OSDN Git Service

drm/amdgpu: Set DPM_FLAG_NEVER_SKIP when enabling PM-runtime
[uclinux-h8/linux.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25
26 #if PTTYPE == 64
27         #define pt_element_t u64
28         #define guest_walker guest_walker64
29         #define FNAME(name) paging##64_##name
30         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31         #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32         #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34         #define PT_LEVEL_BITS PT64_LEVEL_BITS
35         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37         #define PT_HAVE_ACCESSED_DIRTY(mmu) true
38         #ifdef CONFIG_X86_64
39         #define PT_MAX_FULL_LEVELS 4
40         #define CMPXCHG cmpxchg
41         #else
42         #define CMPXCHG cmpxchg64
43         #define PT_MAX_FULL_LEVELS 2
44         #endif
45 #elif PTTYPE == 32
46         #define pt_element_t u32
47         #define guest_walker guest_walker32
48         #define FNAME(name) paging##32_##name
49         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50         #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51         #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53         #define PT_LEVEL_BITS PT32_LEVEL_BITS
54         #define PT_MAX_FULL_LEVELS 2
55         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57         #define PT_HAVE_ACCESSED_DIRTY(mmu) true
58         #define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60         #define pt_element_t u64
61         #define guest_walker guest_walkerEPT
62         #define FNAME(name) ept_##name
63         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64         #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65         #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67         #define PT_LEVEL_BITS PT64_LEVEL_BITS
68         #define PT_GUEST_DIRTY_SHIFT 9
69         #define PT_GUEST_ACCESSED_SHIFT 8
70         #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71         #define CMPXCHG cmpxchg64
72         #define PT_MAX_FULL_LEVELS 4
73 #else
74         #error Invalid PTTYPE value
75 #endif
76
77 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82
83 /*
84  * The guest_walker structure emulates the behavior of the hardware page
85  * table walker.
86  */
87 struct guest_walker {
88         int level;
89         unsigned max_level;
90         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91         pt_element_t ptes[PT_MAX_FULL_LEVELS];
92         pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93         gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94         pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95         bool pte_writable[PT_MAX_FULL_LEVELS];
96         unsigned pt_access;
97         unsigned pte_access;
98         gfn_t gfn;
99         struct x86_exception fault;
100 };
101
102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104         return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106
107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108                                              unsigned gpte)
109 {
110         unsigned mask;
111
112         /* dirty bit is not supported, so no need to track it */
113         if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114                 return;
115
116         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118         mask = (unsigned)~ACC_WRITE_MASK;
119         /* Allow write access to dirty gptes */
120         mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121                 PT_WRITABLE_MASK;
122         *access &= mask;
123 }
124
125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128         return pte & PT_PRESENT_MASK;
129 #else
130         return pte & 7;
131 #endif
132 }
133
134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135                                pt_element_t __user *ptep_user, unsigned index,
136                                pt_element_t orig_pte, pt_element_t new_pte)
137 {
138         int npages;
139         pt_element_t ret;
140         pt_element_t *table;
141         struct page *page;
142
143         npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
144         /* Check if the user is doing something meaningless. */
145         if (unlikely(npages != 1))
146                 return -EFAULT;
147
148         table = kmap_atomic(page);
149         ret = CMPXCHG(&table[index], orig_pte, new_pte);
150         kunmap_atomic(table);
151
152         kvm_release_page_dirty(page);
153
154         return (ret != orig_pte);
155 }
156
157 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158                                   struct kvm_mmu_page *sp, u64 *spte,
159                                   u64 gpte)
160 {
161         if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
162                 goto no_present;
163
164         if (!FNAME(is_present_gpte)(gpte))
165                 goto no_present;
166
167         /* if accessed bit is not supported prefetch non accessed gpte */
168         if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
169             !(gpte & PT_GUEST_ACCESSED_MASK))
170                 goto no_present;
171
172         return false;
173
174 no_present:
175         drop_spte(vcpu->kvm, spte);
176         return true;
177 }
178
179 /*
180  * For PTTYPE_EPT, a page table can be executable but not readable
181  * on supported processors. Therefore, set_spte does not automatically
182  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
183  * to signify readability since it isn't used in the EPT case
184  */
185 static inline unsigned FNAME(gpte_access)(u64 gpte)
186 {
187         unsigned access;
188 #if PTTYPE == PTTYPE_EPT
189         access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
190                 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
191                 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
192 #else
193         BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
194         BUILD_BUG_ON(ACC_EXEC_MASK != 1);
195         access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
196         /* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
197         access ^= (gpte >> PT64_NX_SHIFT);
198 #endif
199
200         return access;
201 }
202
203 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
204                                              struct kvm_mmu *mmu,
205                                              struct guest_walker *walker,
206                                              int write_fault)
207 {
208         unsigned level, index;
209         pt_element_t pte, orig_pte;
210         pt_element_t __user *ptep_user;
211         gfn_t table_gfn;
212         int ret;
213
214         /* dirty/accessed bits are not supported, so no need to update them */
215         if (!PT_HAVE_ACCESSED_DIRTY(mmu))
216                 return 0;
217
218         for (level = walker->max_level; level >= walker->level; --level) {
219                 pte = orig_pte = walker->ptes[level - 1];
220                 table_gfn = walker->table_gfn[level - 1];
221                 ptep_user = walker->ptep_user[level - 1];
222                 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
223                 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
224                         trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
225                         pte |= PT_GUEST_ACCESSED_MASK;
226                 }
227                 if (level == walker->level && write_fault &&
228                                 !(pte & PT_GUEST_DIRTY_MASK)) {
229                         trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
230 #if PTTYPE == PTTYPE_EPT
231                         if (kvm_arch_write_log_dirty(vcpu))
232                                 return -EINVAL;
233 #endif
234                         pte |= PT_GUEST_DIRTY_MASK;
235                 }
236                 if (pte == orig_pte)
237                         continue;
238
239                 /*
240                  * If the slot is read-only, simply do not process the accessed
241                  * and dirty bits.  This is the correct thing to do if the slot
242                  * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243                  * are only supported if the accessed and dirty bits are already
244                  * set in the ROM (so that MMIO writes are never needed).
245                  *
246                  * Note that NPT does not allow this at all and faults, since
247                  * it always wants nested page table entries for the guest
248                  * page tables to be writable.  And EPT works but will simply
249                  * overwrite the read-only memory to set the accessed and dirty
250                  * bits.
251                  */
252                 if (unlikely(!walker->pte_writable[level - 1]))
253                         continue;
254
255                 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256                 if (ret)
257                         return ret;
258
259                 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
260                 walker->ptes[level - 1] = pte;
261         }
262         return 0;
263 }
264
265 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
266 {
267         unsigned pkeys = 0;
268 #if PTTYPE == 64
269         pte_t pte = {.pte = gpte};
270
271         pkeys = pte_flags_pkey(pte_flags(pte));
272 #endif
273         return pkeys;
274 }
275
276 /*
277  * Fetch a guest pte for a guest virtual address
278  */
279 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
280                                     struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
281                                     gva_t addr, u32 access)
282 {
283         int ret;
284         pt_element_t pte;
285         pt_element_t __user *uninitialized_var(ptep_user);
286         gfn_t table_gfn;
287         u64 pt_access, pte_access;
288         unsigned index, accessed_dirty, pte_pkey;
289         unsigned nested_access;
290         gpa_t pte_gpa;
291         bool have_ad;
292         int offset;
293         u64 walk_nx_mask = 0;
294         const int write_fault = access & PFERR_WRITE_MASK;
295         const int user_fault  = access & PFERR_USER_MASK;
296         const int fetch_fault = access & PFERR_FETCH_MASK;
297         u16 errcode = 0;
298         gpa_t real_gpa;
299         gfn_t gfn;
300
301         trace_kvm_mmu_pagetable_walk(addr, access);
302 retry_walk:
303         walker->level = mmu->root_level;
304         pte           = mmu->get_cr3(vcpu);
305         have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
306
307 #if PTTYPE == 64
308         walk_nx_mask = 1ULL << PT64_NX_SHIFT;
309         if (walker->level == PT32E_ROOT_LEVEL) {
310                 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
311                 trace_kvm_mmu_paging_element(pte, walker->level);
312                 if (!FNAME(is_present_gpte)(pte))
313                         goto error;
314                 --walker->level;
315         }
316 #endif
317         walker->max_level = walker->level;
318         ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
319
320         /*
321          * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
322          * by the MOV to CR instruction are treated as reads and do not cause the
323          * processor to set the dirty flag in any EPT paging-structure entry.
324          */
325         nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
326
327         pte_access = ~0;
328         ++walker->level;
329
330         do {
331                 gfn_t real_gfn;
332                 unsigned long host_addr;
333
334                 pt_access = pte_access;
335                 --walker->level;
336
337                 index = PT_INDEX(addr, walker->level);
338                 table_gfn = gpte_to_gfn(pte);
339                 offset    = index * sizeof(pt_element_t);
340                 pte_gpa   = gfn_to_gpa(table_gfn) + offset;
341
342                 BUG_ON(walker->level < 1);
343                 walker->table_gfn[walker->level - 1] = table_gfn;
344                 walker->pte_gpa[walker->level - 1] = pte_gpa;
345
346                 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
347                                               nested_access,
348                                               &walker->fault);
349
350                 /*
351                  * FIXME: This can happen if emulation (for of an INS/OUTS
352                  * instruction) triggers a nested page fault.  The exit
353                  * qualification / exit info field will incorrectly have
354                  * "guest page access" as the nested page fault's cause,
355                  * instead of "guest page structure access".  To fix this,
356                  * the x86_exception struct should be augmented with enough
357                  * information to fix the exit_qualification or exit_info_1
358                  * fields.
359                  */
360                 if (unlikely(real_gfn == UNMAPPED_GVA))
361                         return 0;
362
363                 real_gfn = gpa_to_gfn(real_gfn);
364
365                 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
366                                             &walker->pte_writable[walker->level - 1]);
367                 if (unlikely(kvm_is_error_hva(host_addr)))
368                         goto error;
369
370                 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
371                 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
372                         goto error;
373                 walker->ptep_user[walker->level - 1] = ptep_user;
374
375                 trace_kvm_mmu_paging_element(pte, walker->level);
376
377                 /*
378                  * Inverting the NX it lets us AND it like other
379                  * permission bits.
380                  */
381                 pte_access = pt_access & (pte ^ walk_nx_mask);
382
383                 if (unlikely(!FNAME(is_present_gpte)(pte)))
384                         goto error;
385
386                 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
387                         errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
388                         goto error;
389                 }
390
391                 walker->ptes[walker->level - 1] = pte;
392         } while (!is_last_gpte(mmu, walker->level, pte));
393
394         pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
395         accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
396
397         /* Convert to ACC_*_MASK flags for struct guest_walker.  */
398         walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
399         walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
400         errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
401         if (unlikely(errcode))
402                 goto error;
403
404         gfn = gpte_to_gfn_lvl(pte, walker->level);
405         gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
406
407         if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
408                 gfn += pse36_gfn_delta(pte);
409
410         real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
411         if (real_gpa == UNMAPPED_GVA)
412                 return 0;
413
414         walker->gfn = real_gpa >> PAGE_SHIFT;
415
416         if (!write_fault)
417                 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
418         else
419                 /*
420                  * On a write fault, fold the dirty bit into accessed_dirty.
421                  * For modes without A/D bits support accessed_dirty will be
422                  * always clear.
423                  */
424                 accessed_dirty &= pte >>
425                         (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
426
427         if (unlikely(!accessed_dirty)) {
428                 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
429                 if (unlikely(ret < 0))
430                         goto error;
431                 else if (ret)
432                         goto retry_walk;
433         }
434
435         pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
436                  __func__, (u64)pte, walker->pte_access, walker->pt_access);
437         return 1;
438
439 error:
440         errcode |= write_fault | user_fault;
441         if (fetch_fault && (mmu->nx ||
442                             kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
443                 errcode |= PFERR_FETCH_MASK;
444
445         walker->fault.vector = PF_VECTOR;
446         walker->fault.error_code_valid = true;
447         walker->fault.error_code = errcode;
448
449 #if PTTYPE == PTTYPE_EPT
450         /*
451          * Use PFERR_RSVD_MASK in error_code to to tell if EPT
452          * misconfiguration requires to be injected. The detection is
453          * done by is_rsvd_bits_set() above.
454          *
455          * We set up the value of exit_qualification to inject:
456          * [2:0] - Derive from the access bits. The exit_qualification might be
457          *         out of date if it is serving an EPT misconfiguration.
458          * [5:3] - Calculated by the page walk of the guest EPT page tables
459          * [7:8] - Derived from [7:8] of real exit_qualification
460          *
461          * The other bits are set to 0.
462          */
463         if (!(errcode & PFERR_RSVD_MASK)) {
464                 vcpu->arch.exit_qualification &= 0x180;
465                 if (write_fault)
466                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
467                 if (user_fault)
468                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
469                 if (fetch_fault)
470                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
471                 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
472         }
473 #endif
474         walker->fault.address = addr;
475         walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
476
477         trace_kvm_mmu_walker_error(walker->fault.error_code);
478         return 0;
479 }
480
481 static int FNAME(walk_addr)(struct guest_walker *walker,
482                             struct kvm_vcpu *vcpu, gva_t addr, u32 access)
483 {
484         return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
485                                         access);
486 }
487
488 #if PTTYPE != PTTYPE_EPT
489 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
490                                    struct kvm_vcpu *vcpu, gva_t addr,
491                                    u32 access)
492 {
493         return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
494                                         addr, access);
495 }
496 #endif
497
498 static bool
499 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
500                      u64 *spte, pt_element_t gpte, bool no_dirty_log)
501 {
502         unsigned pte_access;
503         gfn_t gfn;
504         kvm_pfn_t pfn;
505
506         if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
507                 return false;
508
509         pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
510
511         gfn = gpte_to_gfn(gpte);
512         pte_access = sp->role.access & FNAME(gpte_access)(gpte);
513         FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
514         pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
515                         no_dirty_log && (pte_access & ACC_WRITE_MASK));
516         if (is_error_pfn(pfn))
517                 return false;
518
519         /*
520          * we call mmu_set_spte() with host_writable = true because
521          * pte_prefetch_gfn_to_pfn always gets a writable pfn.
522          */
523         mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
524                      true, true);
525
526         return true;
527 }
528
529 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
530                               u64 *spte, const void *pte)
531 {
532         pt_element_t gpte = *(const pt_element_t *)pte;
533
534         FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
535 }
536
537 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
538                                 struct guest_walker *gw, int level)
539 {
540         pt_element_t curr_pte;
541         gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
542         u64 mask;
543         int r, index;
544
545         if (level == PT_PAGE_TABLE_LEVEL) {
546                 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
547                 base_gpa = pte_gpa & ~mask;
548                 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
549
550                 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
551                                 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
552                 curr_pte = gw->prefetch_ptes[index];
553         } else
554                 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
555                                   &curr_pte, sizeof(curr_pte));
556
557         return r || curr_pte != gw->ptes[level - 1];
558 }
559
560 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
561                                 u64 *sptep)
562 {
563         struct kvm_mmu_page *sp;
564         pt_element_t *gptep = gw->prefetch_ptes;
565         u64 *spte;
566         int i;
567
568         sp = page_header(__pa(sptep));
569
570         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
571                 return;
572
573         if (sp->role.direct)
574                 return __direct_pte_prefetch(vcpu, sp, sptep);
575
576         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
577         spte = sp->spt + i;
578
579         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
580                 if (spte == sptep)
581                         continue;
582
583                 if (is_shadow_present_pte(*spte))
584                         continue;
585
586                 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
587                         break;
588         }
589 }
590
591 /*
592  * Fetch a shadow pte for a specific level in the paging hierarchy.
593  * If the guest tries to write a write-protected page, we need to
594  * emulate this operation, return 1 to indicate this case.
595  */
596 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
597                          struct guest_walker *gw,
598                          int write_fault, int hlevel,
599                          kvm_pfn_t pfn, bool map_writable, bool prefault)
600 {
601         struct kvm_mmu_page *sp = NULL;
602         struct kvm_shadow_walk_iterator it;
603         unsigned direct_access, access = gw->pt_access;
604         int top_level, ret;
605
606         direct_access = gw->pte_access;
607
608         top_level = vcpu->arch.mmu->root_level;
609         if (top_level == PT32E_ROOT_LEVEL)
610                 top_level = PT32_ROOT_LEVEL;
611         /*
612          * Verify that the top-level gpte is still there.  Since the page
613          * is a root page, it is either write protected (and cannot be
614          * changed from now on) or it is invalid (in which case, we don't
615          * really care if it changes underneath us after this point).
616          */
617         if (FNAME(gpte_changed)(vcpu, gw, top_level))
618                 goto out_gpte_changed;
619
620         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
621                 goto out_gpte_changed;
622
623         for (shadow_walk_init(&it, vcpu, addr);
624              shadow_walk_okay(&it) && it.level > gw->level;
625              shadow_walk_next(&it)) {
626                 gfn_t table_gfn;
627
628                 clear_sp_write_flooding_count(it.sptep);
629                 drop_large_spte(vcpu, it.sptep);
630
631                 sp = NULL;
632                 if (!is_shadow_present_pte(*it.sptep)) {
633                         table_gfn = gw->table_gfn[it.level - 2];
634                         sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
635                                               false, access);
636                 }
637
638                 /*
639                  * Verify that the gpte in the page we've just write
640                  * protected is still there.
641                  */
642                 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
643                         goto out_gpte_changed;
644
645                 if (sp)
646                         link_shadow_page(vcpu, it.sptep, sp);
647         }
648
649         for (;
650              shadow_walk_okay(&it) && it.level > hlevel;
651              shadow_walk_next(&it)) {
652                 gfn_t direct_gfn;
653
654                 clear_sp_write_flooding_count(it.sptep);
655                 validate_direct_spte(vcpu, it.sptep, direct_access);
656
657                 drop_large_spte(vcpu, it.sptep);
658
659                 if (is_shadow_present_pte(*it.sptep))
660                         continue;
661
662                 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
663
664                 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
665                                       true, direct_access);
666                 link_shadow_page(vcpu, it.sptep, sp);
667         }
668
669         clear_sp_write_flooding_count(it.sptep);
670         ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
671                            it.level, gw->gfn, pfn, prefault, map_writable);
672         FNAME(pte_prefetch)(vcpu, gw, it.sptep);
673
674         return ret;
675
676 out_gpte_changed:
677         kvm_release_pfn_clean(pfn);
678         return RET_PF_RETRY;
679 }
680
681  /*
682  * To see whether the mapped gfn can write its page table in the current
683  * mapping.
684  *
685  * It is the helper function of FNAME(page_fault). When guest uses large page
686  * size to map the writable gfn which is used as current page table, we should
687  * force kvm to use small page size to map it because new shadow page will be
688  * created when kvm establishes shadow page table that stop kvm using large
689  * page size. Do it early can avoid unnecessary #PF and emulation.
690  *
691  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
692  * currently used as its page table.
693  *
694  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
695  * since the PDPT is always shadowed, that means, we can not use large page
696  * size to map the gfn which is used as PDPT.
697  */
698 static bool
699 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
700                               struct guest_walker *walker, int user_fault,
701                               bool *write_fault_to_shadow_pgtable)
702 {
703         int level;
704         gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
705         bool self_changed = false;
706
707         if (!(walker->pte_access & ACC_WRITE_MASK ||
708               (!is_write_protection(vcpu) && !user_fault)))
709                 return false;
710
711         for (level = walker->level; level <= walker->max_level; level++) {
712                 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
713
714                 self_changed |= !(gfn & mask);
715                 *write_fault_to_shadow_pgtable |= !gfn;
716         }
717
718         return self_changed;
719 }
720
721 /*
722  * Page fault handler.  There are several causes for a page fault:
723  *   - there is no shadow pte for the guest pte
724  *   - write access through a shadow pte marked read only so that we can set
725  *     the dirty bit
726  *   - write access to a shadow pte marked read only so we can update the page
727  *     dirty bitmap, when userspace requests it
728  *   - mmio access; in this case we will never install a present shadow pte
729  *   - normal guest page fault due to the guest pte marked not present, not
730  *     writable, or not executable
731  *
732  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
733  *           a negative value on error.
734  */
735 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
736                              bool prefault)
737 {
738         int write_fault = error_code & PFERR_WRITE_MASK;
739         int user_fault = error_code & PFERR_USER_MASK;
740         struct guest_walker walker;
741         int r;
742         kvm_pfn_t pfn;
743         int level = PT_PAGE_TABLE_LEVEL;
744         bool force_pt_level = false;
745         unsigned long mmu_seq;
746         bool map_writable, is_self_change_mapping;
747
748         pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
749
750         r = mmu_topup_memory_caches(vcpu);
751         if (r)
752                 return r;
753
754         /*
755          * If PFEC.RSVD is set, this is a shadow page fault.
756          * The bit needs to be cleared before walking guest page tables.
757          */
758         error_code &= ~PFERR_RSVD_MASK;
759
760         /*
761          * Look up the guest pte for the faulting address.
762          */
763         r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
764
765         /*
766          * The page is not mapped by the guest.  Let the guest handle it.
767          */
768         if (!r) {
769                 pgprintk("%s: guest page fault\n", __func__);
770                 if (!prefault)
771                         inject_page_fault(vcpu, &walker.fault);
772
773                 return RET_PF_RETRY;
774         }
775
776         if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
777                 shadow_page_table_clear_flood(vcpu, addr);
778                 return RET_PF_EMULATE;
779         }
780
781         vcpu->arch.write_fault_to_shadow_pgtable = false;
782
783         is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
784               &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
785
786         if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
787                 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
788                 if (likely(!force_pt_level)) {
789                         level = min(walker.level, level);
790                         walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
791                 }
792         } else
793                 force_pt_level = true;
794
795         mmu_seq = vcpu->kvm->mmu_notifier_seq;
796         smp_rmb();
797
798         if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
799                          &map_writable))
800                 return RET_PF_RETRY;
801
802         if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
803                 return r;
804
805         /*
806          * Do not change pte_access if the pfn is a mmio page, otherwise
807          * we will cache the incorrect access into mmio spte.
808          */
809         if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
810              !is_write_protection(vcpu) && !user_fault &&
811               !is_noslot_pfn(pfn)) {
812                 walker.pte_access |= ACC_WRITE_MASK;
813                 walker.pte_access &= ~ACC_USER_MASK;
814
815                 /*
816                  * If we converted a user page to a kernel page,
817                  * so that the kernel can write to it when cr0.wp=0,
818                  * then we should prevent the kernel from executing it
819                  * if SMEP is enabled.
820                  */
821                 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
822                         walker.pte_access &= ~ACC_EXEC_MASK;
823         }
824
825         spin_lock(&vcpu->kvm->mmu_lock);
826         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
827                 goto out_unlock;
828
829         kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
830         if (make_mmu_pages_available(vcpu) < 0)
831                 goto out_unlock;
832         if (!force_pt_level)
833                 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
834         r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
835                          level, pfn, map_writable, prefault);
836         ++vcpu->stat.pf_fixed;
837         kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
838         spin_unlock(&vcpu->kvm->mmu_lock);
839
840         return r;
841
842 out_unlock:
843         spin_unlock(&vcpu->kvm->mmu_lock);
844         kvm_release_pfn_clean(pfn);
845         return RET_PF_RETRY;
846 }
847
848 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
849 {
850         int offset = 0;
851
852         WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
853
854         if (PTTYPE == 32)
855                 offset = sp->role.quadrant << PT64_LEVEL_BITS;
856
857         return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
858 }
859
860 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
861 {
862         struct kvm_shadow_walk_iterator iterator;
863         struct kvm_mmu_page *sp;
864         int level;
865         u64 *sptep;
866
867         vcpu_clear_mmio_info(vcpu, gva);
868
869         /*
870          * No need to check return value here, rmap_can_add() can
871          * help us to skip pte prefetch later.
872          */
873         mmu_topup_memory_caches(vcpu);
874
875         if (!VALID_PAGE(root_hpa)) {
876                 WARN_ON(1);
877                 return;
878         }
879
880         spin_lock(&vcpu->kvm->mmu_lock);
881         for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
882                 level = iterator.level;
883                 sptep = iterator.sptep;
884
885                 sp = page_header(__pa(sptep));
886                 if (is_last_spte(*sptep, level)) {
887                         pt_element_t gpte;
888                         gpa_t pte_gpa;
889
890                         if (!sp->unsync)
891                                 break;
892
893                         pte_gpa = FNAME(get_level1_sp_gpa)(sp);
894                         pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
895
896                         if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
897                                 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
898                                         sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
899
900                         if (!rmap_can_add(vcpu))
901                                 break;
902
903                         if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
904                                                        sizeof(pt_element_t)))
905                                 break;
906
907                         FNAME(update_pte)(vcpu, sp, sptep, &gpte);
908                 }
909
910                 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
911                         break;
912         }
913         spin_unlock(&vcpu->kvm->mmu_lock);
914 }
915
916 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
917                                struct x86_exception *exception)
918 {
919         struct guest_walker walker;
920         gpa_t gpa = UNMAPPED_GVA;
921         int r;
922
923         r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
924
925         if (r) {
926                 gpa = gfn_to_gpa(walker.gfn);
927                 gpa |= vaddr & ~PAGE_MASK;
928         } else if (exception)
929                 *exception = walker.fault;
930
931         return gpa;
932 }
933
934 #if PTTYPE != PTTYPE_EPT
935 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
936                                       u32 access,
937                                       struct x86_exception *exception)
938 {
939         struct guest_walker walker;
940         gpa_t gpa = UNMAPPED_GVA;
941         int r;
942
943         r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
944
945         if (r) {
946                 gpa = gfn_to_gpa(walker.gfn);
947                 gpa |= vaddr & ~PAGE_MASK;
948         } else if (exception)
949                 *exception = walker.fault;
950
951         return gpa;
952 }
953 #endif
954
955 /*
956  * Using the cached information from sp->gfns is safe because:
957  * - The spte has a reference to the struct page, so the pfn for a given gfn
958  *   can't change unless all sptes pointing to it are nuked first.
959  *
960  * Note:
961  *   We should flush all tlbs if spte is dropped even though guest is
962  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
963  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
964  *   used by guest then tlbs are not flushed, so guest is allowed to access the
965  *   freed pages.
966  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
967  */
968 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
969 {
970         int i, nr_present = 0;
971         bool host_writable;
972         gpa_t first_pte_gpa;
973         int set_spte_ret = 0;
974
975         /* direct kvm_mmu_page can not be unsync. */
976         BUG_ON(sp->role.direct);
977
978         first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
979
980         for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
981                 unsigned pte_access;
982                 pt_element_t gpte;
983                 gpa_t pte_gpa;
984                 gfn_t gfn;
985
986                 if (!sp->spt[i])
987                         continue;
988
989                 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
990
991                 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
992                                                sizeof(pt_element_t)))
993                         return 0;
994
995                 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
996                         /*
997                          * Update spte before increasing tlbs_dirty to make
998                          * sure no tlb flush is lost after spte is zapped; see
999                          * the comments in kvm_flush_remote_tlbs().
1000                          */
1001                         smp_wmb();
1002                         vcpu->kvm->tlbs_dirty++;
1003                         continue;
1004                 }
1005
1006                 gfn = gpte_to_gfn(gpte);
1007                 pte_access = sp->role.access;
1008                 pte_access &= FNAME(gpte_access)(gpte);
1009                 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1010
1011                 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1012                       &nr_present))
1013                         continue;
1014
1015                 if (gfn != sp->gfns[i]) {
1016                         drop_spte(vcpu->kvm, &sp->spt[i]);
1017                         /*
1018                          * The same as above where we are doing
1019                          * prefetch_invalid_gpte().
1020                          */
1021                         smp_wmb();
1022                         vcpu->kvm->tlbs_dirty++;
1023                         continue;
1024                 }
1025
1026                 nr_present++;
1027
1028                 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1029
1030                 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1031                                          pte_access, PT_PAGE_TABLE_LEVEL,
1032                                          gfn, spte_to_pfn(sp->spt[i]),
1033                                          true, false, host_writable);
1034         }
1035
1036         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1037                 kvm_flush_remote_tlbs(vcpu->kvm);
1038
1039         return nr_present;
1040 }
1041
1042 #undef pt_element_t
1043 #undef guest_walker
1044 #undef FNAME
1045 #undef PT_BASE_ADDR_MASK
1046 #undef PT_INDEX
1047 #undef PT_LVL_ADDR_MASK
1048 #undef PT_LVL_OFFSET_MASK
1049 #undef PT_LEVEL_BITS
1050 #undef PT_MAX_FULL_LEVELS
1051 #undef gpte_to_gfn
1052 #undef gpte_to_gfn_lvl
1053 #undef CMPXCHG
1054 #undef PT_GUEST_ACCESSED_MASK
1055 #undef PT_GUEST_DIRTY_MASK
1056 #undef PT_GUEST_DIRTY_SHIFT
1057 #undef PT_GUEST_ACCESSED_SHIFT
1058 #undef PT_HAVE_ACCESSED_DIRTY