OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
97 {
98         struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
99         struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
100
101         kvm_pmu_deliver_pmi(vcpu);
102 }
103
104 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
105 {
106         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
107         bool skip_pmi = false;
108
109         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
110                 if (!in_pmi) {
111                         /*
112                          * TODO: KVM is currently _choosing_ to not generate records
113                          * for emulated instructions, avoiding BUFFER_OVF PMI when
114                          * there are no records. Strictly speaking, it should be done
115                          * as well in the right context to improve sampling accuracy.
116                          */
117                         skip_pmi = true;
118                 } else {
119                         /* Indicate PEBS overflow PMI to guest. */
120                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
121                                                       (unsigned long *)&pmu->global_status);
122                 }
123         } else {
124                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
125         }
126
127         if (!pmc->intr || skip_pmi)
128                 return;
129
130         /*
131          * Inject PMI. If vcpu was in a guest mode during NMI PMI
132          * can be ejected on a guest mode re-entry. Otherwise we can't
133          * be sure that vcpu wasn't executing hlt instruction at the
134          * time of vmexit and is not going to re-enter guest mode until
135          * woken up. So we should wake it, but this is impossible from
136          * NMI context. Do it from irq work instead.
137          */
138         if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
139                 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
140         else
141                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
142 }
143
144 static void kvm_perf_overflow(struct perf_event *perf_event,
145                               struct perf_sample_data *data,
146                               struct pt_regs *regs)
147 {
148         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
149
150         /*
151          * Ignore overflow events for counters that are scheduled to be
152          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
153          * handling of a related guest WRMSR.
154          */
155         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
156                 return;
157
158         __kvm_perf_overflow(pmc, true);
159
160         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
161 }
162
163 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
164 {
165         /*
166          * For some model specific pebs counters with special capabilities
167          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
168          * level to the maximum value (currently 3, backwards compatible)
169          * so that the perf subsystem would assign specific hardware counter
170          * with that capability for vPMC.
171          */
172         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
173             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
174                 return 3;
175
176         /*
177          * The non-zero precision level of guest event makes the ordinary
178          * guest event becomes a guest PEBS event and triggers the host
179          * PEBS PMI handler to determine whether the PEBS overflow PMI
180          * comes from the host counters or the guest.
181          */
182         return 1;
183 }
184
185 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
186                                  bool exclude_user, bool exclude_kernel,
187                                  bool intr)
188 {
189         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
190         struct perf_event *event;
191         struct perf_event_attr attr = {
192                 .type = type,
193                 .size = sizeof(attr),
194                 .pinned = true,
195                 .exclude_idle = true,
196                 .exclude_host = 1,
197                 .exclude_user = exclude_user,
198                 .exclude_kernel = exclude_kernel,
199                 .config = config,
200         };
201         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
202
203         attr.sample_period = get_sample_period(pmc, pmc->counter);
204
205         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
206             guest_cpuid_is_intel(pmc->vcpu)) {
207                 /*
208                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
209                  * period. Just clear the sample period so at least
210                  * allocating the counter doesn't fail.
211                  */
212                 attr.sample_period = 0;
213         }
214         if (pebs) {
215                 /*
216                  * For most PEBS hardware events, the difference in the software
217                  * precision levels of guest and host PEBS events will not affect
218                  * the accuracy of the PEBS profiling result, because the "event IP"
219                  * in the PEBS record is calibrated on the guest side.
220                  */
221                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
222         }
223
224         event = perf_event_create_kernel_counter(&attr, -1, current,
225                                                  kvm_perf_overflow, pmc);
226         if (IS_ERR(event)) {
227                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
228                             PTR_ERR(event), pmc->idx);
229                 return PTR_ERR(event);
230         }
231
232         pmc->perf_event = event;
233         pmc_to_pmu(pmc)->event_count++;
234         pmc->is_paused = false;
235         pmc->intr = intr || pebs;
236         return 0;
237 }
238
239 static void pmc_pause_counter(struct kvm_pmc *pmc)
240 {
241         u64 counter = pmc->counter;
242
243         if (!pmc->perf_event || pmc->is_paused)
244                 return;
245
246         /* update counter, reset event value to avoid redundant accumulation */
247         counter += perf_event_pause(pmc->perf_event, true);
248         pmc->counter = counter & pmc_bitmask(pmc);
249         pmc->is_paused = true;
250 }
251
252 static bool pmc_resume_counter(struct kvm_pmc *pmc)
253 {
254         if (!pmc->perf_event)
255                 return false;
256
257         /* recalibrate sample period and check if it's accepted by perf core */
258         if (is_sampling_event(pmc->perf_event) &&
259             perf_event_period(pmc->perf_event,
260                               get_sample_period(pmc, pmc->counter)))
261                 return false;
262
263         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
264             (!!pmc->perf_event->attr.precise_ip))
265                 return false;
266
267         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
268         perf_event_enable(pmc->perf_event);
269         pmc->is_paused = false;
270
271         return true;
272 }
273
274 static int filter_cmp(const void *pa, const void *pb, u64 mask)
275 {
276         u64 a = *(u64 *)pa & mask;
277         u64 b = *(u64 *)pb & mask;
278
279         return (a > b) - (a < b);
280 }
281
282
283 static int filter_sort_cmp(const void *pa, const void *pb)
284 {
285         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
286                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
287 }
288
289 /*
290  * For the event filter, searching is done on the 'includes' list and
291  * 'excludes' list separately rather than on the 'events' list (which
292  * has both).  As a result the exclude bit can be ignored.
293  */
294 static int filter_event_cmp(const void *pa, const void *pb)
295 {
296         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
297 }
298
299 static int find_filter_index(u64 *events, u64 nevents, u64 key)
300 {
301         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
302                           filter_event_cmp);
303
304         if (!fe)
305                 return -1;
306
307         return fe - events;
308 }
309
310 static bool is_filter_entry_match(u64 filter_event, u64 umask)
311 {
312         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
313         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
314
315         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
316                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
317                      ARCH_PERFMON_EVENTSEL_UMASK);
318
319         return (umask & mask) == match;
320 }
321
322 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
323 {
324         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
325         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
326         int i, index;
327
328         index = find_filter_index(events, nevents, event_select);
329         if (index < 0)
330                 return false;
331
332         /*
333          * Entries are sorted by the event select.  Walk the list in both
334          * directions to process all entries with the targeted event select.
335          */
336         for (i = index; i < nevents; i++) {
337                 if (filter_event_cmp(&events[i], &event_select))
338                         break;
339
340                 if (is_filter_entry_match(events[i], umask))
341                         return true;
342         }
343
344         for (i = index - 1; i >= 0; i--) {
345                 if (filter_event_cmp(&events[i], &event_select))
346                         break;
347
348                 if (is_filter_entry_match(events[i], umask))
349                         return true;
350         }
351
352         return false;
353 }
354
355 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
356                                 u64 eventsel)
357 {
358         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
359             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
360                 return f->action == KVM_PMU_EVENT_ALLOW;
361
362         return f->action == KVM_PMU_EVENT_DENY;
363 }
364
365 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
366                                    int idx)
367 {
368         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
369
370         if (filter->action == KVM_PMU_EVENT_DENY &&
371             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372                 return false;
373         if (filter->action == KVM_PMU_EVENT_ALLOW &&
374             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
375                 return false;
376
377         return true;
378 }
379
380 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
381 {
382         struct kvm_x86_pmu_event_filter *filter;
383         struct kvm *kvm = pmc->vcpu->kvm;
384
385         if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
386                 return false;
387
388         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
389         if (!filter)
390                 return true;
391
392         if (pmc_is_gp(pmc))
393                 return is_gp_event_allowed(filter, pmc->eventsel);
394
395         return is_fixed_event_allowed(filter, pmc->idx);
396 }
397
398 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
399 {
400         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
401                check_pmu_event_filter(pmc);
402 }
403
404 static void reprogram_counter(struct kvm_pmc *pmc)
405 {
406         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
407         u64 eventsel = pmc->eventsel;
408         u64 new_config = eventsel;
409         u8 fixed_ctr_ctrl;
410
411         pmc_pause_counter(pmc);
412
413         if (!pmc_event_is_allowed(pmc))
414                 goto reprogram_complete;
415
416         if (pmc->counter < pmc->prev_counter)
417                 __kvm_perf_overflow(pmc, false);
418
419         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
420                 printk_once("kvm pmu: pin control bit is ignored\n");
421
422         if (pmc_is_fixed(pmc)) {
423                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
424                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
425                 if (fixed_ctr_ctrl & 0x1)
426                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
427                 if (fixed_ctr_ctrl & 0x2)
428                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
429                 if (fixed_ctr_ctrl & 0x8)
430                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
431                 new_config = (u64)fixed_ctr_ctrl;
432         }
433
434         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
435                 goto reprogram_complete;
436
437         pmc_release_perf_event(pmc);
438
439         pmc->current_config = new_config;
440
441         /*
442          * If reprogramming fails, e.g. due to contention, leave the counter's
443          * regprogram bit set, i.e. opportunistically try again on the next PMU
444          * refresh.  Don't make a new request as doing so can stall the guest
445          * if reprogramming repeatedly fails.
446          */
447         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
448                                   (eventsel & pmu->raw_event_mask),
449                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
450                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
451                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
452                 return;
453
454 reprogram_complete:
455         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
456         pmc->prev_counter = 0;
457 }
458
459 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
460 {
461         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
462         int bit;
463
464         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
465                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
466
467                 if (unlikely(!pmc)) {
468                         clear_bit(bit, pmu->reprogram_pmi);
469                         continue;
470                 }
471
472                 reprogram_counter(pmc);
473         }
474
475         /*
476          * Unused perf_events are only released if the corresponding MSRs
477          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
478          * triggers KVM_REQ_PMU if cleanup is needed.
479          */
480         if (unlikely(pmu->need_cleanup))
481                 kvm_pmu_cleanup(vcpu);
482 }
483
484 /* check if idx is a valid index to access PMU */
485 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
486 {
487         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
488 }
489
490 bool is_vmware_backdoor_pmc(u32 pmc_idx)
491 {
492         switch (pmc_idx) {
493         case VMWARE_BACKDOOR_PMC_HOST_TSC:
494         case VMWARE_BACKDOOR_PMC_REAL_TIME:
495         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
496                 return true;
497         }
498         return false;
499 }
500
501 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
502 {
503         u64 ctr_val;
504
505         switch (idx) {
506         case VMWARE_BACKDOOR_PMC_HOST_TSC:
507                 ctr_val = rdtsc();
508                 break;
509         case VMWARE_BACKDOOR_PMC_REAL_TIME:
510                 ctr_val = ktime_get_boottime_ns();
511                 break;
512         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
513                 ctr_val = ktime_get_boottime_ns() +
514                         vcpu->kvm->arch.kvmclock_offset;
515                 break;
516         default:
517                 return 1;
518         }
519
520         *data = ctr_val;
521         return 0;
522 }
523
524 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
525 {
526         bool fast_mode = idx & (1u << 31);
527         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
528         struct kvm_pmc *pmc;
529         u64 mask = fast_mode ? ~0u : ~0ull;
530
531         if (!pmu->version)
532                 return 1;
533
534         if (is_vmware_backdoor_pmc(idx))
535                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
536
537         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
538         if (!pmc)
539                 return 1;
540
541         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
542             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
543             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
544                 return 1;
545
546         *data = pmc_read_counter(pmc) & mask;
547         return 0;
548 }
549
550 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
551 {
552         if (lapic_in_kernel(vcpu)) {
553                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
554                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
555         }
556 }
557
558 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
559 {
560         switch (msr) {
561         case MSR_CORE_PERF_GLOBAL_STATUS:
562         case MSR_CORE_PERF_GLOBAL_CTRL:
563         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
564                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
565         default:
566                 break;
567         }
568         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
569                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
570 }
571
572 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
573 {
574         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
575         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
576
577         if (pmc)
578                 __set_bit(pmc->idx, pmu->pmc_in_use);
579 }
580
581 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
582 {
583         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
584         u32 msr = msr_info->index;
585
586         switch (msr) {
587         case MSR_CORE_PERF_GLOBAL_STATUS:
588         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
589                 msr_info->data = pmu->global_status;
590                 break;
591         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
592         case MSR_CORE_PERF_GLOBAL_CTRL:
593                 msr_info->data = pmu->global_ctrl;
594                 break;
595         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
596         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
597                 msr_info->data = 0;
598                 break;
599         default:
600                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
601         }
602
603         return 0;
604 }
605
606 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
607 {
608         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
609         u32 msr = msr_info->index;
610         u64 data = msr_info->data;
611         u64 diff;
612
613         /*
614          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
615          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
616          */
617         switch (msr) {
618         case MSR_CORE_PERF_GLOBAL_STATUS:
619                 if (!msr_info->host_initiated)
620                         return 1; /* RO MSR */
621                 fallthrough;
622         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
623                 /* Per PPR, Read-only MSR. Writes are ignored. */
624                 if (!msr_info->host_initiated)
625                         break;
626
627                 if (data & pmu->global_status_mask)
628                         return 1;
629
630                 pmu->global_status = data;
631                 break;
632         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
633                 data &= ~pmu->global_ctrl_mask;
634                 fallthrough;
635         case MSR_CORE_PERF_GLOBAL_CTRL:
636                 if (!kvm_valid_perf_global_ctrl(pmu, data))
637                         return 1;
638
639                 if (pmu->global_ctrl != data) {
640                         diff = pmu->global_ctrl ^ data;
641                         pmu->global_ctrl = data;
642                         reprogram_counters(pmu, diff);
643                 }
644                 break;
645         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
646                 /*
647                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
648                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
649                  */
650                 if (data & pmu->global_status_mask)
651                         return 1;
652                 fallthrough;
653         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
654                 if (!msr_info->host_initiated)
655                         pmu->global_status &= ~data;
656                 break;
657         default:
658                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
659                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
660         }
661
662         return 0;
663 }
664
665 /* refresh PMU settings. This function generally is called when underlying
666  * settings are changed (such as changes of PMU CPUID by guest VMs), which
667  * should rarely happen.
668  */
669 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
670 {
671         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
672                 return;
673
674         bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
675         static_call(kvm_x86_pmu_refresh)(vcpu);
676 }
677
678 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
679 {
680         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
681
682         irq_work_sync(&pmu->irq_work);
683         static_call(kvm_x86_pmu_reset)(vcpu);
684 }
685
686 void kvm_pmu_init(struct kvm_vcpu *vcpu)
687 {
688         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
689
690         memset(pmu, 0, sizeof(*pmu));
691         static_call(kvm_x86_pmu_init)(vcpu);
692         init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
693         pmu->event_count = 0;
694         pmu->need_cleanup = false;
695         kvm_pmu_refresh(vcpu);
696 }
697
698 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
699 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
700 {
701         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
702         struct kvm_pmc *pmc = NULL;
703         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
704         int i;
705
706         pmu->need_cleanup = false;
707
708         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
709                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
710
711         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
712                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
713
714                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
715                         pmc_stop_counter(pmc);
716         }
717
718         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
719
720         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
721 }
722
723 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
724 {
725         kvm_pmu_reset(vcpu);
726 }
727
728 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
729 {
730         pmc->prev_counter = pmc->counter;
731         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
732         kvm_pmu_request_counter_reprogram(pmc);
733 }
734
735 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
736         unsigned int perf_hw_id)
737 {
738         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
739                 AMD64_RAW_EVENT_MASK_NB);
740 }
741
742 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
743 {
744         bool select_os, select_user;
745         u64 config;
746
747         if (pmc_is_gp(pmc)) {
748                 config = pmc->eventsel;
749                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
750                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
751         } else {
752                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
753                                           pmc->idx - INTEL_PMC_IDX_FIXED);
754                 select_os = config & 0x1;
755                 select_user = config & 0x2;
756         }
757
758         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
759 }
760
761 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
762 {
763         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
764         struct kvm_pmc *pmc;
765         int i;
766
767         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
768                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
769
770                 if (!pmc || !pmc_event_is_allowed(pmc))
771                         continue;
772
773                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
774                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
775                         kvm_pmu_incr_counter(pmc);
776         }
777 }
778 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
779
780 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
781 {
782         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
783                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
784                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
785                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
786         int i;
787
788         for (i = 0; i < filter->nevents; i++) {
789                 if (filter->events[i] & ~mask)
790                         return false;
791         }
792
793         return true;
794 }
795
796 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
797 {
798         int i, j;
799
800         for (i = 0, j = 0; i < filter->nevents; i++) {
801                 /*
802                  * Skip events that are impossible to match against a guest
803                  * event.  When filtering, only the event select + unit mask
804                  * of the guest event is used.  To maintain backwards
805                  * compatibility, impossible filters can't be rejected :-(
806                  */
807                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
808                                           ARCH_PERFMON_EVENTSEL_UMASK))
809                         continue;
810                 /*
811                  * Convert userspace events to a common in-kernel event so
812                  * only one code path is needed to support both events.  For
813                  * the in-kernel events use masked events because they are
814                  * flexible enough to handle both cases.  To convert to masked
815                  * events all that's needed is to add an "all ones" umask_mask,
816                  * (unmasked filter events don't support EXCLUDE).
817                  */
818                 filter->events[j++] = filter->events[i] |
819                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
820         }
821
822         filter->nevents = j;
823 }
824
825 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
826 {
827         int i;
828
829         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
830                 convert_to_masked_filter(filter);
831         else if (!is_masked_filter_valid(filter))
832                 return -EINVAL;
833
834         /*
835          * Sort entries by event select and includes vs. excludes so that all
836          * entries for a given event select can be processed efficiently during
837          * filtering.  The EXCLUDE flag uses a more significant bit than the
838          * event select, and so the sorted list is also effectively split into
839          * includes and excludes sub-lists.
840          */
841         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
842              filter_sort_cmp, NULL);
843
844         i = filter->nevents;
845         /* Find the first EXCLUDE event (only supported for masked events). */
846         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
847                 for (i = 0; i < filter->nevents; i++) {
848                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
849                                 break;
850                 }
851         }
852
853         filter->nr_includes = i;
854         filter->nr_excludes = filter->nevents - filter->nr_includes;
855         filter->includes = filter->events;
856         filter->excludes = filter->events + filter->nr_includes;
857
858         return 0;
859 }
860
861 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
862 {
863         struct kvm_pmu_event_filter __user *user_filter = argp;
864         struct kvm_x86_pmu_event_filter *filter;
865         struct kvm_pmu_event_filter tmp;
866         struct kvm_vcpu *vcpu;
867         unsigned long i;
868         size_t size;
869         int r;
870
871         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
872                 return -EFAULT;
873
874         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
875             tmp.action != KVM_PMU_EVENT_DENY)
876                 return -EINVAL;
877
878         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
879                 return -EINVAL;
880
881         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
882                 return -E2BIG;
883
884         size = struct_size(filter, events, tmp.nevents);
885         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
886         if (!filter)
887                 return -ENOMEM;
888
889         filter->action = tmp.action;
890         filter->nevents = tmp.nevents;
891         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
892         filter->flags = tmp.flags;
893
894         r = -EFAULT;
895         if (copy_from_user(filter->events, user_filter->events,
896                            sizeof(filter->events[0]) * filter->nevents))
897                 goto cleanup;
898
899         r = prepare_filter_lists(filter);
900         if (r)
901                 goto cleanup;
902
903         mutex_lock(&kvm->lock);
904         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
905                                      mutex_is_locked(&kvm->lock));
906         mutex_unlock(&kvm->lock);
907         synchronize_srcu_expedited(&kvm->srcu);
908
909         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
910                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
911
912         kvm_for_each_vcpu(i, vcpu, kvm)
913                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
914
915         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
916
917         r = 0;
918 cleanup:
919         kfree(filter);
920         return r;
921 }