
4603 * For the first three conditions above the bits will be 00, thus masking
4604 * away both AD and WD.  For all reads or if the last condition holds, WD
4605 * only will be masked away.
4606 */
4607 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4608                                 bool ept)
4609 {
4610         unsigned bit;
4611         bool wp;
4612
4613         if (ept) {
4614                 mmu->pkru_mask = 0;
4615                 return;
4616         }
4617
4618         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4619         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4620                 mmu->pkru_mask = 0;
4621                 return;
4622         }
4623
4624         wp = is_write_protection(vcpu);
4625
4626         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4627                 unsigned pfec, pkey_bits;
4628                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4629
4630                 pfec = bit << 1;
4631                 ff = pfec & PFERR_FETCH_MASK;
4632                 uf = pfec & PFERR_USER_MASK;
4633                 wf = pfec & PFERR_WRITE_MASK;
4634
4635                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4636                 pte_user = pfec & PFERR_RSVD_MASK;
4637
4638                 /*
4639                  * Only need to check the access which is not an
4640                  * instruction fetch and is to a user page.
4641                  */
4642                 check_pkey = (!ff && pte_user);
4643                 /*
4644                  * write access is controlled by PKRU if it is a
4645                  * user access or CR0.WP = 1.
4646                  */
4647                 check_write = check_pkey && wf && (uf || wp);
4648
4649                 /* PKRU.AD stops both read and write access. */
4650                 pkey_bits = !!check_pkey;
4651                 /* PKRU.WD stops write access. */
4652                 pkey_bits |= (!!check_write) << 1;
4653
4654                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4655         }
4656 }
4657
4658 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4659 {
4660         unsigned root_level = mmu->root_level;
4661
4662         mmu->last_nonleaf_level = root_level;
4663         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4664                 mmu->last_nonleaf_level++;
4665 }
4666
4667 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4668                                          struct kvm_mmu *context,
4669                                          int level)
4670 {
4671         context->nx = is_nx(vcpu);
4672         context->root_level = level;
4673
4674         reset_rsvds_bits_mask(vcpu, context);
4675         update_permission_bitmask(vcpu, context, false);
4676         update_pkru_bitmask(vcpu, context, false);
4677         update_last_nonleaf_level(vcpu, context);
4678
4679         MMU_WARN_ON(!is_pae(vcpu));
4680         context->page_fault = paging64_page_fault;
4681         context->gva_to_gpa = paging64_gva_to_gpa;
4682         context->sync_page = paging64_sync_page;
4683         context->invlpg = paging64_invlpg;
4684         context->update_pte = paging64_update_pte;
4685         context->shadow_root_level = level;
4686         context->direct_map = false;
4687 }
4688
4689 static void paging64_init_context(struct kvm_vcpu *vcpu,
4690                                   struct kvm_mmu *context)
4691 {
4692         int root_level = is_la57_mode(vcpu) ?
4693                          PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4694
4695         paging64_init_context_common(vcpu, context, root_level);
4696 }
4697
4698 static void paging32_init_context(struct kvm_vcpu *vcpu,
4699                                   struct kvm_mmu *context)
4700 {
4701         context->nx = false;
4702         context->root_level = PT32_ROOT_LEVEL;
4703
4704         reset_rsvds_bits_mask(vcpu, context);
4705         update_permission_bitmask(vcpu, context, false);
4706         update_pkru_bitmask(vcpu, context, false);
4707         update_last_nonleaf_level(vcpu, context);
4708
4709         context->page_fault = paging32_page_fault;
4710         context->gva_to_gpa = paging32_gva_to_gpa;
4711         context->sync_page = paging32_sync_page;
4712         context->invlpg = paging32_invlpg;
4713         context->update_pte = paging32_update_pte;
4714         context->shadow_root_level = PT32E_ROOT_LEVEL;
4715         context->direct_map = false;
4716 }
4717
4718 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4719                                    struct kvm_mmu *context)
4720 {
4721         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4722 }
4723
4724 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4725 {
4726         union kvm_mmu_extended_role ext = {0};
4727
4728         ext.cr0_pg = !!is_paging(vcpu);
4729         ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4730         ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4731         ext.cr4_pse = !!is_pse(vcpu);
4732         ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4733         ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4734
4735         ext.valid = 1;
4736
4737         return ext;
4738 }
4739
4740 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4741                                                    bool base_only)
4742 {
4743         union kvm_mmu_role role = {0};
4744
4745         role.base.access = ACC_ALL;
4746         role.base.nxe = !!is_nx(vcpu);
4747         role.base.cr4_pae = !!is_pae(vcpu);
4748         role.base.cr0_wp = is_write_protection(vcpu);
4749         role.base.smm = is_smm(vcpu);
4750         role.base.guest_mode = is_guest_mode(vcpu);
4751
4752         if (base_only)
4753                 return role;
4754
4755         role.ext = kvm_calc_mmu_role_ext(vcpu);
4756
4757         return role;
4758 }
4759
4760 static union kvm_mmu_role
4761 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4762 {
4763         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4764
4765         role.base.ad_disabled = (shadow_accessed_mask == 0);
4766         role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4767         role.base.direct = true;
4768
4769         return role;
4770 }
4771
4772 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4773 {
4774         struct kvm_mmu *context = vcpu->arch.mmu;
4775         union kvm_mmu_role new_role =
4776                 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4777
4778         new_role.base.word &= mmu_base_role_mask.word;
4779         if (new_role.as_u64 == context->mmu_role.as_u64)
4780                 return;
4781
4782         context->mmu_role.as_u64 = new_role.as_u64;
4783         context->page_fault = tdp_page_fault;
4784         context->sync_page = nonpaging_sync_page;
4785         context->invlpg = nonpaging_invlpg;
4786         context->update_pte = nonpaging_update_pte;
4787         context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4788         context->direct_map = true;
4789         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4790         context->get_cr3 = get_cr3;
4791         context->get_pdptr = kvm_pdptr_read;
4792         context->inject_page_fault = kvm_inject_page_fault;
4793
4794         if (!is_paging(vcpu)) {
4795                 context->nx = false;
4796                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4797                 context->root_level = 0;
4798         } else if (is_long_mode(vcpu)) {
4799                 context->nx = is_nx(vcpu);
4800                 context->root_level = is_la57_mode(vcpu) ?
4801                                 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4802                 reset_rsvds_bits_mask(vcpu, context);
4803                 context->gva_to_gpa = paging64_gva_to_gpa;
4804         } else if (is_pae(vcpu)) {
4805                 context->nx = is_nx(vcpu);
4806                 context->root_level = PT32E_ROOT_LEVEL;
4807                 reset_rsvds_bits_mask(vcpu, context);
4808                 context->gva_to_gpa = paging64_gva_to_gpa;
4809         } else {
4810                 context->nx = false;
4811                 context->root_level = PT32_ROOT_LEVEL;
4812                 reset_rsvds_bits_mask(vcpu, context);
4813                 context->gva_to_gpa = paging32_gva_to_gpa;
4814         }
4815
4816         update_permission_bitmask(vcpu, context, false);
4817         update_pkru_bitmask(vcpu, context, false);
4818         update_last_nonleaf_level(vcpu, context);
4819         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4820 }
4821
4822 static union kvm_mmu_role
4823 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4824 {
4825         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4826
4827         role.base.smep_andnot_wp = role.ext.cr4_smep &&
4828                 !is_write_protection(vcpu);
4829         role.base.smap_andnot_wp = role.ext.cr4_smap &&
4830                 !is_write_protection(vcpu);
4831         role.base.direct = !is_paging(vcpu);
4832
4833         if (!is_long_mode(vcpu))
4834                 role.base.level = PT32E_ROOT_LEVEL;
4835         else if (is_la57_mode(vcpu))
4836                 role.base.level = PT64_ROOT_5LEVEL;
4837         else
4838                 role.base.level = PT64_ROOT_4LEVEL;
4839
4840         return role;
4841 }
4842
4843 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4844 {
4845         struct kvm_mmu *context = vcpu->arch.mmu;
4846         union kvm_mmu_role new_role =
4847                 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4848
4849         new_role.base.word &= mmu_base_role_mask.word;
4850         if (new_role.as_u64 == context->mmu_role.as_u64)
4851                 return;
4852
4853         if (!is_paging(vcpu))
4854                 nonpaging_init_context(vcpu, context);
4855         else if (is_long_mode(vcpu))
4856                 paging64_init_context(vcpu, context);
4857         else if (is_pae(vcpu))
4858                 paging32E_init_context(vcpu, context);
4859         else
4860                 paging32_init_context(vcpu, context);
4861
4862         context->mmu_role.as_u64 = new_role.as_u64;
4863         reset_shadow_zero_bits_mask(vcpu, context);
4864 }
4865 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4866
4867 static union kvm_mmu_role
4868 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4869                                    bool execonly)
4870 {
4871         union kvm_mmu_role role;
4872
4873         /* Base role is inherited from root_mmu */
4874         role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4875         role.ext = kvm_calc_mmu_role_ext(vcpu);
4876
4877         role.base.level = PT64_ROOT_4LEVEL;
4878         role.base.direct = false;
4879         role.base.ad_disabled = !accessed_dirty;
4880         role.base.guest_mode = true;
4881         role.base.access = ACC_ALL;
4882
4883         role.ext.execonly = execonly;
4884
4885         return role;
4886 }
4887
4888 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4889                              bool accessed_dirty, gpa_t new_eptp)
4890 {
4891         struct kvm_mmu *context = vcpu->arch.mmu;
4892         union kvm_mmu_role new_role =
4893                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4894                                                    execonly);
4895
4896         __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4897
4898         new_role.base.word &= mmu_base_role_mask.word;
4899         if (new_role.as_u64 == context->mmu_role.as_u64)
4900                 return;
4901
4902         context->shadow_root_level = PT64_ROOT_4LEVEL;
4903
4904         context->nx = true;
4905         context->ept_ad = accessed_dirty;
4906         context->page_fault = ept_page_fault;
4907         context->gva_to_gpa = ept_gva_to_gpa;
4908         context->sync_page = ept_sync_page;
4909         context->invlpg = ept_invlpg;
4910         context->update_pte = ept_update_pte;
4911         context->root_level = PT64_ROOT_4LEVEL;
4912         context->direct_map = false;
4913         context->mmu_role.as_u64 = new_role.as_u64;
4914
4915         update_permission_bitmask(vcpu, context, true);
4916         update_pkru_bitmask(vcpu, context, true);
4917         update_last_nonleaf_level(vcpu, context);
4918         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4919         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4920 }
4921 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4922
4923 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4924 {
4925         struct kvm_mmu *context = vcpu->arch.mmu;
4926
4927         kvm_init_shadow_mmu(vcpu);
4928         context->set_cr3           = kvm_x86_ops->set_cr3;
4929         context->get_cr3           = get_cr3;
4930         context->get_pdptr         = kvm_pdptr_read;
4931         context->inject_page_fault = kvm_inject_page_fault;
4932 }
4933
4934 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4935 {
4936         union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4937         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4938
4939         new_role.base.word &= mmu_base_role_mask.word;
4940         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4941                 return;
4942
4943         g_context->mmu_role.as_u64 = new_role.as_u64;
4944         g_context->get_cr3           = get_cr3;
4945         g_context->get_pdptr         = kvm_pdptr_read;
4946         g_context->inject_page_fault = kvm_inject_page_fault;
4947
4948         /*
4949          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4950          * L1's nested page tables (e.g. EPT12). The nested translation
4951          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4952          * L2's page tables as the first level of translation and L1's
4953          * nested page tables as the second level of translation. Basically
4954          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4955          */
4956         if (!is_paging(vcpu)) {
4957                 g_context->nx = false;
4958                 g_context->root_level = 0;
4959                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4960         } else if (is_long_mode(vcpu)) {
4961                 g_context->nx = is_nx(vcpu);
4962                 g_context->root_level = is_la57_mode(vcpu) ?
4963                                         PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4964                 reset_rsvds_bits_mask(vcpu, g_context);
4965                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4966         } else if (is_pae(vcpu)) {
4967                 g_context->nx = is_nx(vcpu);
4968                 g_context->root_level = PT32E_ROOT_LEVEL;
4969                 reset_rsvds_bits_mask(vcpu, g_context);
4970                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4971         } else {
4972                 g_context->nx = false;
4973                 g_context->root_level = PT32_ROOT_LEVEL;
4974                 reset_rsvds_bits_mask(vcpu, g_context);
4975                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4976         }
4977
4978         update_permission_bitmask(vcpu, g_context, false);
4979         update_pkru_bitmask(vcpu, g_context, false);
4980         update_last_nonleaf_level(vcpu, g_context);
4981 }
4982
4983 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4984 {
4985         if (reset_roots) {
4986                 uint i;
4987
4988                 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4989
4990                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4991                         vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4992         }
4993
4994         if (mmu_is_nested(vcpu))
4995                 init_kvm_nested_mmu(vcpu);
4996         else if (tdp_enabled)
4997                 init_kvm_tdp_mmu(vcpu);
4998         else
4999                 init_kvm_softmmu(vcpu);
5000 }
5001 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5002
5003 static union kvm_mmu_page_role
5004 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5005 {
5006         union kvm_mmu_role role;
5007
5008         if (tdp_enabled)
5009                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5010         else
5011                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5012
5013         return role.base;
5014 }
5015
5016 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5017 {
5018         kvm_mmu_unload(vcpu);
5019         kvm_init_mmu(vcpu, true);
5020 }
5021 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5022
5023 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5024 {
5025         int r;
5026
5027         r = mmu_topup_memory_caches(vcpu);
5028         if (r)
5029                 goto out;
5030         r = mmu_alloc_roots(vcpu);
5031         kvm_mmu_sync_roots(vcpu);
5032         if (r)
5033                 goto out;
5034         kvm_mmu_load_cr3(vcpu);
5035         kvm_x86_ops->tlb_flush(vcpu, true);
5036 out:
5037         return r;
5038 }
5039 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5040
5041 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5042 {
5043         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5044         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5045         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5046         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5047 }
5048 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5049
5050 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5051                                   struct kvm_mmu_page *sp, u64 *spte,
5052                                   const void *new)
5053 {
5054         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5055                 ++vcpu->kvm->stat.mmu_pde_zapped;
5056                 return;
5057         }
5058
5059         ++vcpu->kvm->stat.mmu_pte_updated;
5060         vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5061 }
5062
5063 static bool need_remote_flush(u64 old, u64 new)
5064 {
5065         if (!is_shadow_present_pte(old))
5066                 return false;
5067         if (!is_shadow_present_pte(new))
5068                 return true;
5069         if ((old ^ new) & PT64_BASE_ADDR_MASK)
5070                 return true;
5071         old ^= shadow_nx_mask;
5072         new ^= shadow_nx_mask;
5073         return (old & ~new & PT64_PERM_MASK) != 0;
5074 }
5075
5076 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5077                                     const u8 *new, int *bytes)
5078 {
5079         u64 gentry;
5080         int r;
5081
5082         /*
5083          * Assume that the pte write on a page table of the same type
5084          * as the current vcpu paging mode since we update the sptes only
5085          * when they have the same mode.
5086          */
5087         if (is_pae(vcpu) && *bytes == 4) {
5088                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5089                 *gpa &= ~(gpa_t)7;
5090                 *bytes = 8;
5091                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
5092                 if (r)
5093                         gentry = 0;
5094                 new = (const u8 *)&gentry;
5095         }
5096
5097         switch (*bytes) {
5098         case 4:
5099                 gentry = *(const u32 *)new;
5100                 break;
5101         case 8:
5102                 gentry = *(const u64 *)new;
5103                 break;
5104         default:
5105                 gentry = 0;
5106                 break;
5107         }
5108
5109         return gentry;
5110 }
5111
5112 /*
5113  * If we're seeing too many writes to a page, it may no longer be a page table,
5114  * or we may be forking, in which case it is better to unmap the page.
5115  */
5116 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5117 {
5118         /*
5119          * Skip write-flooding detected for the sp whose level is 1, because
5120          * it can become unsync, then the guest page is not write-protected.
5121          */
5122         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5123                 return false;
5124
5125         atomic_inc(&sp->write_flooding_count);
5126         return atomic_read(&sp->write_flooding_count) >= 3;
5127 }
5128
5129 /*
5130  * Misaligned accesses are too much trouble to fix up; also, they usually
5131  * indicate a page is not used as a page table.
5132  */
5133 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5134                                     int bytes)
5135 {
5136         unsigned offset, pte_size, misaligned;
5137
5138         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5139                  gpa, bytes, sp->role.word);
5140
5141         offset = offset_in_page(gpa);
5142         pte_size = sp->role.cr4_pae ? 8 : 4;
5143
5144         /*
5145          * Sometimes, the OS only writes the last one bytes to update status
5146          * bits, for example, in linux, andb instruction is used in clear_bit().
5147          */
5148         if (!(offset & (pte_size - 1)) && bytes == 1)
5149                 return false;
5150
5151         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5152         misaligned |= bytes < 4;
5153
5154         return misaligned;
5155 }
5156
5157 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5158 {
5159         unsigned page_offset, quadrant;
5160         u64 *spte;
5161         int level;
5162
5163         page_offset = offset_in_page(gpa);
5164         level = sp->role.level;
5165         *nspte = 1;
5166         if (!sp->role.cr4_pae) {
5167                 page_offset <<= 1;      /* 32->64 */
5168                 /*
5169                  * A 32-bit pde maps 4MB while the shadow pdes map
5170                  * only 2MB.  So we need to double the offset again
5171                  * and zap two pdes instead of one.
5172                  */
5173                 if (level == PT32_ROOT_LEVEL) {
5174                         page_offset &= ~7; /* kill rounding error */
5175                         page_offset <<= 1;
5176                         *nspte = 2;
5177                 }
5178                 quadrant = page_offset >> PAGE_SHIFT;
5179                 page_offset &= ~PAGE_MASK;
5180                 if (quadrant != sp->role.quadrant)
5181                         return NULL;
5182         }
5183
5184         spte = &sp->spt[page_offset / sizeof(*spte)];
5185         return spte;
5186 }
5187
5188 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5189                               const u8 *new, int bytes,
5190                               struct kvm_page_track_notifier_node *node)
5191 {
5192         gfn_t gfn = gpa >> PAGE_SHIFT;
5193         struct kvm_mmu_page *sp;
5194         LIST_HEAD(invalid_list);
5195         u64 entry, gentry, *spte;
5196         int npte;
5197         bool remote_flush, local_flush;
5198
5199         /*
5200          * If we don't have indirect shadow pages, it means no page is
5201          * write-protected, so we can exit simply.
5202          */
5203         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5204                 return;
5205
5206         remote_flush = local_flush = false;
5207
5208         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5209
5210         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
5211
5212         /*
5213          * No need to care whether allocation memory is successful
5214          * or not since pte prefetch is skiped if it does not have
5215          * enough objects in the cache.
5216          */
5217         mmu_topup_memory_caches(vcpu);
5218
5219         spin_lock(&vcpu->kvm->mmu_lock);
5220         ++vcpu->kvm->stat.mmu_pte_write;
5221         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5222
5223         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5224                 if (detect_write_misaligned(sp, gpa, bytes) ||
5225                       detect_write_flooding(sp)) {
5226                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5227                         ++vcpu->kvm->stat.mmu_flooded;
5228                         continue;
5229                 }
5230
5231                 spte = get_written_sptes(sp, gpa, &npte);
5232                 if (!spte)
5233                         continue;
5234
5235                 local_flush = true;
5236                 while (npte--) {
5237                         u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5238
5239                         entry = *spte;
5240                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
5241                         if (gentry &&
5242                               !((sp->role.word ^ base_role)
5243                               & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5244                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5245                         if (need_remote_flush(entry, *spte))
5246                                 remote_flush = true;
5247                         ++spte;
5248                 }
5249         }
5250         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5251         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5252         spin_unlock(&vcpu->kvm->mmu_lock);
5253 }
5254
5255 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5256 {
5257         gpa_t gpa;
5258         int r;
5259
5260         if (vcpu->arch.mmu->direct_map)
5261                 return 0;
5262
5263         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5264
5265         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5266
5267         return r;
5268 }
5269 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5270
5271 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5272 {
5273         LIST_HEAD(invalid_list);
5274
5275         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5276                 return 0;
5277
5278         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5279                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5280                         break;
5281
5282                 ++vcpu->kvm->stat.mmu_recycled;
5283         }
5284         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5285
5286         if (!kvm_mmu_available_pages(vcpu->kvm))
5287                 return -ENOSPC;
5288         return 0;
5289 }
5290
5291 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5292                        void *insn, int insn_len)
5293 {
5294         int r, emulation_type = 0;
5295         enum emulation_result er;
5296         bool direct = vcpu->arch.mmu->direct_map;
5297
5298         /* With shadow page tables, fault_address contains a GVA or nGPA.  */
5299         if (vcpu->arch.mmu->direct_map) {
5300                 vcpu->arch.gpa_available = true;
5301                 vcpu->arch.gpa_val = cr2;
5302         }
5303
5304         r = RET_PF_INVALID;
5305         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5306                 r = handle_mmio_page_fault(vcpu, cr2, direct);
5307                 if (r == RET_PF_EMULATE)
5308                         goto emulate;
5309         }
5310
5311         if (r == RET_PF_INVALID) {
5312                 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5313                                                lower_32_bits(error_code),
5314                                                false);
5315                 WARN_ON(r == RET_PF_INVALID);
5316         }
5317
5318         if (r == RET_PF_RETRY)
5319                 return 1;
5320         if (r < 0)
5321                 return r;
5322
5323         /*
5324          * Before emulating the instruction, check if the error code
5325          * was due to a RO violation while translating the guest page.
5326          * This can occur when using nested virtualization with nested
5327          * paging in both guests. If true, we simply unprotect the page
5328          * and resume the guest.
5329          */
5330         if (vcpu->arch.mmu->direct_map &&
5331             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5332                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5333                 return 1;
5334         }
5335
5336         /*
5337          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5338          * optimistically try to just unprotect the page and let the processor
5339          * re-execute the instruction that caused the page fault.  Do not allow
5340          * retrying MMIO emulation, as it's not only pointless but could also
5341          * cause us to enter an infinite loop because the processor will keep
5342          * faulting on the non-existent MMIO address.  Retrying an instruction
5343          * from a nested guest is also pointless and dangerous as we are only
5344          * explicitly shadowing L1's page tables, i.e. unprotecting something
5345          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5346          */
5347         if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5348                 emulation_type = EMULTYPE_ALLOW_RETRY;
5349 emulate:
5350         /*
5351          * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5352          * This can happen if a guest gets a page-fault on data access but the HW
5353          * table walker is not able to read the instruction page (e.g instruction
5354          * page is not present in memory). In those cases we simply restart the
5355          * guest.
5356          */
5357         if (unlikely(insn && !insn_len))
5358                 return 1;
5359
5360         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5361
5362         switch (er) {
5363         case EMULATE_DONE:
5364                 return 1;
5365         case EMULATE_USER_EXIT:
5366                 ++vcpu->stat.mmio_exits;
5367                 /* fall through */
5368         case EMULATE_FAIL:
5369                 return 0;
5370         default:
5371                 BUG();
5372         }
5373 }
5374 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5375
5376 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5377 {
5378         struct kvm_mmu *mmu = vcpu->arch.mmu;
5379         int i;
5380
5381         /* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
5382         if (is_noncanonical_address(gva, vcpu))
5383                 return;
5384
5385         mmu->invlpg(vcpu, gva, mmu->root_hpa);
5386
5387         /*
5388          * INVLPG is required to invalidate any global mappings for the VA,
5389          * irrespective of PCID. Since it would take us roughly similar amount
5390          * of work to determine whether any of the prev_root mappings of the VA
5391          * is marked global, or to just sync it blindly, so we might as well
5392          * just always sync it.
5393          *
5394          * Mappings not reachable via the current cr3 or the prev_roots will be
5395          * synced when switching to that cr3, so nothing needs to be done here
5396          * for them.
5397          */
5398         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5399                 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5400                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5401
5402         kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5403         ++vcpu->stat.invlpg;
5404 }
5405 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5406
5407 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5408 {
5409         struct kvm_mmu *mmu = vcpu->arch.mmu;
5410         bool tlb_flush = false;
5411         uint i;
5412
5413         if (pcid == kvm_get_active_pcid(vcpu)) {
5414                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5415                 tlb_flush = true;
5416         }
5417
5418         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5419                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5420                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5421                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5422                         tlb_flush = true;
5423                 }
5424         }
5425
5426         if (tlb_flush)
5427                 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5428
5429         ++vcpu->stat.invlpg;
5430
5431         /*
5432          * Mappings not reachable via the current cr3 or the prev_roots will be
5433          * synced when switching to that cr3, so nothing needs to be done here
5434          * for them.
5435          */
5436 }
5437 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5438
5439 void kvm_enable_tdp(void)
5440 {
5441         tdp_enabled = true;
5442 }
5443 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5444
5445 void kvm_disable_tdp(void)
5446 {
5447         tdp_enabled = false;
5448 }
5449 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5450
5451 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5452 {
5453         free_page((unsigned long)vcpu->arch.mmu->pae_root);
5454         free_page((unsigned long)vcpu->arch.mmu->lm_root);
5455 }
5456
5457 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5458 {
5459         struct page *page;
5460         int i;
5461
5462         if (tdp_enabled)
5463                 return 0;
5464
5465         /*
5466          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5467          * Therefore we need to allocate shadow page tables in the first
5468          * 4GB of memory, which happens to fit the DMA32 zone.
5469          */
5470         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5471         if (!page)
5472                 return -ENOMEM;
5473
5474         vcpu->arch.mmu->pae_root = page_address(page);
5475         for (i = 0; i < 4; ++i)
5476                 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5477
5478         return 0;
5479 }
5480
5481 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5482 {
5483         uint i;
5484
5485         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5486         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5487
5488         vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5489         vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5490         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5491                 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5492
5493         vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5494         vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5495         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5496                 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5497
5498         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5499         return alloc_mmu_pages(vcpu);
5500 }
5501
5502 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5503                         struct kvm_memory_slot *slot,
5504                         struct kvm_page_track_notifier_node *node)
5505 {
5506         kvm_mmu_invalidate_zap_all_pages(kvm);
5507 }
5508
5509 void kvm_mmu_init_vm(struct kvm *kvm)
5510 {
5511         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5512
5513         node->track_write = kvm_mmu_pte_write;
5514         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5515         kvm_page_track_register_notifier(kvm, node);
5516 }
5517
5518 void kvm_mmu_uninit_vm(struct kvm *kvm)
5519 {
5520         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5521
5522         kvm_page_track_unregister_notifier(kvm, node);
5523 }
5524
5525 /* The return value indicates if tlb flush on all vcpus is needed. */
5526 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5527
5528 /* The caller should hold mmu-lock before calling this function. */
5529 static __always_inline bool
5530 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5531                         slot_level_handler fn, int start_level, int end_level,
5532                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5533 {
5534         struct slot_rmap_walk_iterator iterator;
5535         bool flush = false;
5536
5537         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5538                         end_gfn, &iterator) {
5539                 if (iterator.rmap)
5540                         flush |= fn(kvm, iterator.rmap);
5541
5542                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5543                         if (flush && lock_flush_tlb) {
5544                                 kvm_flush_remote_tlbs(kvm);
5545                                 flush = false;
5546                         }
5547                         cond_resched_lock(&kvm->mmu_lock);
5548                 }
5549         }
5550
5551         if (flush && lock_flush_tlb) {
5552                 kvm_flush_remote_tlbs(kvm);
5553                 flush = false;
5554         }
5555
5556         return flush;
5557 }
5558
5559 static __always_inline bool
5560 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5561                   slot_level_handler fn, int start_level, int end_level,
5562                   bool lock_flush_tlb)
5563 {
5564         return slot_handle_level_range(kvm, memslot, fn, start_level,
5565                         end_level, memslot->base_gfn,
5566                         memslot->base_gfn + memslot->npages - 1,
5567                         lock_flush_tlb);
5568 }
5569
5570 static __always_inline bool
5571 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5572                       slot_level_handler fn, bool lock_flush_tlb)
5573 {
5574         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5575                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5576 }
5577
5578 static __always_inline bool
5579 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5580                         slot_level_handler fn, bool lock_flush_tlb)
5581 {
5582         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5583                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5584 }
5585
5586 static __always_inline bool
5587 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5588                  slot_level_handler fn, bool lock_flush_tlb)
5589 {
5590         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5591                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5592 }
5593
5594 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5595 {
5596         struct kvm_memslots *slots;
5597         struct kvm_memory_slot *memslot;
5598         int i;
5599
5600         spin_lock(&kvm->mmu_lock);
5601         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5602                 slots = __kvm_memslots(kvm, i);
5603                 kvm_for_each_memslot(memslot, slots) {
5604                         gfn_t start, end;
5605
5606                         start = max(gfn_start, memslot->base_gfn);
5607                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
5608                         if (start >= end)
5609                                 continue;
5610
5611                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5612                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5613                                                 start, end - 1, true);
5614                 }
5615         }
5616
5617         spin_unlock(&kvm->mmu_lock);
5618 }
5619
5620 static bool slot_rmap_write_protect(struct kvm *kvm,
5621                                     struct kvm_rmap_head *rmap_head)
5622 {
5623         return __rmap_write_protect(kvm, rmap_head, false);
5624 }
5625
5626 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5627                                       struct kvm_memory_slot *memslot)
5628 {
5629         bool flush;
5630
5631         spin_lock(&kvm->mmu_lock);
5632         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5633                                       false);
5634         spin_unlock(&kvm->mmu_lock);
5635
5636         /*
5637          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5638          * which do tlb flush out of mmu-lock should be serialized by
5639          * kvm->slots_lock otherwise tlb flush would be missed.
5640          */
5641         lockdep_assert_held(&kvm->slots_lock);
5642
5643         /*
5644          * We can flush all the TLBs out of the mmu lock without TLB
5645          * corruption since we just change the spte from writable to
5646          * readonly so that we only need to care the case of changing
5647          * spte from present to present (changing the spte from present
5648          * to nonpresent will flush all the TLBs immediately), in other
5649          * words, the only case we care is mmu_spte_update() where we
5650          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5651          * instead of PT_WRITABLE_MASK, that means it does not depend
5652          * on PT_WRITABLE_MASK anymore.
5653          */
5654         if (flush)
5655                 kvm_flush_remote_tlbs(kvm);
5656 }
5657
5658 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5659                                          struct kvm_rmap_head *rmap_head)
5660 {
5661         u64 *sptep;
5662         struct rmap_iterator iter;
5663         int need_tlb_flush = 0;
5664         kvm_pfn_t pfn;
5665         struct kvm_mmu_page *sp;
5666
5667 restart:
5668         for_each_rmap_spte(rmap_head, &iter, sptep) {
5669                 sp = page_header(__pa(sptep));
5670                 pfn = spte_to_pfn(*sptep);
5671
5672                 /*
5673                  * We cannot do huge page mapping for indirect shadow pages,
5674                  * which are found on the last rmap (level = 1) when not using
5675                  * tdp; such shadow pages are synced with the page table in
5676                  * the guest, and the guest page table is using 4K page size
5677                  * mapping if the indirect sp has level = 1.
5678                  */
5679                 if (sp->role.direct &&
5680                         !kvm_is_reserved_pfn(pfn) &&
5681                         PageTransCompoundMap(pfn_to_page(pfn))) {
5682                         pte_list_remove(rmap_head, sptep);
5683                         need_tlb_flush = 1;
5684                         goto restart;
5685                 }
5686         }
5687
5688         return need_tlb_flush;
5689 }
5690
5691 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5692                                    const struct kvm_memory_slot *memslot)
5693 {
5694         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5695         spin_lock(&kvm->mmu_lock);
5696         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5697                          kvm_mmu_zap_collapsible_spte, true);
5698         spin_unlock(&kvm->mmu_lock);
5699 }
5700
5701 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5702                                    struct kvm_memory_slot *memslot)
5703 {
5704         bool flush;
5705
5706         spin_lock(&kvm->mmu_lock);
5707         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5708         spin_unlock(&kvm->mmu_lock);
5709
5710         lockdep_assert_held(&kvm->slots_lock);
5711
5712         /*
5713          * It's also safe to flush TLBs out of mmu lock here as currently this
5714          * function is only used for dirty logging, in which case flushing TLB
5715          * out of mmu lock also guarantees no dirty pages will be lost in
5716          * dirty_bitmap.
5717          */
5718         if (flush)
5719                 kvm_flush_remote_tlbs(kvm);
5720 }
5721 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5722
5723 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5724                                         struct kvm_memory_slot *memslot)
5725 {
5726         bool flush;
5727
5728         spin_lock(&kvm->mmu_lock);
5729         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5730                                         false);
5731         spin_unlock(&kvm->mmu_lock);
5732
5733         /* see kvm_mmu_slot_remove_write_access */
5734         lockdep_assert_held(&kvm->slots_lock);
5735
5736         if (flush)
5737                 kvm_flush_remote_tlbs(kvm);
5738 }
5739 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5740
5741 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5742                             struct kvm_memory_slot *memslot)
5743 {
5744         bool flush;
5745
5746         spin_lock(&kvm->mmu_lock);
5747         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5748         spin_unlock(&kvm->mmu_lock);
5749
5750         lockdep_assert_held(&kvm->slots_lock);
5751
5752         /* see kvm_mmu_slot_leaf_clear_dirty */
5753         if (flush)
5754                 kvm_flush_remote_tlbs(kvm);
5755 }
5756 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5757
5758 #define BATCH_ZAP_PAGES 10
5759 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5760 {
5761         struct kvm_mmu_page *sp, *node;
5762         int batch = 0;
5763
5764 restart:
5765         list_for_each_entry_safe_reverse(sp, node,
5766               &kvm->arch.active_mmu_pages, link) {
5767                 int ret;
5768
5769                 /*
5770                  * No obsolete page exists before new created page since
5771                  * active_mmu_pages is the FIFO list.
5772                  */
5773                 if (!is_obsolete_sp(kvm, sp))
5774                         break;
5775
5776                 /*
5777                  * Since we are reversely walking the list and the invalid
5778                  * list will be moved to the head, skip the invalid page
5779                  * can help us to avoid the infinity list walking.
5780                  */
5781                 if (sp->role.invalid)
5782                         continue;
5783
5784                 /*
5785                  * Need not flush tlb since we only zap the sp with invalid
5786                  * generation number.
5787                  */
5788                 if (batch >= BATCH_ZAP_PAGES &&
5789                       cond_resched_lock(&kvm->mmu_lock)) {
5790                         batch = 0;
5791                         goto restart;
5792                 }
5793
5794                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5795                                 &kvm->arch.zapped_obsolete_pages);
5796                 batch += ret;
5797
5798                 if (ret)
5799                         goto restart;
5800         }
5801
5802         /*
5803          * Should flush tlb before free page tables since lockless-walking
5804          * may use the pages.
5805          */
5806         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5807 }
5808
5809 /*
5810  * Fast invalidate all shadow pages and use lock-break technique
5811  * to zap obsolete pages.
5812  *
5813  * It's required when memslot is being deleted or VM is being
5814  * destroyed, in these cases, we should ensure that KVM MMU does
5815  * not use any resource of the being-deleted slot or all slots
5816  * after calling the function.
5817  */
5818 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5819 {
5820         spin_lock(&kvm->mmu_lock);
5821         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5822         kvm->arch.mmu_valid_gen++;
5823
5824         /*
5825          * Notify all vcpus to reload its shadow page table
5826          * and flush TLB. Then all vcpus will switch to new
5827          * shadow page table with the new mmu_valid_gen.
5828          *
5829          * Note: we should do this under the protection of
5830          * mmu-lock, otherwise, vcpu would purge shadow page
5831          * but miss tlb flush.
5832          */
5833         kvm_reload_remote_mmus(kvm);
5834
5835         kvm_zap_obsolete_pages(kvm);
5836         spin_unlock(&kvm->mmu_lock);
5837 }
5838
5839 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5840 {
5841         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5842 }
5843
5844 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5845 {
5846         /*
5847          * The very rare case: if the generation-number is round,
5848          * zap all shadow pages.
5849          */
5850         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5851                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5852                 kvm_mmu_invalidate_zap_all_pages(kvm);
5853         }
5854 }
5855
5856 static unsigned long
5857 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5858 {
5859         struct kvm *kvm;
5860         int nr_to_scan = sc->nr_to_scan;
5861         unsigned long freed = 0;
5862
5863         spin_lock(&kvm_lock);
5864
5865         list_for_each_entry(kvm, &vm_list, vm_list) {
5866                 int idx;
5867                 LIST_HEAD(invalid_list);
5868
5869                 /*
5870                  * Never scan more than sc->nr_to_scan VM instances.
5871                  * Will not hit this condition practically since we do not try
5872                  * to shrink more than one VM and it is very unlikely to see
5873                  * !n_used_mmu_pages so many times.
5874                  */
5875                 if (!nr_to_scan--)
5876                         break;
5877                 /*
5878                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5879                  * here. We may skip a VM instance errorneosly, but we do not
5880                  * want to shrink a VM that only started to populate its MMU
5881                  * anyway.
5882                  */
5883                 if (!kvm->arch.n_used_mmu_pages &&
5884                       !kvm_has_zapped_obsolete_pages(kvm))
5885                         continue;
5886
5887                 idx = srcu_read_lock(&kvm->srcu);
5888                 spin_lock(&kvm->mmu_lock);
5889
5890                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5891                         kvm_mmu_commit_zap_page(kvm,
5892                               &kvm->arch.zapped_obsolete_pages);
5893                         goto unlock;
5894                 }
5895
5896                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5897                         freed++;
5898                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5899
5900 unlock:
5901                 spin_unlock(&kvm->mmu_lock);
5902                 srcu_read_unlock(&kvm->srcu, idx);
5903
5904                 /*
5905                  * unfair on small ones
5906                  * per-vm shrinkers cry out
5907                  * sadness comes quickly
5908                  */
5909                 list_move_tail(&kvm->vm_list, &vm_list);
5910                 break;
5911         }
5912
5913         spin_unlock(&kvm_lock);
5914         return freed;
5915 }
5916
5917 static unsigned long
5918 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5919 {
5920         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5921 }
5922
5923 static struct shrinker mmu_shrinker = {
5924         .count_objects = mmu_shrink_count,
5925         .scan_objects = mmu_shrink_scan,
5926         .seeks = DEFAULT_SEEKS * 10,
5927 };
5928
5929 static void mmu_destroy_caches(void)
5930 {
5931         kmem_cache_destroy(pte_list_desc_cache);
5932         kmem_cache_destroy(mmu_page_header_cache);
5933 }
5934
5935 int kvm_mmu_module_init(void)
5936 {
5937         int ret = -ENOMEM;
5938
5939         /*
5940          * MMU roles use union aliasing which is, generally speaking, an
5941          * undefined behavior. However, we supposedly know how compilers behave
5942          * and the current status quo is unlikely to change. Guardians below are
5943          * supposed to let us know if the assumption becomes false.
5944          */
5945         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5946         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5947         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5948
5949         kvm_mmu_reset_all_pte_masks();
5950
5951         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5952                                             sizeof(struct pte_list_desc),
5953                                             0, SLAB_ACCOUNT, NULL);
5954         if (!pte_list_desc_cache)
5955                 goto out;
5956
5957         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5958                                                   sizeof(struct kvm_mmu_page),
5959                                                   0, SLAB_ACCOUNT, NULL);
5960         if (!mmu_page_header_cache)
5961                 goto out;
5962
5963         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5964                 goto out;
5965
5966         ret = register_shrinker(&mmu_shrinker);
5967         if (ret)
5968                 goto out;
5969
5970         return 0;
5971
5972 out:
5973         mmu_destroy_caches();
5974         return ret;
5975 }
5976
5977 /*
5978  * Calculate mmu pages needed for kvm.
5979  */
5980 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5981 {
5982         unsigned int nr_mmu_pages;
5983         unsigned int  nr_pages = 0;
5984         struct kvm_memslots *slots;
5985         struct kvm_memory_slot *memslot;
5986         int i;
5987
5988         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5989                 slots = __kvm_memslots(kvm, i);
5990
5991                 kvm_for_each_memslot(memslot, slots)
5992                         nr_pages += memslot->npages;
5993         }
5994
5995         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5996         nr_mmu_pages = max(nr_mmu_pages,
5997                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5998
5999         return nr_mmu_pages;
6000 }
6001
6002 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6003 {
6004         kvm_mmu_unload(vcpu);
6005         free_mmu_pages(vcpu);
6006         mmu_free_memory_caches(vcpu);
6007 }
6008
6009 void kvm_mmu_module_exit(void)
6010 {
6011         mmu_destroy_caches();
6012         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6013         unregister_shrinker(&mmu_shrinker);
6014         mmu_audit_disable();
6015 }