OSDN Git Service

Merge tag 'perf-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36         /* Instruction-Accurate PDIR (PDIR++) */
37         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38         {}
39 };
40
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44         {}
45 };
46
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77 #define KVM_X86_PMU_OP(func)                                         \
78         DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,                          \
79                                 *(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85         memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87 #define __KVM_X86_PMU_OP(func) \
88         static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90         WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95
96 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
97 {
98         struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
99         struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
100
101         kvm_pmu_deliver_pmi(vcpu);
102 }
103
104 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
105 {
106         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
107         bool skip_pmi = false;
108
109         if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
110                 if (!in_pmi) {
111                         /*
112                          * TODO: KVM is currently _choosing_ to not generate records
113                          * for emulated instructions, avoiding BUFFER_OVF PMI when
114                          * there are no records. Strictly speaking, it should be done
115                          * as well in the right context to improve sampling accuracy.
116                          */
117                         skip_pmi = true;
118                 } else {
119                         /* Indicate PEBS overflow PMI to guest. */
120                         skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
121                                                       (unsigned long *)&pmu->global_status);
122                 }
123         } else {
124                 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
125         }
126
127         if (!pmc->intr || skip_pmi)
128                 return;
129
130         /*
131          * Inject PMI. If vcpu was in a guest mode during NMI PMI
132          * can be ejected on a guest mode re-entry. Otherwise we can't
133          * be sure that vcpu wasn't executing hlt instruction at the
134          * time of vmexit and is not going to re-enter guest mode until
135          * woken up. So we should wake it, but this is impossible from
136          * NMI context. Do it from irq work instead.
137          */
138         if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
139                 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
140         else
141                 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
142 }
143
144 static void kvm_perf_overflow(struct perf_event *perf_event,
145                               struct perf_sample_data *data,
146                               struct pt_regs *regs)
147 {
148         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
149
150         /*
151          * Ignore overflow events for counters that are scheduled to be
152          * reprogrammed, e.g. if a PMI for the previous event races with KVM's
153          * handling of a related guest WRMSR.
154          */
155         if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
156                 return;
157
158         __kvm_perf_overflow(pmc, true);
159
160         kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
161 }
162
163 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
164 {
165         /*
166          * For some model specific pebs counters with special capabilities
167          * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
168          * level to the maximum value (currently 3, backwards compatible)
169          * so that the perf subsystem would assign specific hardware counter
170          * with that capability for vPMC.
171          */
172         if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
173             (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
174                 return 3;
175
176         /*
177          * The non-zero precision level of guest event makes the ordinary
178          * guest event becomes a guest PEBS event and triggers the host
179          * PEBS PMI handler to determine whether the PEBS overflow PMI
180          * comes from the host counters or the guest.
181          */
182         return 1;
183 }
184
185 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
186                                  bool exclude_user, bool exclude_kernel,
187                                  bool intr)
188 {
189         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
190         struct perf_event *event;
191         struct perf_event_attr attr = {
192                 .type = type,
193                 .size = sizeof(attr),
194                 .pinned = true,
195                 .exclude_idle = true,
196                 .exclude_host = 1,
197                 .exclude_user = exclude_user,
198                 .exclude_kernel = exclude_kernel,
199                 .config = config,
200         };
201         bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
202
203         attr.sample_period = get_sample_period(pmc, pmc->counter);
204
205         if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
206             guest_cpuid_is_intel(pmc->vcpu)) {
207                 /*
208                  * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
209                  * period. Just clear the sample period so at least
210                  * allocating the counter doesn't fail.
211                  */
212                 attr.sample_period = 0;
213         }
214         if (pebs) {
215                 /*
216                  * For most PEBS hardware events, the difference in the software
217                  * precision levels of guest and host PEBS events will not affect
218                  * the accuracy of the PEBS profiling result, because the "event IP"
219                  * in the PEBS record is calibrated on the guest side.
220                  */
221                 attr.precise_ip = pmc_get_pebs_precise_level(pmc);
222         }
223
224         event = perf_event_create_kernel_counter(&attr, -1, current,
225                                                  kvm_perf_overflow, pmc);
226         if (IS_ERR(event)) {
227                 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
228                             PTR_ERR(event), pmc->idx);
229                 return PTR_ERR(event);
230         }
231
232         pmc->perf_event = event;
233         pmc_to_pmu(pmc)->event_count++;
234         pmc->is_paused = false;
235         pmc->intr = intr || pebs;
236         return 0;
237 }
238
239 static void pmc_pause_counter(struct kvm_pmc *pmc)
240 {
241         u64 counter = pmc->counter;
242
243         if (!pmc->perf_event || pmc->is_paused)
244                 return;
245
246         /* update counter, reset event value to avoid redundant accumulation */
247         counter += perf_event_pause(pmc->perf_event, true);
248         pmc->counter = counter & pmc_bitmask(pmc);
249         pmc->is_paused = true;
250 }
251
252 static bool pmc_resume_counter(struct kvm_pmc *pmc)
253 {
254         if (!pmc->perf_event)
255                 return false;
256
257         /* recalibrate sample period and check if it's accepted by perf core */
258         if (is_sampling_event(pmc->perf_event) &&
259             perf_event_period(pmc->perf_event,
260                               get_sample_period(pmc, pmc->counter)))
261                 return false;
262
263         if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
264             (!!pmc->perf_event->attr.precise_ip))
265                 return false;
266
267         /* reuse perf_event to serve as pmc_reprogram_counter() does*/
268         perf_event_enable(pmc->perf_event);
269         pmc->is_paused = false;
270
271         return true;
272 }
273
274 static int filter_cmp(const void *pa, const void *pb, u64 mask)
275 {
276         u64 a = *(u64 *)pa & mask;
277         u64 b = *(u64 *)pb & mask;
278
279         return (a > b) - (a < b);
280 }
281
282
283 static int filter_sort_cmp(const void *pa, const void *pb)
284 {
285         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
286                                    KVM_PMU_MASKED_ENTRY_EXCLUDE));
287 }
288
289 /*
290  * For the event filter, searching is done on the 'includes' list and
291  * 'excludes' list separately rather than on the 'events' list (which
292  * has both).  As a result the exclude bit can be ignored.
293  */
294 static int filter_event_cmp(const void *pa, const void *pb)
295 {
296         return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
297 }
298
299 static int find_filter_index(u64 *events, u64 nevents, u64 key)
300 {
301         u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
302                           filter_event_cmp);
303
304         if (!fe)
305                 return -1;
306
307         return fe - events;
308 }
309
310 static bool is_filter_entry_match(u64 filter_event, u64 umask)
311 {
312         u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
313         u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
314
315         BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
316                      (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
317                      ARCH_PERFMON_EVENTSEL_UMASK);
318
319         return (umask & mask) == match;
320 }
321
322 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
323 {
324         u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
325         u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
326         int i, index;
327
328         index = find_filter_index(events, nevents, event_select);
329         if (index < 0)
330                 return false;
331
332         /*
333          * Entries are sorted by the event select.  Walk the list in both
334          * directions to process all entries with the targeted event select.
335          */
336         for (i = index; i < nevents; i++) {
337                 if (filter_event_cmp(&events[i], &event_select))
338                         break;
339
340                 if (is_filter_entry_match(events[i], umask))
341                         return true;
342         }
343
344         for (i = index - 1; i >= 0; i--) {
345                 if (filter_event_cmp(&events[i], &event_select))
346                         break;
347
348                 if (is_filter_entry_match(events[i], umask))
349                         return true;
350         }
351
352         return false;
353 }
354
355 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
356                                 u64 eventsel)
357 {
358         if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
359             !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
360                 return f->action == KVM_PMU_EVENT_ALLOW;
361
362         return f->action == KVM_PMU_EVENT_DENY;
363 }
364
365 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
366                                    int idx)
367 {
368         int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
369
370         if (filter->action == KVM_PMU_EVENT_DENY &&
371             test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372                 return false;
373         if (filter->action == KVM_PMU_EVENT_ALLOW &&
374             !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
375                 return false;
376
377         return true;
378 }
379
380 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
381 {
382         struct kvm_x86_pmu_event_filter *filter;
383         struct kvm *kvm = pmc->vcpu->kvm;
384
385         filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
386         if (!filter)
387                 return true;
388
389         if (pmc_is_gp(pmc))
390                 return is_gp_event_allowed(filter, pmc->eventsel);
391
392         return is_fixed_event_allowed(filter, pmc->idx);
393 }
394
395 static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
396 {
397         return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
398                static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
399                check_pmu_event_filter(pmc);
400 }
401
402 static void reprogram_counter(struct kvm_pmc *pmc)
403 {
404         struct kvm_pmu *pmu = pmc_to_pmu(pmc);
405         u64 eventsel = pmc->eventsel;
406         u64 new_config = eventsel;
407         u8 fixed_ctr_ctrl;
408
409         pmc_pause_counter(pmc);
410
411         if (!pmc_event_is_allowed(pmc))
412                 goto reprogram_complete;
413
414         if (pmc->counter < pmc->prev_counter)
415                 __kvm_perf_overflow(pmc, false);
416
417         if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
418                 printk_once("kvm pmu: pin control bit is ignored\n");
419
420         if (pmc_is_fixed(pmc)) {
421                 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
422                                                   pmc->idx - INTEL_PMC_IDX_FIXED);
423                 if (fixed_ctr_ctrl & 0x1)
424                         eventsel |= ARCH_PERFMON_EVENTSEL_OS;
425                 if (fixed_ctr_ctrl & 0x2)
426                         eventsel |= ARCH_PERFMON_EVENTSEL_USR;
427                 if (fixed_ctr_ctrl & 0x8)
428                         eventsel |= ARCH_PERFMON_EVENTSEL_INT;
429                 new_config = (u64)fixed_ctr_ctrl;
430         }
431
432         if (pmc->current_config == new_config && pmc_resume_counter(pmc))
433                 goto reprogram_complete;
434
435         pmc_release_perf_event(pmc);
436
437         pmc->current_config = new_config;
438
439         /*
440          * If reprogramming fails, e.g. due to contention, leave the counter's
441          * regprogram bit set, i.e. opportunistically try again on the next PMU
442          * refresh.  Don't make a new request as doing so can stall the guest
443          * if reprogramming repeatedly fails.
444          */
445         if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
446                                   (eventsel & pmu->raw_event_mask),
447                                   !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
448                                   !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
449                                   eventsel & ARCH_PERFMON_EVENTSEL_INT))
450                 return;
451
452 reprogram_complete:
453         clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
454         pmc->prev_counter = 0;
455 }
456
457 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
458 {
459         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
460         int bit;
461
462         for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
463                 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
464
465                 if (unlikely(!pmc)) {
466                         clear_bit(bit, pmu->reprogram_pmi);
467                         continue;
468                 }
469
470                 reprogram_counter(pmc);
471         }
472
473         /*
474          * Unused perf_events are only released if the corresponding MSRs
475          * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
476          * triggers KVM_REQ_PMU if cleanup is needed.
477          */
478         if (unlikely(pmu->need_cleanup))
479                 kvm_pmu_cleanup(vcpu);
480 }
481
482 /* check if idx is a valid index to access PMU */
483 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
484 {
485         return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
486 }
487
488 bool is_vmware_backdoor_pmc(u32 pmc_idx)
489 {
490         switch (pmc_idx) {
491         case VMWARE_BACKDOOR_PMC_HOST_TSC:
492         case VMWARE_BACKDOOR_PMC_REAL_TIME:
493         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
494                 return true;
495         }
496         return false;
497 }
498
499 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
500 {
501         u64 ctr_val;
502
503         switch (idx) {
504         case VMWARE_BACKDOOR_PMC_HOST_TSC:
505                 ctr_val = rdtsc();
506                 break;
507         case VMWARE_BACKDOOR_PMC_REAL_TIME:
508                 ctr_val = ktime_get_boottime_ns();
509                 break;
510         case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
511                 ctr_val = ktime_get_boottime_ns() +
512                         vcpu->kvm->arch.kvmclock_offset;
513                 break;
514         default:
515                 return 1;
516         }
517
518         *data = ctr_val;
519         return 0;
520 }
521
522 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
523 {
524         bool fast_mode = idx & (1u << 31);
525         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
526         struct kvm_pmc *pmc;
527         u64 mask = fast_mode ? ~0u : ~0ull;
528
529         if (!pmu->version)
530                 return 1;
531
532         if (is_vmware_backdoor_pmc(idx))
533                 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
534
535         pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
536         if (!pmc)
537                 return 1;
538
539         if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
540             (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
541             kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
542                 return 1;
543
544         *data = pmc_read_counter(pmc) & mask;
545         return 0;
546 }
547
548 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
549 {
550         if (lapic_in_kernel(vcpu)) {
551                 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
552                 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
553         }
554 }
555
556 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
557 {
558         switch (msr) {
559         case MSR_CORE_PERF_GLOBAL_STATUS:
560         case MSR_CORE_PERF_GLOBAL_CTRL:
561         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
562                 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
563         default:
564                 break;
565         }
566         return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
567                 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
568 }
569
570 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
571 {
572         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
573         struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
574
575         if (pmc)
576                 __set_bit(pmc->idx, pmu->pmc_in_use);
577 }
578
579 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
580 {
581         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
582         u32 msr = msr_info->index;
583
584         switch (msr) {
585         case MSR_CORE_PERF_GLOBAL_STATUS:
586         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
587                 msr_info->data = pmu->global_status;
588                 break;
589         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
590         case MSR_CORE_PERF_GLOBAL_CTRL:
591                 msr_info->data = pmu->global_ctrl;
592                 break;
593         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
594         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
595                 msr_info->data = 0;
596                 break;
597         default:
598                 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
599         }
600
601         return 0;
602 }
603
604 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
605 {
606         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
607         u32 msr = msr_info->index;
608         u64 data = msr_info->data;
609         u64 diff;
610
611         /*
612          * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
613          * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
614          */
615         switch (msr) {
616         case MSR_CORE_PERF_GLOBAL_STATUS:
617                 if (!msr_info->host_initiated)
618                         return 1; /* RO MSR */
619                 fallthrough;
620         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
621                 /* Per PPR, Read-only MSR. Writes are ignored. */
622                 if (!msr_info->host_initiated)
623                         break;
624
625                 if (data & pmu->global_status_mask)
626                         return 1;
627
628                 pmu->global_status = data;
629                 break;
630         case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
631                 data &= ~pmu->global_ctrl_mask;
632                 fallthrough;
633         case MSR_CORE_PERF_GLOBAL_CTRL:
634                 if (!kvm_valid_perf_global_ctrl(pmu, data))
635                         return 1;
636
637                 if (pmu->global_ctrl != data) {
638                         diff = pmu->global_ctrl ^ data;
639                         pmu->global_ctrl = data;
640                         reprogram_counters(pmu, diff);
641                 }
642                 break;
643         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
644                 /*
645                  * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
646                  * GLOBAL_STATUS, and so the set of reserved bits is the same.
647                  */
648                 if (data & pmu->global_status_mask)
649                         return 1;
650                 fallthrough;
651         case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
652                 if (!msr_info->host_initiated)
653                         pmu->global_status &= ~data;
654                 break;
655         default:
656                 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
657                 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
658         }
659
660         return 0;
661 }
662
663 /* refresh PMU settings. This function generally is called when underlying
664  * settings are changed (such as changes of PMU CPUID by guest VMs), which
665  * should rarely happen.
666  */
667 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
668 {
669         if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
670                 return;
671
672         bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
673         static_call(kvm_x86_pmu_refresh)(vcpu);
674 }
675
676 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
677 {
678         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
679
680         irq_work_sync(&pmu->irq_work);
681         static_call(kvm_x86_pmu_reset)(vcpu);
682 }
683
684 void kvm_pmu_init(struct kvm_vcpu *vcpu)
685 {
686         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
687
688         memset(pmu, 0, sizeof(*pmu));
689         static_call(kvm_x86_pmu_init)(vcpu);
690         init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
691         pmu->event_count = 0;
692         pmu->need_cleanup = false;
693         kvm_pmu_refresh(vcpu);
694 }
695
696 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
697 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
698 {
699         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
700         struct kvm_pmc *pmc = NULL;
701         DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
702         int i;
703
704         pmu->need_cleanup = false;
705
706         bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
707                       pmu->pmc_in_use, X86_PMC_IDX_MAX);
708
709         for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
710                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
711
712                 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
713                         pmc_stop_counter(pmc);
714         }
715
716         static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
717
718         bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
719 }
720
721 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
722 {
723         kvm_pmu_reset(vcpu);
724 }
725
726 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
727 {
728         pmc->prev_counter = pmc->counter;
729         pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
730         kvm_pmu_request_counter_reprogram(pmc);
731 }
732
733 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
734         unsigned int perf_hw_id)
735 {
736         return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
737                 AMD64_RAW_EVENT_MASK_NB);
738 }
739
740 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
741 {
742         bool select_os, select_user;
743         u64 config;
744
745         if (pmc_is_gp(pmc)) {
746                 config = pmc->eventsel;
747                 select_os = config & ARCH_PERFMON_EVENTSEL_OS;
748                 select_user = config & ARCH_PERFMON_EVENTSEL_USR;
749         } else {
750                 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
751                                           pmc->idx - INTEL_PMC_IDX_FIXED);
752                 select_os = config & 0x1;
753                 select_user = config & 0x2;
754         }
755
756         return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
757 }
758
759 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
760 {
761         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
762         struct kvm_pmc *pmc;
763         int i;
764
765         for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
766                 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
767
768                 if (!pmc || !pmc_event_is_allowed(pmc))
769                         continue;
770
771                 /* Ignore checks for edge detect, pin control, invert and CMASK bits */
772                 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
773                         kvm_pmu_incr_counter(pmc);
774         }
775 }
776 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
777
778 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
779 {
780         u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
781                    KVM_PMU_MASKED_ENTRY_UMASK_MASK |
782                    KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
783                    KVM_PMU_MASKED_ENTRY_EXCLUDE;
784         int i;
785
786         for (i = 0; i < filter->nevents; i++) {
787                 if (filter->events[i] & ~mask)
788                         return false;
789         }
790
791         return true;
792 }
793
794 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
795 {
796         int i, j;
797
798         for (i = 0, j = 0; i < filter->nevents; i++) {
799                 /*
800                  * Skip events that are impossible to match against a guest
801                  * event.  When filtering, only the event select + unit mask
802                  * of the guest event is used.  To maintain backwards
803                  * compatibility, impossible filters can't be rejected :-(
804                  */
805                 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
806                                           ARCH_PERFMON_EVENTSEL_UMASK))
807                         continue;
808                 /*
809                  * Convert userspace events to a common in-kernel event so
810                  * only one code path is needed to support both events.  For
811                  * the in-kernel events use masked events because they are
812                  * flexible enough to handle both cases.  To convert to masked
813                  * events all that's needed is to add an "all ones" umask_mask,
814                  * (unmasked filter events don't support EXCLUDE).
815                  */
816                 filter->events[j++] = filter->events[i] |
817                                       (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
818         }
819
820         filter->nevents = j;
821 }
822
823 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
824 {
825         int i;
826
827         if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
828                 convert_to_masked_filter(filter);
829         else if (!is_masked_filter_valid(filter))
830                 return -EINVAL;
831
832         /*
833          * Sort entries by event select and includes vs. excludes so that all
834          * entries for a given event select can be processed efficiently during
835          * filtering.  The EXCLUDE flag uses a more significant bit than the
836          * event select, and so the sorted list is also effectively split into
837          * includes and excludes sub-lists.
838          */
839         sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
840              filter_sort_cmp, NULL);
841
842         i = filter->nevents;
843         /* Find the first EXCLUDE event (only supported for masked events). */
844         if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
845                 for (i = 0; i < filter->nevents; i++) {
846                         if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
847                                 break;
848                 }
849         }
850
851         filter->nr_includes = i;
852         filter->nr_excludes = filter->nevents - filter->nr_includes;
853         filter->includes = filter->events;
854         filter->excludes = filter->events + filter->nr_includes;
855
856         return 0;
857 }
858
859 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
860 {
861         struct kvm_pmu_event_filter __user *user_filter = argp;
862         struct kvm_x86_pmu_event_filter *filter;
863         struct kvm_pmu_event_filter tmp;
864         struct kvm_vcpu *vcpu;
865         unsigned long i;
866         size_t size;
867         int r;
868
869         if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
870                 return -EFAULT;
871
872         if (tmp.action != KVM_PMU_EVENT_ALLOW &&
873             tmp.action != KVM_PMU_EVENT_DENY)
874                 return -EINVAL;
875
876         if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
877                 return -EINVAL;
878
879         if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
880                 return -E2BIG;
881
882         size = struct_size(filter, events, tmp.nevents);
883         filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
884         if (!filter)
885                 return -ENOMEM;
886
887         filter->action = tmp.action;
888         filter->nevents = tmp.nevents;
889         filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
890         filter->flags = tmp.flags;
891
892         r = -EFAULT;
893         if (copy_from_user(filter->events, user_filter->events,
894                            sizeof(filter->events[0]) * filter->nevents))
895                 goto cleanup;
896
897         r = prepare_filter_lists(filter);
898         if (r)
899                 goto cleanup;
900
901         mutex_lock(&kvm->lock);
902         filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
903                                      mutex_is_locked(&kvm->lock));
904         mutex_unlock(&kvm->lock);
905         synchronize_srcu_expedited(&kvm->srcu);
906
907         BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
908                      sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
909
910         kvm_for_each_vcpu(i, vcpu, kvm)
911                 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
912
913         kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
914
915         r = 0;
916 cleanup:
917         kfree(filter);
918         return r;
919 }