OSDN Git Service

drm: Fix HDCP failures when SRM fw is missing
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176         /*
177          * failValid writes the error number to the current VMCS, which
178          * can't be done if there isn't a current VMCS.
179          */
180         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181                 return nested_vmx_failInvalid(vcpu);
182
183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
186                         | X86_EFLAGS_ZF);
187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188         /*
189          * We don't need to force a shadow sync because
190          * VM_INSTRUCTION_ERROR is not shadowed
191          */
192         return kvm_skip_emulated_instruction(vcpu);
193 }
194
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197         /* TODO: not to reset guest simply here. */
198         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204         return fixed_bits_valid(control, low, high);
205 }
206
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209         return low | ((u64)high << 32);
210 }
211
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215         vmcs_write64(VMCS_LINK_POINTER, -1ull);
216         vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221         struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223         if (!vmx->nested.hv_evmcs)
224                 return;
225
226         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227         vmx->nested.hv_evmcs_vmptr = 0;
228         vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237         struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240                 return;
241
242         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244         vmx->nested.vmxon = false;
245         vmx->nested.smm.vmxon = false;
246         free_vpid(vmx->nested.vpid02);
247         vmx->nested.posted_intr_nv = -1;
248         vmx->nested.current_vmptr = -1ull;
249         if (enable_shadow_vmcs) {
250                 vmx_disable_shadow_vmcs(vmx);
251                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252                 free_vmcs(vmx->vmcs01.shadow_vmcs);
253                 vmx->vmcs01.shadow_vmcs = NULL;
254         }
255         kfree(vmx->nested.cached_vmcs12);
256         vmx->nested.cached_vmcs12 = NULL;
257         kfree(vmx->nested.cached_shadow_vmcs12);
258         vmx->nested.cached_shadow_vmcs12 = NULL;
259         /* Unpin physical memory we referred to in the vmcs02 */
260         if (vmx->nested.apic_access_page) {
261                 kvm_release_page_clean(vmx->nested.apic_access_page);
262                 vmx->nested.apic_access_page = NULL;
263         }
264         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266         vmx->nested.pi_desc = NULL;
267
268         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270         nested_release_evmcs(vcpu);
271
272         free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (vmx->loaded_vmcs == vmcs)
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vmx_segment_cache_clear(vmx);
311 }
312
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319         vcpu_load(vcpu);
320         vmx_leave_nested(vcpu);
321         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322         free_nested(vcpu);
323         vcpu_put(vcpu);
324 }
325
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327                 struct x86_exception *fault)
328 {
329         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330         struct vcpu_vmx *vmx = to_vmx(vcpu);
331         u32 exit_reason;
332         unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334         if (vmx->nested.pml_full) {
335                 exit_reason = EXIT_REASON_PML_FULL;
336                 vmx->nested.pml_full = false;
337                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338         } else if (fault->error_code & PFERR_RSVD_MASK)
339                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
340         else
341                 exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344         vmcs12->guest_physical_address = fault->address;
345 }
346
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349         WARN_ON(mmu_is_nested(vcpu));
350
351         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352         kvm_init_shadow_ept_mmu(vcpu,
353                         to_vmx(vcpu)->nested.msrs.ept_caps &
354                         VMX_EPT_EXECUTE_ONLY_BIT,
355                         nested_ept_ad_enabled(vcpu),
356                         nested_ept_get_eptp(vcpu));
357         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
358         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360
361         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366         vcpu->arch.mmu = &vcpu->arch.root_mmu;
367         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371                                             u16 error_code)
372 {
373         bool inequality, bit;
374
375         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376         inequality =
377                 (error_code & vmcs12->page_fault_error_code_mask) !=
378                  vmcs12->page_fault_error_code_match;
379         return inequality ^ bit;
380 }
381
382
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390         unsigned int nr = vcpu->arch.exception.nr;
391         bool has_payload = vcpu->arch.exception.has_payload;
392         unsigned long payload = vcpu->arch.exception.payload;
393
394         if (nr == PF_VECTOR) {
395                 if (vcpu->arch.exception.nested_apf) {
396                         *exit_qual = vcpu->arch.apf.nested_apf_token;
397                         return 1;
398                 }
399                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400                                                     vcpu->arch.exception.error_code)) {
401                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402                         return 1;
403                 }
404         } else if (vmcs12->exception_bitmap & (1u << nr)) {
405                 if (nr == DB_VECTOR) {
406                         if (!has_payload) {
407                                 payload = vcpu->arch.dr6;
408                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
409                                 payload ^= DR6_RTM;
410                         }
411                         *exit_qual = payload;
412                 } else
413                         *exit_qual = 0;
414                 return 1;
415         }
416
417         return 0;
418 }
419
420
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422                 struct x86_exception *fault)
423 {
424         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426         WARN_ON(!is_guest_mode(vcpu));
427
428         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429                 !to_vmx(vcpu)->nested.nested_run_pending) {
430                 vmcs12->vm_exit_intr_error_code = fault->error_code;
431                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434                                   fault->address);
435         } else {
436                 kvm_inject_page_fault(vcpu, fault);
437         }
438 }
439
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446                                                struct vmcs12 *vmcs12)
447 {
448         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449                 return 0;
450
451         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453                 return -EINVAL;
454
455         return 0;
456 }
457
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459                                                 struct vmcs12 *vmcs12)
460 {
461         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462                 return 0;
463
464         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465                 return -EINVAL;
466
467         return 0;
468 }
469
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471                                                 struct vmcs12 *vmcs12)
472 {
473         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474                 return 0;
475
476         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487         unsigned long *msr_bitmap;
488         int f = sizeof(unsigned long);
489
490         if (!cpu_has_vmx_msr_bitmap())
491                 return true;
492
493         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495         if (msr <= 0x1fff) {
496                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498                 msr &= 0x1fff;
499                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500         }
501
502         return true;
503 }
504
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510                                                unsigned long *msr_bitmap_nested,
511                                                u32 msr, int type)
512 {
513         int f = sizeof(unsigned long);
514
515         /*
516          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517          * have the write-low and read-high bitmap offsets the wrong way round.
518          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519          */
520         if (msr <= 0x1fff) {
521                 if (type & MSR_TYPE_R &&
522                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523                         /* read-low */
524                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526                 if (type & MSR_TYPE_W &&
527                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528                         /* write-low */
529                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532                 msr &= 0x1fff;
533                 if (type & MSR_TYPE_R &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535                         /* read-high */
536                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538                 if (type & MSR_TYPE_W &&
539                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540                         /* write-high */
541                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543         }
544 }
545
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
547 {
548         int msr;
549
550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                 unsigned word = msr / BITS_PER_LONG;
552
553                 msr_bitmap[word] = ~0;
554                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555         }
556 }
557
558 /*
559  * Merge L0's and L1's MSR bitmap, return false to indicate that
560  * we do not use the hardware.
561  */
562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563                                                  struct vmcs12 *vmcs12)
564 {
565         int msr;
566         unsigned long *msr_bitmap_l1;
567         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570         /* Nothing to do if the MSR bitmap is not in use.  */
571         if (!cpu_has_vmx_msr_bitmap() ||
572             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573                 return false;
574
575         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576                 return false;
577
578         msr_bitmap_l1 = (unsigned long *)map->hva;
579
580         /*
581          * To keep the control flow simple, pay eight 8-byte writes (sixteen
582          * 4-byte writes on 32-bit systems) up front to enable intercepts for
583          * the x2APIC MSR range and selectively disable them below.
584          */
585         enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589                         /*
590                          * L0 need not intercept reads for MSRs between 0x800
591                          * and 0x8ff, it just lets the processor take the value
592                          * from the virtual-APIC page; take those 256 bits
593                          * directly from the L1 bitmap.
594                          */
595                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596                                 unsigned word = msr / BITS_PER_LONG;
597
598                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599                         }
600                 }
601
602                 nested_vmx_disable_intercept_for_msr(
603                         msr_bitmap_l1, msr_bitmap_l0,
604                         X2APIC_MSR(APIC_TASKPRI),
605                         MSR_TYPE_R | MSR_TYPE_W);
606
607                 if (nested_cpu_has_vid(vmcs12)) {
608                         nested_vmx_disable_intercept_for_msr(
609                                 msr_bitmap_l1, msr_bitmap_l0,
610                                 X2APIC_MSR(APIC_EOI),
611                                 MSR_TYPE_W);
612                         nested_vmx_disable_intercept_for_msr(
613                                 msr_bitmap_l1, msr_bitmap_l0,
614                                 X2APIC_MSR(APIC_SELF_IPI),
615                                 MSR_TYPE_W);
616                 }
617         }
618
619         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621                                              MSR_FS_BASE, MSR_TYPE_RW);
622
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_GS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629         /*
630          * Checking the L0->L1 bitmap is trying to verify two things:
631          *
632          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633          *    ensures that we do not accidentally generate an L02 MSR bitmap
634          *    from the L12 MSR bitmap that is too permissive.
635          * 2. That L1 or L2s have actually used the MSR. This avoids
636          *    unnecessarily merging of the bitmap if the MSR is unused. This
637          *    works properly because we only update the L01 MSR bitmap lazily.
638          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639          *    updated to reflect this when L1 (or its L2s) actually write to
640          *    the MSR.
641          */
642         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643                 nested_vmx_disable_intercept_for_msr(
644                                         msr_bitmap_l1, msr_bitmap_l0,
645                                         MSR_IA32_SPEC_CTRL,
646                                         MSR_TYPE_R | MSR_TYPE_W);
647
648         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649                 nested_vmx_disable_intercept_for_msr(
650                                         msr_bitmap_l1, msr_bitmap_l0,
651                                         MSR_IA32_PRED_CMD,
652                                         MSR_TYPE_W);
653
654         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656         return true;
657 }
658
659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                        struct vmcs12 *vmcs12)
661 {
662         struct kvm_host_map map;
663         struct vmcs12 *shadow;
664
665         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666             vmcs12->vmcs_link_pointer == -1ull)
667                 return;
668
669         shadow = get_shadow_vmcs12(vcpu);
670
671         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672                 return;
673
674         memcpy(shadow, map.hva, VMCS12_SIZE);
675         kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679                                               struct vmcs12 *vmcs12)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684             vmcs12->vmcs_link_pointer == -1ull)
685                 return;
686
687         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692  * In nested virtualization, check if L1 has set
693  * VM_EXIT_ACK_INTR_ON_EXIT
694  */
695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697         return get_vmcs12(vcpu)->vm_exit_controls &
698                 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
701 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
702 {
703         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
704 }
705
706 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
707                                           struct vmcs12 *vmcs12)
708 {
709         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
710             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
711                 return -EINVAL;
712         else
713                 return 0;
714 }
715
716 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
717                                            struct vmcs12 *vmcs12)
718 {
719         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
720             !nested_cpu_has_apic_reg_virt(vmcs12) &&
721             !nested_cpu_has_vid(vmcs12) &&
722             !nested_cpu_has_posted_intr(vmcs12))
723                 return 0;
724
725         /*
726          * If virtualize x2apic mode is enabled,
727          * virtualize apic access must be disabled.
728          */
729         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
730                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
731                 return -EINVAL;
732
733         /*
734          * If virtual interrupt delivery is enabled,
735          * we must exit on external interrupts.
736          */
737         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
738                 return -EINVAL;
739
740         /*
741          * bits 15:8 should be zero in posted_intr_nv,
742          * the descriptor address has been already checked
743          * in nested_get_vmcs12_pages.
744          *
745          * bits 5:0 of posted_intr_desc_addr should be zero.
746          */
747         if (nested_cpu_has_posted_intr(vmcs12) &&
748            (CC(!nested_cpu_has_vid(vmcs12)) ||
749             CC(!nested_exit_intr_ack_set(vcpu)) ||
750             CC((vmcs12->posted_intr_nv & 0xff00)) ||
751             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
752             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
753                 return -EINVAL;
754
755         /* tpr shadow is needed by all apicv features. */
756         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
757                 return -EINVAL;
758
759         return 0;
760 }
761
762 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
763                                        u32 count, u64 addr)
764 {
765         int maxphyaddr;
766
767         if (count == 0)
768                 return 0;
769         maxphyaddr = cpuid_maxphyaddr(vcpu);
770         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
771             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
772                 return -EINVAL;
773
774         return 0;
775 }
776
777 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
778                                                      struct vmcs12 *vmcs12)
779 {
780         if (CC(nested_vmx_check_msr_switch(vcpu,
781                                            vmcs12->vm_exit_msr_load_count,
782                                            vmcs12->vm_exit_msr_load_addr)) ||
783             CC(nested_vmx_check_msr_switch(vcpu,
784                                            vmcs12->vm_exit_msr_store_count,
785                                            vmcs12->vm_exit_msr_store_addr)))
786                 return -EINVAL;
787
788         return 0;
789 }
790
791 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
792                                                       struct vmcs12 *vmcs12)
793 {
794         if (CC(nested_vmx_check_msr_switch(vcpu,
795                                            vmcs12->vm_entry_msr_load_count,
796                                            vmcs12->vm_entry_msr_load_addr)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
803                                          struct vmcs12 *vmcs12)
804 {
805         if (!nested_cpu_has_pml(vmcs12))
806                 return 0;
807
808         if (CC(!nested_cpu_has_ept(vmcs12)) ||
809             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
816                                                         struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
819                !nested_cpu_has_ept(vmcs12)))
820                 return -EINVAL;
821         return 0;
822 }
823
824 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
825                                                          struct vmcs12 *vmcs12)
826 {
827         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
828                !nested_cpu_has_ept(vmcs12)))
829                 return -EINVAL;
830         return 0;
831 }
832
833 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
834                                                  struct vmcs12 *vmcs12)
835 {
836         if (!nested_cpu_has_shadow_vmcs(vmcs12))
837                 return 0;
838
839         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
840             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
841                 return -EINVAL;
842
843         return 0;
844 }
845
846 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
847                                        struct vmx_msr_entry *e)
848 {
849         /* x2APIC MSR accesses are not allowed */
850         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
851                 return -EINVAL;
852         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
853             CC(e->index == MSR_IA32_UCODE_REV))
854                 return -EINVAL;
855         if (CC(e->reserved != 0))
856                 return -EINVAL;
857         return 0;
858 }
859
860 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
861                                      struct vmx_msr_entry *e)
862 {
863         if (CC(e->index == MSR_FS_BASE) ||
864             CC(e->index == MSR_GS_BASE) ||
865             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
866             nested_vmx_msr_check_common(vcpu, e))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
872                                       struct vmx_msr_entry *e)
873 {
874         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
875             nested_vmx_msr_check_common(vcpu, e))
876                 return -EINVAL;
877         return 0;
878 }
879
880 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
881 {
882         struct vcpu_vmx *vmx = to_vmx(vcpu);
883         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
884                                        vmx->nested.msrs.misc_high);
885
886         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
887 }
888
889 /*
890  * Load guest's/host's msr at nested entry/exit.
891  * return 0 for success, entry index for failure.
892  *
893  * One of the failure modes for MSR load/store is when a list exceeds the
894  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
895  * as possible, process all valid entries before failing rather than precheck
896  * for a capacity violation.
897  */
898 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
899 {
900         u32 i;
901         struct vmx_msr_entry e;
902         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
903
904         for (i = 0; i < count; i++) {
905                 if (unlikely(i >= max_msr_list_size))
906                         goto fail;
907
908                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
909                                         &e, sizeof(e))) {
910                         pr_debug_ratelimited(
911                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
912                                 __func__, i, gpa + i * sizeof(e));
913                         goto fail;
914                 }
915                 if (nested_vmx_load_msr_check(vcpu, &e)) {
916                         pr_debug_ratelimited(
917                                 "%s check failed (%u, 0x%x, 0x%x)\n",
918                                 __func__, i, e.index, e.reserved);
919                         goto fail;
920                 }
921                 if (kvm_set_msr(vcpu, e.index, e.value)) {
922                         pr_debug_ratelimited(
923                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
924                                 __func__, i, e.index, e.value);
925                         goto fail;
926                 }
927         }
928         return 0;
929 fail:
930         return i + 1;
931 }
932
933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934                                             u32 msr_index,
935                                             u64 *data)
936 {
937         struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939         /*
940          * If the L0 hypervisor stored a more accurate value for the TSC that
941          * does not include the time taken for emulation of the L2->L1
942          * VM-exit in L0, use the more accurate value.
943          */
944         if (msr_index == MSR_IA32_TSC) {
945                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
946                                                MSR_IA32_TSC);
947
948                 if (index >= 0) {
949                         u64 val = vmx->msr_autostore.guest.val[index].value;
950
951                         *data = kvm_read_l1_tsc(vcpu, val);
952                         return true;
953                 }
954         }
955
956         if (kvm_get_msr(vcpu, msr_index, data)) {
957                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958                         msr_index);
959                 return false;
960         }
961         return true;
962 }
963
964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965                                      struct vmx_msr_entry *e)
966 {
967         if (kvm_vcpu_read_guest(vcpu,
968                                 gpa + i * sizeof(*e),
969                                 e, 2 * sizeof(u32))) {
970                 pr_debug_ratelimited(
971                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
972                         __func__, i, gpa + i * sizeof(*e));
973                 return false;
974         }
975         if (nested_vmx_store_msr_check(vcpu, e)) {
976                 pr_debug_ratelimited(
977                         "%s check failed (%u, 0x%x, 0x%x)\n",
978                         __func__, i, e->index, e->reserved);
979                 return false;
980         }
981         return true;
982 }
983
984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986         u64 data;
987         u32 i;
988         struct vmx_msr_entry e;
989         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991         for (i = 0; i < count; i++) {
992                 if (unlikely(i >= max_msr_list_size))
993                         return -EINVAL;
994
995                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996                         return -EINVAL;
997
998                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999                         return -EINVAL;
1000
1001                 if (kvm_vcpu_write_guest(vcpu,
1002                                          gpa + i * sizeof(e) +
1003                                              offsetof(struct vmx_msr_entry, value),
1004                                          &data, sizeof(data))) {
1005                         pr_debug_ratelimited(
1006                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007                                 __func__, i, e.index, data);
1008                         return -EINVAL;
1009                 }
1010         }
1011         return 0;
1012 }
1013
1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017         u32 count = vmcs12->vm_exit_msr_store_count;
1018         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019         struct vmx_msr_entry e;
1020         u32 i;
1021
1022         for (i = 0; i < count; i++) {
1023                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024                         return false;
1025
1026                 if (e.index == msr_index)
1027                         return true;
1028         }
1029         return false;
1030 }
1031
1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033                                            u32 msr_index)
1034 {
1035         struct vcpu_vmx *vmx = to_vmx(vcpu);
1036         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037         bool in_vmcs12_store_list;
1038         int msr_autostore_index;
1039         bool in_autostore_list;
1040         int last;
1041
1042         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1043         in_autostore_list = msr_autostore_index >= 0;
1044         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046         if (in_vmcs12_store_list && !in_autostore_list) {
1047                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1048                         /*
1049                          * Emulated VMEntry does not fail here.  Instead a less
1050                          * accurate value will be returned by
1051                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052                          * instead of reading the value from the vmcs02 VMExit
1053                          * MSR-store area.
1054                          */
1055                         pr_warn_ratelimited(
1056                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057                                 msr_index);
1058                         return;
1059                 }
1060                 last = autostore->nr++;
1061                 autostore->val[last].index = msr_index;
1062         } else if (!in_vmcs12_store_list && in_autostore_list) {
1063                 last = --autostore->nr;
1064                 autostore->val[msr_autostore_index] = autostore->val[last];
1065         }
1066 }
1067
1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070         unsigned long invalid_mask;
1071
1072         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073         return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1078  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1079  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1080  * @entry_failure_code.
1081  */
1082 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1083                                u32 *entry_failure_code)
1084 {
1085         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1086                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1087                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
1088                         return -EINVAL;
1089                 }
1090
1091                 /*
1092                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1093                  * must not be dereferenced.
1094                  */
1095                 if (is_pae_paging(vcpu) && !nested_ept) {
1096                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1097                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1098                                 return -EINVAL;
1099                         }
1100                 }
1101         }
1102
1103         if (!nested_ept)
1104                 kvm_mmu_new_cr3(vcpu, cr3, false);
1105
1106         vcpu->arch.cr3 = cr3;
1107         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1108
1109         kvm_init_mmu(vcpu, false);
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Returns if KVM is able to config CPU to tag TLB entries
1116  * populated by L2 differently than TLB entries populated
1117  * by L1.
1118  *
1119  * If L0 uses EPT, L1 and L2 run with different EPTP because
1120  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1121  * are tagged with different EPTP.
1122  *
1123  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1124  * with different VPID (L1 entries are tagged with vmx->vpid
1125  * while L2 entries are tagged with vmx->nested.vpid02).
1126  */
1127 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1128 {
1129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1130
1131         return enable_ept ||
1132                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1133 }
1134
1135 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1136 {
1137         struct vcpu_vmx *vmx = to_vmx(vcpu);
1138
1139         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1140 }
1141
1142 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1143 {
1144         superset &= mask;
1145         subset &= mask;
1146
1147         return (superset | subset) == superset;
1148 }
1149
1150 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1151 {
1152         const u64 feature_and_reserved =
1153                 /* feature (except bit 48; see below) */
1154                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1155                 /* reserved */
1156                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1157         u64 vmx_basic = vmx->nested.msrs.basic;
1158
1159         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1160                 return -EINVAL;
1161
1162         /*
1163          * KVM does not emulate a version of VMX that constrains physical
1164          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1165          */
1166         if (data & BIT_ULL(48))
1167                 return -EINVAL;
1168
1169         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1170             vmx_basic_vmcs_revision_id(data))
1171                 return -EINVAL;
1172
1173         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1174                 return -EINVAL;
1175
1176         vmx->nested.msrs.basic = data;
1177         return 0;
1178 }
1179
1180 static int
1181 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1182 {
1183         u64 supported;
1184         u32 *lowp, *highp;
1185
1186         switch (msr_index) {
1187         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1188                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1189                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1190                 break;
1191         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1192                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1193                 highp = &vmx->nested.msrs.procbased_ctls_high;
1194                 break;
1195         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1196                 lowp = &vmx->nested.msrs.exit_ctls_low;
1197                 highp = &vmx->nested.msrs.exit_ctls_high;
1198                 break;
1199         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1200                 lowp = &vmx->nested.msrs.entry_ctls_low;
1201                 highp = &vmx->nested.msrs.entry_ctls_high;
1202                 break;
1203         case MSR_IA32_VMX_PROCBASED_CTLS2:
1204                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1205                 highp = &vmx->nested.msrs.secondary_ctls_high;
1206                 break;
1207         default:
1208                 BUG();
1209         }
1210
1211         supported = vmx_control_msr(*lowp, *highp);
1212
1213         /* Check must-be-1 bits are still 1. */
1214         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1215                 return -EINVAL;
1216
1217         /* Check must-be-0 bits are still 0. */
1218         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1219                 return -EINVAL;
1220
1221         *lowp = data;
1222         *highp = data >> 32;
1223         return 0;
1224 }
1225
1226 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1227 {
1228         const u64 feature_and_reserved_bits =
1229                 /* feature */
1230                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1231                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1232                 /* reserved */
1233                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1234         u64 vmx_misc;
1235
1236         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1237                                    vmx->nested.msrs.misc_high);
1238
1239         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1240                 return -EINVAL;
1241
1242         if ((vmx->nested.msrs.pinbased_ctls_high &
1243              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1244             vmx_misc_preemption_timer_rate(data) !=
1245             vmx_misc_preemption_timer_rate(vmx_misc))
1246                 return -EINVAL;
1247
1248         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1249                 return -EINVAL;
1250
1251         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1252                 return -EINVAL;
1253
1254         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1255                 return -EINVAL;
1256
1257         vmx->nested.msrs.misc_low = data;
1258         vmx->nested.msrs.misc_high = data >> 32;
1259
1260         return 0;
1261 }
1262
1263 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1264 {
1265         u64 vmx_ept_vpid_cap;
1266
1267         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1268                                            vmx->nested.msrs.vpid_caps);
1269
1270         /* Every bit is either reserved or a feature bit. */
1271         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1272                 return -EINVAL;
1273
1274         vmx->nested.msrs.ept_caps = data;
1275         vmx->nested.msrs.vpid_caps = data >> 32;
1276         return 0;
1277 }
1278
1279 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1280 {
1281         u64 *msr;
1282
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_CR0_FIXED0:
1285                 msr = &vmx->nested.msrs.cr0_fixed0;
1286                 break;
1287         case MSR_IA32_VMX_CR4_FIXED0:
1288                 msr = &vmx->nested.msrs.cr4_fixed0;
1289                 break;
1290         default:
1291                 BUG();
1292         }
1293
1294         /*
1295          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1296          * must be 1 in the restored value.
1297          */
1298         if (!is_bitwise_subset(data, *msr, -1ULL))
1299                 return -EINVAL;
1300
1301         *msr = data;
1302         return 0;
1303 }
1304
1305 /*
1306  * Called when userspace is restoring VMX MSRs.
1307  *
1308  * Returns 0 on success, non-0 otherwise.
1309  */
1310 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1311 {
1312         struct vcpu_vmx *vmx = to_vmx(vcpu);
1313
1314         /*
1315          * Don't allow changes to the VMX capability MSRs while the vCPU
1316          * is in VMX operation.
1317          */
1318         if (vmx->nested.vmxon)
1319                 return -EBUSY;
1320
1321         switch (msr_index) {
1322         case MSR_IA32_VMX_BASIC:
1323                 return vmx_restore_vmx_basic(vmx, data);
1324         case MSR_IA32_VMX_PINBASED_CTLS:
1325         case MSR_IA32_VMX_PROCBASED_CTLS:
1326         case MSR_IA32_VMX_EXIT_CTLS:
1327         case MSR_IA32_VMX_ENTRY_CTLS:
1328                 /*
1329                  * The "non-true" VMX capability MSRs are generated from the
1330                  * "true" MSRs, so we do not support restoring them directly.
1331                  *
1332                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1333                  * should restore the "true" MSRs with the must-be-1 bits
1334                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1335                  * DEFAULT SETTINGS".
1336                  */
1337                 return -EINVAL;
1338         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1339         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1340         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1341         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1342         case MSR_IA32_VMX_PROCBASED_CTLS2:
1343                 return vmx_restore_control_msr(vmx, msr_index, data);
1344         case MSR_IA32_VMX_MISC:
1345                 return vmx_restore_vmx_misc(vmx, data);
1346         case MSR_IA32_VMX_CR0_FIXED0:
1347         case MSR_IA32_VMX_CR4_FIXED0:
1348                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1349         case MSR_IA32_VMX_CR0_FIXED1:
1350         case MSR_IA32_VMX_CR4_FIXED1:
1351                 /*
1352                  * These MSRs are generated based on the vCPU's CPUID, so we
1353                  * do not support restoring them directly.
1354                  */
1355                 return -EINVAL;
1356         case MSR_IA32_VMX_EPT_VPID_CAP:
1357                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1358         case MSR_IA32_VMX_VMCS_ENUM:
1359                 vmx->nested.msrs.vmcs_enum = data;
1360                 return 0;
1361         case MSR_IA32_VMX_VMFUNC:
1362                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1363                         return -EINVAL;
1364                 vmx->nested.msrs.vmfunc_controls = data;
1365                 return 0;
1366         default:
1367                 /*
1368                  * The rest of the VMX capability MSRs do not support restore.
1369                  */
1370                 return -EINVAL;
1371         }
1372 }
1373
1374 /* Returns 0 on success, non-0 otherwise. */
1375 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1376 {
1377         switch (msr_index) {
1378         case MSR_IA32_VMX_BASIC:
1379                 *pdata = msrs->basic;
1380                 break;
1381         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1382         case MSR_IA32_VMX_PINBASED_CTLS:
1383                 *pdata = vmx_control_msr(
1384                         msrs->pinbased_ctls_low,
1385                         msrs->pinbased_ctls_high);
1386                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1387                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1388                 break;
1389         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1390         case MSR_IA32_VMX_PROCBASED_CTLS:
1391                 *pdata = vmx_control_msr(
1392                         msrs->procbased_ctls_low,
1393                         msrs->procbased_ctls_high);
1394                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1395                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1396                 break;
1397         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1398         case MSR_IA32_VMX_EXIT_CTLS:
1399                 *pdata = vmx_control_msr(
1400                         msrs->exit_ctls_low,
1401                         msrs->exit_ctls_high);
1402                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1403                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1404                 break;
1405         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1406         case MSR_IA32_VMX_ENTRY_CTLS:
1407                 *pdata = vmx_control_msr(
1408                         msrs->entry_ctls_low,
1409                         msrs->entry_ctls_high);
1410                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1411                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1412                 break;
1413         case MSR_IA32_VMX_MISC:
1414                 *pdata = vmx_control_msr(
1415                         msrs->misc_low,
1416                         msrs->misc_high);
1417                 break;
1418         case MSR_IA32_VMX_CR0_FIXED0:
1419                 *pdata = msrs->cr0_fixed0;
1420                 break;
1421         case MSR_IA32_VMX_CR0_FIXED1:
1422                 *pdata = msrs->cr0_fixed1;
1423                 break;
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 *pdata = msrs->cr4_fixed0;
1426                 break;
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 *pdata = msrs->cr4_fixed1;
1429                 break;
1430         case MSR_IA32_VMX_VMCS_ENUM:
1431                 *pdata = msrs->vmcs_enum;
1432                 break;
1433         case MSR_IA32_VMX_PROCBASED_CTLS2:
1434                 *pdata = vmx_control_msr(
1435                         msrs->secondary_ctls_low,
1436                         msrs->secondary_ctls_high);
1437                 break;
1438         case MSR_IA32_VMX_EPT_VPID_CAP:
1439                 *pdata = msrs->ept_caps |
1440                         ((u64)msrs->vpid_caps << 32);
1441                 break;
1442         case MSR_IA32_VMX_VMFUNC:
1443                 *pdata = msrs->vmfunc_controls;
1444                 break;
1445         default:
1446                 return 1;
1447         }
1448
1449         return 0;
1450 }
1451
1452 /*
1453  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1454  * been modified by the L1 guest.  Note, "writable" in this context means
1455  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1456  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1457  * VM-exit information fields (which are actually writable if the vCPU is
1458  * configured to support "VMWRITE to any supported field in the VMCS").
1459  */
1460 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1461 {
1462         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1463         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1464         struct shadow_vmcs_field field;
1465         unsigned long val;
1466         int i;
1467
1468         if (WARN_ON(!shadow_vmcs))
1469                 return;
1470
1471         preempt_disable();
1472
1473         vmcs_load(shadow_vmcs);
1474
1475         for (i = 0; i < max_shadow_read_write_fields; i++) {
1476                 field = shadow_read_write_fields[i];
1477                 val = __vmcs_readl(field.encoding);
1478                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1479         }
1480
1481         vmcs_clear(shadow_vmcs);
1482         vmcs_load(vmx->loaded_vmcs->vmcs);
1483
1484         preempt_enable();
1485 }
1486
1487 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1488 {
1489         const struct shadow_vmcs_field *fields[] = {
1490                 shadow_read_write_fields,
1491                 shadow_read_only_fields
1492         };
1493         const int max_fields[] = {
1494                 max_shadow_read_write_fields,
1495                 max_shadow_read_only_fields
1496         };
1497         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1498         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1499         struct shadow_vmcs_field field;
1500         unsigned long val;
1501         int i, q;
1502
1503         if (WARN_ON(!shadow_vmcs))
1504                 return;
1505
1506         vmcs_load(shadow_vmcs);
1507
1508         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1509                 for (i = 0; i < max_fields[q]; i++) {
1510                         field = fields[q][i];
1511                         val = vmcs12_read_any(vmcs12, field.encoding,
1512                                               field.offset);
1513                         __vmcs_writel(field.encoding, val);
1514                 }
1515         }
1516
1517         vmcs_clear(shadow_vmcs);
1518         vmcs_load(vmx->loaded_vmcs->vmcs);
1519 }
1520
1521 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1522 {
1523         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1524         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1525
1526         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1527         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1528         vmcs12->guest_rip = evmcs->guest_rip;
1529
1530         if (unlikely(!(evmcs->hv_clean_fields &
1531                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1532                 vmcs12->guest_rsp = evmcs->guest_rsp;
1533                 vmcs12->guest_rflags = evmcs->guest_rflags;
1534                 vmcs12->guest_interruptibility_info =
1535                         evmcs->guest_interruptibility_info;
1536         }
1537
1538         if (unlikely(!(evmcs->hv_clean_fields &
1539                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1540                 vmcs12->cpu_based_vm_exec_control =
1541                         evmcs->cpu_based_vm_exec_control;
1542         }
1543
1544         if (unlikely(!(evmcs->hv_clean_fields &
1545                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1546                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1547         }
1548
1549         if (unlikely(!(evmcs->hv_clean_fields &
1550                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1551                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1552         }
1553
1554         if (unlikely(!(evmcs->hv_clean_fields &
1555                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1556                 vmcs12->vm_entry_intr_info_field =
1557                         evmcs->vm_entry_intr_info_field;
1558                 vmcs12->vm_entry_exception_error_code =
1559                         evmcs->vm_entry_exception_error_code;
1560                 vmcs12->vm_entry_instruction_len =
1561                         evmcs->vm_entry_instruction_len;
1562         }
1563
1564         if (unlikely(!(evmcs->hv_clean_fields &
1565                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1566                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1567                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1568                 vmcs12->host_cr0 = evmcs->host_cr0;
1569                 vmcs12->host_cr3 = evmcs->host_cr3;
1570                 vmcs12->host_cr4 = evmcs->host_cr4;
1571                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1572                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1573                 vmcs12->host_rip = evmcs->host_rip;
1574                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1575                 vmcs12->host_es_selector = evmcs->host_es_selector;
1576                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1577                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1578                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1579                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1580                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1581                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1582         }
1583
1584         if (unlikely(!(evmcs->hv_clean_fields &
1585                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1586                 vmcs12->pin_based_vm_exec_control =
1587                         evmcs->pin_based_vm_exec_control;
1588                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1589                 vmcs12->secondary_vm_exec_control =
1590                         evmcs->secondary_vm_exec_control;
1591         }
1592
1593         if (unlikely(!(evmcs->hv_clean_fields &
1594                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1595                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1596                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1597         }
1598
1599         if (unlikely(!(evmcs->hv_clean_fields &
1600                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1601                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1602         }
1603
1604         if (unlikely(!(evmcs->hv_clean_fields &
1605                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1606                 vmcs12->guest_es_base = evmcs->guest_es_base;
1607                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1608                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1609                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1610                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1611                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1612                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1613                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1614                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1615                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1616                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1617                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1618                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1619                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1620                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1621                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1622                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1623                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1624                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1625                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1626                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1627                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1628                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1629                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1630                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1631                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1632                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1633                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1634                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1635                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1636                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1637                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1638                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1639                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1640                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1641                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1646                 vmcs12->tsc_offset = evmcs->tsc_offset;
1647                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1648                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1649         }
1650
1651         if (unlikely(!(evmcs->hv_clean_fields &
1652                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1653                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1654                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1655                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1656                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1657                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1658                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1659                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1660                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1661         }
1662
1663         if (unlikely(!(evmcs->hv_clean_fields &
1664                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1665                 vmcs12->host_fs_base = evmcs->host_fs_base;
1666                 vmcs12->host_gs_base = evmcs->host_gs_base;
1667                 vmcs12->host_tr_base = evmcs->host_tr_base;
1668                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1669                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1670                 vmcs12->host_rsp = evmcs->host_rsp;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1675                 vmcs12->ept_pointer = evmcs->ept_pointer;
1676                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1681                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1682                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1683                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1684                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1685                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1686                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1687                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1688                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1689                 vmcs12->guest_pending_dbg_exceptions =
1690                         evmcs->guest_pending_dbg_exceptions;
1691                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1692                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1693                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1694                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1695                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1696         }
1697
1698         /*
1699          * Not used?
1700          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1701          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1702          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1703          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1704          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1705          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1706          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1707          * vmcs12->page_fault_error_code_mask =
1708          *              evmcs->page_fault_error_code_mask;
1709          * vmcs12->page_fault_error_code_match =
1710          *              evmcs->page_fault_error_code_match;
1711          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1712          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1713          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1714          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1715          */
1716
1717         /*
1718          * Read only fields:
1719          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1720          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1721          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1722          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1723          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1724          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1725          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1726          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1727          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1728          * vmcs12->exit_qualification = evmcs->exit_qualification;
1729          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1730          *
1731          * Not present in struct vmcs12:
1732          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1733          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1734          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1735          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1736          */
1737
1738         return 0;
1739 }
1740
1741 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1742 {
1743         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1744         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1745
1746         /*
1747          * Should not be changed by KVM:
1748          *
1749          * evmcs->host_es_selector = vmcs12->host_es_selector;
1750          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1751          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1752          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1753          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1754          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1755          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1756          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1757          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1758          * evmcs->host_cr0 = vmcs12->host_cr0;
1759          * evmcs->host_cr3 = vmcs12->host_cr3;
1760          * evmcs->host_cr4 = vmcs12->host_cr4;
1761          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1762          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1763          * evmcs->host_rip = vmcs12->host_rip;
1764          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1765          * evmcs->host_fs_base = vmcs12->host_fs_base;
1766          * evmcs->host_gs_base = vmcs12->host_gs_base;
1767          * evmcs->host_tr_base = vmcs12->host_tr_base;
1768          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1769          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1770          * evmcs->host_rsp = vmcs12->host_rsp;
1771          * sync_vmcs02_to_vmcs12() doesn't read these:
1772          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1773          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1774          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1775          * evmcs->ept_pointer = vmcs12->ept_pointer;
1776          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1777          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1778          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1779          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1780          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1781          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1782          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1783          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1784          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1785          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1786          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1787          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1788          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1789          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1790          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1791          * evmcs->page_fault_error_code_mask =
1792          *              vmcs12->page_fault_error_code_mask;
1793          * evmcs->page_fault_error_code_match =
1794          *              vmcs12->page_fault_error_code_match;
1795          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1796          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1797          * evmcs->tsc_offset = vmcs12->tsc_offset;
1798          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1799          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1800          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1801          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1802          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1803          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1804          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1805          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1806          *
1807          * Not present in struct vmcs12:
1808          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1809          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1810          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1811          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1812          */
1813
1814         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1815         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1816         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1817         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1818         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1819         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1820         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1821         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1822
1823         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1824         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1825         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1826         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1827         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1828         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1829         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1830         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1831         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1832         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1833
1834         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1835         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1836         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1837         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1838         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1839         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1840         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1841         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1842
1843         evmcs->guest_es_base = vmcs12->guest_es_base;
1844         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1845         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1846         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1847         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1848         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1849         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1850         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1851         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1852         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1853
1854         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1855         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1856
1857         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1858         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1859         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1860         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1861
1862         evmcs->guest_pending_dbg_exceptions =
1863                 vmcs12->guest_pending_dbg_exceptions;
1864         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1865         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1866
1867         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1868         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1869
1870         evmcs->guest_cr0 = vmcs12->guest_cr0;
1871         evmcs->guest_cr3 = vmcs12->guest_cr3;
1872         evmcs->guest_cr4 = vmcs12->guest_cr4;
1873         evmcs->guest_dr7 = vmcs12->guest_dr7;
1874
1875         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1876
1877         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1878         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1879         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1880         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1881         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1882         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1883         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1884         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1885
1886         evmcs->exit_qualification = vmcs12->exit_qualification;
1887
1888         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1889         evmcs->guest_rsp = vmcs12->guest_rsp;
1890         evmcs->guest_rflags = vmcs12->guest_rflags;
1891
1892         evmcs->guest_interruptibility_info =
1893                 vmcs12->guest_interruptibility_info;
1894         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1895         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1896         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1897         evmcs->vm_entry_exception_error_code =
1898                 vmcs12->vm_entry_exception_error_code;
1899         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1900
1901         evmcs->guest_rip = vmcs12->guest_rip;
1902
1903         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1904
1905         return 0;
1906 }
1907
1908 /*
1909  * This is an equivalent of the nested hypervisor executing the vmptrld
1910  * instruction.
1911  */
1912 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1913         struct kvm_vcpu *vcpu, bool from_launch)
1914 {
1915         struct vcpu_vmx *vmx = to_vmx(vcpu);
1916         bool evmcs_gpa_changed = false;
1917         u64 evmcs_gpa;
1918
1919         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1920                 return EVMPTRLD_DISABLED;
1921
1922         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1923                 return EVMPTRLD_DISABLED;
1924
1925         if (unlikely(!vmx->nested.hv_evmcs ||
1926                      evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1927                 if (!vmx->nested.hv_evmcs)
1928                         vmx->nested.current_vmptr = -1ull;
1929
1930                 nested_release_evmcs(vcpu);
1931
1932                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1933                                  &vmx->nested.hv_evmcs_map))
1934                         return EVMPTRLD_ERROR;
1935
1936                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1937
1938                 /*
1939                  * Currently, KVM only supports eVMCS version 1
1940                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1941                  * value to first u32 field of eVMCS which should specify eVMCS
1942                  * VersionNumber.
1943                  *
1944                  * Guest should be aware of supported eVMCS versions by host by
1945                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1946                  * expected to set this CPUID leaf according to the value
1947                  * returned in vmcs_version from nested_enable_evmcs().
1948                  *
1949                  * However, it turns out that Microsoft Hyper-V fails to comply
1950                  * to their own invented interface: When Hyper-V use eVMCS, it
1951                  * just sets first u32 field of eVMCS to revision_id specified
1952                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1953                  * which is one of the supported versions specified in
1954                  * CPUID.0x4000000A.EAX[0:15].
1955                  *
1956                  * To overcome Hyper-V bug, we accept here either a supported
1957                  * eVMCS version or VMCS12 revision_id as valid values for first
1958                  * u32 field of eVMCS.
1959                  */
1960                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1961                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1962                         nested_release_evmcs(vcpu);
1963                         return EVMPTRLD_VMFAIL;
1964                 }
1965
1966                 vmx->nested.dirty_vmcs12 = true;
1967                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1968
1969                 evmcs_gpa_changed = true;
1970                 /*
1971                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1972                  * reloaded from guest's memory (read only fields, fields not
1973                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1974                  * are no leftovers.
1975                  */
1976                 if (from_launch) {
1977                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1978                         memset(vmcs12, 0, sizeof(*vmcs12));
1979                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1980                 }
1981
1982         }
1983
1984         /*
1985          * Clean fields data can't be used on VMLAUNCH and when we switch
1986          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1987          */
1988         if (from_launch || evmcs_gpa_changed)
1989                 vmx->nested.hv_evmcs->hv_clean_fields &=
1990                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1991
1992         return EVMPTRLD_SUCCEEDED;
1993 }
1994
1995 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1996 {
1997         struct vcpu_vmx *vmx = to_vmx(vcpu);
1998
1999         if (vmx->nested.hv_evmcs) {
2000                 copy_vmcs12_to_enlightened(vmx);
2001                 /* All fields are clean */
2002                 vmx->nested.hv_evmcs->hv_clean_fields |=
2003                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2004         } else {
2005                 copy_vmcs12_to_shadow(vmx);
2006         }
2007
2008         vmx->nested.need_vmcs12_to_shadow_sync = false;
2009 }
2010
2011 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2012 {
2013         struct vcpu_vmx *vmx =
2014                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2015
2016         vmx->nested.preemption_timer_expired = true;
2017         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2018         kvm_vcpu_kick(&vmx->vcpu);
2019
2020         return HRTIMER_NORESTART;
2021 }
2022
2023 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2024 {
2025         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2026         struct vcpu_vmx *vmx = to_vmx(vcpu);
2027
2028         /*
2029          * A timer value of zero is architecturally guaranteed to cause
2030          * a VMExit prior to executing any instructions in the guest.
2031          */
2032         if (preemption_timeout == 0) {
2033                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2034                 return;
2035         }
2036
2037         if (vcpu->arch.virtual_tsc_khz == 0)
2038                 return;
2039
2040         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2041         preemption_timeout *= 1000000;
2042         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2043         hrtimer_start(&vmx->nested.preemption_timer,
2044                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2045 }
2046
2047 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2048 {
2049         if (vmx->nested.nested_run_pending &&
2050             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2051                 return vmcs12->guest_ia32_efer;
2052         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2053                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2054         else
2055                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2056 }
2057
2058 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2059 {
2060         /*
2061          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2062          * according to L0's settings (vmcs12 is irrelevant here).  Host
2063          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2064          * will be set as needed prior to VMLAUNCH/VMRESUME.
2065          */
2066         if (vmx->nested.vmcs02_initialized)
2067                 return;
2068         vmx->nested.vmcs02_initialized = true;
2069
2070         /*
2071          * We don't care what the EPTP value is we just need to guarantee
2072          * it's valid so we don't get a false positive when doing early
2073          * consistency checks.
2074          */
2075         if (enable_ept && nested_early_check)
2076                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2077
2078         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2079         if (cpu_has_vmx_vmfunc())
2080                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2081
2082         if (cpu_has_vmx_posted_intr())
2083                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2084
2085         if (cpu_has_vmx_msr_bitmap())
2086                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2087
2088         /*
2089          * The PML address never changes, so it is constant in vmcs02.
2090          * Conceptually we want to copy the PML index from vmcs01 here,
2091          * and then back to vmcs01 on nested vmexit.  But since we flush
2092          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2093          * index is also effectively constant in vmcs02.
2094          */
2095         if (enable_pml) {
2096                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2097                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2098         }
2099
2100         if (cpu_has_vmx_encls_vmexit())
2101                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2102
2103         /*
2104          * Set the MSR load/store lists to match L0's settings.  Only the
2105          * addresses are constant (for vmcs02), the counts can change based
2106          * on L2's behavior, e.g. switching to/from long mode.
2107          */
2108         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2109         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2110         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2111
2112         vmx_set_constant_host_state(vmx);
2113 }
2114
2115 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2116                                       struct vmcs12 *vmcs12)
2117 {
2118         prepare_vmcs02_constant_state(vmx);
2119
2120         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2121
2122         if (enable_vpid) {
2123                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2124                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2125                 else
2126                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2127         }
2128 }
2129
2130 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2131 {
2132         u32 exec_control, vmcs12_exec_ctrl;
2133         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2134
2135         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2136                 prepare_vmcs02_early_rare(vmx, vmcs12);
2137
2138         /*
2139          * PIN CONTROLS
2140          */
2141         exec_control = vmx_pin_based_exec_ctrl(vmx);
2142         exec_control |= (vmcs12->pin_based_vm_exec_control &
2143                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2144
2145         /* Posted interrupts setting is only taken from vmcs12.  */
2146         if (nested_cpu_has_posted_intr(vmcs12)) {
2147                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2148                 vmx->nested.pi_pending = false;
2149         } else {
2150                 exec_control &= ~PIN_BASED_POSTED_INTR;
2151         }
2152         pin_controls_set(vmx, exec_control);
2153
2154         /*
2155          * EXEC CONTROLS
2156          */
2157         exec_control = vmx_exec_control(vmx); /* L0's desires */
2158         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2159         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2160         exec_control &= ~CPU_BASED_TPR_SHADOW;
2161         exec_control |= vmcs12->cpu_based_vm_exec_control;
2162
2163         vmx->nested.l1_tpr_threshold = -1;
2164         if (exec_control & CPU_BASED_TPR_SHADOW)
2165                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2166 #ifdef CONFIG_X86_64
2167         else
2168                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2169                                 CPU_BASED_CR8_STORE_EXITING;
2170 #endif
2171
2172         /*
2173          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2174          * for I/O port accesses.
2175          */
2176         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2177         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2178
2179         /*
2180          * This bit will be computed in nested_get_vmcs12_pages, because
2181          * we do not have access to L1's MSR bitmap yet.  For now, keep
2182          * the same bit as before, hoping to avoid multiple VMWRITEs that
2183          * only set/clear this bit.
2184          */
2185         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2186         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2187
2188         exec_controls_set(vmx, exec_control);
2189
2190         /*
2191          * SECONDARY EXEC CONTROLS
2192          */
2193         if (cpu_has_secondary_exec_ctrls()) {
2194                 exec_control = vmx->secondary_exec_control;
2195
2196                 /* Take the following fields only from vmcs12 */
2197                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2198                                   SECONDARY_EXEC_ENABLE_INVPCID |
2199                                   SECONDARY_EXEC_RDTSCP |
2200                                   SECONDARY_EXEC_XSAVES |
2201                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2202                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2203                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2204                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2205                 if (nested_cpu_has(vmcs12,
2206                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2207                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2208                                 ~SECONDARY_EXEC_ENABLE_PML;
2209                         exec_control |= vmcs12_exec_ctrl;
2210                 }
2211
2212                 /* VMCS shadowing for L2 is emulated for now */
2213                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2214
2215                 /*
2216                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2217                  * will not have to rewrite the controls just for this bit.
2218                  */
2219                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2220                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2221                         exec_control |= SECONDARY_EXEC_DESC;
2222
2223                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2224                         vmcs_write16(GUEST_INTR_STATUS,
2225                                 vmcs12->guest_intr_status);
2226
2227                 secondary_exec_controls_set(vmx, exec_control);
2228         }
2229
2230         /*
2231          * ENTRY CONTROLS
2232          *
2233          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2234          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2235          * on the related bits (if supported by the CPU) in the hope that
2236          * we can avoid VMWrites during vmx_set_efer().
2237          */
2238         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2239                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2240         if (cpu_has_load_ia32_efer()) {
2241                 if (guest_efer & EFER_LMA)
2242                         exec_control |= VM_ENTRY_IA32E_MODE;
2243                 if (guest_efer != host_efer)
2244                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2245         }
2246         vm_entry_controls_set(vmx, exec_control);
2247
2248         /*
2249          * EXIT CONTROLS
2250          *
2251          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2252          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2253          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2254          */
2255         exec_control = vmx_vmexit_ctrl();
2256         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2257                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2258         vm_exit_controls_set(vmx, exec_control);
2259
2260         /*
2261          * Interrupt/Exception Fields
2262          */
2263         if (vmx->nested.nested_run_pending) {
2264                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2265                              vmcs12->vm_entry_intr_info_field);
2266                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2267                              vmcs12->vm_entry_exception_error_code);
2268                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2269                              vmcs12->vm_entry_instruction_len);
2270                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2271                              vmcs12->guest_interruptibility_info);
2272                 vmx->loaded_vmcs->nmi_known_unmasked =
2273                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2274         } else {
2275                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2276         }
2277 }
2278
2279 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2280 {
2281         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2282
2283         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2284                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2285                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2286                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2287                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2288                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2289                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2290                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2291                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2292                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2293                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2294                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2295                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2296                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2297                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2298                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2299                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2300                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2301                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2302                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2303                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2304                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2305                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2306                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2307                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2308                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2309                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2310                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2311                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2312                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2313                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2314                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2315                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2316                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2317                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2318                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2319                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2320                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2321         }
2322
2323         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2324                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2325                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2326                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2327                             vmcs12->guest_pending_dbg_exceptions);
2328                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2329                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2330
2331                 /*
2332                  * L1 may access the L2's PDPTR, so save them to construct
2333                  * vmcs12
2334                  */
2335                 if (enable_ept) {
2336                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2337                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2338                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2339                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2340                 }
2341
2342                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2343                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2344                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2345         }
2346
2347         if (nested_cpu_has_xsaves(vmcs12))
2348                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2349
2350         /*
2351          * Whether page-faults are trapped is determined by a combination of
2352          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2353          * If enable_ept, L0 doesn't care about page faults and we should
2354          * set all of these to L1's desires. However, if !enable_ept, L0 does
2355          * care about (at least some) page faults, and because it is not easy
2356          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2357          * to exit on each and every L2 page fault. This is done by setting
2358          * MASK=MATCH=0 and (see below) EB.PF=1.
2359          * Note that below we don't need special code to set EB.PF beyond the
2360          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2361          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2362          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2363          */
2364         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2365                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2366         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2367                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2368
2369         if (cpu_has_vmx_apicv()) {
2370                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2371                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2372                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2373                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2374         }
2375
2376         /*
2377          * Make sure the msr_autostore list is up to date before we set the
2378          * count in the vmcs02.
2379          */
2380         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2381
2382         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2383         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2384         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2385
2386         set_cr4_guest_host_mask(vmx);
2387 }
2388
2389 /*
2390  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2391  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2392  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2393  * guest in a way that will both be appropriate to L1's requests, and our
2394  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2395  * function also has additional necessary side-effects, like setting various
2396  * vcpu->arch fields.
2397  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2398  * is assigned to entry_failure_code on failure.
2399  */
2400 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2401                           u32 *entry_failure_code)
2402 {
2403         struct vcpu_vmx *vmx = to_vmx(vcpu);
2404         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2405         bool load_guest_pdptrs_vmcs12 = false;
2406
2407         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2408                 prepare_vmcs02_rare(vmx, vmcs12);
2409                 vmx->nested.dirty_vmcs12 = false;
2410
2411                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2412                         !(hv_evmcs->hv_clean_fields &
2413                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2414         }
2415
2416         if (vmx->nested.nested_run_pending &&
2417             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2418                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2419                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2420         } else {
2421                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2422                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2423         }
2424         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2425             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2426                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2427         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2428
2429         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2430          * bitwise-or of what L1 wants to trap for L2, and what we want to
2431          * trap. Note that CR0.TS also needs updating - we do this later.
2432          */
2433         update_exception_bitmap(vcpu);
2434         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2435         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2436
2437         if (vmx->nested.nested_run_pending &&
2438             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2439                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2440                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2441         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2442                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2443         }
2444
2445         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2446
2447         if (kvm_has_tsc_control)
2448                 decache_tsc_multiplier(vmx);
2449
2450         if (enable_vpid) {
2451                 /*
2452                  * There is no direct mapping between vpid02 and vpid12, the
2453                  * vpid02 is per-vCPU for L0 and reused while the value of
2454                  * vpid12 is changed w/ one invvpid during nested vmentry.
2455                  * The vpid12 is allocated by L1 for L2, so it will not
2456                  * influence global bitmap(for vpid01 and vpid02 allocation)
2457                  * even if spawn a lot of nested vCPUs.
2458                  */
2459                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2460                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2461                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2462                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2463                         }
2464                 } else {
2465                         /*
2466                          * If L1 use EPT, then L0 needs to execute INVEPT on
2467                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2468                          * flush until vmcs02->eptp is fully updated by
2469                          * KVM_REQ_LOAD_MMU_PGD. Note that this assumes
2470                          * KVM_REQ_TLB_FLUSH is evaluated after
2471                          * KVM_REQ_LOAD_MMU_PGD in vcpu_enter_guest().
2472                          */
2473                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2474                 }
2475         }
2476
2477         if (nested_cpu_has_ept(vmcs12))
2478                 nested_ept_init_mmu_context(vcpu);
2479
2480         /*
2481          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2482          * bits which we consider mandatory enabled.
2483          * The CR0_READ_SHADOW is what L2 should have expected to read given
2484          * the specifications by L1; It's not enough to take
2485          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2486          * have more bits than L1 expected.
2487          */
2488         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2489         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2490
2491         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2492         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2493
2494         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2495         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2496         vmx_set_efer(vcpu, vcpu->arch.efer);
2497
2498         /*
2499          * Guest state is invalid and unrestricted guest is disabled,
2500          * which means L1 attempted VMEntry to L2 with invalid state.
2501          * Fail the VMEntry.
2502          */
2503         if (vmx->emulation_required) {
2504                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2505                 return -EINVAL;
2506         }
2507
2508         /* Shadow page tables on either EPT or shadow page tables. */
2509         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2510                                 entry_failure_code))
2511                 return -EINVAL;
2512
2513         /*
2514          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2515          * on nested VM-Exit, which can occur without actually running L2 and
2516          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2517          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2518          * transition to HLT instead of running L2.
2519          */
2520         if (enable_ept)
2521                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2522
2523         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2524         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2525             is_pae_paging(vcpu)) {
2526                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2527                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2528                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2529                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2530         }
2531
2532         if (!enable_ept)
2533                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2534
2535         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2536             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2537                                      vmcs12->guest_ia32_perf_global_ctrl)))
2538                 return -EINVAL;
2539
2540         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2541         kvm_rip_write(vcpu, vmcs12->guest_rip);
2542         return 0;
2543 }
2544
2545 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2546 {
2547         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2548                nested_cpu_has_virtual_nmis(vmcs12)))
2549                 return -EINVAL;
2550
2551         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2552                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2553                 return -EINVAL;
2554
2555         return 0;
2556 }
2557
2558 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2559 {
2560         struct vcpu_vmx *vmx = to_vmx(vcpu);
2561         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2562
2563         /* Check for memory type validity */
2564         switch (new_eptp & VMX_EPTP_MT_MASK) {
2565         case VMX_EPTP_MT_UC:
2566                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2567                         return false;
2568                 break;
2569         case VMX_EPTP_MT_WB:
2570                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2571                         return false;
2572                 break;
2573         default:
2574                 return false;
2575         }
2576
2577         /* Page-walk levels validity. */
2578         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2579         case VMX_EPTP_PWL_5:
2580                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2581                         return false;
2582                 break;
2583         case VMX_EPTP_PWL_4:
2584                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2585                         return false;
2586                 break;
2587         default:
2588                 return false;
2589         }
2590
2591         /* Reserved bits should not be set */
2592         if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2593                 return false;
2594
2595         /* AD, if set, should be supported */
2596         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2597                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2598                         return false;
2599         }
2600
2601         return true;
2602 }
2603
2604 /*
2605  * Checks related to VM-Execution Control Fields
2606  */
2607 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2608                                               struct vmcs12 *vmcs12)
2609 {
2610         struct vcpu_vmx *vmx = to_vmx(vcpu);
2611
2612         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2613                                    vmx->nested.msrs.pinbased_ctls_low,
2614                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2615             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2616                                    vmx->nested.msrs.procbased_ctls_low,
2617                                    vmx->nested.msrs.procbased_ctls_high)))
2618                 return -EINVAL;
2619
2620         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2621             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2622                                    vmx->nested.msrs.secondary_ctls_low,
2623                                    vmx->nested.msrs.secondary_ctls_high)))
2624                 return -EINVAL;
2625
2626         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2627             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2628             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2629             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2630             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2631             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2632             nested_vmx_check_nmi_controls(vmcs12) ||
2633             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2634             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2635             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2636             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2637             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2638                 return -EINVAL;
2639
2640         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2641             nested_cpu_has_save_preemption_timer(vmcs12))
2642                 return -EINVAL;
2643
2644         if (nested_cpu_has_ept(vmcs12) &&
2645             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2646                 return -EINVAL;
2647
2648         if (nested_cpu_has_vmfunc(vmcs12)) {
2649                 if (CC(vmcs12->vm_function_control &
2650                        ~vmx->nested.msrs.vmfunc_controls))
2651                         return -EINVAL;
2652
2653                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2654                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2655                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2656                                 return -EINVAL;
2657                 }
2658         }
2659
2660         return 0;
2661 }
2662
2663 /*
2664  * Checks related to VM-Exit Control Fields
2665  */
2666 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2667                                          struct vmcs12 *vmcs12)
2668 {
2669         struct vcpu_vmx *vmx = to_vmx(vcpu);
2670
2671         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2672                                     vmx->nested.msrs.exit_ctls_low,
2673                                     vmx->nested.msrs.exit_ctls_high)) ||
2674             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2675                 return -EINVAL;
2676
2677         return 0;
2678 }
2679
2680 /*
2681  * Checks related to VM-Entry Control Fields
2682  */
2683 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2684                                           struct vmcs12 *vmcs12)
2685 {
2686         struct vcpu_vmx *vmx = to_vmx(vcpu);
2687
2688         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2689                                     vmx->nested.msrs.entry_ctls_low,
2690                                     vmx->nested.msrs.entry_ctls_high)))
2691                 return -EINVAL;
2692
2693         /*
2694          * From the Intel SDM, volume 3:
2695          * Fields relevant to VM-entry event injection must be set properly.
2696          * These fields are the VM-entry interruption-information field, the
2697          * VM-entry exception error code, and the VM-entry instruction length.
2698          */
2699         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2700                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2701                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2702                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2703                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2704                 bool should_have_error_code;
2705                 bool urg = nested_cpu_has2(vmcs12,
2706                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2707                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2708
2709                 /* VM-entry interruption-info field: interruption type */
2710                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2711                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2712                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2713                         return -EINVAL;
2714
2715                 /* VM-entry interruption-info field: vector */
2716                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2717                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2718                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2719                         return -EINVAL;
2720
2721                 /* VM-entry interruption-info field: deliver error code */
2722                 should_have_error_code =
2723                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2724                         x86_exception_has_error_code(vector);
2725                 if (CC(has_error_code != should_have_error_code))
2726                         return -EINVAL;
2727
2728                 /* VM-entry exception error code */
2729                 if (CC(has_error_code &&
2730                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2731                         return -EINVAL;
2732
2733                 /* VM-entry interruption-info field: reserved bits */
2734                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2735                         return -EINVAL;
2736
2737                 /* VM-entry instruction length */
2738                 switch (intr_type) {
2739                 case INTR_TYPE_SOFT_EXCEPTION:
2740                 case INTR_TYPE_SOFT_INTR:
2741                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2742                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2743                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2744                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2745                                 return -EINVAL;
2746                 }
2747         }
2748
2749         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2750                 return -EINVAL;
2751
2752         return 0;
2753 }
2754
2755 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2756                                      struct vmcs12 *vmcs12)
2757 {
2758         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2759             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2760             nested_check_vm_entry_controls(vcpu, vmcs12))
2761                 return -EINVAL;
2762
2763         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2764                 return nested_evmcs_check_controls(vmcs12);
2765
2766         return 0;
2767 }
2768
2769 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2770                                        struct vmcs12 *vmcs12)
2771 {
2772         bool ia32e;
2773
2774         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2775             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2776             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2777                 return -EINVAL;
2778
2779         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2780             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2781                 return -EINVAL;
2782
2783         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2784             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2785                 return -EINVAL;
2786
2787         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2788             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2789                                            vmcs12->host_ia32_perf_global_ctrl)))
2790                 return -EINVAL;
2791
2792 #ifdef CONFIG_X86_64
2793         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2794 #else
2795         ia32e = false;
2796 #endif
2797
2798         if (ia32e) {
2799                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2800                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2801                         return -EINVAL;
2802         } else {
2803                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2804                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2805                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2806                     CC((vmcs12->host_rip) >> 32))
2807                         return -EINVAL;
2808         }
2809
2810         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2812             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2813             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2814             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2816             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2817             CC(vmcs12->host_cs_selector == 0) ||
2818             CC(vmcs12->host_tr_selector == 0) ||
2819             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2820                 return -EINVAL;
2821
2822         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2823             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2824             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2825             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2826             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2827             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2828                 return -EINVAL;
2829
2830         /*
2831          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2832          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2833          * the values of the LMA and LME bits in the field must each be that of
2834          * the host address-space size VM-exit control.
2835          */
2836         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2837                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2838                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2839                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2840                         return -EINVAL;
2841         }
2842
2843         return 0;
2844 }
2845
2846 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2847                                           struct vmcs12 *vmcs12)
2848 {
2849         int r = 0;
2850         struct vmcs12 *shadow;
2851         struct kvm_host_map map;
2852
2853         if (vmcs12->vmcs_link_pointer == -1ull)
2854                 return 0;
2855
2856         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2857                 return -EINVAL;
2858
2859         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2860                 return -EINVAL;
2861
2862         shadow = map.hva;
2863
2864         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2865             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2866                 r = -EINVAL;
2867
2868         kvm_vcpu_unmap(vcpu, &map, false);
2869         return r;
2870 }
2871
2872 /*
2873  * Checks related to Guest Non-register State
2874  */
2875 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2876 {
2877         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2878                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2879                 return -EINVAL;
2880
2881         return 0;
2882 }
2883
2884 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2885                                         struct vmcs12 *vmcs12,
2886                                         u32 *exit_qual)
2887 {
2888         bool ia32e;
2889
2890         *exit_qual = ENTRY_FAIL_DEFAULT;
2891
2892         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2893             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2894                 return -EINVAL;
2895
2896         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2897             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2898                 return -EINVAL;
2899
2900         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2901             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2902                 return -EINVAL;
2903
2904         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2905                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2906                 return -EINVAL;
2907         }
2908
2909         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2910             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2911                                            vmcs12->guest_ia32_perf_global_ctrl)))
2912                 return -EINVAL;
2913
2914         /*
2915          * If the load IA32_EFER VM-entry control is 1, the following checks
2916          * are performed on the field for the IA32_EFER MSR:
2917          * - Bits reserved in the IA32_EFER MSR must be 0.
2918          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2919          *   the IA-32e mode guest VM-exit control. It must also be identical
2920          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2921          *   CR0.PG) is 1.
2922          */
2923         if (to_vmx(vcpu)->nested.nested_run_pending &&
2924             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2925                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2926                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2927                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2928                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2929                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2930                         return -EINVAL;
2931         }
2932
2933         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2934             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2935              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2936                 return -EINVAL;
2937
2938         if (nested_check_guest_non_reg_state(vmcs12))
2939                 return -EINVAL;
2940
2941         return 0;
2942 }
2943
2944 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2945 {
2946         struct vcpu_vmx *vmx = to_vmx(vcpu);
2947         unsigned long cr3, cr4;
2948         bool vm_fail;
2949
2950         if (!nested_early_check)
2951                 return 0;
2952
2953         if (vmx->msr_autoload.host.nr)
2954                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2955         if (vmx->msr_autoload.guest.nr)
2956                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2957
2958         preempt_disable();
2959
2960         vmx_prepare_switch_to_guest(vcpu);
2961
2962         /*
2963          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2964          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2965          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
2966          * there is no need to preserve other bits or save/restore the field.
2967          */
2968         vmcs_writel(GUEST_RFLAGS, 0);
2969
2970         cr3 = __get_current_cr3_fast();
2971         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2972                 vmcs_writel(HOST_CR3, cr3);
2973                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2974         }
2975
2976         cr4 = cr4_read_shadow();
2977         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2978                 vmcs_writel(HOST_CR4, cr4);
2979                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2980         }
2981
2982         asm(
2983                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2984                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2985                 "je 1f \n\t"
2986                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2987                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2988                 "1: \n\t"
2989                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2990
2991                 /* Check if vmlaunch or vmresume is needed */
2992                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2993
2994                 /*
2995                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2996                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2997                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2998                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2999                  */
3000                 "call vmx_vmenter\n\t"
3001
3002                 CC_SET(be)
3003               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3004               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
3005                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3006                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3007                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3008                 [wordsize]"i"(sizeof(ulong))
3009               : "memory"
3010         );
3011
3012         if (vmx->msr_autoload.host.nr)
3013                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3014         if (vmx->msr_autoload.guest.nr)
3015                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3016
3017         if (vm_fail) {
3018                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3019
3020                 preempt_enable();
3021
3022                 trace_kvm_nested_vmenter_failed(
3023                         "early hardware check VM-instruction error: ", error);
3024                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3025                 return 1;
3026         }
3027
3028         /*
3029          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3030          */
3031         local_irq_enable();
3032         if (hw_breakpoint_active())
3033                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3034         preempt_enable();
3035
3036         /*
3037          * A non-failing VMEntry means we somehow entered guest mode with
3038          * an illegal RIP, and that's just the tip of the iceberg.  There
3039          * is no telling what memory has been modified or what state has
3040          * been exposed to unknown code.  Hitting this all but guarantees
3041          * a (very critical) hardware issue.
3042          */
3043         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3044                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3045
3046         return 0;
3047 }
3048
3049 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3050 {
3051         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3052         struct vcpu_vmx *vmx = to_vmx(vcpu);
3053         struct kvm_host_map *map;
3054         struct page *page;
3055         u64 hpa;
3056
3057         /*
3058          * hv_evmcs may end up being not mapped after migration (when
3059          * L2 was running), map it here to make sure vmcs12 changes are
3060          * properly reflected.
3061          */
3062         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3063                 enum nested_evmptrld_status evmptrld_status =
3064                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3065
3066                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3067                     evmptrld_status == EVMPTRLD_ERROR) {
3068                         pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3069                                              __func__);
3070                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3071                         vcpu->run->internal.suberror =
3072                                 KVM_INTERNAL_ERROR_EMULATION;
3073                         vcpu->run->internal.ndata = 0;
3074                         return false;
3075                 }
3076         }
3077
3078         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3079                 /*
3080                  * Translate L1 physical address to host physical
3081                  * address for vmcs02. Keep the page pinned, so this
3082                  * physical address remains valid. We keep a reference
3083                  * to it so we can release it later.
3084                  */
3085                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3086                         kvm_release_page_clean(vmx->nested.apic_access_page);
3087                         vmx->nested.apic_access_page = NULL;
3088                 }
3089                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3090                 if (!is_error_page(page)) {
3091                         vmx->nested.apic_access_page = page;
3092                         hpa = page_to_phys(vmx->nested.apic_access_page);
3093                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3094                 } else {
3095                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3096                                              __func__);
3097                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3098                         vcpu->run->internal.suberror =
3099                                 KVM_INTERNAL_ERROR_EMULATION;
3100                         vcpu->run->internal.ndata = 0;
3101                         return false;
3102                 }
3103         }
3104
3105         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3106                 map = &vmx->nested.virtual_apic_map;
3107
3108                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3109                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3110                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3111                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3112                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3113                         /*
3114                          * The processor will never use the TPR shadow, simply
3115                          * clear the bit from the execution control.  Such a
3116                          * configuration is useless, but it happens in tests.
3117                          * For any other configuration, failing the vm entry is
3118                          * _not_ what the processor does but it's basically the
3119                          * only possibility we have.
3120                          */
3121                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3122                 } else {
3123                         /*
3124                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3125                          * force VM-Entry to fail.
3126                          */
3127                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3128                 }
3129         }
3130
3131         if (nested_cpu_has_posted_intr(vmcs12)) {
3132                 map = &vmx->nested.pi_desc_map;
3133
3134                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3135                         vmx->nested.pi_desc =
3136                                 (struct pi_desc *)(((void *)map->hva) +
3137                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3138                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3139                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3140                 }
3141         }
3142         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3143                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3144         else
3145                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3146         return true;
3147 }
3148
3149 /*
3150  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3151  * for running VMX instructions (except VMXON, whose prerequisites are
3152  * slightly different). It also specifies what exception to inject otherwise.
3153  * Note that many of these exceptions have priority over VM exits, so they
3154  * don't have to be checked again here.
3155  */
3156 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3157 {
3158         if (!to_vmx(vcpu)->nested.vmxon) {
3159                 kvm_queue_exception(vcpu, UD_VECTOR);
3160                 return 0;
3161         }
3162
3163         if (vmx_get_cpl(vcpu)) {
3164                 kvm_inject_gp(vcpu, 0);
3165                 return 0;
3166         }
3167
3168         return 1;
3169 }
3170
3171 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3172 {
3173         u8 rvi = vmx_get_rvi();
3174         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3175
3176         return ((rvi & 0xf0) > (vppr & 0xf0));
3177 }
3178
3179 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3180                                    struct vmcs12 *vmcs12);
3181
3182 /*
3183  * If from_vmentry is false, this is being called from state restore (either RSM
3184  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3185  *
3186  * Returns:
3187  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3188  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3189  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3190  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3191  */
3192 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3193                                                         bool from_vmentry)
3194 {
3195         struct vcpu_vmx *vmx = to_vmx(vcpu);
3196         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3197         bool evaluate_pending_interrupts;
3198         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3199         u32 exit_qual;
3200
3201         evaluate_pending_interrupts = exec_controls_get(vmx) &
3202                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3203         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3204                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3205
3206         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3207                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3208         if (kvm_mpx_supported() &&
3209                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3210                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3211
3212         /*
3213          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3214          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3215          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3216          * software model to the pre-VMEntry host state.  When EPT is disabled,
3217          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3218          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3219          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3220          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3221          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3222          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3223          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3224          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3225          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3226          * path would need to manually save/restore vmcs01.GUEST_CR3.
3227          */
3228         if (!enable_ept && !nested_early_check)
3229                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3230
3231         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3232
3233         prepare_vmcs02_early(vmx, vmcs12);
3234
3235         if (from_vmentry) {
3236                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3237                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3238
3239                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3240                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3241                         return NVMX_VMENTRY_VMFAIL;
3242                 }
3243
3244                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3245                         goto vmentry_fail_vmexit;
3246         }
3247
3248         enter_guest_mode(vcpu);
3249         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3250                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3251
3252         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3253                 goto vmentry_fail_vmexit_guest_mode;
3254
3255         if (from_vmentry) {
3256                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3257                 exit_qual = nested_vmx_load_msr(vcpu,
3258                                                 vmcs12->vm_entry_msr_load_addr,
3259                                                 vmcs12->vm_entry_msr_load_count);
3260                 if (exit_qual)
3261                         goto vmentry_fail_vmexit_guest_mode;
3262         } else {
3263                 /*
3264                  * The MMU is not initialized to point at the right entities yet and
3265                  * "get pages" would need to read data from the guest (i.e. we will
3266                  * need to perform gpa to hpa translation). Request a call
3267                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3268                  * have already been set at vmentry time and should not be reset.
3269                  */
3270                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3271         }
3272
3273         /*
3274          * If L1 had a pending IRQ/NMI until it executed
3275          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3276          * disallowed (e.g. interrupts disabled), L0 needs to
3277          * evaluate if this pending event should cause an exit from L2
3278          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3279          * intercept EXTERNAL_INTERRUPT).
3280          *
3281          * Usually this would be handled by the processor noticing an
3282          * IRQ/NMI window request, or checking RVI during evaluation of
3283          * pending virtual interrupts.  However, this setting was done
3284          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3285          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3286          */
3287         if (unlikely(evaluate_pending_interrupts))
3288                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3289
3290         /*
3291          * Do not start the preemption timer hrtimer until after we know
3292          * we are successful, so that only nested_vmx_vmexit needs to cancel
3293          * the timer.
3294          */
3295         vmx->nested.preemption_timer_expired = false;
3296         if (nested_cpu_has_preemption_timer(vmcs12))
3297                 vmx_start_preemption_timer(vcpu);
3298
3299         /*
3300          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3301          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3302          * returned as far as L1 is concerned. It will only return (and set
3303          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3304          */
3305         return NVMX_VMENTRY_SUCCESS;
3306
3307         /*
3308          * A failed consistency check that leads to a VMExit during L1's
3309          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3310          * 26.7 "VM-entry failures during or after loading guest state".
3311          */
3312 vmentry_fail_vmexit_guest_mode:
3313         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3314                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3315         leave_guest_mode(vcpu);
3316
3317 vmentry_fail_vmexit:
3318         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3319
3320         if (!from_vmentry)
3321                 return NVMX_VMENTRY_VMEXIT;
3322
3323         load_vmcs12_host_state(vcpu, vmcs12);
3324         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3325         vmcs12->exit_qualification = exit_qual;
3326         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3327                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3328         return NVMX_VMENTRY_VMEXIT;
3329 }
3330
3331 /*
3332  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3333  * for running an L2 nested guest.
3334  */
3335 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3336 {
3337         struct vmcs12 *vmcs12;
3338         enum nvmx_vmentry_status status;
3339         struct vcpu_vmx *vmx = to_vmx(vcpu);
3340         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3341         enum nested_evmptrld_status evmptrld_status;
3342
3343         if (!nested_vmx_check_permission(vcpu))
3344                 return 1;
3345
3346         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3347         if (evmptrld_status == EVMPTRLD_ERROR) {
3348                 kvm_queue_exception(vcpu, UD_VECTOR);
3349                 return 1;
3350         } else if (evmptrld_status == EVMPTRLD_VMFAIL) {
3351                 return nested_vmx_failInvalid(vcpu);
3352         }
3353
3354         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3355                 return nested_vmx_failInvalid(vcpu);
3356
3357         vmcs12 = get_vmcs12(vcpu);
3358
3359         /*
3360          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3361          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3362          * rather than RFLAGS.ZF, and no error number is stored to the
3363          * VM-instruction error field.
3364          */
3365         if (vmcs12->hdr.shadow_vmcs)
3366                 return nested_vmx_failInvalid(vcpu);
3367
3368         if (vmx->nested.hv_evmcs) {
3369                 copy_enlightened_to_vmcs12(vmx);
3370                 /* Enlightened VMCS doesn't have launch state */
3371                 vmcs12->launch_state = !launch;
3372         } else if (enable_shadow_vmcs) {
3373                 copy_shadow_to_vmcs12(vmx);
3374         }
3375
3376         /*
3377          * The nested entry process starts with enforcing various prerequisites
3378          * on vmcs12 as required by the Intel SDM, and act appropriately when
3379          * they fail: As the SDM explains, some conditions should cause the
3380          * instruction to fail, while others will cause the instruction to seem
3381          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3382          * To speed up the normal (success) code path, we should avoid checking
3383          * for misconfigurations which will anyway be caught by the processor
3384          * when using the merged vmcs02.
3385          */
3386         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3387                 return nested_vmx_failValid(vcpu,
3388                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3389
3390         if (vmcs12->launch_state == launch)
3391                 return nested_vmx_failValid(vcpu,
3392                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3393                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3394
3395         if (nested_vmx_check_controls(vcpu, vmcs12))
3396                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3397
3398         if (nested_vmx_check_host_state(vcpu, vmcs12))
3399                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3400
3401         /*
3402          * We're finally done with prerequisite checking, and can start with
3403          * the nested entry.
3404          */
3405         vmx->nested.nested_run_pending = 1;
3406         status = nested_vmx_enter_non_root_mode(vcpu, true);
3407         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3408                 goto vmentry_failed;
3409
3410         /* Hide L1D cache contents from the nested guest.  */
3411         vmx->vcpu.arch.l1tf_flush_l1d = true;
3412
3413         /*
3414          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3415          * also be used as part of restoring nVMX state for
3416          * snapshot restore (migration).
3417          *
3418          * In this flow, it is assumed that vmcs12 cache was
3419          * trasferred as part of captured nVMX state and should
3420          * therefore not be read from guest memory (which may not
3421          * exist on destination host yet).
3422          */
3423         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3424
3425         /*
3426          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3427          * awakened by event injection or by an NMI-window VM-exit or
3428          * by an interrupt-window VM-exit, halt the vcpu.
3429          */
3430         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3431             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3432             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3433             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3434               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3435                 vmx->nested.nested_run_pending = 0;
3436                 return kvm_vcpu_halt(vcpu);
3437         }
3438         return 1;
3439
3440 vmentry_failed:
3441         vmx->nested.nested_run_pending = 0;
3442         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3443                 return 0;
3444         if (status == NVMX_VMENTRY_VMEXIT)
3445                 return 1;
3446         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3447         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3448 }
3449
3450 /*
3451  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3452  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3453  * This function returns the new value we should put in vmcs12.guest_cr0.
3454  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3455  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3456  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3457  *     didn't trap the bit, because if L1 did, so would L0).
3458  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3459  *     been modified by L2, and L1 knows it. So just leave the old value of
3460  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3461  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3462  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3463  *     changed these bits, and therefore they need to be updated, but L0
3464  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3465  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3466  */
3467 static inline unsigned long
3468 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3469 {
3470         return
3471         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3472         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3473         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3474                         vcpu->arch.cr0_guest_owned_bits));
3475 }
3476
3477 static inline unsigned long
3478 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3479 {
3480         return
3481         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3482         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3483         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3484                         vcpu->arch.cr4_guest_owned_bits));
3485 }
3486
3487 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3488                                       struct vmcs12 *vmcs12)
3489 {
3490         u32 idt_vectoring;
3491         unsigned int nr;
3492
3493         if (vcpu->arch.exception.injected) {
3494                 nr = vcpu->arch.exception.nr;
3495                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3496
3497                 if (kvm_exception_is_soft(nr)) {
3498                         vmcs12->vm_exit_instruction_len =
3499                                 vcpu->arch.event_exit_inst_len;
3500                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3501                 } else
3502                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3503
3504                 if (vcpu->arch.exception.has_error_code) {
3505                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3506                         vmcs12->idt_vectoring_error_code =
3507                                 vcpu->arch.exception.error_code;
3508                 }
3509
3510                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3511         } else if (vcpu->arch.nmi_injected) {
3512                 vmcs12->idt_vectoring_info_field =
3513                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3514         } else if (vcpu->arch.interrupt.injected) {
3515                 nr = vcpu->arch.interrupt.nr;
3516                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3517
3518                 if (vcpu->arch.interrupt.soft) {
3519                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3520                         vmcs12->vm_entry_instruction_len =
3521                                 vcpu->arch.event_exit_inst_len;
3522                 } else
3523                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3524
3525                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3526         }
3527 }
3528
3529
3530 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3531 {
3532         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3533         gfn_t gfn;
3534
3535         /*
3536          * Don't need to mark the APIC access page dirty; it is never
3537          * written to by the CPU during APIC virtualization.
3538          */
3539
3540         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3541                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3542                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3543         }
3544
3545         if (nested_cpu_has_posted_intr(vmcs12)) {
3546                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3547                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3548         }
3549 }
3550
3551 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3552 {
3553         struct vcpu_vmx *vmx = to_vmx(vcpu);
3554         int max_irr;
3555         void *vapic_page;
3556         u16 status;
3557
3558         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3559                 return;
3560
3561         vmx->nested.pi_pending = false;
3562         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3563                 return;
3564
3565         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3566         if (max_irr != 256) {
3567                 vapic_page = vmx->nested.virtual_apic_map.hva;
3568                 if (!vapic_page)
3569                         return;
3570
3571                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3572                         vapic_page, &max_irr);
3573                 status = vmcs_read16(GUEST_INTR_STATUS);
3574                 if ((u8)max_irr > ((u8)status & 0xff)) {
3575                         status &= ~0xff;
3576                         status |= (u8)max_irr;
3577                         vmcs_write16(GUEST_INTR_STATUS, status);
3578                 }
3579         }
3580
3581         nested_mark_vmcs12_pages_dirty(vcpu);
3582 }
3583
3584 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3585                                                unsigned long exit_qual)
3586 {
3587         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3588         unsigned int nr = vcpu->arch.exception.nr;
3589         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3590
3591         if (vcpu->arch.exception.has_error_code) {
3592                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3593                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3594         }
3595
3596         if (kvm_exception_is_soft(nr))
3597                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3598         else
3599                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3600
3601         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3602             vmx_get_nmi_mask(vcpu))
3603                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3604
3605         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3606 }
3607
3608 /*
3609  * Returns true if a debug trap is pending delivery.
3610  *
3611  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3612  * exception may be inferred from the presence of an exception payload.
3613  */
3614 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3615 {
3616         return vcpu->arch.exception.pending &&
3617                         vcpu->arch.exception.nr == DB_VECTOR &&
3618                         vcpu->arch.exception.payload;
3619 }
3620
3621 /*
3622  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3623  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3624  * represents these debug traps with a payload that is said to be compatible
3625  * with the 'pending debug exceptions' field, write the payload to the VMCS
3626  * field if a VM-exit is delivered before the debug trap.
3627  */
3628 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3629 {
3630         if (vmx_pending_dbg_trap(vcpu))
3631                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3632                             vcpu->arch.exception.payload);
3633 }
3634
3635 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3636 {
3637         struct vcpu_vmx *vmx = to_vmx(vcpu);
3638         unsigned long exit_qual;
3639         bool block_nested_events =
3640             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3641         bool mtf_pending = vmx->nested.mtf_pending;
3642         struct kvm_lapic *apic = vcpu->arch.apic;
3643
3644         /*
3645          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3646          * this state is discarded.
3647          */
3648         if (!block_nested_events)
3649                 vmx->nested.mtf_pending = false;
3650
3651         if (lapic_in_kernel(vcpu) &&
3652                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3653                 if (block_nested_events)
3654                         return -EBUSY;
3655                 nested_vmx_update_pending_dbg(vcpu);
3656                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3657                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3658                 return 0;
3659         }
3660
3661         /*
3662          * Process any exceptions that are not debug traps before MTF.
3663          */
3664         if (vcpu->arch.exception.pending &&
3665             !vmx_pending_dbg_trap(vcpu) &&
3666             nested_vmx_check_exception(vcpu, &exit_qual)) {
3667                 if (block_nested_events)
3668                         return -EBUSY;
3669                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3670                 return 0;
3671         }
3672
3673         if (mtf_pending) {
3674                 if (block_nested_events)
3675                         return -EBUSY;
3676                 nested_vmx_update_pending_dbg(vcpu);
3677                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3678                 return 0;
3679         }
3680
3681         if (vcpu->arch.exception.pending &&
3682             nested_vmx_check_exception(vcpu, &exit_qual)) {
3683                 if (block_nested_events)
3684                         return -EBUSY;
3685                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3686                 return 0;
3687         }
3688
3689         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3690             vmx->nested.preemption_timer_expired) {
3691                 if (block_nested_events)
3692                         return -EBUSY;
3693                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3694                 return 0;
3695         }
3696
3697         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3698                 if (block_nested_events)
3699                         return -EBUSY;
3700                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3701                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3702                                   INTR_INFO_VALID_MASK, 0);
3703                 /*
3704                  * The NMI-triggered VM exit counts as injection:
3705                  * clear this one and block further NMIs.
3706                  */
3707                 vcpu->arch.nmi_pending = 0;
3708                 vmx_set_nmi_mask(vcpu, true);
3709                 return 0;
3710         }
3711
3712         if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
3713                 if (block_nested_events)
3714                         return -EBUSY;
3715                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3716                 return 0;
3717         }
3718
3719         vmx_complete_nested_posted_interrupt(vcpu);
3720         return 0;
3721 }
3722
3723 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3724 {
3725         ktime_t remaining =
3726                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3727         u64 value;
3728
3729         if (ktime_to_ns(remaining) <= 0)
3730                 return 0;
3731
3732         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3733         do_div(value, 1000000);
3734         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3735 }
3736
3737 static bool is_vmcs12_ext_field(unsigned long field)
3738 {
3739         switch (field) {
3740         case GUEST_ES_SELECTOR:
3741         case GUEST_CS_SELECTOR:
3742         case GUEST_SS_SELECTOR:
3743         case GUEST_DS_SELECTOR:
3744         case GUEST_FS_SELECTOR:
3745         case GUEST_GS_SELECTOR:
3746         case GUEST_LDTR_SELECTOR:
3747         case GUEST_TR_SELECTOR:
3748         case GUEST_ES_LIMIT:
3749         case GUEST_CS_LIMIT:
3750         case GUEST_SS_LIMIT:
3751         case GUEST_DS_LIMIT:
3752         case GUEST_FS_LIMIT:
3753         case GUEST_GS_LIMIT:
3754         case GUEST_LDTR_LIMIT:
3755         case GUEST_TR_LIMIT:
3756         case GUEST_GDTR_LIMIT:
3757         case GUEST_IDTR_LIMIT:
3758         case GUEST_ES_AR_BYTES:
3759         case GUEST_DS_AR_BYTES:
3760         case GUEST_FS_AR_BYTES:
3761         case GUEST_GS_AR_BYTES:
3762         case GUEST_LDTR_AR_BYTES:
3763         case GUEST_TR_AR_BYTES:
3764         case GUEST_ES_BASE:
3765         case GUEST_CS_BASE:
3766         case GUEST_SS_BASE:
3767         case GUEST_DS_BASE:
3768         case GUEST_FS_BASE:
3769         case GUEST_GS_BASE:
3770         case GUEST_LDTR_BASE:
3771         case GUEST_TR_BASE:
3772         case GUEST_GDTR_BASE:
3773         case GUEST_IDTR_BASE:
3774         case GUEST_PENDING_DBG_EXCEPTIONS:
3775         case GUEST_BNDCFGS:
3776                 return true;
3777         default:
3778                 break;
3779         }
3780
3781         return false;
3782 }
3783
3784 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3785                                        struct vmcs12 *vmcs12)
3786 {
3787         struct vcpu_vmx *vmx = to_vmx(vcpu);
3788
3789         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3790         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3791         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3792         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3793         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3794         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3795         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3796         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3797         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3798         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3799         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3800         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3801         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3802         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3803         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3804         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3805         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3806         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3807         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3808         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3809         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3810         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3811         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3812         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3813         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3814         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3815         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3816         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3817         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3818         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3819         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3820         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3821         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3822         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3823         vmcs12->guest_pending_dbg_exceptions =
3824                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3825         if (kvm_mpx_supported())
3826                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3827
3828         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3829 }
3830
3831 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3832                                        struct vmcs12 *vmcs12)
3833 {
3834         struct vcpu_vmx *vmx = to_vmx(vcpu);
3835         int cpu;
3836
3837         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3838                 return;
3839
3840
3841         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3842
3843         cpu = get_cpu();
3844         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3845         vmx_vcpu_load(&vmx->vcpu, cpu);
3846
3847         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3848
3849         vmx->loaded_vmcs = &vmx->vmcs01;
3850         vmx_vcpu_load(&vmx->vcpu, cpu);
3851         put_cpu();
3852 }
3853
3854 /*
3855  * Update the guest state fields of vmcs12 to reflect changes that
3856  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3857  * VM-entry controls is also updated, since this is really a guest
3858  * state bit.)
3859  */
3860 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3861 {
3862         struct vcpu_vmx *vmx = to_vmx(vcpu);
3863
3864         if (vmx->nested.hv_evmcs)
3865                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3866
3867         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3868
3869         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3870         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3871
3872         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3873         vmcs12->guest_rip = kvm_rip_read(vcpu);
3874         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3875
3876         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3877         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3878
3879         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3880         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3881         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3882
3883         vmcs12->guest_interruptibility_info =
3884                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3885
3886         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3887                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3888         else
3889                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3890
3891         if (nested_cpu_has_preemption_timer(vmcs12) &&
3892             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3893                         vmcs12->vmx_preemption_timer_value =
3894                                 vmx_get_preemption_timer_value(vcpu);
3895
3896         /*
3897          * In some cases (usually, nested EPT), L2 is allowed to change its
3898          * own CR3 without exiting. If it has changed it, we must keep it.
3899          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3900          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3901          *
3902          * Additionally, restore L2's PDPTR to vmcs12.
3903          */
3904         if (enable_ept) {
3905                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3906                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3907                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3908                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3909                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3910                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3911                 }
3912         }
3913
3914         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3915
3916         if (nested_cpu_has_vid(vmcs12))
3917                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3918
3919         vmcs12->vm_entry_controls =
3920                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3921                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3922
3923         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3924                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3925
3926         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3927                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3928 }
3929
3930 /*
3931  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3932  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3933  * and this function updates it to reflect the changes to the guest state while
3934  * L2 was running (and perhaps made some exits which were handled directly by L0
3935  * without going back to L1), and to reflect the exit reason.
3936  * Note that we do not have to copy here all VMCS fields, just those that
3937  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3938  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3939  * which already writes to vmcs12 directly.
3940  */
3941 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3942                            u32 exit_reason, u32 exit_intr_info,
3943                            unsigned long exit_qualification)
3944 {
3945         /* update exit information fields: */
3946         vmcs12->vm_exit_reason = exit_reason;
3947         vmcs12->exit_qualification = exit_qualification;
3948         vmcs12->vm_exit_intr_info = exit_intr_info;
3949
3950         vmcs12->idt_vectoring_info_field = 0;
3951         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3952         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3953
3954         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3955                 vmcs12->launch_state = 1;
3956
3957                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3958                  * instead of reading the real value. */
3959                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3960
3961                 /*
3962                  * Transfer the event that L0 or L1 may wanted to inject into
3963                  * L2 to IDT_VECTORING_INFO_FIELD.
3964                  */
3965                 vmcs12_save_pending_event(vcpu, vmcs12);
3966
3967                 /*
3968                  * According to spec, there's no need to store the guest's
3969                  * MSRs if the exit is due to a VM-entry failure that occurs
3970                  * during or after loading the guest state. Since this exit
3971                  * does not fall in that category, we need to save the MSRs.
3972                  */
3973                 if (nested_vmx_store_msr(vcpu,
3974                                          vmcs12->vm_exit_msr_store_addr,
3975                                          vmcs12->vm_exit_msr_store_count))
3976                         nested_vmx_abort(vcpu,
3977                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3978         }
3979
3980         /*
3981          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3982          * preserved above and would only end up incorrectly in L1.
3983          */
3984         vcpu->arch.nmi_injected = false;
3985         kvm_clear_exception_queue(vcpu);
3986         kvm_clear_interrupt_queue(vcpu);
3987 }
3988
3989 /*
3990  * A part of what we need to when the nested L2 guest exits and we want to
3991  * run its L1 parent, is to reset L1's guest state to the host state specified
3992  * in vmcs12.
3993  * This function is to be called not only on normal nested exit, but also on
3994  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3995  * Failures During or After Loading Guest State").
3996  * This function should be called when the active VMCS is L1's (vmcs01).
3997  */
3998 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3999                                    struct vmcs12 *vmcs12)
4000 {
4001         struct kvm_segment seg;
4002         u32 entry_failure_code;
4003
4004         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4005                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4006         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4007                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4008         else
4009                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4010         vmx_set_efer(vcpu, vcpu->arch.efer);
4011
4012         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4013         kvm_rip_write(vcpu, vmcs12->host_rip);
4014         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4015         vmx_set_interrupt_shadow(vcpu, 0);
4016
4017         /*
4018          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4019          * actually changed, because vmx_set_cr0 refers to efer set above.
4020          *
4021          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4022          * (KVM doesn't change it);
4023          */
4024         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4025         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4026
4027         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4028         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4029         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4030
4031         nested_ept_uninit_mmu_context(vcpu);
4032
4033         /*
4034          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4035          * couldn't have changed.
4036          */
4037         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
4038                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4039
4040         if (!enable_ept)
4041                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4042
4043         /*
4044          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
4045          * VMEntry/VMExit. Thus, no need to flush TLB.
4046          *
4047          * If vmcs12 doesn't use VPID, L1 expects TLB to be
4048          * flushed on every VMEntry/VMExit.
4049          *
4050          * Otherwise, we can preserve TLB entries as long as we are
4051          * able to tag L1 TLB entries differently than L2 TLB entries.
4052          *
4053          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
4054          * and therefore we request the TLB flush to happen only after VMCS EPTP
4055          * has been set by KVM_REQ_LOAD_MMU_PGD.
4056          */
4057         if (enable_vpid &&
4058             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
4059                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4060         }
4061
4062         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4063         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4064         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4065         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4066         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4067         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4068         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4069
4070         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4071         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4072                 vmcs_write64(GUEST_BNDCFGS, 0);
4073
4074         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4075                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4076                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4077         }
4078         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4079                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4080                                          vmcs12->host_ia32_perf_global_ctrl));
4081
4082         /* Set L1 segment info according to Intel SDM
4083             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4084         seg = (struct kvm_segment) {
4085                 .base = 0,
4086                 .limit = 0xFFFFFFFF,
4087                 .selector = vmcs12->host_cs_selector,
4088                 .type = 11,
4089                 .present = 1,
4090                 .s = 1,
4091                 .g = 1
4092         };
4093         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4094                 seg.l = 1;
4095         else
4096                 seg.db = 1;
4097         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4098         seg = (struct kvm_segment) {
4099                 .base = 0,
4100                 .limit = 0xFFFFFFFF,
4101                 .type = 3,
4102                 .present = 1,
4103                 .s = 1,
4104                 .db = 1,
4105                 .g = 1
4106         };
4107         seg.selector = vmcs12->host_ds_selector;
4108         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4109         seg.selector = vmcs12->host_es_selector;
4110         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4111         seg.selector = vmcs12->host_ss_selector;
4112         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4113         seg.selector = vmcs12->host_fs_selector;
4114         seg.base = vmcs12->host_fs_base;
4115         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4116         seg.selector = vmcs12->host_gs_selector;
4117         seg.base = vmcs12->host_gs_base;
4118         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4119         seg = (struct kvm_segment) {
4120                 .base = vmcs12->host_tr_base,
4121                 .limit = 0x67,
4122                 .selector = vmcs12->host_tr_selector,
4123                 .type = 11,
4124                 .present = 1
4125         };
4126         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4127
4128         kvm_set_dr(vcpu, 7, 0x400);
4129         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4130
4131         if (cpu_has_vmx_msr_bitmap())
4132                 vmx_update_msr_bitmap(vcpu);
4133
4134         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4135                                 vmcs12->vm_exit_msr_load_count))
4136                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4137 }
4138
4139 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4140 {
4141         struct shared_msr_entry *efer_msr;
4142         unsigned int i;
4143
4144         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4145                 return vmcs_read64(GUEST_IA32_EFER);
4146
4147         if (cpu_has_load_ia32_efer())
4148                 return host_efer;
4149
4150         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4151                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4152                         return vmx->msr_autoload.guest.val[i].value;
4153         }
4154
4155         efer_msr = find_msr_entry(vmx, MSR_EFER);
4156         if (efer_msr)
4157                 return efer_msr->data;
4158
4159         return host_efer;
4160 }
4161
4162 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4163 {
4164         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4165         struct vcpu_vmx *vmx = to_vmx(vcpu);
4166         struct vmx_msr_entry g, h;
4167         gpa_t gpa;
4168         u32 i, j;
4169
4170         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4171
4172         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4173                 /*
4174                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4175                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4176                  * and vcpu->arch.dr7 is not squirreled away before the
4177                  * nested VMENTER (not worth adding a variable in nested_vmx).
4178                  */
4179                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4180                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4181                 else
4182                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4183         }
4184
4185         /*
4186          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4187          * handle a variety of side effects to KVM's software model.
4188          */
4189         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4190
4191         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4192         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4193
4194         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4195         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4196
4197         nested_ept_uninit_mmu_context(vcpu);
4198         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4199         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4200
4201         /*
4202          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4203          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4204          * VMFail, like everything else we just need to ensure our
4205          * software model is up-to-date.
4206          */
4207         if (enable_ept)
4208                 ept_save_pdptrs(vcpu);
4209
4210         kvm_mmu_reset_context(vcpu);
4211
4212         if (cpu_has_vmx_msr_bitmap())
4213                 vmx_update_msr_bitmap(vcpu);
4214
4215         /*
4216          * This nasty bit of open coding is a compromise between blindly
4217          * loading L1's MSRs using the exit load lists (incorrect emulation
4218          * of VMFail), leaving the nested VM's MSRs in the software model
4219          * (incorrect behavior) and snapshotting the modified MSRs (too
4220          * expensive since the lists are unbound by hardware).  For each
4221          * MSR that was (prematurely) loaded from the nested VMEntry load
4222          * list, reload it from the exit load list if it exists and differs
4223          * from the guest value.  The intent is to stuff host state as
4224          * silently as possible, not to fully process the exit load list.
4225          */
4226         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4227                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4228                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4229                         pr_debug_ratelimited(
4230                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4231                                 __func__, i, gpa);
4232                         goto vmabort;
4233                 }
4234
4235                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4236                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4237                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4238                                 pr_debug_ratelimited(
4239                                         "%s read MSR failed (%u, 0x%08llx)\n",
4240                                         __func__, j, gpa);
4241                                 goto vmabort;
4242                         }
4243                         if (h.index != g.index)
4244                                 continue;
4245                         if (h.value == g.value)
4246                                 break;
4247
4248                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4249                                 pr_debug_ratelimited(
4250                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4251                                         __func__, j, h.index, h.reserved);
4252                                 goto vmabort;
4253                         }
4254
4255                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4256                                 pr_debug_ratelimited(
4257                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4258                                         __func__, j, h.index, h.value);
4259                                 goto vmabort;
4260                         }
4261                 }
4262         }
4263
4264         return;
4265
4266 vmabort:
4267         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4268 }
4269
4270 /*
4271  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4272  * and modify vmcs12 to make it see what it would expect to see there if
4273  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4274  */
4275 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4276                        u32 exit_intr_info, unsigned long exit_qualification)
4277 {
4278         struct vcpu_vmx *vmx = to_vmx(vcpu);
4279         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4280
4281         /* trying to cancel vmlaunch/vmresume is a bug */
4282         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4283
4284         leave_guest_mode(vcpu);
4285
4286         if (nested_cpu_has_preemption_timer(vmcs12))
4287                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4288
4289         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4290                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4291
4292         if (likely(!vmx->fail)) {
4293                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4294
4295                 if (exit_reason != -1)
4296                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4297                                        exit_qualification);
4298
4299                 /*
4300                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4301                  * also be used to capture vmcs12 cache as part of
4302                  * capturing nVMX state for snapshot (migration).
4303                  *
4304                  * Otherwise, this flush will dirty guest memory at a
4305                  * point it is already assumed by user-space to be
4306                  * immutable.
4307                  */
4308                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4309         } else {
4310                 /*
4311                  * The only expected VM-instruction error is "VM entry with
4312                  * invalid control field(s)." Anything else indicates a
4313                  * problem with L0.  And we should never get here with a
4314                  * VMFail of any type if early consistency checks are enabled.
4315                  */
4316                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4317                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4318                 WARN_ON_ONCE(nested_early_check);
4319         }
4320
4321         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4322
4323         /* Update any VMCS fields that might have changed while L2 ran */
4324         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4325         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4326         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4327         if (vmx->nested.l1_tpr_threshold != -1)
4328                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4329
4330         if (kvm_has_tsc_control)
4331                 decache_tsc_multiplier(vmx);
4332
4333         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4334                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4335                 vmx_set_virtual_apic_mode(vcpu);
4336         }
4337
4338         /* Unpin physical memory we referred to in vmcs02 */
4339         if (vmx->nested.apic_access_page) {
4340                 kvm_release_page_clean(vmx->nested.apic_access_page);
4341                 vmx->nested.apic_access_page = NULL;
4342         }
4343         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4344         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4345         vmx->nested.pi_desc = NULL;
4346
4347         /*
4348          * We are now running in L2, mmu_notifier will force to reload the
4349          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4350          */
4351         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4352
4353         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4354                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4355
4356         /* in case we halted in L2 */
4357         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4358
4359         if (likely(!vmx->fail)) {
4360                 if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4361                     nested_exit_intr_ack_set(vcpu)) {
4362                         int irq = kvm_cpu_get_interrupt(vcpu);
4363                         WARN_ON(irq < 0);
4364                         vmcs12->vm_exit_intr_info = irq |
4365                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4366                 }
4367
4368                 if (exit_reason != -1)
4369                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4370                                                        vmcs12->exit_qualification,
4371                                                        vmcs12->idt_vectoring_info_field,
4372                                                        vmcs12->vm_exit_intr_info,
4373                                                        vmcs12->vm_exit_intr_error_code,
4374                                                        KVM_ISA_VMX);
4375
4376                 load_vmcs12_host_state(vcpu, vmcs12);
4377
4378                 return;
4379         }
4380
4381         /*
4382          * After an early L2 VM-entry failure, we're now back
4383          * in L1 which thinks it just finished a VMLAUNCH or
4384          * VMRESUME instruction, so we need to set the failure
4385          * flag and the VM-instruction error field of the VMCS
4386          * accordingly, and skip the emulated instruction.
4387          */
4388         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4389
4390         /*
4391          * Restore L1's host state to KVM's software model.  We're here
4392          * because a consistency check was caught by hardware, which
4393          * means some amount of guest state has been propagated to KVM's
4394          * model and needs to be unwound to the host's state.
4395          */
4396         nested_vmx_restore_host_state(vcpu);
4397
4398         vmx->fail = 0;
4399 }
4400
4401 /*
4402  * Decode the memory-address operand of a vmx instruction, as recorded on an
4403  * exit caused by such an instruction (run by a guest hypervisor).
4404  * On success, returns 0. When the operand is invalid, returns 1 and throws
4405  * #UD, #GP, or #SS.
4406  */
4407 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4408                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4409 {
4410         gva_t off;
4411         bool exn;
4412         struct kvm_segment s;
4413
4414         /*
4415          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4416          * Execution", on an exit, vmx_instruction_info holds most of the
4417          * addressing components of the operand. Only the displacement part
4418          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4419          * For how an actual address is calculated from all these components,
4420          * refer to Vol. 1, "Operand Addressing".
4421          */
4422         int  scaling = vmx_instruction_info & 3;
4423         int  addr_size = (vmx_instruction_info >> 7) & 7;
4424         bool is_reg = vmx_instruction_info & (1u << 10);
4425         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4426         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4427         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4428         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4429         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4430
4431         if (is_reg) {
4432                 kvm_queue_exception(vcpu, UD_VECTOR);
4433                 return 1;
4434         }
4435
4436         /* Addr = segment_base + offset */
4437         /* offset = base + [index * scale] + displacement */
4438         off = exit_qualification; /* holds the displacement */
4439         if (addr_size == 1)
4440                 off = (gva_t)sign_extend64(off, 31);
4441         else if (addr_size == 0)
4442                 off = (gva_t)sign_extend64(off, 15);
4443         if (base_is_valid)
4444                 off += kvm_register_read(vcpu, base_reg);
4445         if (index_is_valid)
4446                 off += kvm_register_read(vcpu, index_reg) << scaling;
4447         vmx_get_segment(vcpu, &s, seg_reg);
4448
4449         /*
4450          * The effective address, i.e. @off, of a memory operand is truncated
4451          * based on the address size of the instruction.  Note that this is
4452          * the *effective address*, i.e. the address prior to accounting for
4453          * the segment's base.
4454          */
4455         if (addr_size == 1) /* 32 bit */
4456                 off &= 0xffffffff;
4457         else if (addr_size == 0) /* 16 bit */
4458                 off &= 0xffff;
4459
4460         /* Checks for #GP/#SS exceptions. */
4461         exn = false;
4462         if (is_long_mode(vcpu)) {
4463                 /*
4464                  * The virtual/linear address is never truncated in 64-bit
4465                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4466                  * address when using FS/GS with a non-zero base.
4467                  */
4468                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4469                         *ret = s.base + off;
4470                 else
4471                         *ret = off;
4472
4473                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4474                  * non-canonical form. This is the only check on the memory
4475                  * destination for long mode!
4476                  */
4477                 exn = is_noncanonical_address(*ret, vcpu);
4478         } else {
4479                 /*
4480                  * When not in long mode, the virtual/linear address is
4481                  * unconditionally truncated to 32 bits regardless of the
4482                  * address size.
4483                  */
4484                 *ret = (s.base + off) & 0xffffffff;
4485
4486                 /* Protected mode: apply checks for segment validity in the
4487                  * following order:
4488                  * - segment type check (#GP(0) may be thrown)
4489                  * - usability check (#GP(0)/#SS(0))
4490                  * - limit check (#GP(0)/#SS(0))
4491                  */
4492                 if (wr)
4493                         /* #GP(0) if the destination operand is located in a
4494                          * read-only data segment or any code segment.
4495                          */
4496                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4497                 else
4498                         /* #GP(0) if the source operand is located in an
4499                          * execute-only code segment
4500                          */
4501                         exn = ((s.type & 0xa) == 8);
4502                 if (exn) {
4503                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4504                         return 1;
4505                 }
4506                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4507                  */
4508                 exn = (s.unusable != 0);
4509
4510                 /*
4511                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4512                  * outside the segment limit.  All CPUs that support VMX ignore
4513                  * limit checks for flat segments, i.e. segments with base==0,
4514                  * limit==0xffffffff and of type expand-up data or code.
4515                  */
4516                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4517                      ((s.type & 8) || !(s.type & 4))))
4518                         exn = exn || ((u64)off + len - 1 > s.limit);
4519         }
4520         if (exn) {
4521                 kvm_queue_exception_e(vcpu,
4522                                       seg_reg == VCPU_SREG_SS ?
4523                                                 SS_VECTOR : GP_VECTOR,
4524                                       0);
4525                 return 1;
4526         }
4527
4528         return 0;
4529 }
4530
4531 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4532 {
4533         struct vcpu_vmx *vmx;
4534
4535         if (!nested_vmx_allowed(vcpu))
4536                 return;
4537
4538         vmx = to_vmx(vcpu);
4539         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4540                 vmx->nested.msrs.entry_ctls_high |=
4541                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4542                 vmx->nested.msrs.exit_ctls_high |=
4543                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4544         } else {
4545                 vmx->nested.msrs.entry_ctls_high &=
4546                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4547                 vmx->nested.msrs.exit_ctls_high &=
4548                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4549         }
4550 }
4551
4552 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4553 {
4554         gva_t gva;
4555         struct x86_exception e;
4556
4557         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4558                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4559                                 sizeof(*vmpointer), &gva))
4560                 return 1;
4561
4562         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4563                 kvm_inject_page_fault(vcpu, &e);
4564                 return 1;
4565         }
4566
4567         return 0;
4568 }
4569
4570 /*
4571  * Allocate a shadow VMCS and associate it with the currently loaded
4572  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4573  * VMCS is also VMCLEARed, so that it is ready for use.
4574  */
4575 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4576 {
4577         struct vcpu_vmx *vmx = to_vmx(vcpu);
4578         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4579
4580         /*
4581          * We should allocate a shadow vmcs for vmcs01 only when L1
4582          * executes VMXON and free it when L1 executes VMXOFF.
4583          * As it is invalid to execute VMXON twice, we shouldn't reach
4584          * here when vmcs01 already have an allocated shadow vmcs.
4585          */
4586         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4587
4588         if (!loaded_vmcs->shadow_vmcs) {
4589                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4590                 if (loaded_vmcs->shadow_vmcs)
4591                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4592         }
4593         return loaded_vmcs->shadow_vmcs;
4594 }
4595
4596 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4597 {
4598         struct vcpu_vmx *vmx = to_vmx(vcpu);
4599         int r;
4600
4601         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4602         if (r < 0)
4603                 goto out_vmcs02;
4604
4605         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4606         if (!vmx->nested.cached_vmcs12)
4607                 goto out_cached_vmcs12;
4608
4609         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4610         if (!vmx->nested.cached_shadow_vmcs12)
4611                 goto out_cached_shadow_vmcs12;
4612
4613         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4614                 goto out_shadow_vmcs;
4615
4616         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4617                      HRTIMER_MODE_REL_PINNED);
4618         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4619
4620         vmx->nested.vpid02 = allocate_vpid();
4621
4622         vmx->nested.vmcs02_initialized = false;
4623         vmx->nested.vmxon = true;
4624
4625         if (vmx_pt_mode_is_host_guest()) {
4626                 vmx->pt_desc.guest.ctl = 0;
4627                 pt_update_intercept_for_msr(vmx);
4628         }
4629
4630         return 0;
4631
4632 out_shadow_vmcs:
4633         kfree(vmx->nested.cached_shadow_vmcs12);
4634
4635 out_cached_shadow_vmcs12:
4636         kfree(vmx->nested.cached_vmcs12);
4637
4638 out_cached_vmcs12:
4639         free_loaded_vmcs(&vmx->nested.vmcs02);
4640
4641 out_vmcs02:
4642         return -ENOMEM;
4643 }
4644
4645 /*
4646  * Emulate the VMXON instruction.
4647  * Currently, we just remember that VMX is active, and do not save or even
4648  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4649  * do not currently need to store anything in that guest-allocated memory
4650  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4651  * argument is different from the VMXON pointer (which the spec says they do).
4652  */
4653 static int handle_vmon(struct kvm_vcpu *vcpu)
4654 {
4655         int ret;
4656         gpa_t vmptr;
4657         uint32_t revision;
4658         struct vcpu_vmx *vmx = to_vmx(vcpu);
4659         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4660                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4661
4662         /*
4663          * The Intel VMX Instruction Reference lists a bunch of bits that are
4664          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4665          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4666          * Otherwise, we should fail with #UD.  But most faulting conditions
4667          * have already been checked by hardware, prior to the VM-exit for
4668          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4669          * that bit set to 1 in non-root mode.
4670          */
4671         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4672                 kvm_queue_exception(vcpu, UD_VECTOR);
4673                 return 1;
4674         }
4675
4676         /* CPL=0 must be checked manually. */
4677         if (vmx_get_cpl(vcpu)) {
4678                 kvm_inject_gp(vcpu, 0);
4679                 return 1;
4680         }
4681
4682         if (vmx->nested.vmxon)
4683                 return nested_vmx_failValid(vcpu,
4684                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4685
4686         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4687                         != VMXON_NEEDED_FEATURES) {
4688                 kvm_inject_gp(vcpu, 0);
4689                 return 1;
4690         }
4691
4692         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4693                 return 1;
4694
4695         /*
4696          * SDM 3: 24.11.5
4697          * The first 4 bytes of VMXON region contain the supported
4698          * VMCS revision identifier
4699          *
4700          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4701          * which replaces physical address width with 32
4702          */
4703         if (!page_address_valid(vcpu, vmptr))
4704                 return nested_vmx_failInvalid(vcpu);
4705
4706         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4707             revision != VMCS12_REVISION)
4708                 return nested_vmx_failInvalid(vcpu);
4709
4710         vmx->nested.vmxon_ptr = vmptr;
4711         ret = enter_vmx_operation(vcpu);
4712         if (ret)
4713                 return ret;
4714
4715         return nested_vmx_succeed(vcpu);
4716 }
4717
4718 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4719 {
4720         struct vcpu_vmx *vmx = to_vmx(vcpu);
4721
4722         if (vmx->nested.current_vmptr == -1ull)
4723                 return;
4724
4725         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4726
4727         if (enable_shadow_vmcs) {
4728                 /* copy to memory all shadowed fields in case
4729                    they were modified */
4730                 copy_shadow_to_vmcs12(vmx);
4731                 vmx_disable_shadow_vmcs(vmx);
4732         }
4733         vmx->nested.posted_intr_nv = -1;
4734
4735         /* Flush VMCS12 to guest memory */
4736         kvm_vcpu_write_guest_page(vcpu,
4737                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4738                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4739
4740         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4741
4742         vmx->nested.current_vmptr = -1ull;
4743 }
4744
4745 /* Emulate the VMXOFF instruction */
4746 static int handle_vmoff(struct kvm_vcpu *vcpu)
4747 {
4748         if (!nested_vmx_check_permission(vcpu))
4749                 return 1;
4750
4751         free_nested(vcpu);
4752
4753         /* Process a latched INIT during time CPU was in VMX operation */
4754         kvm_make_request(KVM_REQ_EVENT, vcpu);
4755
4756         return nested_vmx_succeed(vcpu);
4757 }
4758
4759 /* Emulate the VMCLEAR instruction */
4760 static int handle_vmclear(struct kvm_vcpu *vcpu)
4761 {
4762         struct vcpu_vmx *vmx = to_vmx(vcpu);
4763         u32 zero = 0;
4764         gpa_t vmptr;
4765         u64 evmcs_gpa;
4766
4767         if (!nested_vmx_check_permission(vcpu))
4768                 return 1;
4769
4770         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4771                 return 1;
4772
4773         if (!page_address_valid(vcpu, vmptr))
4774                 return nested_vmx_failValid(vcpu,
4775                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4776
4777         if (vmptr == vmx->nested.vmxon_ptr)
4778                 return nested_vmx_failValid(vcpu,
4779                         VMXERR_VMCLEAR_VMXON_POINTER);
4780
4781         /*
4782          * When Enlightened VMEntry is enabled on the calling CPU we treat
4783          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4784          * way to distinguish it from VMCS12) and we must not corrupt it by
4785          * writing to the non-existent 'launch_state' field. The area doesn't
4786          * have to be the currently active EVMCS on the calling CPU and there's
4787          * nothing KVM has to do to transition it from 'active' to 'non-active'
4788          * state. It is possible that the area will stay mapped as
4789          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4790          */
4791         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4792                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4793                 if (vmptr == vmx->nested.current_vmptr)
4794                         nested_release_vmcs12(vcpu);
4795
4796                 kvm_vcpu_write_guest(vcpu,
4797                                      vmptr + offsetof(struct vmcs12,
4798                                                       launch_state),
4799                                      &zero, sizeof(zero));
4800         }
4801
4802         return nested_vmx_succeed(vcpu);
4803 }
4804
4805 /* Emulate the VMLAUNCH instruction */
4806 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4807 {
4808         return nested_vmx_run(vcpu, true);
4809 }
4810
4811 /* Emulate the VMRESUME instruction */
4812 static int handle_vmresume(struct kvm_vcpu *vcpu)
4813 {
4814
4815         return nested_vmx_run(vcpu, false);
4816 }
4817
4818 static int handle_vmread(struct kvm_vcpu *vcpu)
4819 {
4820         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4821                                                     : get_vmcs12(vcpu);
4822         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4823         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4824         struct vcpu_vmx *vmx = to_vmx(vcpu);
4825         struct x86_exception e;
4826         unsigned long field;
4827         u64 value;
4828         gva_t gva = 0;
4829         short offset;
4830         int len;
4831
4832         if (!nested_vmx_check_permission(vcpu))
4833                 return 1;
4834
4835         /*
4836          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4837          * any VMREAD sets the ALU flags for VMfailInvalid.
4838          */
4839         if (vmx->nested.current_vmptr == -1ull ||
4840             (is_guest_mode(vcpu) &&
4841              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4842                 return nested_vmx_failInvalid(vcpu);
4843
4844         /* Decode instruction info and find the field to read */
4845         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4846
4847         offset = vmcs_field_to_offset(field);
4848         if (offset < 0)
4849                 return nested_vmx_failValid(vcpu,
4850                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4851
4852         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4853                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4854
4855         /* Read the field, zero-extended to a u64 value */
4856         value = vmcs12_read_any(vmcs12, field, offset);
4857
4858         /*
4859          * Now copy part of this value to register or memory, as requested.
4860          * Note that the number of bits actually copied is 32 or 64 depending
4861          * on the guest's mode (32 or 64 bit), not on the given field's length.
4862          */
4863         if (instr_info & BIT(10)) {
4864                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4865         } else {
4866                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4867                 if (get_vmx_mem_address(vcpu, exit_qualification,
4868                                         instr_info, true, len, &gva))
4869                         return 1;
4870                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4871                 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4872                         kvm_inject_page_fault(vcpu, &e);
4873                         return 1;
4874                 }
4875         }
4876
4877         return nested_vmx_succeed(vcpu);
4878 }
4879
4880 static bool is_shadow_field_rw(unsigned long field)
4881 {
4882         switch (field) {
4883 #define SHADOW_FIELD_RW(x, y) case x:
4884 #include "vmcs_shadow_fields.h"
4885                 return true;
4886         default:
4887                 break;
4888         }
4889         return false;
4890 }
4891
4892 static bool is_shadow_field_ro(unsigned long field)
4893 {
4894         switch (field) {
4895 #define SHADOW_FIELD_RO(x, y) case x:
4896 #include "vmcs_shadow_fields.h"
4897                 return true;
4898         default:
4899                 break;
4900         }
4901         return false;
4902 }
4903
4904 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4905 {
4906         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4907                                                     : get_vmcs12(vcpu);
4908         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4909         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4910         struct vcpu_vmx *vmx = to_vmx(vcpu);
4911         struct x86_exception e;
4912         unsigned long field;
4913         short offset;
4914         gva_t gva;
4915         int len;
4916
4917         /*
4918          * The value to write might be 32 or 64 bits, depending on L1's long
4919          * mode, and eventually we need to write that into a field of several
4920          * possible lengths. The code below first zero-extends the value to 64
4921          * bit (value), and then copies only the appropriate number of
4922          * bits into the vmcs12 field.
4923          */
4924         u64 value = 0;
4925
4926         if (!nested_vmx_check_permission(vcpu))
4927                 return 1;
4928
4929         /*
4930          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4931          * any VMWRITE sets the ALU flags for VMfailInvalid.
4932          */
4933         if (vmx->nested.current_vmptr == -1ull ||
4934             (is_guest_mode(vcpu) &&
4935              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4936                 return nested_vmx_failInvalid(vcpu);
4937
4938         if (instr_info & BIT(10))
4939                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4940         else {
4941                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4942                 if (get_vmx_mem_address(vcpu, exit_qualification,
4943                                         instr_info, false, len, &gva))
4944                         return 1;
4945                 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4946                         kvm_inject_page_fault(vcpu, &e);
4947                         return 1;
4948                 }
4949         }
4950
4951         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4952
4953         offset = vmcs_field_to_offset(field);
4954         if (offset < 0)
4955                 return nested_vmx_failValid(vcpu,
4956                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4957
4958         /*
4959          * If the vCPU supports "VMWRITE to any supported field in the
4960          * VMCS," then the "read-only" fields are actually read/write.
4961          */
4962         if (vmcs_field_readonly(field) &&
4963             !nested_cpu_has_vmwrite_any_field(vcpu))
4964                 return nested_vmx_failValid(vcpu,
4965                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4966
4967         /*
4968          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4969          * vmcs12, else we may crush a field or consume a stale value.
4970          */
4971         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4972                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4973
4974         /*
4975          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4976          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4977          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4978          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4979          * from L1 will return a different value than VMREAD from L2 (L1 sees
4980          * the stripped down value, L2 sees the full value as stored by KVM).
4981          */
4982         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4983                 value &= 0x1f0ff;
4984
4985         vmcs12_write_any(vmcs12, field, offset, value);
4986
4987         /*
4988          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4989          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4990          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4991          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4992          */
4993         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4994                 /*
4995                  * L1 can read these fields without exiting, ensure the
4996                  * shadow VMCS is up-to-date.
4997                  */
4998                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4999                         preempt_disable();
5000                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5001
5002                         __vmcs_writel(field, value);
5003
5004                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5005                         vmcs_load(vmx->loaded_vmcs->vmcs);
5006                         preempt_enable();
5007                 }
5008                 vmx->nested.dirty_vmcs12 = true;
5009         }
5010
5011         return nested_vmx_succeed(vcpu);
5012 }
5013
5014 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5015 {
5016         vmx->nested.current_vmptr = vmptr;
5017         if (enable_shadow_vmcs) {
5018                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5019                 vmcs_write64(VMCS_LINK_POINTER,
5020                              __pa(vmx->vmcs01.shadow_vmcs));
5021                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5022         }
5023         vmx->nested.dirty_vmcs12 = true;
5024 }
5025
5026 /* Emulate the VMPTRLD instruction */
5027 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5028 {
5029         struct vcpu_vmx *vmx = to_vmx(vcpu);
5030         gpa_t vmptr;
5031
5032         if (!nested_vmx_check_permission(vcpu))
5033                 return 1;
5034
5035         if (nested_vmx_get_vmptr(vcpu, &vmptr))
5036                 return 1;
5037
5038         if (!page_address_valid(vcpu, vmptr))
5039                 return nested_vmx_failValid(vcpu,
5040                         VMXERR_VMPTRLD_INVALID_ADDRESS);
5041
5042         if (vmptr == vmx->nested.vmxon_ptr)
5043                 return nested_vmx_failValid(vcpu,
5044                         VMXERR_VMPTRLD_VMXON_POINTER);
5045
5046         /* Forbid normal VMPTRLD if Enlightened version was used */
5047         if (vmx->nested.hv_evmcs)
5048                 return 1;
5049
5050         if (vmx->nested.current_vmptr != vmptr) {
5051                 struct kvm_host_map map;
5052                 struct vmcs12 *new_vmcs12;
5053
5054                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5055                         /*
5056                          * Reads from an unbacked page return all 1s,
5057                          * which means that the 32 bits located at the
5058                          * given physical address won't match the required
5059                          * VMCS12_REVISION identifier.
5060                          */
5061                         return nested_vmx_failValid(vcpu,
5062                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5063                 }
5064
5065                 new_vmcs12 = map.hva;
5066
5067                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5068                     (new_vmcs12->hdr.shadow_vmcs &&
5069                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5070                         kvm_vcpu_unmap(vcpu, &map, false);
5071                         return nested_vmx_failValid(vcpu,
5072                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5073                 }
5074
5075                 nested_release_vmcs12(vcpu);
5076
5077                 /*
5078                  * Load VMCS12 from guest memory since it is not already
5079                  * cached.
5080                  */
5081                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5082                 kvm_vcpu_unmap(vcpu, &map, false);
5083
5084                 set_current_vmptr(vmx, vmptr);
5085         }
5086
5087         return nested_vmx_succeed(vcpu);
5088 }
5089
5090 /* Emulate the VMPTRST instruction */
5091 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5092 {
5093         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5094         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5095         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5096         struct x86_exception e;
5097         gva_t gva;
5098
5099         if (!nested_vmx_check_permission(vcpu))
5100                 return 1;
5101
5102         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5103                 return 1;
5104
5105         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5106                                 true, sizeof(gpa_t), &gva))
5107                 return 1;
5108         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5109         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5110                                         sizeof(gpa_t), &e)) {
5111                 kvm_inject_page_fault(vcpu, &e);
5112                 return 1;
5113         }
5114         return nested_vmx_succeed(vcpu);
5115 }
5116
5117 /* Emulate the INVEPT instruction */
5118 static int handle_invept(struct kvm_vcpu *vcpu)
5119 {
5120         struct vcpu_vmx *vmx = to_vmx(vcpu);
5121         u32 vmx_instruction_info, types;
5122         unsigned long type;
5123         gva_t gva;
5124         struct x86_exception e;
5125         struct {
5126                 u64 eptp, gpa;
5127         } operand;
5128
5129         if (!(vmx->nested.msrs.secondary_ctls_high &
5130               SECONDARY_EXEC_ENABLE_EPT) ||
5131             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5132                 kvm_queue_exception(vcpu, UD_VECTOR);
5133                 return 1;
5134         }
5135
5136         if (!nested_vmx_check_permission(vcpu))
5137                 return 1;
5138
5139         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5140         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5141
5142         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5143
5144         if (type >= 32 || !(types & (1 << type)))
5145                 return nested_vmx_failValid(vcpu,
5146                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5147
5148         /* According to the Intel VMX instruction reference, the memory
5149          * operand is read even if it isn't needed (e.g., for type==global)
5150          */
5151         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5152                         vmx_instruction_info, false, sizeof(operand), &gva))
5153                 return 1;
5154         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5155                 kvm_inject_page_fault(vcpu, &e);
5156                 return 1;
5157         }
5158
5159         switch (type) {
5160         case VMX_EPT_EXTENT_GLOBAL:
5161         case VMX_EPT_EXTENT_CONTEXT:
5162         /*
5163          * TODO: Sync the necessary shadow EPT roots here, rather than
5164          * at the next emulated VM-entry.
5165          */
5166                 break;
5167         default:
5168                 BUG_ON(1);
5169                 break;
5170         }
5171
5172         return nested_vmx_succeed(vcpu);
5173 }
5174
5175 static int handle_invvpid(struct kvm_vcpu *vcpu)
5176 {
5177         struct vcpu_vmx *vmx = to_vmx(vcpu);
5178         u32 vmx_instruction_info;
5179         unsigned long type, types;
5180         gva_t gva;
5181         struct x86_exception e;
5182         struct {
5183                 u64 vpid;
5184                 u64 gla;
5185         } operand;
5186         u16 vpid02;
5187
5188         if (!(vmx->nested.msrs.secondary_ctls_high &
5189               SECONDARY_EXEC_ENABLE_VPID) ||
5190                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5191                 kvm_queue_exception(vcpu, UD_VECTOR);
5192                 return 1;
5193         }
5194
5195         if (!nested_vmx_check_permission(vcpu))
5196                 return 1;
5197
5198         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5199         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5200
5201         types = (vmx->nested.msrs.vpid_caps &
5202                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5203
5204         if (type >= 32 || !(types & (1 << type)))
5205                 return nested_vmx_failValid(vcpu,
5206                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5207
5208         /* according to the intel vmx instruction reference, the memory
5209          * operand is read even if it isn't needed (e.g., for type==global)
5210          */
5211         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5212                         vmx_instruction_info, false, sizeof(operand), &gva))
5213                 return 1;
5214         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5215                 kvm_inject_page_fault(vcpu, &e);
5216                 return 1;
5217         }
5218         if (operand.vpid >> 16)
5219                 return nested_vmx_failValid(vcpu,
5220                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5221
5222         vpid02 = nested_get_vpid02(vcpu);
5223         switch (type) {
5224         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5225                 if (!operand.vpid ||
5226                     is_noncanonical_address(operand.gla, vcpu))
5227                         return nested_vmx_failValid(vcpu,
5228                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5229                 if (cpu_has_vmx_invvpid_individual_addr()) {
5230                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5231                                 vpid02, operand.gla);
5232                 } else
5233                         __vmx_flush_tlb(vcpu, vpid02, false);
5234                 break;
5235         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5236         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5237                 if (!operand.vpid)
5238                         return nested_vmx_failValid(vcpu,
5239                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5240                 __vmx_flush_tlb(vcpu, vpid02, false);
5241                 break;
5242         case VMX_VPID_EXTENT_ALL_CONTEXT:
5243                 __vmx_flush_tlb(vcpu, vpid02, false);
5244                 break;
5245         default:
5246                 WARN_ON_ONCE(1);
5247                 return kvm_skip_emulated_instruction(vcpu);
5248         }
5249
5250         return nested_vmx_succeed(vcpu);
5251 }
5252
5253 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5254                                      struct vmcs12 *vmcs12)
5255 {
5256         u32 index = kvm_rcx_read(vcpu);
5257         u64 new_eptp;
5258         bool accessed_dirty;
5259         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5260
5261         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5262             !nested_cpu_has_ept(vmcs12))
5263                 return 1;
5264
5265         if (index >= VMFUNC_EPTP_ENTRIES)
5266                 return 1;
5267
5268
5269         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5270                                      &new_eptp, index * 8, 8))
5271                 return 1;
5272
5273         accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5274
5275         /*
5276          * If the (L2) guest does a vmfunc to the currently
5277          * active ept pointer, we don't have to do anything else
5278          */
5279         if (vmcs12->ept_pointer != new_eptp) {
5280                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5281                         return 1;
5282
5283                 kvm_mmu_unload(vcpu);
5284                 mmu->ept_ad = accessed_dirty;
5285                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5286                 vmcs12->ept_pointer = new_eptp;
5287                 /*
5288                  * TODO: Check what's the correct approach in case
5289                  * mmu reload fails. Currently, we just let the next
5290                  * reload potentially fail
5291                  */
5292                 kvm_mmu_reload(vcpu);
5293         }
5294
5295         return 0;
5296 }
5297
5298 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5299 {
5300         struct vcpu_vmx *vmx = to_vmx(vcpu);
5301         struct vmcs12 *vmcs12;
5302         u32 function = kvm_rax_read(vcpu);
5303
5304         /*
5305          * VMFUNC is only supported for nested guests, but we always enable the
5306          * secondary control for simplicity; for non-nested mode, fake that we
5307          * didn't by injecting #UD.
5308          */
5309         if (!is_guest_mode(vcpu)) {
5310                 kvm_queue_exception(vcpu, UD_VECTOR);
5311                 return 1;
5312         }
5313
5314         vmcs12 = get_vmcs12(vcpu);
5315         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5316                 goto fail;
5317
5318         switch (function) {
5319         case 0:
5320                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5321                         goto fail;
5322                 break;
5323         default:
5324                 goto fail;
5325         }
5326         return kvm_skip_emulated_instruction(vcpu);
5327
5328 fail:
5329         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5330                           vmcs_read32(VM_EXIT_INTR_INFO),
5331                           vmcs_readl(EXIT_QUALIFICATION));
5332         return 1;
5333 }
5334
5335 /*
5336  * Return true if an IO instruction with the specified port and size should cause
5337  * a VM-exit into L1.
5338  */
5339 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5340                                  int size)
5341 {
5342         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5343         gpa_t bitmap, last_bitmap;
5344         u8 b;
5345
5346         last_bitmap = (gpa_t)-1;
5347         b = -1;
5348
5349         while (size > 0) {
5350                 if (port < 0x8000)
5351                         bitmap = vmcs12->io_bitmap_a;
5352                 else if (port < 0x10000)
5353                         bitmap = vmcs12->io_bitmap_b;
5354                 else
5355                         return true;
5356                 bitmap += (port & 0x7fff) / 8;
5357
5358                 if (last_bitmap != bitmap)
5359                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5360                                 return true;
5361                 if (b & (1 << (port & 7)))
5362                         return true;
5363
5364                 port++;
5365                 size--;
5366                 last_bitmap = bitmap;
5367         }
5368
5369         return false;
5370 }
5371
5372 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5373                                        struct vmcs12 *vmcs12)
5374 {
5375         unsigned long exit_qualification;
5376         unsigned short port;
5377         int size;
5378
5379         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5380                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5381
5382         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5383
5384         port = exit_qualification >> 16;
5385         size = (exit_qualification & 7) + 1;
5386
5387         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5388 }
5389
5390 /*
5391  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5392  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5393  * disinterest in the current event (read or write a specific MSR) by using an
5394  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5395  */
5396 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5397         struct vmcs12 *vmcs12, u32 exit_reason)
5398 {
5399         u32 msr_index = kvm_rcx_read(vcpu);
5400         gpa_t bitmap;
5401
5402         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5403                 return true;
5404
5405         /*
5406          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5407          * for the four combinations of read/write and low/high MSR numbers.
5408          * First we need to figure out which of the four to use:
5409          */
5410         bitmap = vmcs12->msr_bitmap;
5411         if (exit_reason == EXIT_REASON_MSR_WRITE)
5412                 bitmap += 2048;
5413         if (msr_index >= 0xc0000000) {
5414                 msr_index -= 0xc0000000;
5415                 bitmap += 1024;
5416         }
5417
5418         /* Then read the msr_index'th bit from this bitmap: */
5419         if (msr_index < 1024*8) {
5420                 unsigned char b;
5421                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5422                         return true;
5423                 return 1 & (b >> (msr_index & 7));
5424         } else
5425                 return true; /* let L1 handle the wrong parameter */
5426 }
5427
5428 /*
5429  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5430  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5431  * intercept (via guest_host_mask etc.) the current event.
5432  */
5433 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5434         struct vmcs12 *vmcs12)
5435 {
5436         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5437         int cr = exit_qualification & 15;
5438         int reg;
5439         unsigned long val;
5440
5441         switch ((exit_qualification >> 4) & 3) {
5442         case 0: /* mov to cr */
5443                 reg = (exit_qualification >> 8) & 15;
5444                 val = kvm_register_readl(vcpu, reg);
5445                 switch (cr) {
5446                 case 0:
5447                         if (vmcs12->cr0_guest_host_mask &
5448                             (val ^ vmcs12->cr0_read_shadow))
5449                                 return true;
5450                         break;
5451                 case 3:
5452                         if ((vmcs12->cr3_target_count >= 1 &&
5453                                         vmcs12->cr3_target_value0 == val) ||
5454                                 (vmcs12->cr3_target_count >= 2 &&
5455                                         vmcs12->cr3_target_value1 == val) ||
5456                                 (vmcs12->cr3_target_count >= 3 &&
5457                                         vmcs12->cr3_target_value2 == val) ||
5458                                 (vmcs12->cr3_target_count >= 4 &&
5459                                         vmcs12->cr3_target_value3 == val))
5460                                 return false;
5461                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5462                                 return true;
5463                         break;
5464                 case 4:
5465                         if (vmcs12->cr4_guest_host_mask &
5466                             (vmcs12->cr4_read_shadow ^ val))
5467                                 return true;
5468                         break;
5469                 case 8:
5470                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5471                                 return true;
5472                         break;
5473                 }
5474                 break;
5475         case 2: /* clts */
5476                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5477                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5478                         return true;
5479                 break;
5480         case 1: /* mov from cr */
5481                 switch (cr) {
5482                 case 3:
5483                         if (vmcs12->cpu_based_vm_exec_control &
5484                             CPU_BASED_CR3_STORE_EXITING)
5485                                 return true;
5486                         break;
5487                 case 8:
5488                         if (vmcs12->cpu_based_vm_exec_control &
5489                             CPU_BASED_CR8_STORE_EXITING)
5490                                 return true;
5491                         break;
5492                 }
5493                 break;
5494         case 3: /* lmsw */
5495                 /*
5496                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5497                  * cr0. Other attempted changes are ignored, with no exit.
5498                  */
5499                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5500                 if (vmcs12->cr0_guest_host_mask & 0xe &
5501                     (val ^ vmcs12->cr0_read_shadow))
5502                         return true;
5503                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5504                     !(vmcs12->cr0_read_shadow & 0x1) &&
5505                     (val & 0x1))
5506                         return true;
5507                 break;
5508         }
5509         return false;
5510 }
5511
5512 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5513         struct vmcs12 *vmcs12, gpa_t bitmap)
5514 {
5515         u32 vmx_instruction_info;
5516         unsigned long field;
5517         u8 b;
5518
5519         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5520                 return true;
5521
5522         /* Decode instruction info and find the field to access */
5523         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5524         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5525
5526         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5527         if (field >> 15)
5528                 return true;
5529
5530         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5531                 return true;
5532
5533         return 1 & (b >> (field & 7));
5534 }
5535
5536 /*
5537  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5538  * should handle it ourselves in L0 (and then continue L2). Only call this
5539  * when in is_guest_mode (L2).
5540  */
5541 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5542 {
5543         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5544         struct vcpu_vmx *vmx = to_vmx(vcpu);
5545         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5546
5547         WARN_ON_ONCE(vmx->nested.nested_run_pending);
5548
5549         if (unlikely(vmx->fail)) {
5550                 trace_kvm_nested_vmenter_failed(
5551                         "hardware VM-instruction error: ",
5552                         vmcs_read32(VM_INSTRUCTION_ERROR));
5553                 return true;
5554         }
5555
5556         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5557                                 vmcs_readl(EXIT_QUALIFICATION),
5558                                 vmx->idt_vectoring_info,
5559                                 intr_info,
5560                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5561                                 KVM_ISA_VMX);
5562
5563         switch (exit_reason) {
5564         case EXIT_REASON_EXCEPTION_NMI:
5565                 if (is_nmi(intr_info))
5566                         return false;
5567                 else if (is_page_fault(intr_info))
5568                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5569                 else if (is_debug(intr_info) &&
5570                          vcpu->guest_debug &
5571                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5572                         return false;
5573                 else if (is_breakpoint(intr_info) &&
5574                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5575                         return false;
5576                 return vmcs12->exception_bitmap &
5577                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5578         case EXIT_REASON_EXTERNAL_INTERRUPT:
5579                 return false;
5580         case EXIT_REASON_TRIPLE_FAULT:
5581                 return true;
5582         case EXIT_REASON_INTERRUPT_WINDOW:
5583                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5584         case EXIT_REASON_NMI_WINDOW:
5585                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5586         case EXIT_REASON_TASK_SWITCH:
5587                 return true;
5588         case EXIT_REASON_CPUID:
5589                 return true;
5590         case EXIT_REASON_HLT:
5591                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5592         case EXIT_REASON_INVD:
5593                 return true;
5594         case EXIT_REASON_INVLPG:
5595                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5596         case EXIT_REASON_RDPMC:
5597                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5598         case EXIT_REASON_RDRAND:
5599                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5600         case EXIT_REASON_RDSEED:
5601                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5602         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5603                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5604         case EXIT_REASON_VMREAD:
5605                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5606                         vmcs12->vmread_bitmap);
5607         case EXIT_REASON_VMWRITE:
5608                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5609                         vmcs12->vmwrite_bitmap);
5610         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5611         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5612         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5613         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5614         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5615                 /*
5616                  * VMX instructions trap unconditionally. This allows L1 to
5617                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5618                  */
5619                 return true;
5620         case EXIT_REASON_CR_ACCESS:
5621                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5622         case EXIT_REASON_DR_ACCESS:
5623                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5624         case EXIT_REASON_IO_INSTRUCTION:
5625                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5626         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5627                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5628         case EXIT_REASON_MSR_READ:
5629         case EXIT_REASON_MSR_WRITE:
5630                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5631         case EXIT_REASON_INVALID_STATE:
5632                 return true;
5633         case EXIT_REASON_MWAIT_INSTRUCTION:
5634                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5635         case EXIT_REASON_MONITOR_TRAP_FLAG:
5636                 return nested_cpu_has_mtf(vmcs12);
5637         case EXIT_REASON_MONITOR_INSTRUCTION:
5638                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5639         case EXIT_REASON_PAUSE_INSTRUCTION:
5640                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5641                         nested_cpu_has2(vmcs12,
5642                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5643         case EXIT_REASON_MCE_DURING_VMENTRY:
5644                 return false;
5645         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5646                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5647         case EXIT_REASON_APIC_ACCESS:
5648         case EXIT_REASON_APIC_WRITE:
5649         case EXIT_REASON_EOI_INDUCED:
5650                 /*
5651                  * The controls for "virtualize APIC accesses," "APIC-
5652                  * register virtualization," and "virtual-interrupt
5653                  * delivery" only come from vmcs12.
5654                  */
5655                 return true;
5656         case EXIT_REASON_EPT_VIOLATION:
5657                 /*
5658                  * L0 always deals with the EPT violation. If nested EPT is
5659                  * used, and the nested mmu code discovers that the address is
5660                  * missing in the guest EPT table (EPT12), the EPT violation
5661                  * will be injected with nested_ept_inject_page_fault()
5662                  */
5663                 return false;
5664         case EXIT_REASON_EPT_MISCONFIG:
5665                 /*
5666                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5667                  * table (shadow on EPT) or a merged EPT table that L0 built
5668                  * (EPT on EPT). So any problems with the structure of the
5669                  * table is L0's fault.
5670                  */
5671                 return false;
5672         case EXIT_REASON_INVPCID:
5673                 return
5674                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5675                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5676         case EXIT_REASON_WBINVD:
5677                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5678         case EXIT_REASON_XSETBV:
5679                 return true;
5680         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5681                 /*
5682                  * This should never happen, since it is not possible to
5683                  * set XSS to a non-zero value---neither in L1 nor in L2.
5684                  * If if it were, XSS would have to be checked against
5685                  * the XSS exit bitmap in vmcs12.
5686                  */
5687                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5688         case EXIT_REASON_PREEMPTION_TIMER:
5689                 return false;
5690         case EXIT_REASON_PML_FULL:
5691                 /* We emulate PML support to L1. */
5692                 return false;
5693         case EXIT_REASON_VMFUNC:
5694                 /* VM functions are emulated through L2->L0 vmexits. */
5695                 return false;
5696         case EXIT_REASON_ENCLS:
5697                 /* SGX is never exposed to L1 */
5698                 return false;
5699         case EXIT_REASON_UMWAIT:
5700         case EXIT_REASON_TPAUSE:
5701                 return nested_cpu_has2(vmcs12,
5702                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5703         default:
5704                 return true;
5705         }
5706 }
5707
5708
5709 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5710                                 struct kvm_nested_state __user *user_kvm_nested_state,
5711                                 u32 user_data_size)
5712 {
5713         struct vcpu_vmx *vmx;
5714         struct vmcs12 *vmcs12;
5715         struct kvm_nested_state kvm_state = {
5716                 .flags = 0,
5717                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5718                 .size = sizeof(kvm_state),
5719                 .hdr.vmx.vmxon_pa = -1ull,
5720                 .hdr.vmx.vmcs12_pa = -1ull,
5721         };
5722         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5723                 &user_kvm_nested_state->data.vmx[0];
5724
5725         if (!vcpu)
5726                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5727
5728         vmx = to_vmx(vcpu);
5729         vmcs12 = get_vmcs12(vcpu);
5730
5731         if (nested_vmx_allowed(vcpu) &&
5732             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5733                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5734                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5735
5736                 if (vmx_has_valid_vmcs12(vcpu)) {
5737                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5738
5739                         if (vmx->nested.hv_evmcs)
5740                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5741
5742                         if (is_guest_mode(vcpu) &&
5743                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5744                             vmcs12->vmcs_link_pointer != -1ull)
5745                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5746                 }
5747
5748                 if (vmx->nested.smm.vmxon)
5749                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5750
5751                 if (vmx->nested.smm.guest_mode)
5752                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5753
5754                 if (is_guest_mode(vcpu)) {
5755                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5756
5757                         if (vmx->nested.nested_run_pending)
5758                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5759
5760                         if (vmx->nested.mtf_pending)
5761                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5762                 }
5763         }
5764
5765         if (user_data_size < kvm_state.size)
5766                 goto out;
5767
5768         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5769                 return -EFAULT;
5770
5771         if (!vmx_has_valid_vmcs12(vcpu))
5772                 goto out;
5773
5774         /*
5775          * When running L2, the authoritative vmcs12 state is in the
5776          * vmcs02. When running L1, the authoritative vmcs12 state is
5777          * in the shadow or enlightened vmcs linked to vmcs01, unless
5778          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5779          * vmcs12 state is in the vmcs12 already.
5780          */
5781         if (is_guest_mode(vcpu)) {
5782                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5783                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5784         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5785                 if (vmx->nested.hv_evmcs)
5786                         copy_enlightened_to_vmcs12(vmx);
5787                 else if (enable_shadow_vmcs)
5788                         copy_shadow_to_vmcs12(vmx);
5789         }
5790
5791         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5792         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5793
5794         /*
5795          * Copy over the full allocated size of vmcs12 rather than just the size
5796          * of the struct.
5797          */
5798         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5799                 return -EFAULT;
5800
5801         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5802             vmcs12->vmcs_link_pointer != -1ull) {
5803                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5804                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5805                         return -EFAULT;
5806         }
5807
5808 out:
5809         return kvm_state.size;
5810 }
5811
5812 /*
5813  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5814  */
5815 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5816 {
5817         if (is_guest_mode(vcpu)) {
5818                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5819                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5820         }
5821         free_nested(vcpu);
5822 }
5823
5824 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5825                                 struct kvm_nested_state __user *user_kvm_nested_state,
5826                                 struct kvm_nested_state *kvm_state)
5827 {
5828         struct vcpu_vmx *vmx = to_vmx(vcpu);
5829         struct vmcs12 *vmcs12;
5830         u32 exit_qual;
5831         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5832                 &user_kvm_nested_state->data.vmx[0];
5833         int ret;
5834
5835         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5836                 return -EINVAL;
5837
5838         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5839                 if (kvm_state->hdr.vmx.smm.flags)
5840                         return -EINVAL;
5841
5842                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5843                         return -EINVAL;
5844
5845                 /*
5846                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5847                  * enable eVMCS capability on vCPU. However, since then
5848                  * code was changed such that flag signals vmcs12 should
5849                  * be copied into eVMCS in guest memory.
5850                  *
5851                  * To preserve backwards compatability, allow user
5852                  * to set this flag even when there is no VMXON region.
5853                  */
5854                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5855                         return -EINVAL;
5856         } else {
5857                 if (!nested_vmx_allowed(vcpu))
5858                         return -EINVAL;
5859
5860                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5861                         return -EINVAL;
5862         }
5863
5864         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5865             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5866                 return -EINVAL;
5867
5868         if (kvm_state->hdr.vmx.smm.flags &
5869             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5870                 return -EINVAL;
5871
5872         /*
5873          * SMM temporarily disables VMX, so we cannot be in guest mode,
5874          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5875          * must be zero.
5876          */
5877         if (is_smm(vcpu) ?
5878                 (kvm_state->flags &
5879                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5880                 : kvm_state->hdr.vmx.smm.flags)
5881                 return -EINVAL;
5882
5883         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5884             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5885                 return -EINVAL;
5886
5887         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5888                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5889                         return -EINVAL;
5890
5891         vmx_leave_nested(vcpu);
5892
5893         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5894                 return 0;
5895
5896         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5897         ret = enter_vmx_operation(vcpu);
5898         if (ret)
5899                 return ret;
5900
5901         /* Empty 'VMXON' state is permitted */
5902         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5903                 return 0;
5904
5905         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5906                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5907                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5908                         return -EINVAL;
5909
5910                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5911         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5912                 /*
5913                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
5914                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
5915                  * restored yet. EVMCS will be mapped from
5916                  * nested_get_vmcs12_pages().
5917                  */
5918                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
5919         } else {
5920                 return -EINVAL;
5921         }
5922
5923         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5924                 vmx->nested.smm.vmxon = true;
5925                 vmx->nested.vmxon = false;
5926
5927                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5928                         vmx->nested.smm.guest_mode = true;
5929         }
5930
5931         vmcs12 = get_vmcs12(vcpu);
5932         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5933                 return -EFAULT;
5934
5935         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5936                 return -EINVAL;
5937
5938         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5939                 return 0;
5940
5941         vmx->nested.nested_run_pending =
5942                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5943
5944         vmx->nested.mtf_pending =
5945                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
5946
5947         ret = -EINVAL;
5948         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5949             vmcs12->vmcs_link_pointer != -1ull) {
5950                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5951
5952                 if (kvm_state->size <
5953                     sizeof(*kvm_state) +
5954                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5955                         goto error_guest_mode;
5956
5957                 if (copy_from_user(shadow_vmcs12,
5958                                    user_vmx_nested_state->shadow_vmcs12,
5959                                    sizeof(*shadow_vmcs12))) {
5960                         ret = -EFAULT;
5961                         goto error_guest_mode;
5962                 }
5963
5964                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5965                     !shadow_vmcs12->hdr.shadow_vmcs)
5966                         goto error_guest_mode;
5967         }
5968
5969         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5970             nested_vmx_check_host_state(vcpu, vmcs12) ||
5971             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5972                 goto error_guest_mode;
5973
5974         vmx->nested.dirty_vmcs12 = true;
5975         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5976         if (ret)
5977                 goto error_guest_mode;
5978
5979         return 0;
5980
5981 error_guest_mode:
5982         vmx->nested.nested_run_pending = 0;
5983         return ret;
5984 }
5985
5986 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5987 {
5988         if (enable_shadow_vmcs) {
5989                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5990                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5991         }
5992 }
5993
5994 /*
5995  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5996  * returned for the various VMX controls MSRs when nested VMX is enabled.
5997  * The same values should also be used to verify that vmcs12 control fields are
5998  * valid during nested entry from L1 to L2.
5999  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6000  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6001  * bit in the high half is on if the corresponding bit in the control field
6002  * may be on. See also vmx_control_verify().
6003  */
6004 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6005 {
6006         /*
6007          * Note that as a general rule, the high half of the MSRs (bits in
6008          * the control fields which may be 1) should be initialized by the
6009          * intersection of the underlying hardware's MSR (i.e., features which
6010          * can be supported) and the list of features we want to expose -
6011          * because they are known to be properly supported in our code.
6012          * Also, usually, the low half of the MSRs (bits which must be 1) can
6013          * be set to 0, meaning that L1 may turn off any of these bits. The
6014          * reason is that if one of these bits is necessary, it will appear
6015          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6016          * fields of vmcs01 and vmcs02, will turn these bits off - and
6017          * nested_vmx_exit_reflected() will not pass related exits to L1.
6018          * These rules have exceptions below.
6019          */
6020
6021         /* pin-based controls */
6022         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6023                 msrs->pinbased_ctls_low,
6024                 msrs->pinbased_ctls_high);
6025         msrs->pinbased_ctls_low |=
6026                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6027         msrs->pinbased_ctls_high &=
6028                 PIN_BASED_EXT_INTR_MASK |
6029                 PIN_BASED_NMI_EXITING |
6030                 PIN_BASED_VIRTUAL_NMIS |
6031                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6032         msrs->pinbased_ctls_high |=
6033                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6034                 PIN_BASED_VMX_PREEMPTION_TIMER;
6035
6036         /* exit controls */
6037         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6038                 msrs->exit_ctls_low,
6039                 msrs->exit_ctls_high);
6040         msrs->exit_ctls_low =
6041                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6042
6043         msrs->exit_ctls_high &=
6044 #ifdef CONFIG_X86_64
6045                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6046 #endif
6047                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6048         msrs->exit_ctls_high |=
6049                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6050                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6051                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6052
6053         /* We support free control of debug control saving. */
6054         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6055
6056         /* entry controls */
6057         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6058                 msrs->entry_ctls_low,
6059                 msrs->entry_ctls_high);
6060         msrs->entry_ctls_low =
6061                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6062         msrs->entry_ctls_high &=
6063 #ifdef CONFIG_X86_64
6064                 VM_ENTRY_IA32E_MODE |
6065 #endif
6066                 VM_ENTRY_LOAD_IA32_PAT;
6067         msrs->entry_ctls_high |=
6068                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6069
6070         /* We support free control of debug control loading. */
6071         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6072
6073         /* cpu-based controls */
6074         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6075                 msrs->procbased_ctls_low,
6076                 msrs->procbased_ctls_high);
6077         msrs->procbased_ctls_low =
6078                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6079         msrs->procbased_ctls_high &=
6080                 CPU_BASED_INTR_WINDOW_EXITING |
6081                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6082                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6083                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6084                 CPU_BASED_CR3_STORE_EXITING |
6085 #ifdef CONFIG_X86_64
6086                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6087 #endif
6088                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6089                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6090                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6091                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6092                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6093         /*
6094          * We can allow some features even when not supported by the
6095          * hardware. For example, L1 can specify an MSR bitmap - and we
6096          * can use it to avoid exits to L1 - even when L0 runs L2
6097          * without MSR bitmaps.
6098          */
6099         msrs->procbased_ctls_high |=
6100                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6101                 CPU_BASED_USE_MSR_BITMAPS;
6102
6103         /* We support free control of CR3 access interception. */
6104         msrs->procbased_ctls_low &=
6105                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6106
6107         /*
6108          * secondary cpu-based controls.  Do not include those that
6109          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6110          */
6111         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6112                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6113                       msrs->secondary_ctls_low,
6114                       msrs->secondary_ctls_high);
6115
6116         msrs->secondary_ctls_low = 0;
6117         msrs->secondary_ctls_high &=
6118                 SECONDARY_EXEC_DESC |
6119                 SECONDARY_EXEC_RDTSCP |
6120                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6121                 SECONDARY_EXEC_WBINVD_EXITING |
6122                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6123                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6124                 SECONDARY_EXEC_RDRAND_EXITING |
6125                 SECONDARY_EXEC_ENABLE_INVPCID |
6126                 SECONDARY_EXEC_RDSEED_EXITING |
6127                 SECONDARY_EXEC_XSAVES;
6128
6129         /*
6130          * We can emulate "VMCS shadowing," even if the hardware
6131          * doesn't support it.
6132          */
6133         msrs->secondary_ctls_high |=
6134                 SECONDARY_EXEC_SHADOW_VMCS;
6135
6136         if (enable_ept) {
6137                 /* nested EPT: emulate EPT also to L1 */
6138                 msrs->secondary_ctls_high |=
6139                         SECONDARY_EXEC_ENABLE_EPT;
6140                 msrs->ept_caps =
6141                         VMX_EPT_PAGE_WALK_4_BIT |
6142                         VMX_EPT_PAGE_WALK_5_BIT |
6143                         VMX_EPTP_WB_BIT |
6144                         VMX_EPT_INVEPT_BIT |
6145                         VMX_EPT_EXECUTE_ONLY_BIT;
6146
6147                 msrs->ept_caps &= ept_caps;
6148                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6149                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6150                         VMX_EPT_1GB_PAGE_BIT;
6151                 if (enable_ept_ad_bits) {
6152                         msrs->secondary_ctls_high |=
6153                                 SECONDARY_EXEC_ENABLE_PML;
6154                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6155                 }
6156         }
6157
6158         if (cpu_has_vmx_vmfunc()) {
6159                 msrs->secondary_ctls_high |=
6160                         SECONDARY_EXEC_ENABLE_VMFUNC;
6161                 /*
6162                  * Advertise EPTP switching unconditionally
6163                  * since we emulate it
6164                  */
6165                 if (enable_ept)
6166                         msrs->vmfunc_controls =
6167                                 VMX_VMFUNC_EPTP_SWITCHING;
6168         }
6169
6170         /*
6171          * Old versions of KVM use the single-context version without
6172          * checking for support, so declare that it is supported even
6173          * though it is treated as global context.  The alternative is
6174          * not failing the single-context invvpid, and it is worse.
6175          */
6176         if (enable_vpid) {
6177                 msrs->secondary_ctls_high |=
6178                         SECONDARY_EXEC_ENABLE_VPID;
6179                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6180                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6181         }
6182
6183         if (enable_unrestricted_guest)
6184                 msrs->secondary_ctls_high |=
6185                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6186
6187         if (flexpriority_enabled)
6188                 msrs->secondary_ctls_high |=
6189                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6190
6191         /* miscellaneous data */
6192         rdmsr(MSR_IA32_VMX_MISC,
6193                 msrs->misc_low,
6194                 msrs->misc_high);
6195         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6196         msrs->misc_low |=
6197                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6198                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6199                 VMX_MISC_ACTIVITY_HLT;
6200         msrs->misc_high = 0;
6201
6202         /*
6203          * This MSR reports some information about VMX support. We
6204          * should return information about the VMX we emulate for the
6205          * guest, and the VMCS structure we give it - not about the
6206          * VMX support of the underlying hardware.
6207          */
6208         msrs->basic =
6209                 VMCS12_REVISION |
6210                 VMX_BASIC_TRUE_CTLS |
6211                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6212                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6213
6214         if (cpu_has_vmx_basic_inout())
6215                 msrs->basic |= VMX_BASIC_INOUT;
6216
6217         /*
6218          * These MSRs specify bits which the guest must keep fixed on
6219          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6220          * We picked the standard core2 setting.
6221          */
6222 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6223 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6224         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6225         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6226
6227         /* These MSRs specify bits which the guest must keep fixed off. */
6228         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6229         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6230
6231         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6232         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6233 }
6234
6235 void nested_vmx_hardware_unsetup(void)
6236 {
6237         int i;
6238
6239         if (enable_shadow_vmcs) {
6240                 for (i = 0; i < VMX_BITMAP_NR; i++)
6241                         free_page((unsigned long)vmx_bitmap[i]);
6242         }
6243 }
6244
6245 __init int nested_vmx_hardware_setup(struct kvm_x86_ops *ops,
6246                                      int (*exit_handlers[])(struct kvm_vcpu *))
6247 {
6248         int i;
6249
6250         if (!cpu_has_vmx_shadow_vmcs())
6251                 enable_shadow_vmcs = 0;
6252         if (enable_shadow_vmcs) {
6253                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6254                         /*
6255                          * The vmx_bitmap is not tied to a VM and so should
6256                          * not be charged to a memcg.
6257                          */
6258                         vmx_bitmap[i] = (unsigned long *)
6259                                 __get_free_page(GFP_KERNEL);
6260                         if (!vmx_bitmap[i]) {
6261                                 nested_vmx_hardware_unsetup();
6262                                 return -ENOMEM;
6263                         }
6264                 }
6265
6266                 init_vmcs_shadow_fields();
6267         }
6268
6269         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6270         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6271         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6272         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6273         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6274         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6275         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6276         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6277         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6278         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6279         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6280         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6281
6282         ops->check_nested_events = vmx_check_nested_events;
6283         ops->get_nested_state = vmx_get_nested_state;
6284         ops->set_nested_state = vmx_set_nested_state;
6285         ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6286         ops->nested_enable_evmcs = nested_enable_evmcs;
6287         ops->nested_get_evmcs_version = nested_get_evmcs_version;
6288
6289         return 0;
6290 }