OSDN Git Service

Merge tag 'libata-5.6-2020-02-05' of git://git.kernel.dk/linux-block
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check)                                           \
24 ({                                                                      \
25         bool failed = (consistency_check);                              \
26         if (failed)                                                     \
27                 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28         failed;                                                         \
29 })
30
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
36         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
37         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
38         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
39         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44         VMX_VMREAD_BITMAP,
45         VMX_VMWRITE_BITMAP,
46         VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54         u16     encoding;
55         u16     offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62         ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69         ARRAY_SIZE(shadow_read_write_fields);
70
71 static void init_vmcs_shadow_fields(void)
72 {
73         int i, j;
74
75         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80                 u16 field = entry.encoding;
81
82                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83                     (i + 1 == max_shadow_read_only_fields ||
84                      shadow_read_only_fields[i + 1].encoding != field + 1))
85                         pr_err("Missing field from shadow_read_only_field %x\n",
86                                field + 1);
87
88                 clear_bit(field, vmx_vmread_bitmap);
89                 if (field & 1)
90 #ifdef CONFIG_X86_64
91                         continue;
92 #else
93                         entry.offset += sizeof(u32);
94 #endif
95                 shadow_read_only_fields[j++] = entry;
96         }
97         max_shadow_read_only_fields = j;
98
99         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101                 u16 field = entry.encoding;
102
103                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104                     (i + 1 == max_shadow_read_write_fields ||
105                      shadow_read_write_fields[i + 1].encoding != field + 1))
106                         pr_err("Missing field from shadow_read_write_field %x\n",
107                                field + 1);
108
109                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110                           field <= GUEST_TR_AR_BYTES,
111                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113                 /*
114                  * PML and the preemption timer can be emulated, but the
115                  * processor cannot vmwrite to fields that don't exist
116                  * on bare metal.
117                  */
118                 switch (field) {
119                 case GUEST_PML_INDEX:
120                         if (!cpu_has_vmx_pml())
121                                 continue;
122                         break;
123                 case VMX_PREEMPTION_TIMER_VALUE:
124                         if (!cpu_has_vmx_preemption_timer())
125                                 continue;
126                         break;
127                 case GUEST_INTR_STATUS:
128                         if (!cpu_has_vmx_apicv())
129                                 continue;
130                         break;
131                 default:
132                         break;
133                 }
134
135                 clear_bit(field, vmx_vmwrite_bitmap);
136                 clear_bit(field, vmx_vmread_bitmap);
137                 if (field & 1)
138 #ifdef CONFIG_X86_64
139                         continue;
140 #else
141                         entry.offset += sizeof(u32);
142 #endif
143                 shadow_read_write_fields[j++] = entry;
144         }
145         max_shadow_read_write_fields = j;
146 }
147
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159         return kvm_skip_emulated_instruction(vcpu);
160 }
161
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166                             X86_EFLAGS_SF | X86_EFLAGS_OF))
167                         | X86_EFLAGS_CF);
168         return kvm_skip_emulated_instruction(vcpu);
169 }
170
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172                                 u32 vm_instruction_error)
173 {
174         struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176         /*
177          * failValid writes the error number to the current VMCS, which
178          * can't be done if there isn't a current VMCS.
179          */
180         if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181                 return nested_vmx_failInvalid(vcpu);
182
183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
186                         | X86_EFLAGS_ZF);
187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188         /*
189          * We don't need to force a shadow sync because
190          * VM_INSTRUCTION_ERROR is not shadowed
191          */
192         return kvm_skip_emulated_instruction(vcpu);
193 }
194
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197         /* TODO: not to reset guest simply here. */
198         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204         return fixed_bits_valid(control, low, high);
205 }
206
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209         return low | ((u64)high << 32);
210 }
211
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215         vmcs_write64(VMCS_LINK_POINTER, -1ull);
216         vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221         struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223         if (!vmx->nested.hv_evmcs)
224                 return;
225
226         kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227         vmx->nested.hv_evmcs_vmptr = -1ull;
228         vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237         struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240                 return;
241
242         kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244         vmx->nested.vmxon = false;
245         vmx->nested.smm.vmxon = false;
246         free_vpid(vmx->nested.vpid02);
247         vmx->nested.posted_intr_nv = -1;
248         vmx->nested.current_vmptr = -1ull;
249         if (enable_shadow_vmcs) {
250                 vmx_disable_shadow_vmcs(vmx);
251                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252                 free_vmcs(vmx->vmcs01.shadow_vmcs);
253                 vmx->vmcs01.shadow_vmcs = NULL;
254         }
255         kfree(vmx->nested.cached_vmcs12);
256         vmx->nested.cached_vmcs12 = NULL;
257         kfree(vmx->nested.cached_shadow_vmcs12);
258         vmx->nested.cached_shadow_vmcs12 = NULL;
259         /* Unpin physical memory we referred to in the vmcs02 */
260         if (vmx->nested.apic_access_page) {
261                 kvm_release_page_clean(vmx->nested.apic_access_page);
262                 vmx->nested.apic_access_page = NULL;
263         }
264         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266         vmx->nested.pi_desc = NULL;
267
268         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270         nested_release_evmcs(vcpu);
271
272         free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276                                      struct loaded_vmcs *prev)
277 {
278         struct vmcs_host_state *dest, *src;
279
280         if (unlikely(!vmx->guest_state_loaded))
281                 return;
282
283         src = &prev->host_state;
284         dest = &vmx->loaded_vmcs->host_state;
285
286         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287         dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289         dest->ds_sel = src->ds_sel;
290         dest->es_sel = src->es_sel;
291 #endif
292 }
293
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296         struct vcpu_vmx *vmx = to_vmx(vcpu);
297         struct loaded_vmcs *prev;
298         int cpu;
299
300         if (vmx->loaded_vmcs == vmcs)
301                 return;
302
303         cpu = get_cpu();
304         prev = vmx->loaded_vmcs;
305         vmx->loaded_vmcs = vmcs;
306         vmx_vcpu_load_vmcs(vcpu, cpu);
307         vmx_sync_vmcs_host_state(vmx, prev);
308         put_cpu();
309
310         vmx_segment_cache_clear(vmx);
311 }
312
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319         vcpu_load(vcpu);
320         vmx_leave_nested(vcpu);
321         vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322         free_nested(vcpu);
323         vcpu_put(vcpu);
324 }
325
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327                 struct x86_exception *fault)
328 {
329         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330         struct vcpu_vmx *vmx = to_vmx(vcpu);
331         u32 exit_reason;
332         unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334         if (vmx->nested.pml_full) {
335                 exit_reason = EXIT_REASON_PML_FULL;
336                 vmx->nested.pml_full = false;
337                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338         } else if (fault->error_code & PFERR_RSVD_MASK)
339                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
340         else
341                 exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344         vmcs12->guest_physical_address = fault->address;
345 }
346
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349         WARN_ON(mmu_is_nested(vcpu));
350
351         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352         kvm_init_shadow_ept_mmu(vcpu,
353                         to_vmx(vcpu)->nested.msrs.ept_caps &
354                         VMX_EPT_EXECUTE_ONLY_BIT,
355                         nested_ept_ad_enabled(vcpu),
356                         nested_ept_get_cr3(vcpu));
357         vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
358         vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
359         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
360         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
361
362         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
363 }
364
365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 {
367         vcpu->arch.mmu = &vcpu->arch.root_mmu;
368         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
369 }
370
371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
372                                             u16 error_code)
373 {
374         bool inequality, bit;
375
376         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377         inequality =
378                 (error_code & vmcs12->page_fault_error_code_mask) !=
379                  vmcs12->page_fault_error_code_match;
380         return inequality ^ bit;
381 }
382
383
384 /*
385  * KVM wants to inject page-faults which it got to the guest. This function
386  * checks whether in a nested guest, we need to inject them to L1 or L2.
387  */
388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 {
390         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
391         unsigned int nr = vcpu->arch.exception.nr;
392         bool has_payload = vcpu->arch.exception.has_payload;
393         unsigned long payload = vcpu->arch.exception.payload;
394
395         if (nr == PF_VECTOR) {
396                 if (vcpu->arch.exception.nested_apf) {
397                         *exit_qual = vcpu->arch.apf.nested_apf_token;
398                         return 1;
399                 }
400                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
401                                                     vcpu->arch.exception.error_code)) {
402                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
403                         return 1;
404                 }
405         } else if (vmcs12->exception_bitmap & (1u << nr)) {
406                 if (nr == DB_VECTOR) {
407                         if (!has_payload) {
408                                 payload = vcpu->arch.dr6;
409                                 payload &= ~(DR6_FIXED_1 | DR6_BT);
410                                 payload ^= DR6_RTM;
411                         }
412                         *exit_qual = payload;
413                 } else
414                         *exit_qual = 0;
415                 return 1;
416         }
417
418         return 0;
419 }
420
421
422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
423                 struct x86_exception *fault)
424 {
425         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426
427         WARN_ON(!is_guest_mode(vcpu));
428
429         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
430                 !to_vmx(vcpu)->nested.nested_run_pending) {
431                 vmcs12->vm_exit_intr_error_code = fault->error_code;
432                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
433                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
434                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
435                                   fault->address);
436         } else {
437                 kvm_inject_page_fault(vcpu, fault);
438         }
439 }
440
441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
442 {
443         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
444 }
445
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447                                                struct vmcs12 *vmcs12)
448 {
449         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450                 return 0;
451
452         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454                 return -EINVAL;
455
456         return 0;
457 }
458
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460                                                 struct vmcs12 *vmcs12)
461 {
462         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463                 return 0;
464
465         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466                 return -EINVAL;
467
468         return 0;
469 }
470
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472                                                 struct vmcs12 *vmcs12)
473 {
474         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475                 return 0;
476
477         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478                 return -EINVAL;
479
480         return 0;
481 }
482
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488         unsigned long *msr_bitmap;
489         int f = sizeof(unsigned long);
490
491         if (!cpu_has_vmx_msr_bitmap())
492                 return true;
493
494         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495
496         if (msr <= 0x1fff) {
497                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
498         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499                 msr &= 0x1fff;
500                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501         }
502
503         return true;
504 }
505
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511                                                unsigned long *msr_bitmap_nested,
512                                                u32 msr, int type)
513 {
514         int f = sizeof(unsigned long);
515
516         /*
517          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518          * have the write-low and read-high bitmap offsets the wrong way round.
519          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520          */
521         if (msr <= 0x1fff) {
522                 if (type & MSR_TYPE_R &&
523                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524                         /* read-low */
525                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526
527                 if (type & MSR_TYPE_W &&
528                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529                         /* write-low */
530                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531
532         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533                 msr &= 0x1fff;
534                 if (type & MSR_TYPE_R &&
535                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536                         /* read-high */
537                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538
539                 if (type & MSR_TYPE_W &&
540                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541                         /* write-high */
542                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543
544         }
545 }
546
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
548         int msr;
549
550         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551                 unsigned word = msr / BITS_PER_LONG;
552
553                 msr_bitmap[word] = ~0;
554                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555         }
556 }
557
558 /*
559  * Merge L0's and L1's MSR bitmap, return false to indicate that
560  * we do not use the hardware.
561  */
562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563                                                  struct vmcs12 *vmcs12)
564 {
565         int msr;
566         unsigned long *msr_bitmap_l1;
567         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570         /* Nothing to do if the MSR bitmap is not in use.  */
571         if (!cpu_has_vmx_msr_bitmap() ||
572             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573                 return false;
574
575         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576                 return false;
577
578         msr_bitmap_l1 = (unsigned long *)map->hva;
579
580         /*
581          * To keep the control flow simple, pay eight 8-byte writes (sixteen
582          * 4-byte writes on 32-bit systems) up front to enable intercepts for
583          * the x2APIC MSR range and selectively disable them below.
584          */
585         enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589                         /*
590                          * L0 need not intercept reads for MSRs between 0x800
591                          * and 0x8ff, it just lets the processor take the value
592                          * from the virtual-APIC page; take those 256 bits
593                          * directly from the L1 bitmap.
594                          */
595                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596                                 unsigned word = msr / BITS_PER_LONG;
597
598                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599                         }
600                 }
601
602                 nested_vmx_disable_intercept_for_msr(
603                         msr_bitmap_l1, msr_bitmap_l0,
604                         X2APIC_MSR(APIC_TASKPRI),
605                         MSR_TYPE_R | MSR_TYPE_W);
606
607                 if (nested_cpu_has_vid(vmcs12)) {
608                         nested_vmx_disable_intercept_for_msr(
609                                 msr_bitmap_l1, msr_bitmap_l0,
610                                 X2APIC_MSR(APIC_EOI),
611                                 MSR_TYPE_W);
612                         nested_vmx_disable_intercept_for_msr(
613                                 msr_bitmap_l1, msr_bitmap_l0,
614                                 X2APIC_MSR(APIC_SELF_IPI),
615                                 MSR_TYPE_W);
616                 }
617         }
618
619         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621                                              MSR_FS_BASE, MSR_TYPE_RW);
622
623         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624                                              MSR_GS_BASE, MSR_TYPE_RW);
625
626         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629         /*
630          * Checking the L0->L1 bitmap is trying to verify two things:
631          *
632          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633          *    ensures that we do not accidentally generate an L02 MSR bitmap
634          *    from the L12 MSR bitmap that is too permissive.
635          * 2. That L1 or L2s have actually used the MSR. This avoids
636          *    unnecessarily merging of the bitmap if the MSR is unused. This
637          *    works properly because we only update the L01 MSR bitmap lazily.
638          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639          *    updated to reflect this when L1 (or its L2s) actually write to
640          *    the MSR.
641          */
642         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643                 nested_vmx_disable_intercept_for_msr(
644                                         msr_bitmap_l1, msr_bitmap_l0,
645                                         MSR_IA32_SPEC_CTRL,
646                                         MSR_TYPE_R | MSR_TYPE_W);
647
648         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649                 nested_vmx_disable_intercept_for_msr(
650                                         msr_bitmap_l1, msr_bitmap_l0,
651                                         MSR_IA32_PRED_CMD,
652                                         MSR_TYPE_W);
653
654         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656         return true;
657 }
658
659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660                                        struct vmcs12 *vmcs12)
661 {
662         struct kvm_host_map map;
663         struct vmcs12 *shadow;
664
665         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666             vmcs12->vmcs_link_pointer == -1ull)
667                 return;
668
669         shadow = get_shadow_vmcs12(vcpu);
670
671         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672                 return;
673
674         memcpy(shadow, map.hva, VMCS12_SIZE);
675         kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679                                               struct vmcs12 *vmcs12)
680 {
681         struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684             vmcs12->vmcs_link_pointer == -1ull)
685                 return;
686
687         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692  * In nested virtualization, check if L1 has set
693  * VM_EXIT_ACK_INTR_ON_EXIT
694  */
695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697         return get_vmcs12(vcpu)->vm_exit_controls &
698                 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
701 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
702 {
703         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
704 }
705
706 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
707                                           struct vmcs12 *vmcs12)
708 {
709         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
710             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
711                 return -EINVAL;
712         else
713                 return 0;
714 }
715
716 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
717                                            struct vmcs12 *vmcs12)
718 {
719         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
720             !nested_cpu_has_apic_reg_virt(vmcs12) &&
721             !nested_cpu_has_vid(vmcs12) &&
722             !nested_cpu_has_posted_intr(vmcs12))
723                 return 0;
724
725         /*
726          * If virtualize x2apic mode is enabled,
727          * virtualize apic access must be disabled.
728          */
729         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
730                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
731                 return -EINVAL;
732
733         /*
734          * If virtual interrupt delivery is enabled,
735          * we must exit on external interrupts.
736          */
737         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
738                 return -EINVAL;
739
740         /*
741          * bits 15:8 should be zero in posted_intr_nv,
742          * the descriptor address has been already checked
743          * in nested_get_vmcs12_pages.
744          *
745          * bits 5:0 of posted_intr_desc_addr should be zero.
746          */
747         if (nested_cpu_has_posted_intr(vmcs12) &&
748            (CC(!nested_cpu_has_vid(vmcs12)) ||
749             CC(!nested_exit_intr_ack_set(vcpu)) ||
750             CC((vmcs12->posted_intr_nv & 0xff00)) ||
751             CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
752             CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
753                 return -EINVAL;
754
755         /* tpr shadow is needed by all apicv features. */
756         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
757                 return -EINVAL;
758
759         return 0;
760 }
761
762 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
763                                        u32 count, u64 addr)
764 {
765         int maxphyaddr;
766
767         if (count == 0)
768                 return 0;
769         maxphyaddr = cpuid_maxphyaddr(vcpu);
770         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
771             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
772                 return -EINVAL;
773
774         return 0;
775 }
776
777 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
778                                                      struct vmcs12 *vmcs12)
779 {
780         if (CC(nested_vmx_check_msr_switch(vcpu,
781                                            vmcs12->vm_exit_msr_load_count,
782                                            vmcs12->vm_exit_msr_load_addr)) ||
783             CC(nested_vmx_check_msr_switch(vcpu,
784                                            vmcs12->vm_exit_msr_store_count,
785                                            vmcs12->vm_exit_msr_store_addr)))
786                 return -EINVAL;
787
788         return 0;
789 }
790
791 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
792                                                       struct vmcs12 *vmcs12)
793 {
794         if (CC(nested_vmx_check_msr_switch(vcpu,
795                                            vmcs12->vm_entry_msr_load_count,
796                                            vmcs12->vm_entry_msr_load_addr)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
803                                          struct vmcs12 *vmcs12)
804 {
805         if (!nested_cpu_has_pml(vmcs12))
806                 return 0;
807
808         if (CC(!nested_cpu_has_ept(vmcs12)) ||
809             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
816                                                         struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
819                !nested_cpu_has_ept(vmcs12)))
820                 return -EINVAL;
821         return 0;
822 }
823
824 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
825                                                          struct vmcs12 *vmcs12)
826 {
827         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
828                !nested_cpu_has_ept(vmcs12)))
829                 return -EINVAL;
830         return 0;
831 }
832
833 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
834                                                  struct vmcs12 *vmcs12)
835 {
836         if (!nested_cpu_has_shadow_vmcs(vmcs12))
837                 return 0;
838
839         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
840             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
841                 return -EINVAL;
842
843         return 0;
844 }
845
846 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
847                                        struct vmx_msr_entry *e)
848 {
849         /* x2APIC MSR accesses are not allowed */
850         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
851                 return -EINVAL;
852         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
853             CC(e->index == MSR_IA32_UCODE_REV))
854                 return -EINVAL;
855         if (CC(e->reserved != 0))
856                 return -EINVAL;
857         return 0;
858 }
859
860 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
861                                      struct vmx_msr_entry *e)
862 {
863         if (CC(e->index == MSR_FS_BASE) ||
864             CC(e->index == MSR_GS_BASE) ||
865             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
866             nested_vmx_msr_check_common(vcpu, e))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
872                                       struct vmx_msr_entry *e)
873 {
874         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
875             nested_vmx_msr_check_common(vcpu, e))
876                 return -EINVAL;
877         return 0;
878 }
879
880 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
881 {
882         struct vcpu_vmx *vmx = to_vmx(vcpu);
883         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
884                                        vmx->nested.msrs.misc_high);
885
886         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
887 }
888
889 /*
890  * Load guest's/host's msr at nested entry/exit.
891  * return 0 for success, entry index for failure.
892  *
893  * One of the failure modes for MSR load/store is when a list exceeds the
894  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
895  * as possible, process all valid entries before failing rather than precheck
896  * for a capacity violation.
897  */
898 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
899 {
900         u32 i;
901         struct vmx_msr_entry e;
902         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
903
904         for (i = 0; i < count; i++) {
905                 if (unlikely(i >= max_msr_list_size))
906                         goto fail;
907
908                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
909                                         &e, sizeof(e))) {
910                         pr_debug_ratelimited(
911                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
912                                 __func__, i, gpa + i * sizeof(e));
913                         goto fail;
914                 }
915                 if (nested_vmx_load_msr_check(vcpu, &e)) {
916                         pr_debug_ratelimited(
917                                 "%s check failed (%u, 0x%x, 0x%x)\n",
918                                 __func__, i, e.index, e.reserved);
919                         goto fail;
920                 }
921                 if (kvm_set_msr(vcpu, e.index, e.value)) {
922                         pr_debug_ratelimited(
923                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
924                                 __func__, i, e.index, e.value);
925                         goto fail;
926                 }
927         }
928         return 0;
929 fail:
930         return i + 1;
931 }
932
933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934                                             u32 msr_index,
935                                             u64 *data)
936 {
937         struct vcpu_vmx *vmx = to_vmx(vcpu);
938
939         /*
940          * If the L0 hypervisor stored a more accurate value for the TSC that
941          * does not include the time taken for emulation of the L2->L1
942          * VM-exit in L0, use the more accurate value.
943          */
944         if (msr_index == MSR_IA32_TSC) {
945                 int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
946                                                MSR_IA32_TSC);
947
948                 if (index >= 0) {
949                         u64 val = vmx->msr_autostore.guest.val[index].value;
950
951                         *data = kvm_read_l1_tsc(vcpu, val);
952                         return true;
953                 }
954         }
955
956         if (kvm_get_msr(vcpu, msr_index, data)) {
957                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958                         msr_index);
959                 return false;
960         }
961         return true;
962 }
963
964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965                                      struct vmx_msr_entry *e)
966 {
967         if (kvm_vcpu_read_guest(vcpu,
968                                 gpa + i * sizeof(*e),
969                                 e, 2 * sizeof(u32))) {
970                 pr_debug_ratelimited(
971                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
972                         __func__, i, gpa + i * sizeof(*e));
973                 return false;
974         }
975         if (nested_vmx_store_msr_check(vcpu, e)) {
976                 pr_debug_ratelimited(
977                         "%s check failed (%u, 0x%x, 0x%x)\n",
978                         __func__, i, e->index, e->reserved);
979                 return false;
980         }
981         return true;
982 }
983
984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986         u64 data;
987         u32 i;
988         struct vmx_msr_entry e;
989         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990
991         for (i = 0; i < count; i++) {
992                 if (unlikely(i >= max_msr_list_size))
993                         return -EINVAL;
994
995                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996                         return -EINVAL;
997
998                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999                         return -EINVAL;
1000
1001                 if (kvm_vcpu_write_guest(vcpu,
1002                                          gpa + i * sizeof(e) +
1003                                              offsetof(struct vmx_msr_entry, value),
1004                                          &data, sizeof(data))) {
1005                         pr_debug_ratelimited(
1006                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007                                 __func__, i, e.index, data);
1008                         return -EINVAL;
1009                 }
1010         }
1011         return 0;
1012 }
1013
1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017         u32 count = vmcs12->vm_exit_msr_store_count;
1018         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019         struct vmx_msr_entry e;
1020         u32 i;
1021
1022         for (i = 0; i < count; i++) {
1023                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024                         return false;
1025
1026                 if (e.index == msr_index)
1027                         return true;
1028         }
1029         return false;
1030 }
1031
1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033                                            u32 msr_index)
1034 {
1035         struct vcpu_vmx *vmx = to_vmx(vcpu);
1036         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037         bool in_vmcs12_store_list;
1038         int msr_autostore_index;
1039         bool in_autostore_list;
1040         int last;
1041
1042         msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1043         in_autostore_list = msr_autostore_index >= 0;
1044         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045
1046         if (in_vmcs12_store_list && !in_autostore_list) {
1047                 if (autostore->nr == NR_LOADSTORE_MSRS) {
1048                         /*
1049                          * Emulated VMEntry does not fail here.  Instead a less
1050                          * accurate value will be returned by
1051                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052                          * instead of reading the value from the vmcs02 VMExit
1053                          * MSR-store area.
1054                          */
1055                         pr_warn_ratelimited(
1056                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057                                 msr_index);
1058                         return;
1059                 }
1060                 last = autostore->nr++;
1061                 autostore->val[last].index = msr_index;
1062         } else if (!in_vmcs12_store_list && in_autostore_list) {
1063                 last = --autostore->nr;
1064                 autostore->val[msr_autostore_index] = autostore->val[last];
1065         }
1066 }
1067
1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070         unsigned long invalid_mask;
1071
1072         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073         return (val & invalid_mask) == 0;
1074 }
1075
1076 /*
1077  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
1078  * emulating VM entry into a guest with EPT enabled.
1079  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
1080  * is assigned to entry_failure_code on failure.
1081  */
1082 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1083                                u32 *entry_failure_code)
1084 {
1085         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1086                 if (CC(!nested_cr3_valid(vcpu, cr3))) {
1087                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
1088                         return -EINVAL;
1089                 }
1090
1091                 /*
1092                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1093                  * must not be dereferenced.
1094                  */
1095                 if (is_pae_paging(vcpu) && !nested_ept) {
1096                         if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1097                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1098                                 return -EINVAL;
1099                         }
1100                 }
1101         }
1102
1103         if (!nested_ept)
1104                 kvm_mmu_new_cr3(vcpu, cr3, false);
1105
1106         vcpu->arch.cr3 = cr3;
1107         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1108
1109         kvm_init_mmu(vcpu, false);
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Returns if KVM is able to config CPU to tag TLB entries
1116  * populated by L2 differently than TLB entries populated
1117  * by L1.
1118  *
1119  * If L0 uses EPT, L1 and L2 run with different EPTP because
1120  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1121  * are tagged with different EPTP.
1122  *
1123  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1124  * with different VPID (L1 entries are tagged with vmx->vpid
1125  * while L2 entries are tagged with vmx->nested.vpid02).
1126  */
1127 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1128 {
1129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1130
1131         return enable_ept ||
1132                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1133 }
1134
1135 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1136 {
1137         struct vcpu_vmx *vmx = to_vmx(vcpu);
1138
1139         return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1140 }
1141
1142 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1143 {
1144         superset &= mask;
1145         subset &= mask;
1146
1147         return (superset | subset) == superset;
1148 }
1149
1150 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1151 {
1152         const u64 feature_and_reserved =
1153                 /* feature (except bit 48; see below) */
1154                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1155                 /* reserved */
1156                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1157         u64 vmx_basic = vmx->nested.msrs.basic;
1158
1159         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1160                 return -EINVAL;
1161
1162         /*
1163          * KVM does not emulate a version of VMX that constrains physical
1164          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1165          */
1166         if (data & BIT_ULL(48))
1167                 return -EINVAL;
1168
1169         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1170             vmx_basic_vmcs_revision_id(data))
1171                 return -EINVAL;
1172
1173         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1174                 return -EINVAL;
1175
1176         vmx->nested.msrs.basic = data;
1177         return 0;
1178 }
1179
1180 static int
1181 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1182 {
1183         u64 supported;
1184         u32 *lowp, *highp;
1185
1186         switch (msr_index) {
1187         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1188                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1189                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1190                 break;
1191         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1192                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1193                 highp = &vmx->nested.msrs.procbased_ctls_high;
1194                 break;
1195         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1196                 lowp = &vmx->nested.msrs.exit_ctls_low;
1197                 highp = &vmx->nested.msrs.exit_ctls_high;
1198                 break;
1199         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1200                 lowp = &vmx->nested.msrs.entry_ctls_low;
1201                 highp = &vmx->nested.msrs.entry_ctls_high;
1202                 break;
1203         case MSR_IA32_VMX_PROCBASED_CTLS2:
1204                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1205                 highp = &vmx->nested.msrs.secondary_ctls_high;
1206                 break;
1207         default:
1208                 BUG();
1209         }
1210
1211         supported = vmx_control_msr(*lowp, *highp);
1212
1213         /* Check must-be-1 bits are still 1. */
1214         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1215                 return -EINVAL;
1216
1217         /* Check must-be-0 bits are still 0. */
1218         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1219                 return -EINVAL;
1220
1221         *lowp = data;
1222         *highp = data >> 32;
1223         return 0;
1224 }
1225
1226 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1227 {
1228         const u64 feature_and_reserved_bits =
1229                 /* feature */
1230                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1231                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1232                 /* reserved */
1233                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1234         u64 vmx_misc;
1235
1236         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1237                                    vmx->nested.msrs.misc_high);
1238
1239         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1240                 return -EINVAL;
1241
1242         if ((vmx->nested.msrs.pinbased_ctls_high &
1243              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1244             vmx_misc_preemption_timer_rate(data) !=
1245             vmx_misc_preemption_timer_rate(vmx_misc))
1246                 return -EINVAL;
1247
1248         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1249                 return -EINVAL;
1250
1251         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1252                 return -EINVAL;
1253
1254         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1255                 return -EINVAL;
1256
1257         vmx->nested.msrs.misc_low = data;
1258         vmx->nested.msrs.misc_high = data >> 32;
1259
1260         return 0;
1261 }
1262
1263 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1264 {
1265         u64 vmx_ept_vpid_cap;
1266
1267         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1268                                            vmx->nested.msrs.vpid_caps);
1269
1270         /* Every bit is either reserved or a feature bit. */
1271         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1272                 return -EINVAL;
1273
1274         vmx->nested.msrs.ept_caps = data;
1275         vmx->nested.msrs.vpid_caps = data >> 32;
1276         return 0;
1277 }
1278
1279 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1280 {
1281         u64 *msr;
1282
1283         switch (msr_index) {
1284         case MSR_IA32_VMX_CR0_FIXED0:
1285                 msr = &vmx->nested.msrs.cr0_fixed0;
1286                 break;
1287         case MSR_IA32_VMX_CR4_FIXED0:
1288                 msr = &vmx->nested.msrs.cr4_fixed0;
1289                 break;
1290         default:
1291                 BUG();
1292         }
1293
1294         /*
1295          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1296          * must be 1 in the restored value.
1297          */
1298         if (!is_bitwise_subset(data, *msr, -1ULL))
1299                 return -EINVAL;
1300
1301         *msr = data;
1302         return 0;
1303 }
1304
1305 /*
1306  * Called when userspace is restoring VMX MSRs.
1307  *
1308  * Returns 0 on success, non-0 otherwise.
1309  */
1310 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1311 {
1312         struct vcpu_vmx *vmx = to_vmx(vcpu);
1313
1314         /*
1315          * Don't allow changes to the VMX capability MSRs while the vCPU
1316          * is in VMX operation.
1317          */
1318         if (vmx->nested.vmxon)
1319                 return -EBUSY;
1320
1321         switch (msr_index) {
1322         case MSR_IA32_VMX_BASIC:
1323                 return vmx_restore_vmx_basic(vmx, data);
1324         case MSR_IA32_VMX_PINBASED_CTLS:
1325         case MSR_IA32_VMX_PROCBASED_CTLS:
1326         case MSR_IA32_VMX_EXIT_CTLS:
1327         case MSR_IA32_VMX_ENTRY_CTLS:
1328                 /*
1329                  * The "non-true" VMX capability MSRs are generated from the
1330                  * "true" MSRs, so we do not support restoring them directly.
1331                  *
1332                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1333                  * should restore the "true" MSRs with the must-be-1 bits
1334                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1335                  * DEFAULT SETTINGS".
1336                  */
1337                 return -EINVAL;
1338         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1339         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1340         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1341         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1342         case MSR_IA32_VMX_PROCBASED_CTLS2:
1343                 return vmx_restore_control_msr(vmx, msr_index, data);
1344         case MSR_IA32_VMX_MISC:
1345                 return vmx_restore_vmx_misc(vmx, data);
1346         case MSR_IA32_VMX_CR0_FIXED0:
1347         case MSR_IA32_VMX_CR4_FIXED0:
1348                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1349         case MSR_IA32_VMX_CR0_FIXED1:
1350         case MSR_IA32_VMX_CR4_FIXED1:
1351                 /*
1352                  * These MSRs are generated based on the vCPU's CPUID, so we
1353                  * do not support restoring them directly.
1354                  */
1355                 return -EINVAL;
1356         case MSR_IA32_VMX_EPT_VPID_CAP:
1357                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1358         case MSR_IA32_VMX_VMCS_ENUM:
1359                 vmx->nested.msrs.vmcs_enum = data;
1360                 return 0;
1361         case MSR_IA32_VMX_VMFUNC:
1362                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1363                         return -EINVAL;
1364                 vmx->nested.msrs.vmfunc_controls = data;
1365                 return 0;
1366         default:
1367                 /*
1368                  * The rest of the VMX capability MSRs do not support restore.
1369                  */
1370                 return -EINVAL;
1371         }
1372 }
1373
1374 /* Returns 0 on success, non-0 otherwise. */
1375 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1376 {
1377         switch (msr_index) {
1378         case MSR_IA32_VMX_BASIC:
1379                 *pdata = msrs->basic;
1380                 break;
1381         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1382         case MSR_IA32_VMX_PINBASED_CTLS:
1383                 *pdata = vmx_control_msr(
1384                         msrs->pinbased_ctls_low,
1385                         msrs->pinbased_ctls_high);
1386                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1387                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1388                 break;
1389         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1390         case MSR_IA32_VMX_PROCBASED_CTLS:
1391                 *pdata = vmx_control_msr(
1392                         msrs->procbased_ctls_low,
1393                         msrs->procbased_ctls_high);
1394                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1395                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1396                 break;
1397         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1398         case MSR_IA32_VMX_EXIT_CTLS:
1399                 *pdata = vmx_control_msr(
1400                         msrs->exit_ctls_low,
1401                         msrs->exit_ctls_high);
1402                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1403                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1404                 break;
1405         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1406         case MSR_IA32_VMX_ENTRY_CTLS:
1407                 *pdata = vmx_control_msr(
1408                         msrs->entry_ctls_low,
1409                         msrs->entry_ctls_high);
1410                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1411                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1412                 break;
1413         case MSR_IA32_VMX_MISC:
1414                 *pdata = vmx_control_msr(
1415                         msrs->misc_low,
1416                         msrs->misc_high);
1417                 break;
1418         case MSR_IA32_VMX_CR0_FIXED0:
1419                 *pdata = msrs->cr0_fixed0;
1420                 break;
1421         case MSR_IA32_VMX_CR0_FIXED1:
1422                 *pdata = msrs->cr0_fixed1;
1423                 break;
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 *pdata = msrs->cr4_fixed0;
1426                 break;
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 *pdata = msrs->cr4_fixed1;
1429                 break;
1430         case MSR_IA32_VMX_VMCS_ENUM:
1431                 *pdata = msrs->vmcs_enum;
1432                 break;
1433         case MSR_IA32_VMX_PROCBASED_CTLS2:
1434                 *pdata = vmx_control_msr(
1435                         msrs->secondary_ctls_low,
1436                         msrs->secondary_ctls_high);
1437                 break;
1438         case MSR_IA32_VMX_EPT_VPID_CAP:
1439                 *pdata = msrs->ept_caps |
1440                         ((u64)msrs->vpid_caps << 32);
1441                 break;
1442         case MSR_IA32_VMX_VMFUNC:
1443                 *pdata = msrs->vmfunc_controls;
1444                 break;
1445         default:
1446                 return 1;
1447         }
1448
1449         return 0;
1450 }
1451
1452 /*
1453  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1454  * been modified by the L1 guest.  Note, "writable" in this context means
1455  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1456  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1457  * VM-exit information fields (which are actually writable if the vCPU is
1458  * configured to support "VMWRITE to any supported field in the VMCS").
1459  */
1460 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1461 {
1462         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1463         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1464         struct shadow_vmcs_field field;
1465         unsigned long val;
1466         int i;
1467
1468         if (WARN_ON(!shadow_vmcs))
1469                 return;
1470
1471         preempt_disable();
1472
1473         vmcs_load(shadow_vmcs);
1474
1475         for (i = 0; i < max_shadow_read_write_fields; i++) {
1476                 field = shadow_read_write_fields[i];
1477                 val = __vmcs_readl(field.encoding);
1478                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1479         }
1480
1481         vmcs_clear(shadow_vmcs);
1482         vmcs_load(vmx->loaded_vmcs->vmcs);
1483
1484         preempt_enable();
1485 }
1486
1487 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1488 {
1489         const struct shadow_vmcs_field *fields[] = {
1490                 shadow_read_write_fields,
1491                 shadow_read_only_fields
1492         };
1493         const int max_fields[] = {
1494                 max_shadow_read_write_fields,
1495                 max_shadow_read_only_fields
1496         };
1497         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1498         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1499         struct shadow_vmcs_field field;
1500         unsigned long val;
1501         int i, q;
1502
1503         if (WARN_ON(!shadow_vmcs))
1504                 return;
1505
1506         vmcs_load(shadow_vmcs);
1507
1508         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1509                 for (i = 0; i < max_fields[q]; i++) {
1510                         field = fields[q][i];
1511                         val = vmcs12_read_any(vmcs12, field.encoding,
1512                                               field.offset);
1513                         __vmcs_writel(field.encoding, val);
1514                 }
1515         }
1516
1517         vmcs_clear(shadow_vmcs);
1518         vmcs_load(vmx->loaded_vmcs->vmcs);
1519 }
1520
1521 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1522 {
1523         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1524         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1525
1526         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1527         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1528         vmcs12->guest_rip = evmcs->guest_rip;
1529
1530         if (unlikely(!(evmcs->hv_clean_fields &
1531                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1532                 vmcs12->guest_rsp = evmcs->guest_rsp;
1533                 vmcs12->guest_rflags = evmcs->guest_rflags;
1534                 vmcs12->guest_interruptibility_info =
1535                         evmcs->guest_interruptibility_info;
1536         }
1537
1538         if (unlikely(!(evmcs->hv_clean_fields &
1539                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1540                 vmcs12->cpu_based_vm_exec_control =
1541                         evmcs->cpu_based_vm_exec_control;
1542         }
1543
1544         if (unlikely(!(evmcs->hv_clean_fields &
1545                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1546                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1547         }
1548
1549         if (unlikely(!(evmcs->hv_clean_fields &
1550                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1551                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1552         }
1553
1554         if (unlikely(!(evmcs->hv_clean_fields &
1555                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1556                 vmcs12->vm_entry_intr_info_field =
1557                         evmcs->vm_entry_intr_info_field;
1558                 vmcs12->vm_entry_exception_error_code =
1559                         evmcs->vm_entry_exception_error_code;
1560                 vmcs12->vm_entry_instruction_len =
1561                         evmcs->vm_entry_instruction_len;
1562         }
1563
1564         if (unlikely(!(evmcs->hv_clean_fields &
1565                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1566                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1567                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1568                 vmcs12->host_cr0 = evmcs->host_cr0;
1569                 vmcs12->host_cr3 = evmcs->host_cr3;
1570                 vmcs12->host_cr4 = evmcs->host_cr4;
1571                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1572                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1573                 vmcs12->host_rip = evmcs->host_rip;
1574                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1575                 vmcs12->host_es_selector = evmcs->host_es_selector;
1576                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1577                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1578                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1579                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1580                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1581                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1582         }
1583
1584         if (unlikely(!(evmcs->hv_clean_fields &
1585                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1586                 vmcs12->pin_based_vm_exec_control =
1587                         evmcs->pin_based_vm_exec_control;
1588                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1589                 vmcs12->secondary_vm_exec_control =
1590                         evmcs->secondary_vm_exec_control;
1591         }
1592
1593         if (unlikely(!(evmcs->hv_clean_fields &
1594                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1595                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1596                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1597         }
1598
1599         if (unlikely(!(evmcs->hv_clean_fields &
1600                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1601                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1602         }
1603
1604         if (unlikely(!(evmcs->hv_clean_fields &
1605                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1606                 vmcs12->guest_es_base = evmcs->guest_es_base;
1607                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1608                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1609                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1610                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1611                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1612                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1613                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1614                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1615                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1616                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1617                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1618                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1619                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1620                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1621                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1622                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1623                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1624                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1625                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1626                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1627                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1628                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1629                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1630                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1631                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1632                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1633                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1634                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1635                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1636                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1637                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1638                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1639                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1640                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1641                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1642         }
1643
1644         if (unlikely(!(evmcs->hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1646                 vmcs12->tsc_offset = evmcs->tsc_offset;
1647                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1648                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1649         }
1650
1651         if (unlikely(!(evmcs->hv_clean_fields &
1652                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1653                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1654                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1655                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1656                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1657                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1658                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1659                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1660                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1661         }
1662
1663         if (unlikely(!(evmcs->hv_clean_fields &
1664                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1665                 vmcs12->host_fs_base = evmcs->host_fs_base;
1666                 vmcs12->host_gs_base = evmcs->host_gs_base;
1667                 vmcs12->host_tr_base = evmcs->host_tr_base;
1668                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1669                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1670                 vmcs12->host_rsp = evmcs->host_rsp;
1671         }
1672
1673         if (unlikely(!(evmcs->hv_clean_fields &
1674                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1675                 vmcs12->ept_pointer = evmcs->ept_pointer;
1676                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1677         }
1678
1679         if (unlikely(!(evmcs->hv_clean_fields &
1680                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1681                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1682                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1683                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1684                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1685                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1686                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1687                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1688                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1689                 vmcs12->guest_pending_dbg_exceptions =
1690                         evmcs->guest_pending_dbg_exceptions;
1691                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1692                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1693                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1694                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1695                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1696         }
1697
1698         /*
1699          * Not used?
1700          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1701          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1702          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1703          * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1704          * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1705          * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1706          * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1707          * vmcs12->page_fault_error_code_mask =
1708          *              evmcs->page_fault_error_code_mask;
1709          * vmcs12->page_fault_error_code_match =
1710          *              evmcs->page_fault_error_code_match;
1711          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1712          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1713          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1714          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1715          */
1716
1717         /*
1718          * Read only fields:
1719          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1720          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1721          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1722          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1723          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1724          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1725          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1726          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1727          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1728          * vmcs12->exit_qualification = evmcs->exit_qualification;
1729          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1730          *
1731          * Not present in struct vmcs12:
1732          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1733          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1734          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1735          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1736          */
1737
1738         return 0;
1739 }
1740
1741 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1742 {
1743         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1744         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1745
1746         /*
1747          * Should not be changed by KVM:
1748          *
1749          * evmcs->host_es_selector = vmcs12->host_es_selector;
1750          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1751          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1752          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1753          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1754          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1755          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1756          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1757          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1758          * evmcs->host_cr0 = vmcs12->host_cr0;
1759          * evmcs->host_cr3 = vmcs12->host_cr3;
1760          * evmcs->host_cr4 = vmcs12->host_cr4;
1761          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1762          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1763          * evmcs->host_rip = vmcs12->host_rip;
1764          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1765          * evmcs->host_fs_base = vmcs12->host_fs_base;
1766          * evmcs->host_gs_base = vmcs12->host_gs_base;
1767          * evmcs->host_tr_base = vmcs12->host_tr_base;
1768          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1769          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1770          * evmcs->host_rsp = vmcs12->host_rsp;
1771          * sync_vmcs02_to_vmcs12() doesn't read these:
1772          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1773          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1774          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1775          * evmcs->ept_pointer = vmcs12->ept_pointer;
1776          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1777          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1778          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1779          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1780          * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1781          * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1782          * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1783          * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1784          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1785          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1786          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1787          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1788          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1789          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1790          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1791          * evmcs->page_fault_error_code_mask =
1792          *              vmcs12->page_fault_error_code_mask;
1793          * evmcs->page_fault_error_code_match =
1794          *              vmcs12->page_fault_error_code_match;
1795          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1796          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1797          * evmcs->tsc_offset = vmcs12->tsc_offset;
1798          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1799          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1800          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1801          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1802          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1803          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1804          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1805          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1806          *
1807          * Not present in struct vmcs12:
1808          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1809          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1810          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1811          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1812          */
1813
1814         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1815         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1816         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1817         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1818         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1819         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1820         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1821         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1822
1823         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1824         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1825         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1826         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1827         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1828         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1829         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1830         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1831         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1832         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1833
1834         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1835         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1836         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1837         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1838         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1839         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1840         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1841         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1842
1843         evmcs->guest_es_base = vmcs12->guest_es_base;
1844         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1845         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1846         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1847         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1848         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1849         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1850         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1851         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1852         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1853
1854         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1855         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1856
1857         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1858         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1859         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1860         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1861
1862         evmcs->guest_pending_dbg_exceptions =
1863                 vmcs12->guest_pending_dbg_exceptions;
1864         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1865         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1866
1867         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1868         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1869
1870         evmcs->guest_cr0 = vmcs12->guest_cr0;
1871         evmcs->guest_cr3 = vmcs12->guest_cr3;
1872         evmcs->guest_cr4 = vmcs12->guest_cr4;
1873         evmcs->guest_dr7 = vmcs12->guest_dr7;
1874
1875         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1876
1877         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1878         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1879         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1880         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1881         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1882         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1883         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1884         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1885
1886         evmcs->exit_qualification = vmcs12->exit_qualification;
1887
1888         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1889         evmcs->guest_rsp = vmcs12->guest_rsp;
1890         evmcs->guest_rflags = vmcs12->guest_rflags;
1891
1892         evmcs->guest_interruptibility_info =
1893                 vmcs12->guest_interruptibility_info;
1894         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1895         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1896         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1897         evmcs->vm_entry_exception_error_code =
1898                 vmcs12->vm_entry_exception_error_code;
1899         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1900
1901         evmcs->guest_rip = vmcs12->guest_rip;
1902
1903         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1904
1905         return 0;
1906 }
1907
1908 /*
1909  * This is an equivalent of the nested hypervisor executing the vmptrld
1910  * instruction.
1911  */
1912 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1913                                                  bool from_launch)
1914 {
1915         struct vcpu_vmx *vmx = to_vmx(vcpu);
1916         bool evmcs_gpa_changed = false;
1917         u64 evmcs_gpa;
1918
1919         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1920                 return 1;
1921
1922         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1923                 return 1;
1924
1925         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1926                 if (!vmx->nested.hv_evmcs)
1927                         vmx->nested.current_vmptr = -1ull;
1928
1929                 nested_release_evmcs(vcpu);
1930
1931                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1932                                  &vmx->nested.hv_evmcs_map))
1933                         return 0;
1934
1935                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1936
1937                 /*
1938                  * Currently, KVM only supports eVMCS version 1
1939                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1940                  * value to first u32 field of eVMCS which should specify eVMCS
1941                  * VersionNumber.
1942                  *
1943                  * Guest should be aware of supported eVMCS versions by host by
1944                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1945                  * expected to set this CPUID leaf according to the value
1946                  * returned in vmcs_version from nested_enable_evmcs().
1947                  *
1948                  * However, it turns out that Microsoft Hyper-V fails to comply
1949                  * to their own invented interface: When Hyper-V use eVMCS, it
1950                  * just sets first u32 field of eVMCS to revision_id specified
1951                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1952                  * which is one of the supported versions specified in
1953                  * CPUID.0x4000000A.EAX[0:15].
1954                  *
1955                  * To overcome Hyper-V bug, we accept here either a supported
1956                  * eVMCS version or VMCS12 revision_id as valid values for first
1957                  * u32 field of eVMCS.
1958                  */
1959                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1960                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1961                         nested_release_evmcs(vcpu);
1962                         return 0;
1963                 }
1964
1965                 vmx->nested.dirty_vmcs12 = true;
1966                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1967
1968                 evmcs_gpa_changed = true;
1969                 /*
1970                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
1971                  * reloaded from guest's memory (read only fields, fields not
1972                  * present in struct hv_enlightened_vmcs, ...). Make sure there
1973                  * are no leftovers.
1974                  */
1975                 if (from_launch) {
1976                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1977                         memset(vmcs12, 0, sizeof(*vmcs12));
1978                         vmcs12->hdr.revision_id = VMCS12_REVISION;
1979                 }
1980
1981         }
1982
1983         /*
1984          * Clean fields data can't de used on VMLAUNCH and when we switch
1985          * between different L2 guests as KVM keeps a single VMCS12 per L1.
1986          */
1987         if (from_launch || evmcs_gpa_changed)
1988                 vmx->nested.hv_evmcs->hv_clean_fields &=
1989                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1990
1991         return 1;
1992 }
1993
1994 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1995 {
1996         struct vcpu_vmx *vmx = to_vmx(vcpu);
1997
1998         /*
1999          * hv_evmcs may end up being not mapped after migration (when
2000          * L2 was running), map it here to make sure vmcs12 changes are
2001          * properly reflected.
2002          */
2003         if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
2004                 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
2005
2006         if (vmx->nested.hv_evmcs) {
2007                 copy_vmcs12_to_enlightened(vmx);
2008                 /* All fields are clean */
2009                 vmx->nested.hv_evmcs->hv_clean_fields |=
2010                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2011         } else {
2012                 copy_vmcs12_to_shadow(vmx);
2013         }
2014
2015         vmx->nested.need_vmcs12_to_shadow_sync = false;
2016 }
2017
2018 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2019 {
2020         struct vcpu_vmx *vmx =
2021                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2022
2023         vmx->nested.preemption_timer_expired = true;
2024         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2025         kvm_vcpu_kick(&vmx->vcpu);
2026
2027         return HRTIMER_NORESTART;
2028 }
2029
2030 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2031 {
2032         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2033         struct vcpu_vmx *vmx = to_vmx(vcpu);
2034
2035         /*
2036          * A timer value of zero is architecturally guaranteed to cause
2037          * a VMExit prior to executing any instructions in the guest.
2038          */
2039         if (preemption_timeout == 0) {
2040                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2041                 return;
2042         }
2043
2044         if (vcpu->arch.virtual_tsc_khz == 0)
2045                 return;
2046
2047         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2048         preemption_timeout *= 1000000;
2049         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2050         hrtimer_start(&vmx->nested.preemption_timer,
2051                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2052 }
2053
2054 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2055 {
2056         if (vmx->nested.nested_run_pending &&
2057             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2058                 return vmcs12->guest_ia32_efer;
2059         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2060                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2061         else
2062                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2063 }
2064
2065 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2066 {
2067         /*
2068          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2069          * according to L0's settings (vmcs12 is irrelevant here).  Host
2070          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2071          * will be set as needed prior to VMLAUNCH/VMRESUME.
2072          */
2073         if (vmx->nested.vmcs02_initialized)
2074                 return;
2075         vmx->nested.vmcs02_initialized = true;
2076
2077         /*
2078          * We don't care what the EPTP value is we just need to guarantee
2079          * it's valid so we don't get a false positive when doing early
2080          * consistency checks.
2081          */
2082         if (enable_ept && nested_early_check)
2083                 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2084
2085         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2086         if (cpu_has_vmx_vmfunc())
2087                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2088
2089         if (cpu_has_vmx_posted_intr())
2090                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2091
2092         if (cpu_has_vmx_msr_bitmap())
2093                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2094
2095         /*
2096          * The PML address never changes, so it is constant in vmcs02.
2097          * Conceptually we want to copy the PML index from vmcs01 here,
2098          * and then back to vmcs01 on nested vmexit.  But since we flush
2099          * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2100          * index is also effectively constant in vmcs02.
2101          */
2102         if (enable_pml) {
2103                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2104                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2105         }
2106
2107         if (cpu_has_vmx_encls_vmexit())
2108                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2109
2110         /*
2111          * Set the MSR load/store lists to match L0's settings.  Only the
2112          * addresses are constant (for vmcs02), the counts can change based
2113          * on L2's behavior, e.g. switching to/from long mode.
2114          */
2115         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2116         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2117         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2118
2119         vmx_set_constant_host_state(vmx);
2120 }
2121
2122 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2123                                       struct vmcs12 *vmcs12)
2124 {
2125         prepare_vmcs02_constant_state(vmx);
2126
2127         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2128
2129         if (enable_vpid) {
2130                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2131                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2132                 else
2133                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2134         }
2135 }
2136
2137 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2138 {
2139         u32 exec_control, vmcs12_exec_ctrl;
2140         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2141
2142         if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2143                 prepare_vmcs02_early_rare(vmx, vmcs12);
2144
2145         /*
2146          * PIN CONTROLS
2147          */
2148         exec_control = vmx_pin_based_exec_ctrl(vmx);
2149         exec_control |= (vmcs12->pin_based_vm_exec_control &
2150                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2151
2152         /* Posted interrupts setting is only taken from vmcs12.  */
2153         if (nested_cpu_has_posted_intr(vmcs12)) {
2154                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2155                 vmx->nested.pi_pending = false;
2156         } else {
2157                 exec_control &= ~PIN_BASED_POSTED_INTR;
2158         }
2159         pin_controls_set(vmx, exec_control);
2160
2161         /*
2162          * EXEC CONTROLS
2163          */
2164         exec_control = vmx_exec_control(vmx); /* L0's desires */
2165         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2166         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2167         exec_control &= ~CPU_BASED_TPR_SHADOW;
2168         exec_control |= vmcs12->cpu_based_vm_exec_control;
2169
2170         vmx->nested.l1_tpr_threshold = -1;
2171         if (exec_control & CPU_BASED_TPR_SHADOW)
2172                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2173 #ifdef CONFIG_X86_64
2174         else
2175                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2176                                 CPU_BASED_CR8_STORE_EXITING;
2177 #endif
2178
2179         /*
2180          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2181          * for I/O port accesses.
2182          */
2183         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2184         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2185
2186         /*
2187          * This bit will be computed in nested_get_vmcs12_pages, because
2188          * we do not have access to L1's MSR bitmap yet.  For now, keep
2189          * the same bit as before, hoping to avoid multiple VMWRITEs that
2190          * only set/clear this bit.
2191          */
2192         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2193         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2194
2195         exec_controls_set(vmx, exec_control);
2196
2197         /*
2198          * SECONDARY EXEC CONTROLS
2199          */
2200         if (cpu_has_secondary_exec_ctrls()) {
2201                 exec_control = vmx->secondary_exec_control;
2202
2203                 /* Take the following fields only from vmcs12 */
2204                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2205                                   SECONDARY_EXEC_ENABLE_INVPCID |
2206                                   SECONDARY_EXEC_RDTSCP |
2207                                   SECONDARY_EXEC_XSAVES |
2208                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2209                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2210                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2211                                   SECONDARY_EXEC_ENABLE_VMFUNC);
2212                 if (nested_cpu_has(vmcs12,
2213                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2214                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2215                                 ~SECONDARY_EXEC_ENABLE_PML;
2216                         exec_control |= vmcs12_exec_ctrl;
2217                 }
2218
2219                 /* VMCS shadowing for L2 is emulated for now */
2220                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2221
2222                 /*
2223                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2224                  * will not have to rewrite the controls just for this bit.
2225                  */
2226                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2227                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2228                         exec_control |= SECONDARY_EXEC_DESC;
2229
2230                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2231                         vmcs_write16(GUEST_INTR_STATUS,
2232                                 vmcs12->guest_intr_status);
2233
2234                 secondary_exec_controls_set(vmx, exec_control);
2235         }
2236
2237         /*
2238          * ENTRY CONTROLS
2239          *
2240          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2241          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2242          * on the related bits (if supported by the CPU) in the hope that
2243          * we can avoid VMWrites during vmx_set_efer().
2244          */
2245         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2246                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2247         if (cpu_has_load_ia32_efer()) {
2248                 if (guest_efer & EFER_LMA)
2249                         exec_control |= VM_ENTRY_IA32E_MODE;
2250                 if (guest_efer != host_efer)
2251                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2252         }
2253         vm_entry_controls_set(vmx, exec_control);
2254
2255         /*
2256          * EXIT CONTROLS
2257          *
2258          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2259          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2260          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2261          */
2262         exec_control = vmx_vmexit_ctrl();
2263         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2264                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2265         vm_exit_controls_set(vmx, exec_control);
2266
2267         /*
2268          * Interrupt/Exception Fields
2269          */
2270         if (vmx->nested.nested_run_pending) {
2271                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2272                              vmcs12->vm_entry_intr_info_field);
2273                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2274                              vmcs12->vm_entry_exception_error_code);
2275                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2276                              vmcs12->vm_entry_instruction_len);
2277                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2278                              vmcs12->guest_interruptibility_info);
2279                 vmx->loaded_vmcs->nmi_known_unmasked =
2280                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2281         } else {
2282                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2283         }
2284 }
2285
2286 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2287 {
2288         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2289
2290         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2291                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2292                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2293                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2294                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2295                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2296                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2297                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2298                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2299                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2300                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2301                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2302                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2303                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2304                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2305                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2306                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2307                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2308                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2309                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2310                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2311                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2312                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2313                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2314                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2315                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2316                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2317                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2318                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2319                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2320                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2321                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2322                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2323                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2324                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2325                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2326                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2327                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2328         }
2329
2330         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2331                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2332                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2333                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2334                             vmcs12->guest_pending_dbg_exceptions);
2335                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2336                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2337
2338                 /*
2339                  * L1 may access the L2's PDPTR, so save them to construct
2340                  * vmcs12
2341                  */
2342                 if (enable_ept) {
2343                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2344                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2345                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2346                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2347                 }
2348
2349                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2350                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2351                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2352         }
2353
2354         if (nested_cpu_has_xsaves(vmcs12))
2355                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2356
2357         /*
2358          * Whether page-faults are trapped is determined by a combination of
2359          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2360          * If enable_ept, L0 doesn't care about page faults and we should
2361          * set all of these to L1's desires. However, if !enable_ept, L0 does
2362          * care about (at least some) page faults, and because it is not easy
2363          * (if at all possible?) to merge L0 and L1's desires, we simply ask
2364          * to exit on each and every L2 page fault. This is done by setting
2365          * MASK=MATCH=0 and (see below) EB.PF=1.
2366          * Note that below we don't need special code to set EB.PF beyond the
2367          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2368          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2369          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2370          */
2371         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2372                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2373         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2374                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2375
2376         if (cpu_has_vmx_apicv()) {
2377                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2378                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2379                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2380                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2381         }
2382
2383         /*
2384          * Make sure the msr_autostore list is up to date before we set the
2385          * count in the vmcs02.
2386          */
2387         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2388
2389         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2390         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2391         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2392
2393         set_cr4_guest_host_mask(vmx);
2394 }
2395
2396 /*
2397  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2398  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2399  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2400  * guest in a way that will both be appropriate to L1's requests, and our
2401  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2402  * function also has additional necessary side-effects, like setting various
2403  * vcpu->arch fields.
2404  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2405  * is assigned to entry_failure_code on failure.
2406  */
2407 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2408                           u32 *entry_failure_code)
2409 {
2410         struct vcpu_vmx *vmx = to_vmx(vcpu);
2411         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2412         bool load_guest_pdptrs_vmcs12 = false;
2413
2414         if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2415                 prepare_vmcs02_rare(vmx, vmcs12);
2416                 vmx->nested.dirty_vmcs12 = false;
2417
2418                 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2419                         !(hv_evmcs->hv_clean_fields &
2420                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2421         }
2422
2423         if (vmx->nested.nested_run_pending &&
2424             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2425                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2426                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2427         } else {
2428                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2429                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2430         }
2431         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2432             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2433                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2434         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2435
2436         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2437          * bitwise-or of what L1 wants to trap for L2, and what we want to
2438          * trap. Note that CR0.TS also needs updating - we do this later.
2439          */
2440         update_exception_bitmap(vcpu);
2441         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2442         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2443
2444         if (vmx->nested.nested_run_pending &&
2445             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2446                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2447                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2448         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2449                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2450         }
2451
2452         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2453
2454         if (kvm_has_tsc_control)
2455                 decache_tsc_multiplier(vmx);
2456
2457         if (enable_vpid) {
2458                 /*
2459                  * There is no direct mapping between vpid02 and vpid12, the
2460                  * vpid02 is per-vCPU for L0 and reused while the value of
2461                  * vpid12 is changed w/ one invvpid during nested vmentry.
2462                  * The vpid12 is allocated by L1 for L2, so it will not
2463                  * influence global bitmap(for vpid01 and vpid02 allocation)
2464                  * even if spawn a lot of nested vCPUs.
2465                  */
2466                 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2467                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2468                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2469                                 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2470                         }
2471                 } else {
2472                         /*
2473                          * If L1 use EPT, then L0 needs to execute INVEPT on
2474                          * EPTP02 instead of EPTP01. Therefore, delay TLB
2475                          * flush until vmcs02->eptp is fully updated by
2476                          * KVM_REQ_LOAD_CR3. Note that this assumes
2477                          * KVM_REQ_TLB_FLUSH is evaluated after
2478                          * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2479                          */
2480                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2481                 }
2482         }
2483
2484         if (nested_cpu_has_ept(vmcs12))
2485                 nested_ept_init_mmu_context(vcpu);
2486
2487         /*
2488          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2489          * bits which we consider mandatory enabled.
2490          * The CR0_READ_SHADOW is what L2 should have expected to read given
2491          * the specifications by L1; It's not enough to take
2492          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2493          * have more bits than L1 expected.
2494          */
2495         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2496         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2497
2498         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2499         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2500
2501         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2502         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2503         vmx_set_efer(vcpu, vcpu->arch.efer);
2504
2505         /*
2506          * Guest state is invalid and unrestricted guest is disabled,
2507          * which means L1 attempted VMEntry to L2 with invalid state.
2508          * Fail the VMEntry.
2509          */
2510         if (vmx->emulation_required) {
2511                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2512                 return -EINVAL;
2513         }
2514
2515         /* Shadow page tables on either EPT or shadow page tables. */
2516         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2517                                 entry_failure_code))
2518                 return -EINVAL;
2519
2520         /*
2521          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2522          * on nested VM-Exit, which can occur without actually running L2 and
2523          * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2524          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2525          * transition to HLT instead of running L2.
2526          */
2527         if (enable_ept)
2528                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2529
2530         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2531         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2532             is_pae_paging(vcpu)) {
2533                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2534                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2535                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2536                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2537         }
2538
2539         if (!enable_ept)
2540                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2541
2542         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2543             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2544                                      vmcs12->guest_ia32_perf_global_ctrl)))
2545                 return -EINVAL;
2546
2547         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2548         kvm_rip_write(vcpu, vmcs12->guest_rip);
2549         return 0;
2550 }
2551
2552 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2553 {
2554         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2555                nested_cpu_has_virtual_nmis(vmcs12)))
2556                 return -EINVAL;
2557
2558         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2559                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2560                 return -EINVAL;
2561
2562         return 0;
2563 }
2564
2565 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2566 {
2567         struct vcpu_vmx *vmx = to_vmx(vcpu);
2568         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2569
2570         /* Check for memory type validity */
2571         switch (address & VMX_EPTP_MT_MASK) {
2572         case VMX_EPTP_MT_UC:
2573                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2574                         return false;
2575                 break;
2576         case VMX_EPTP_MT_WB:
2577                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2578                         return false;
2579                 break;
2580         default:
2581                 return false;
2582         }
2583
2584         /* only 4 levels page-walk length are valid */
2585         if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2586                 return false;
2587
2588         /* Reserved bits should not be set */
2589         if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2590                 return false;
2591
2592         /* AD, if set, should be supported */
2593         if (address & VMX_EPTP_AD_ENABLE_BIT) {
2594                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2595                         return false;
2596         }
2597
2598         return true;
2599 }
2600
2601 /*
2602  * Checks related to VM-Execution Control Fields
2603  */
2604 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2605                                               struct vmcs12 *vmcs12)
2606 {
2607         struct vcpu_vmx *vmx = to_vmx(vcpu);
2608
2609         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2610                                    vmx->nested.msrs.pinbased_ctls_low,
2611                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2612             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2613                                    vmx->nested.msrs.procbased_ctls_low,
2614                                    vmx->nested.msrs.procbased_ctls_high)))
2615                 return -EINVAL;
2616
2617         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2618             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2619                                    vmx->nested.msrs.secondary_ctls_low,
2620                                    vmx->nested.msrs.secondary_ctls_high)))
2621                 return -EINVAL;
2622
2623         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2624             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2625             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2626             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2627             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2628             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2629             nested_vmx_check_nmi_controls(vmcs12) ||
2630             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2631             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2632             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2633             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2634             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2635                 return -EINVAL;
2636
2637         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2638             nested_cpu_has_save_preemption_timer(vmcs12))
2639                 return -EINVAL;
2640
2641         if (nested_cpu_has_ept(vmcs12) &&
2642             CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2643                 return -EINVAL;
2644
2645         if (nested_cpu_has_vmfunc(vmcs12)) {
2646                 if (CC(vmcs12->vm_function_control &
2647                        ~vmx->nested.msrs.vmfunc_controls))
2648                         return -EINVAL;
2649
2650                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2651                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2652                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2653                                 return -EINVAL;
2654                 }
2655         }
2656
2657         return 0;
2658 }
2659
2660 /*
2661  * Checks related to VM-Exit Control Fields
2662  */
2663 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2664                                          struct vmcs12 *vmcs12)
2665 {
2666         struct vcpu_vmx *vmx = to_vmx(vcpu);
2667
2668         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2669                                     vmx->nested.msrs.exit_ctls_low,
2670                                     vmx->nested.msrs.exit_ctls_high)) ||
2671             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2672                 return -EINVAL;
2673
2674         return 0;
2675 }
2676
2677 /*
2678  * Checks related to VM-Entry Control Fields
2679  */
2680 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2681                                           struct vmcs12 *vmcs12)
2682 {
2683         struct vcpu_vmx *vmx = to_vmx(vcpu);
2684
2685         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2686                                     vmx->nested.msrs.entry_ctls_low,
2687                                     vmx->nested.msrs.entry_ctls_high)))
2688                 return -EINVAL;
2689
2690         /*
2691          * From the Intel SDM, volume 3:
2692          * Fields relevant to VM-entry event injection must be set properly.
2693          * These fields are the VM-entry interruption-information field, the
2694          * VM-entry exception error code, and the VM-entry instruction length.
2695          */
2696         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2697                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2698                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2699                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2700                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2701                 bool should_have_error_code;
2702                 bool urg = nested_cpu_has2(vmcs12,
2703                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2704                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2705
2706                 /* VM-entry interruption-info field: interruption type */
2707                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2708                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2709                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2710                         return -EINVAL;
2711
2712                 /* VM-entry interruption-info field: vector */
2713                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2714                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2715                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2716                         return -EINVAL;
2717
2718                 /* VM-entry interruption-info field: deliver error code */
2719                 should_have_error_code =
2720                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2721                         x86_exception_has_error_code(vector);
2722                 if (CC(has_error_code != should_have_error_code))
2723                         return -EINVAL;
2724
2725                 /* VM-entry exception error code */
2726                 if (CC(has_error_code &&
2727                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2728                         return -EINVAL;
2729
2730                 /* VM-entry interruption-info field: reserved bits */
2731                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2732                         return -EINVAL;
2733
2734                 /* VM-entry instruction length */
2735                 switch (intr_type) {
2736                 case INTR_TYPE_SOFT_EXCEPTION:
2737                 case INTR_TYPE_SOFT_INTR:
2738                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2739                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2740                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2741                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2742                                 return -EINVAL;
2743                 }
2744         }
2745
2746         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2747                 return -EINVAL;
2748
2749         return 0;
2750 }
2751
2752 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2753                                      struct vmcs12 *vmcs12)
2754 {
2755         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2756             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2757             nested_check_vm_entry_controls(vcpu, vmcs12))
2758                 return -EINVAL;
2759
2760         return 0;
2761 }
2762
2763 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2764                                        struct vmcs12 *vmcs12)
2765 {
2766         bool ia32e;
2767
2768         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2769             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2770             CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2771                 return -EINVAL;
2772
2773         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2774             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2775                 return -EINVAL;
2776
2777         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2778             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2779                 return -EINVAL;
2780
2781         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2782             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2783                                            vmcs12->host_ia32_perf_global_ctrl)))
2784                 return -EINVAL;
2785
2786 #ifdef CONFIG_X86_64
2787         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2788 #else
2789         ia32e = false;
2790 #endif
2791
2792         if (ia32e) {
2793                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2794                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2795                         return -EINVAL;
2796         } else {
2797                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2798                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2799                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2800                     CC((vmcs12->host_rip) >> 32))
2801                         return -EINVAL;
2802         }
2803
2804         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2805             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2806             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2807             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2808             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2809             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2810             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811             CC(vmcs12->host_cs_selector == 0) ||
2812             CC(vmcs12->host_tr_selector == 0) ||
2813             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2814                 return -EINVAL;
2815
2816         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2817             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2818             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2819             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2820             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2821             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2822                 return -EINVAL;
2823
2824         /*
2825          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2826          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2827          * the values of the LMA and LME bits in the field must each be that of
2828          * the host address-space size VM-exit control.
2829          */
2830         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2831                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2832                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2833                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2834                         return -EINVAL;
2835         }
2836
2837         return 0;
2838 }
2839
2840 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2841                                           struct vmcs12 *vmcs12)
2842 {
2843         int r = 0;
2844         struct vmcs12 *shadow;
2845         struct kvm_host_map map;
2846
2847         if (vmcs12->vmcs_link_pointer == -1ull)
2848                 return 0;
2849
2850         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2851                 return -EINVAL;
2852
2853         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2854                 return -EINVAL;
2855
2856         shadow = map.hva;
2857
2858         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2859             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2860                 r = -EINVAL;
2861
2862         kvm_vcpu_unmap(vcpu, &map, false);
2863         return r;
2864 }
2865
2866 /*
2867  * Checks related to Guest Non-register State
2868  */
2869 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2870 {
2871         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2872                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2873                 return -EINVAL;
2874
2875         return 0;
2876 }
2877
2878 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2879                                         struct vmcs12 *vmcs12,
2880                                         u32 *exit_qual)
2881 {
2882         bool ia32e;
2883
2884         *exit_qual = ENTRY_FAIL_DEFAULT;
2885
2886         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2887             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2888                 return -EINVAL;
2889
2890         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2891             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2892                 return -EINVAL;
2893
2894         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2895             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2896                 return -EINVAL;
2897
2898         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2899                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2900                 return -EINVAL;
2901         }
2902
2903         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2904             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2905                                            vmcs12->guest_ia32_perf_global_ctrl)))
2906                 return -EINVAL;
2907
2908         /*
2909          * If the load IA32_EFER VM-entry control is 1, the following checks
2910          * are performed on the field for the IA32_EFER MSR:
2911          * - Bits reserved in the IA32_EFER MSR must be 0.
2912          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2913          *   the IA-32e mode guest VM-exit control. It must also be identical
2914          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2915          *   CR0.PG) is 1.
2916          */
2917         if (to_vmx(vcpu)->nested.nested_run_pending &&
2918             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2919                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2920                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2921                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2922                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2923                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2924                         return -EINVAL;
2925         }
2926
2927         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2928             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2929              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2930                 return -EINVAL;
2931
2932         if (nested_check_guest_non_reg_state(vmcs12))
2933                 return -EINVAL;
2934
2935         return 0;
2936 }
2937
2938 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2939 {
2940         struct vcpu_vmx *vmx = to_vmx(vcpu);
2941         unsigned long cr3, cr4;
2942         bool vm_fail;
2943
2944         if (!nested_early_check)
2945                 return 0;
2946
2947         if (vmx->msr_autoload.host.nr)
2948                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2949         if (vmx->msr_autoload.guest.nr)
2950                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2951
2952         preempt_disable();
2953
2954         vmx_prepare_switch_to_guest(vcpu);
2955
2956         /*
2957          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2958          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2959          * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2960          * there is no need to preserve other bits or save/restore the field.
2961          */
2962         vmcs_writel(GUEST_RFLAGS, 0);
2963
2964         cr3 = __get_current_cr3_fast();
2965         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2966                 vmcs_writel(HOST_CR3, cr3);
2967                 vmx->loaded_vmcs->host_state.cr3 = cr3;
2968         }
2969
2970         cr4 = cr4_read_shadow();
2971         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2972                 vmcs_writel(HOST_CR4, cr4);
2973                 vmx->loaded_vmcs->host_state.cr4 = cr4;
2974         }
2975
2976         asm(
2977                 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2978                 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2979                 "je 1f \n\t"
2980                 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2981                 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2982                 "1: \n\t"
2983                 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2984
2985                 /* Check if vmlaunch or vmresume is needed */
2986                 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2987
2988                 /*
2989                  * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2990                  * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2991                  * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2992                  * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2993                  */
2994                 "call vmx_vmenter\n\t"
2995
2996                 CC_SET(be)
2997               : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2998               : [HOST_RSP]"r"((unsigned long)HOST_RSP),
2999                 [loaded_vmcs]"r"(vmx->loaded_vmcs),
3000                 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
3001                 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3002                 [wordsize]"i"(sizeof(ulong))
3003               : "memory"
3004         );
3005
3006         if (vmx->msr_autoload.host.nr)
3007                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3008         if (vmx->msr_autoload.guest.nr)
3009                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3010
3011         if (vm_fail) {
3012                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3013
3014                 preempt_enable();
3015
3016                 trace_kvm_nested_vmenter_failed(
3017                         "early hardware check VM-instruction error: ", error);
3018                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3019                 return 1;
3020         }
3021
3022         /*
3023          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3024          */
3025         local_irq_enable();
3026         if (hw_breakpoint_active())
3027                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3028         preempt_enable();
3029
3030         /*
3031          * A non-failing VMEntry means we somehow entered guest mode with
3032          * an illegal RIP, and that's just the tip of the iceberg.  There
3033          * is no telling what memory has been modified or what state has
3034          * been exposed to unknown code.  Hitting this all but guarantees
3035          * a (very critical) hardware issue.
3036          */
3037         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3038                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3039
3040         return 0;
3041 }
3042
3043 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3044 {
3045         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3046         struct vcpu_vmx *vmx = to_vmx(vcpu);
3047         struct kvm_host_map *map;
3048         struct page *page;
3049         u64 hpa;
3050
3051         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3052                 /*
3053                  * Translate L1 physical address to host physical
3054                  * address for vmcs02. Keep the page pinned, so this
3055                  * physical address remains valid. We keep a reference
3056                  * to it so we can release it later.
3057                  */
3058                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3059                         kvm_release_page_clean(vmx->nested.apic_access_page);
3060                         vmx->nested.apic_access_page = NULL;
3061                 }
3062                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3063                 if (!is_error_page(page)) {
3064                         vmx->nested.apic_access_page = page;
3065                         hpa = page_to_phys(vmx->nested.apic_access_page);
3066                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3067                 } else {
3068                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3069                                              __func__);
3070                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3071                         vcpu->run->internal.suberror =
3072                                 KVM_INTERNAL_ERROR_EMULATION;
3073                         vcpu->run->internal.ndata = 0;
3074                         return false;
3075                 }
3076         }
3077
3078         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3079                 map = &vmx->nested.virtual_apic_map;
3080
3081                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3082                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3083                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3084                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3085                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3086                         /*
3087                          * The processor will never use the TPR shadow, simply
3088                          * clear the bit from the execution control.  Such a
3089                          * configuration is useless, but it happens in tests.
3090                          * For any other configuration, failing the vm entry is
3091                          * _not_ what the processor does but it's basically the
3092                          * only possibility we have.
3093                          */
3094                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3095                 } else {
3096                         /*
3097                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3098                          * force VM-Entry to fail.
3099                          */
3100                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3101                 }
3102         }
3103
3104         if (nested_cpu_has_posted_intr(vmcs12)) {
3105                 map = &vmx->nested.pi_desc_map;
3106
3107                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3108                         vmx->nested.pi_desc =
3109                                 (struct pi_desc *)(((void *)map->hva) +
3110                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3111                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3112                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3113                 }
3114         }
3115         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3116                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3117         else
3118                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3119         return true;
3120 }
3121
3122 /*
3123  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3124  * for running VMX instructions (except VMXON, whose prerequisites are
3125  * slightly different). It also specifies what exception to inject otherwise.
3126  * Note that many of these exceptions have priority over VM exits, so they
3127  * don't have to be checked again here.
3128  */
3129 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3130 {
3131         if (!to_vmx(vcpu)->nested.vmxon) {
3132                 kvm_queue_exception(vcpu, UD_VECTOR);
3133                 return 0;
3134         }
3135
3136         if (vmx_get_cpl(vcpu)) {
3137                 kvm_inject_gp(vcpu, 0);
3138                 return 0;
3139         }
3140
3141         return 1;
3142 }
3143
3144 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3145 {
3146         u8 rvi = vmx_get_rvi();
3147         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3148
3149         return ((rvi & 0xf0) > (vppr & 0xf0));
3150 }
3151
3152 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3153                                    struct vmcs12 *vmcs12);
3154
3155 /*
3156  * If from_vmentry is false, this is being called from state restore (either RSM
3157  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3158  *
3159  * Returns:
3160  *      NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3161  *      NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3162  *      NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3163  *      NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3164  */
3165 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3166                                                         bool from_vmentry)
3167 {
3168         struct vcpu_vmx *vmx = to_vmx(vcpu);
3169         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3170         bool evaluate_pending_interrupts;
3171         u32 exit_reason = EXIT_REASON_INVALID_STATE;
3172         u32 exit_qual;
3173
3174         evaluate_pending_interrupts = exec_controls_get(vmx) &
3175                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3176         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3177                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3178
3179         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3180                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3181         if (kvm_mpx_supported() &&
3182                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3183                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3184
3185         /*
3186          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3187          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3188          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3189          * software model to the pre-VMEntry host state.  When EPT is disabled,
3190          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3191          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3192          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3193          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3194          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3195          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3196          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3197          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3198          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3199          * path would need to manually save/restore vmcs01.GUEST_CR3.
3200          */
3201         if (!enable_ept && !nested_early_check)
3202                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3203
3204         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3205
3206         prepare_vmcs02_early(vmx, vmcs12);
3207
3208         if (from_vmentry) {
3209                 if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3210                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3211
3212                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3213                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3214                         return NVMX_VMENTRY_VMFAIL;
3215                 }
3216
3217                 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3218                         goto vmentry_fail_vmexit;
3219         }
3220
3221         enter_guest_mode(vcpu);
3222         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3223                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3224
3225         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3226                 goto vmentry_fail_vmexit_guest_mode;
3227
3228         if (from_vmentry) {
3229                 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3230                 exit_qual = nested_vmx_load_msr(vcpu,
3231                                                 vmcs12->vm_entry_msr_load_addr,
3232                                                 vmcs12->vm_entry_msr_load_count);
3233                 if (exit_qual)
3234                         goto vmentry_fail_vmexit_guest_mode;
3235         } else {
3236                 /*
3237                  * The MMU is not initialized to point at the right entities yet and
3238                  * "get pages" would need to read data from the guest (i.e. we will
3239                  * need to perform gpa to hpa translation). Request a call
3240                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3241                  * have already been set at vmentry time and should not be reset.
3242                  */
3243                 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3244         }
3245
3246         /*
3247          * If L1 had a pending IRQ/NMI until it executed
3248          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3249          * disallowed (e.g. interrupts disabled), L0 needs to
3250          * evaluate if this pending event should cause an exit from L2
3251          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3252          * intercept EXTERNAL_INTERRUPT).
3253          *
3254          * Usually this would be handled by the processor noticing an
3255          * IRQ/NMI window request, or checking RVI during evaluation of
3256          * pending virtual interrupts.  However, this setting was done
3257          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3258          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3259          */
3260         if (unlikely(evaluate_pending_interrupts))
3261                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3262
3263         /*
3264          * Do not start the preemption timer hrtimer until after we know
3265          * we are successful, so that only nested_vmx_vmexit needs to cancel
3266          * the timer.
3267          */
3268         vmx->nested.preemption_timer_expired = false;
3269         if (nested_cpu_has_preemption_timer(vmcs12))
3270                 vmx_start_preemption_timer(vcpu);
3271
3272         /*
3273          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3274          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3275          * returned as far as L1 is concerned. It will only return (and set
3276          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3277          */
3278         return NVMX_VMENTRY_SUCCESS;
3279
3280         /*
3281          * A failed consistency check that leads to a VMExit during L1's
3282          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3283          * 26.7 "VM-entry failures during or after loading guest state".
3284          */
3285 vmentry_fail_vmexit_guest_mode:
3286         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3287                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3288         leave_guest_mode(vcpu);
3289
3290 vmentry_fail_vmexit:
3291         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3292
3293         if (!from_vmentry)
3294                 return NVMX_VMENTRY_VMEXIT;
3295
3296         load_vmcs12_host_state(vcpu, vmcs12);
3297         vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3298         vmcs12->exit_qualification = exit_qual;
3299         if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3300                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3301         return NVMX_VMENTRY_VMEXIT;
3302 }
3303
3304 /*
3305  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3306  * for running an L2 nested guest.
3307  */
3308 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3309 {
3310         struct vmcs12 *vmcs12;
3311         enum nvmx_vmentry_status status;
3312         struct vcpu_vmx *vmx = to_vmx(vcpu);
3313         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3314
3315         if (!nested_vmx_check_permission(vcpu))
3316                 return 1;
3317
3318         if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3319                 return 1;
3320
3321         if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3322                 return nested_vmx_failInvalid(vcpu);
3323
3324         vmcs12 = get_vmcs12(vcpu);
3325
3326         /*
3327          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3328          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3329          * rather than RFLAGS.ZF, and no error number is stored to the
3330          * VM-instruction error field.
3331          */
3332         if (vmcs12->hdr.shadow_vmcs)
3333                 return nested_vmx_failInvalid(vcpu);
3334
3335         if (vmx->nested.hv_evmcs) {
3336                 copy_enlightened_to_vmcs12(vmx);
3337                 /* Enlightened VMCS doesn't have launch state */
3338                 vmcs12->launch_state = !launch;
3339         } else if (enable_shadow_vmcs) {
3340                 copy_shadow_to_vmcs12(vmx);
3341         }
3342
3343         /*
3344          * The nested entry process starts with enforcing various prerequisites
3345          * on vmcs12 as required by the Intel SDM, and act appropriately when
3346          * they fail: As the SDM explains, some conditions should cause the
3347          * instruction to fail, while others will cause the instruction to seem
3348          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3349          * To speed up the normal (success) code path, we should avoid checking
3350          * for misconfigurations which will anyway be caught by the processor
3351          * when using the merged vmcs02.
3352          */
3353         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3354                 return nested_vmx_failValid(vcpu,
3355                         VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3356
3357         if (vmcs12->launch_state == launch)
3358                 return nested_vmx_failValid(vcpu,
3359                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3360                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3361
3362         if (nested_vmx_check_controls(vcpu, vmcs12))
3363                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3364
3365         if (nested_vmx_check_host_state(vcpu, vmcs12))
3366                 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3367
3368         /*
3369          * We're finally done with prerequisite checking, and can start with
3370          * the nested entry.
3371          */
3372         vmx->nested.nested_run_pending = 1;
3373         status = nested_vmx_enter_non_root_mode(vcpu, true);
3374         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3375                 goto vmentry_failed;
3376
3377         /* Hide L1D cache contents from the nested guest.  */
3378         vmx->vcpu.arch.l1tf_flush_l1d = true;
3379
3380         /*
3381          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3382          * also be used as part of restoring nVMX state for
3383          * snapshot restore (migration).
3384          *
3385          * In this flow, it is assumed that vmcs12 cache was
3386          * trasferred as part of captured nVMX state and should
3387          * therefore not be read from guest memory (which may not
3388          * exist on destination host yet).
3389          */
3390         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3391
3392         /*
3393          * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3394          * awakened by event injection or by an NMI-window VM-exit or
3395          * by an interrupt-window VM-exit, halt the vcpu.
3396          */
3397         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3398             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3399             !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3400             !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3401               (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3402                 vmx->nested.nested_run_pending = 0;
3403                 return kvm_vcpu_halt(vcpu);
3404         }
3405         return 1;
3406
3407 vmentry_failed:
3408         vmx->nested.nested_run_pending = 0;
3409         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3410                 return 0;
3411         if (status == NVMX_VMENTRY_VMEXIT)
3412                 return 1;
3413         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3414         return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3415 }
3416
3417 /*
3418  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3419  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3420  * This function returns the new value we should put in vmcs12.guest_cr0.
3421  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3422  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3423  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3424  *     didn't trap the bit, because if L1 did, so would L0).
3425  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3426  *     been modified by L2, and L1 knows it. So just leave the old value of
3427  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3428  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3429  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3430  *     changed these bits, and therefore they need to be updated, but L0
3431  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3432  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3433  */
3434 static inline unsigned long
3435 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3436 {
3437         return
3438         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3439         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3440         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3441                         vcpu->arch.cr0_guest_owned_bits));
3442 }
3443
3444 static inline unsigned long
3445 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3446 {
3447         return
3448         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3449         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3450         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3451                         vcpu->arch.cr4_guest_owned_bits));
3452 }
3453
3454 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3455                                       struct vmcs12 *vmcs12)
3456 {
3457         u32 idt_vectoring;
3458         unsigned int nr;
3459
3460         if (vcpu->arch.exception.injected) {
3461                 nr = vcpu->arch.exception.nr;
3462                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3463
3464                 if (kvm_exception_is_soft(nr)) {
3465                         vmcs12->vm_exit_instruction_len =
3466                                 vcpu->arch.event_exit_inst_len;
3467                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3468                 } else
3469                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3470
3471                 if (vcpu->arch.exception.has_error_code) {
3472                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3473                         vmcs12->idt_vectoring_error_code =
3474                                 vcpu->arch.exception.error_code;
3475                 }
3476
3477                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3478         } else if (vcpu->arch.nmi_injected) {
3479                 vmcs12->idt_vectoring_info_field =
3480                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3481         } else if (vcpu->arch.interrupt.injected) {
3482                 nr = vcpu->arch.interrupt.nr;
3483                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3484
3485                 if (vcpu->arch.interrupt.soft) {
3486                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3487                         vmcs12->vm_entry_instruction_len =
3488                                 vcpu->arch.event_exit_inst_len;
3489                 } else
3490                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3491
3492                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3493         }
3494 }
3495
3496
3497 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3498 {
3499         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3500         gfn_t gfn;
3501
3502         /*
3503          * Don't need to mark the APIC access page dirty; it is never
3504          * written to by the CPU during APIC virtualization.
3505          */
3506
3507         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3508                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3509                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3510         }
3511
3512         if (nested_cpu_has_posted_intr(vmcs12)) {
3513                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3514                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3515         }
3516 }
3517
3518 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3519 {
3520         struct vcpu_vmx *vmx = to_vmx(vcpu);
3521         int max_irr;
3522         void *vapic_page;
3523         u16 status;
3524
3525         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3526                 return;
3527
3528         vmx->nested.pi_pending = false;
3529         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3530                 return;
3531
3532         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3533         if (max_irr != 256) {
3534                 vapic_page = vmx->nested.virtual_apic_map.hva;
3535                 if (!vapic_page)
3536                         return;
3537
3538                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3539                         vapic_page, &max_irr);
3540                 status = vmcs_read16(GUEST_INTR_STATUS);
3541                 if ((u8)max_irr > ((u8)status & 0xff)) {
3542                         status &= ~0xff;
3543                         status |= (u8)max_irr;
3544                         vmcs_write16(GUEST_INTR_STATUS, status);
3545                 }
3546         }
3547
3548         nested_mark_vmcs12_pages_dirty(vcpu);
3549 }
3550
3551 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3552                                                unsigned long exit_qual)
3553 {
3554         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3555         unsigned int nr = vcpu->arch.exception.nr;
3556         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3557
3558         if (vcpu->arch.exception.has_error_code) {
3559                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3560                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3561         }
3562
3563         if (kvm_exception_is_soft(nr))
3564                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3565         else
3566                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3567
3568         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3569             vmx_get_nmi_mask(vcpu))
3570                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3571
3572         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3573 }
3574
3575 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3576 {
3577         struct vcpu_vmx *vmx = to_vmx(vcpu);
3578         unsigned long exit_qual;
3579         bool block_nested_events =
3580             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3581         struct kvm_lapic *apic = vcpu->arch.apic;
3582
3583         if (lapic_in_kernel(vcpu) &&
3584                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3585                 if (block_nested_events)
3586                         return -EBUSY;
3587                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3588                 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3589                 return 0;
3590         }
3591
3592         if (vcpu->arch.exception.pending &&
3593                 nested_vmx_check_exception(vcpu, &exit_qual)) {
3594                 if (block_nested_events)
3595                         return -EBUSY;
3596                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3597                 return 0;
3598         }
3599
3600         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3601             vmx->nested.preemption_timer_expired) {
3602                 if (block_nested_events)
3603                         return -EBUSY;
3604                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3605                 return 0;
3606         }
3607
3608         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3609                 if (block_nested_events)
3610                         return -EBUSY;
3611                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3612                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3613                                   INTR_INFO_VALID_MASK, 0);
3614                 /*
3615                  * The NMI-triggered VM exit counts as injection:
3616                  * clear this one and block further NMIs.
3617                  */
3618                 vcpu->arch.nmi_pending = 0;
3619                 vmx_set_nmi_mask(vcpu, true);
3620                 return 0;
3621         }
3622
3623         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3624             nested_exit_on_intr(vcpu)) {
3625                 if (block_nested_events)
3626                         return -EBUSY;
3627                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3628                 return 0;
3629         }
3630
3631         vmx_complete_nested_posted_interrupt(vcpu);
3632         return 0;
3633 }
3634
3635 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3636 {
3637         ktime_t remaining =
3638                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3639         u64 value;
3640
3641         if (ktime_to_ns(remaining) <= 0)
3642                 return 0;
3643
3644         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3645         do_div(value, 1000000);
3646         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3647 }
3648
3649 static bool is_vmcs12_ext_field(unsigned long field)
3650 {
3651         switch (field) {
3652         case GUEST_ES_SELECTOR:
3653         case GUEST_CS_SELECTOR:
3654         case GUEST_SS_SELECTOR:
3655         case GUEST_DS_SELECTOR:
3656         case GUEST_FS_SELECTOR:
3657         case GUEST_GS_SELECTOR:
3658         case GUEST_LDTR_SELECTOR:
3659         case GUEST_TR_SELECTOR:
3660         case GUEST_ES_LIMIT:
3661         case GUEST_CS_LIMIT:
3662         case GUEST_SS_LIMIT:
3663         case GUEST_DS_LIMIT:
3664         case GUEST_FS_LIMIT:
3665         case GUEST_GS_LIMIT:
3666         case GUEST_LDTR_LIMIT:
3667         case GUEST_TR_LIMIT:
3668         case GUEST_GDTR_LIMIT:
3669         case GUEST_IDTR_LIMIT:
3670         case GUEST_ES_AR_BYTES:
3671         case GUEST_DS_AR_BYTES:
3672         case GUEST_FS_AR_BYTES:
3673         case GUEST_GS_AR_BYTES:
3674         case GUEST_LDTR_AR_BYTES:
3675         case GUEST_TR_AR_BYTES:
3676         case GUEST_ES_BASE:
3677         case GUEST_CS_BASE:
3678         case GUEST_SS_BASE:
3679         case GUEST_DS_BASE:
3680         case GUEST_FS_BASE:
3681         case GUEST_GS_BASE:
3682         case GUEST_LDTR_BASE:
3683         case GUEST_TR_BASE:
3684         case GUEST_GDTR_BASE:
3685         case GUEST_IDTR_BASE:
3686         case GUEST_PENDING_DBG_EXCEPTIONS:
3687         case GUEST_BNDCFGS:
3688                 return true;
3689         default:
3690                 break;
3691         }
3692
3693         return false;
3694 }
3695
3696 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3697                                        struct vmcs12 *vmcs12)
3698 {
3699         struct vcpu_vmx *vmx = to_vmx(vcpu);
3700
3701         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3702         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3703         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3704         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3705         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3706         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3707         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3708         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3709         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3710         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3711         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3712         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3713         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3714         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3715         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3716         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3717         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3718         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3719         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3720         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3721         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3722         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3723         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3724         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3725         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3726         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3727         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3728         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3729         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3730         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3731         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3732         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3733         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3734         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3735         vmcs12->guest_pending_dbg_exceptions =
3736                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3737         if (kvm_mpx_supported())
3738                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3739
3740         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3741 }
3742
3743 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3744                                        struct vmcs12 *vmcs12)
3745 {
3746         struct vcpu_vmx *vmx = to_vmx(vcpu);
3747         int cpu;
3748
3749         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3750                 return;
3751
3752
3753         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3754
3755         cpu = get_cpu();
3756         vmx->loaded_vmcs = &vmx->nested.vmcs02;
3757         vmx_vcpu_load(&vmx->vcpu, cpu);
3758
3759         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3760
3761         vmx->loaded_vmcs = &vmx->vmcs01;
3762         vmx_vcpu_load(&vmx->vcpu, cpu);
3763         put_cpu();
3764 }
3765
3766 /*
3767  * Update the guest state fields of vmcs12 to reflect changes that
3768  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3769  * VM-entry controls is also updated, since this is really a guest
3770  * state bit.)
3771  */
3772 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3773 {
3774         struct vcpu_vmx *vmx = to_vmx(vcpu);
3775
3776         if (vmx->nested.hv_evmcs)
3777                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3778
3779         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3780
3781         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3782         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3783
3784         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3785         vmcs12->guest_rip = kvm_rip_read(vcpu);
3786         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3787
3788         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3789         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3790
3791         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3792         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3793         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3794
3795         vmcs12->guest_interruptibility_info =
3796                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3797
3798         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3799                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3800         else
3801                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3802
3803         if (nested_cpu_has_preemption_timer(vmcs12) &&
3804             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3805                         vmcs12->vmx_preemption_timer_value =
3806                                 vmx_get_preemption_timer_value(vcpu);
3807
3808         /*
3809          * In some cases (usually, nested EPT), L2 is allowed to change its
3810          * own CR3 without exiting. If it has changed it, we must keep it.
3811          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3812          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3813          *
3814          * Additionally, restore L2's PDPTR to vmcs12.
3815          */
3816         if (enable_ept) {
3817                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3818                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3819                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3820                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3821                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3822                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3823                 }
3824         }
3825
3826         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3827
3828         if (nested_cpu_has_vid(vmcs12))
3829                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3830
3831         vmcs12->vm_entry_controls =
3832                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3833                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3834
3835         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3836                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3837
3838         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3839                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3840 }
3841
3842 /*
3843  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3844  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3845  * and this function updates it to reflect the changes to the guest state while
3846  * L2 was running (and perhaps made some exits which were handled directly by L0
3847  * without going back to L1), and to reflect the exit reason.
3848  * Note that we do not have to copy here all VMCS fields, just those that
3849  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3850  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3851  * which already writes to vmcs12 directly.
3852  */
3853 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3854                            u32 exit_reason, u32 exit_intr_info,
3855                            unsigned long exit_qualification)
3856 {
3857         /* update exit information fields: */
3858         vmcs12->vm_exit_reason = exit_reason;
3859         vmcs12->exit_qualification = exit_qualification;
3860         vmcs12->vm_exit_intr_info = exit_intr_info;
3861
3862         vmcs12->idt_vectoring_info_field = 0;
3863         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3864         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3865
3866         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3867                 vmcs12->launch_state = 1;
3868
3869                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3870                  * instead of reading the real value. */
3871                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3872
3873                 /*
3874                  * Transfer the event that L0 or L1 may wanted to inject into
3875                  * L2 to IDT_VECTORING_INFO_FIELD.
3876                  */
3877                 vmcs12_save_pending_event(vcpu, vmcs12);
3878
3879                 /*
3880                  * According to spec, there's no need to store the guest's
3881                  * MSRs if the exit is due to a VM-entry failure that occurs
3882                  * during or after loading the guest state. Since this exit
3883                  * does not fall in that category, we need to save the MSRs.
3884                  */
3885                 if (nested_vmx_store_msr(vcpu,
3886                                          vmcs12->vm_exit_msr_store_addr,
3887                                          vmcs12->vm_exit_msr_store_count))
3888                         nested_vmx_abort(vcpu,
3889                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3890         }
3891
3892         /*
3893          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3894          * preserved above and would only end up incorrectly in L1.
3895          */
3896         vcpu->arch.nmi_injected = false;
3897         kvm_clear_exception_queue(vcpu);
3898         kvm_clear_interrupt_queue(vcpu);
3899 }
3900
3901 /*
3902  * A part of what we need to when the nested L2 guest exits and we want to
3903  * run its L1 parent, is to reset L1's guest state to the host state specified
3904  * in vmcs12.
3905  * This function is to be called not only on normal nested exit, but also on
3906  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3907  * Failures During or After Loading Guest State").
3908  * This function should be called when the active VMCS is L1's (vmcs01).
3909  */
3910 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3911                                    struct vmcs12 *vmcs12)
3912 {
3913         struct kvm_segment seg;
3914         u32 entry_failure_code;
3915
3916         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3917                 vcpu->arch.efer = vmcs12->host_ia32_efer;
3918         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3919                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3920         else
3921                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3922         vmx_set_efer(vcpu, vcpu->arch.efer);
3923
3924         kvm_rsp_write(vcpu, vmcs12->host_rsp);
3925         kvm_rip_write(vcpu, vmcs12->host_rip);
3926         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3927         vmx_set_interrupt_shadow(vcpu, 0);
3928
3929         /*
3930          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3931          * actually changed, because vmx_set_cr0 refers to efer set above.
3932          *
3933          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3934          * (KVM doesn't change it);
3935          */
3936         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3937         vmx_set_cr0(vcpu, vmcs12->host_cr0);
3938
3939         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
3940         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3941         vmx_set_cr4(vcpu, vmcs12->host_cr4);
3942
3943         nested_ept_uninit_mmu_context(vcpu);
3944
3945         /*
3946          * Only PDPTE load can fail as the value of cr3 was checked on entry and
3947          * couldn't have changed.
3948          */
3949         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3950                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3951
3952         if (!enable_ept)
3953                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3954
3955         /*
3956          * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3957          * VMEntry/VMExit. Thus, no need to flush TLB.
3958          *
3959          * If vmcs12 doesn't use VPID, L1 expects TLB to be
3960          * flushed on every VMEntry/VMExit.
3961          *
3962          * Otherwise, we can preserve TLB entries as long as we are
3963          * able to tag L1 TLB entries differently than L2 TLB entries.
3964          *
3965          * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3966          * and therefore we request the TLB flush to happen only after VMCS EPTP
3967          * has been set by KVM_REQ_LOAD_CR3.
3968          */
3969         if (enable_vpid &&
3970             (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3971                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3972         }
3973
3974         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3975         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3976         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3977         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3978         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3979         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3980         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3981
3982         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3983         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3984                 vmcs_write64(GUEST_BNDCFGS, 0);
3985
3986         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3987                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3988                 vcpu->arch.pat = vmcs12->host_ia32_pat;
3989         }
3990         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3991                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
3992                                          vmcs12->host_ia32_perf_global_ctrl));
3993
3994         /* Set L1 segment info according to Intel SDM
3995             27.5.2 Loading Host Segment and Descriptor-Table Registers */
3996         seg = (struct kvm_segment) {
3997                 .base = 0,
3998                 .limit = 0xFFFFFFFF,
3999                 .selector = vmcs12->host_cs_selector,
4000                 .type = 11,
4001                 .present = 1,
4002                 .s = 1,
4003                 .g = 1
4004         };
4005         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4006                 seg.l = 1;
4007         else
4008                 seg.db = 1;
4009         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4010         seg = (struct kvm_segment) {
4011                 .base = 0,
4012                 .limit = 0xFFFFFFFF,
4013                 .type = 3,
4014                 .present = 1,
4015                 .s = 1,
4016                 .db = 1,
4017                 .g = 1
4018         };
4019         seg.selector = vmcs12->host_ds_selector;
4020         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4021         seg.selector = vmcs12->host_es_selector;
4022         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4023         seg.selector = vmcs12->host_ss_selector;
4024         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4025         seg.selector = vmcs12->host_fs_selector;
4026         seg.base = vmcs12->host_fs_base;
4027         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4028         seg.selector = vmcs12->host_gs_selector;
4029         seg.base = vmcs12->host_gs_base;
4030         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4031         seg = (struct kvm_segment) {
4032                 .base = vmcs12->host_tr_base,
4033                 .limit = 0x67,
4034                 .selector = vmcs12->host_tr_selector,
4035                 .type = 11,
4036                 .present = 1
4037         };
4038         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4039
4040         kvm_set_dr(vcpu, 7, 0x400);
4041         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4042
4043         if (cpu_has_vmx_msr_bitmap())
4044                 vmx_update_msr_bitmap(vcpu);
4045
4046         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4047                                 vmcs12->vm_exit_msr_load_count))
4048                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4049 }
4050
4051 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4052 {
4053         struct shared_msr_entry *efer_msr;
4054         unsigned int i;
4055
4056         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4057                 return vmcs_read64(GUEST_IA32_EFER);
4058
4059         if (cpu_has_load_ia32_efer())
4060                 return host_efer;
4061
4062         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4063                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4064                         return vmx->msr_autoload.guest.val[i].value;
4065         }
4066
4067         efer_msr = find_msr_entry(vmx, MSR_EFER);
4068         if (efer_msr)
4069                 return efer_msr->data;
4070
4071         return host_efer;
4072 }
4073
4074 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4075 {
4076         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4077         struct vcpu_vmx *vmx = to_vmx(vcpu);
4078         struct vmx_msr_entry g, h;
4079         gpa_t gpa;
4080         u32 i, j;
4081
4082         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4083
4084         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4085                 /*
4086                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4087                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4088                  * and vcpu->arch.dr7 is not squirreled away before the
4089                  * nested VMENTER (not worth adding a variable in nested_vmx).
4090                  */
4091                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4092                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4093                 else
4094                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4095         }
4096
4097         /*
4098          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4099          * handle a variety of side effects to KVM's software model.
4100          */
4101         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4102
4103         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4104         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4105
4106         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4107         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4108
4109         nested_ept_uninit_mmu_context(vcpu);
4110         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4111         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4112
4113         /*
4114          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4115          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4116          * VMFail, like everything else we just need to ensure our
4117          * software model is up-to-date.
4118          */
4119         if (enable_ept)
4120                 ept_save_pdptrs(vcpu);
4121
4122         kvm_mmu_reset_context(vcpu);
4123
4124         if (cpu_has_vmx_msr_bitmap())
4125                 vmx_update_msr_bitmap(vcpu);
4126
4127         /*
4128          * This nasty bit of open coding is a compromise between blindly
4129          * loading L1's MSRs using the exit load lists (incorrect emulation
4130          * of VMFail), leaving the nested VM's MSRs in the software model
4131          * (incorrect behavior) and snapshotting the modified MSRs (too
4132          * expensive since the lists are unbound by hardware).  For each
4133          * MSR that was (prematurely) loaded from the nested VMEntry load
4134          * list, reload it from the exit load list if it exists and differs
4135          * from the guest value.  The intent is to stuff host state as
4136          * silently as possible, not to fully process the exit load list.
4137          */
4138         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4139                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4140                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4141                         pr_debug_ratelimited(
4142                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4143                                 __func__, i, gpa);
4144                         goto vmabort;
4145                 }
4146
4147                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4148                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4149                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4150                                 pr_debug_ratelimited(
4151                                         "%s read MSR failed (%u, 0x%08llx)\n",
4152                                         __func__, j, gpa);
4153                                 goto vmabort;
4154                         }
4155                         if (h.index != g.index)
4156                                 continue;
4157                         if (h.value == g.value)
4158                                 break;
4159
4160                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4161                                 pr_debug_ratelimited(
4162                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4163                                         __func__, j, h.index, h.reserved);
4164                                 goto vmabort;
4165                         }
4166
4167                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4168                                 pr_debug_ratelimited(
4169                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4170                                         __func__, j, h.index, h.value);
4171                                 goto vmabort;
4172                         }
4173                 }
4174         }
4175
4176         return;
4177
4178 vmabort:
4179         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4180 }
4181
4182 /*
4183  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4184  * and modify vmcs12 to make it see what it would expect to see there if
4185  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4186  */
4187 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4188                        u32 exit_intr_info, unsigned long exit_qualification)
4189 {
4190         struct vcpu_vmx *vmx = to_vmx(vcpu);
4191         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4192
4193         /* trying to cancel vmlaunch/vmresume is a bug */
4194         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4195
4196         leave_guest_mode(vcpu);
4197
4198         if (nested_cpu_has_preemption_timer(vmcs12))
4199                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4200
4201         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4202                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4203
4204         if (likely(!vmx->fail)) {
4205                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4206
4207                 if (exit_reason != -1)
4208                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4209                                        exit_qualification);
4210
4211                 /*
4212                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4213                  * also be used to capture vmcs12 cache as part of
4214                  * capturing nVMX state for snapshot (migration).
4215                  *
4216                  * Otherwise, this flush will dirty guest memory at a
4217                  * point it is already assumed by user-space to be
4218                  * immutable.
4219                  */
4220                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4221         } else {
4222                 /*
4223                  * The only expected VM-instruction error is "VM entry with
4224                  * invalid control field(s)." Anything else indicates a
4225                  * problem with L0.  And we should never get here with a
4226                  * VMFail of any type if early consistency checks are enabled.
4227                  */
4228                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4229                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4230                 WARN_ON_ONCE(nested_early_check);
4231         }
4232
4233         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4234
4235         /* Update any VMCS fields that might have changed while L2 ran */
4236         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4237         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4238         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4239         if (vmx->nested.l1_tpr_threshold != -1)
4240                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4241
4242         if (kvm_has_tsc_control)
4243                 decache_tsc_multiplier(vmx);
4244
4245         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4246                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4247                 vmx_set_virtual_apic_mode(vcpu);
4248         }
4249
4250         /* Unpin physical memory we referred to in vmcs02 */
4251         if (vmx->nested.apic_access_page) {
4252                 kvm_release_page_clean(vmx->nested.apic_access_page);
4253                 vmx->nested.apic_access_page = NULL;
4254         }
4255         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4256         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4257         vmx->nested.pi_desc = NULL;
4258
4259         /*
4260          * We are now running in L2, mmu_notifier will force to reload the
4261          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4262          */
4263         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4264
4265         if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4266                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4267
4268         /* in case we halted in L2 */
4269         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4270
4271         if (likely(!vmx->fail)) {
4272                 /*
4273                  * TODO: SDM says that with acknowledge interrupt on
4274                  * exit, bit 31 of the VM-exit interrupt information
4275                  * (valid interrupt) is always set to 1 on
4276                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4277                  * need kvm_cpu_has_interrupt().  See the commit
4278                  * message for details.
4279                  */
4280                 if (nested_exit_intr_ack_set(vcpu) &&
4281                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4282                     kvm_cpu_has_interrupt(vcpu)) {
4283                         int irq = kvm_cpu_get_interrupt(vcpu);
4284                         WARN_ON(irq < 0);
4285                         vmcs12->vm_exit_intr_info = irq |
4286                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4287                 }
4288
4289                 if (exit_reason != -1)
4290                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4291                                                        vmcs12->exit_qualification,
4292                                                        vmcs12->idt_vectoring_info_field,
4293                                                        vmcs12->vm_exit_intr_info,
4294                                                        vmcs12->vm_exit_intr_error_code,
4295                                                        KVM_ISA_VMX);
4296
4297                 load_vmcs12_host_state(vcpu, vmcs12);
4298
4299                 return;
4300         }
4301
4302         /*
4303          * After an early L2 VM-entry failure, we're now back
4304          * in L1 which thinks it just finished a VMLAUNCH or
4305          * VMRESUME instruction, so we need to set the failure
4306          * flag and the VM-instruction error field of the VMCS
4307          * accordingly, and skip the emulated instruction.
4308          */
4309         (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4310
4311         /*
4312          * Restore L1's host state to KVM's software model.  We're here
4313          * because a consistency check was caught by hardware, which
4314          * means some amount of guest state has been propagated to KVM's
4315          * model and needs to be unwound to the host's state.
4316          */
4317         nested_vmx_restore_host_state(vcpu);
4318
4319         vmx->fail = 0;
4320 }
4321
4322 /*
4323  * Decode the memory-address operand of a vmx instruction, as recorded on an
4324  * exit caused by such an instruction (run by a guest hypervisor).
4325  * On success, returns 0. When the operand is invalid, returns 1 and throws
4326  * #UD or #GP.
4327  */
4328 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4329                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4330 {
4331         gva_t off;
4332         bool exn;
4333         struct kvm_segment s;
4334
4335         /*
4336          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4337          * Execution", on an exit, vmx_instruction_info holds most of the
4338          * addressing components of the operand. Only the displacement part
4339          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4340          * For how an actual address is calculated from all these components,
4341          * refer to Vol. 1, "Operand Addressing".
4342          */
4343         int  scaling = vmx_instruction_info & 3;
4344         int  addr_size = (vmx_instruction_info >> 7) & 7;
4345         bool is_reg = vmx_instruction_info & (1u << 10);
4346         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4347         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4348         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4349         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4350         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4351
4352         if (is_reg) {
4353                 kvm_queue_exception(vcpu, UD_VECTOR);
4354                 return 1;
4355         }
4356
4357         /* Addr = segment_base + offset */
4358         /* offset = base + [index * scale] + displacement */
4359         off = exit_qualification; /* holds the displacement */
4360         if (addr_size == 1)
4361                 off = (gva_t)sign_extend64(off, 31);
4362         else if (addr_size == 0)
4363                 off = (gva_t)sign_extend64(off, 15);
4364         if (base_is_valid)
4365                 off += kvm_register_read(vcpu, base_reg);
4366         if (index_is_valid)
4367                 off += kvm_register_read(vcpu, index_reg)<<scaling;
4368         vmx_get_segment(vcpu, &s, seg_reg);
4369
4370         /*
4371          * The effective address, i.e. @off, of a memory operand is truncated
4372          * based on the address size of the instruction.  Note that this is
4373          * the *effective address*, i.e. the address prior to accounting for
4374          * the segment's base.
4375          */
4376         if (addr_size == 1) /* 32 bit */
4377                 off &= 0xffffffff;
4378         else if (addr_size == 0) /* 16 bit */
4379                 off &= 0xffff;
4380
4381         /* Checks for #GP/#SS exceptions. */
4382         exn = false;
4383         if (is_long_mode(vcpu)) {
4384                 /*
4385                  * The virtual/linear address is never truncated in 64-bit
4386                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4387                  * address when using FS/GS with a non-zero base.
4388                  */
4389                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4390                         *ret = s.base + off;
4391                 else
4392                         *ret = off;
4393
4394                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4395                  * non-canonical form. This is the only check on the memory
4396                  * destination for long mode!
4397                  */
4398                 exn = is_noncanonical_address(*ret, vcpu);
4399         } else {
4400                 /*
4401                  * When not in long mode, the virtual/linear address is
4402                  * unconditionally truncated to 32 bits regardless of the
4403                  * address size.
4404                  */
4405                 *ret = (s.base + off) & 0xffffffff;
4406
4407                 /* Protected mode: apply checks for segment validity in the
4408                  * following order:
4409                  * - segment type check (#GP(0) may be thrown)
4410                  * - usability check (#GP(0)/#SS(0))
4411                  * - limit check (#GP(0)/#SS(0))
4412                  */
4413                 if (wr)
4414                         /* #GP(0) if the destination operand is located in a
4415                          * read-only data segment or any code segment.
4416                          */
4417                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4418                 else
4419                         /* #GP(0) if the source operand is located in an
4420                          * execute-only code segment
4421                          */
4422                         exn = ((s.type & 0xa) == 8);
4423                 if (exn) {
4424                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4425                         return 1;
4426                 }
4427                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4428                  */
4429                 exn = (s.unusable != 0);
4430
4431                 /*
4432                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4433                  * outside the segment limit.  All CPUs that support VMX ignore
4434                  * limit checks for flat segments, i.e. segments with base==0,
4435                  * limit==0xffffffff and of type expand-up data or code.
4436                  */
4437                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4438                      ((s.type & 8) || !(s.type & 4))))
4439                         exn = exn || ((u64)off + len - 1 > s.limit);
4440         }
4441         if (exn) {
4442                 kvm_queue_exception_e(vcpu,
4443                                       seg_reg == VCPU_SREG_SS ?
4444                                                 SS_VECTOR : GP_VECTOR,
4445                                       0);
4446                 return 1;
4447         }
4448
4449         return 0;
4450 }
4451
4452 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4453 {
4454         struct vcpu_vmx *vmx;
4455
4456         if (!nested_vmx_allowed(vcpu))
4457                 return;
4458
4459         vmx = to_vmx(vcpu);
4460         if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4461                 vmx->nested.msrs.entry_ctls_high |=
4462                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4463                 vmx->nested.msrs.exit_ctls_high |=
4464                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4465         } else {
4466                 vmx->nested.msrs.entry_ctls_high &=
4467                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4468                 vmx->nested.msrs.exit_ctls_high &=
4469                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4470         }
4471 }
4472
4473 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4474 {
4475         gva_t gva;
4476         struct x86_exception e;
4477
4478         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4479                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4480                                 sizeof(*vmpointer), &gva))
4481                 return 1;
4482
4483         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4484                 kvm_inject_page_fault(vcpu, &e);
4485                 return 1;
4486         }
4487
4488         return 0;
4489 }
4490
4491 /*
4492  * Allocate a shadow VMCS and associate it with the currently loaded
4493  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4494  * VMCS is also VMCLEARed, so that it is ready for use.
4495  */
4496 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4497 {
4498         struct vcpu_vmx *vmx = to_vmx(vcpu);
4499         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4500
4501         /*
4502          * We should allocate a shadow vmcs for vmcs01 only when L1
4503          * executes VMXON and free it when L1 executes VMXOFF.
4504          * As it is invalid to execute VMXON twice, we shouldn't reach
4505          * here when vmcs01 already have an allocated shadow vmcs.
4506          */
4507         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4508
4509         if (!loaded_vmcs->shadow_vmcs) {
4510                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4511                 if (loaded_vmcs->shadow_vmcs)
4512                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4513         }
4514         return loaded_vmcs->shadow_vmcs;
4515 }
4516
4517 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4518 {
4519         struct vcpu_vmx *vmx = to_vmx(vcpu);
4520         int r;
4521
4522         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4523         if (r < 0)
4524                 goto out_vmcs02;
4525
4526         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4527         if (!vmx->nested.cached_vmcs12)
4528                 goto out_cached_vmcs12;
4529
4530         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4531         if (!vmx->nested.cached_shadow_vmcs12)
4532                 goto out_cached_shadow_vmcs12;
4533
4534         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4535                 goto out_shadow_vmcs;
4536
4537         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4538                      HRTIMER_MODE_REL_PINNED);
4539         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4540
4541         vmx->nested.vpid02 = allocate_vpid();
4542
4543         vmx->nested.vmcs02_initialized = false;
4544         vmx->nested.vmxon = true;
4545
4546         if (pt_mode == PT_MODE_HOST_GUEST) {
4547                 vmx->pt_desc.guest.ctl = 0;
4548                 pt_update_intercept_for_msr(vmx);
4549         }
4550
4551         return 0;
4552
4553 out_shadow_vmcs:
4554         kfree(vmx->nested.cached_shadow_vmcs12);
4555
4556 out_cached_shadow_vmcs12:
4557         kfree(vmx->nested.cached_vmcs12);
4558
4559 out_cached_vmcs12:
4560         free_loaded_vmcs(&vmx->nested.vmcs02);
4561
4562 out_vmcs02:
4563         return -ENOMEM;
4564 }
4565
4566 /*
4567  * Emulate the VMXON instruction.
4568  * Currently, we just remember that VMX is active, and do not save or even
4569  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4570  * do not currently need to store anything in that guest-allocated memory
4571  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4572  * argument is different from the VMXON pointer (which the spec says they do).
4573  */
4574 static int handle_vmon(struct kvm_vcpu *vcpu)
4575 {
4576         int ret;
4577         gpa_t vmptr;
4578         uint32_t revision;
4579         struct vcpu_vmx *vmx = to_vmx(vcpu);
4580         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4581                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4582
4583         /*
4584          * The Intel VMX Instruction Reference lists a bunch of bits that are
4585          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4586          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4587          * Otherwise, we should fail with #UD.  But most faulting conditions
4588          * have already been checked by hardware, prior to the VM-exit for
4589          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4590          * that bit set to 1 in non-root mode.
4591          */
4592         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4593                 kvm_queue_exception(vcpu, UD_VECTOR);
4594                 return 1;
4595         }
4596
4597         /* CPL=0 must be checked manually. */
4598         if (vmx_get_cpl(vcpu)) {
4599                 kvm_inject_gp(vcpu, 0);
4600                 return 1;
4601         }
4602
4603         if (vmx->nested.vmxon)
4604                 return nested_vmx_failValid(vcpu,
4605                         VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4606
4607         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4608                         != VMXON_NEEDED_FEATURES) {
4609                 kvm_inject_gp(vcpu, 0);
4610                 return 1;
4611         }
4612
4613         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4614                 return 1;
4615
4616         /*
4617          * SDM 3: 24.11.5
4618          * The first 4 bytes of VMXON region contain the supported
4619          * VMCS revision identifier
4620          *
4621          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4622          * which replaces physical address width with 32
4623          */
4624         if (!page_address_valid(vcpu, vmptr))
4625                 return nested_vmx_failInvalid(vcpu);
4626
4627         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4628             revision != VMCS12_REVISION)
4629                 return nested_vmx_failInvalid(vcpu);
4630
4631         vmx->nested.vmxon_ptr = vmptr;
4632         ret = enter_vmx_operation(vcpu);
4633         if (ret)
4634                 return ret;
4635
4636         return nested_vmx_succeed(vcpu);
4637 }
4638
4639 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4640 {
4641         struct vcpu_vmx *vmx = to_vmx(vcpu);
4642
4643         if (vmx->nested.current_vmptr == -1ull)
4644                 return;
4645
4646         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4647
4648         if (enable_shadow_vmcs) {
4649                 /* copy to memory all shadowed fields in case
4650                    they were modified */
4651                 copy_shadow_to_vmcs12(vmx);
4652                 vmx_disable_shadow_vmcs(vmx);
4653         }
4654         vmx->nested.posted_intr_nv = -1;
4655
4656         /* Flush VMCS12 to guest memory */
4657         kvm_vcpu_write_guest_page(vcpu,
4658                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4659                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4660
4661         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4662
4663         vmx->nested.current_vmptr = -1ull;
4664 }
4665
4666 /* Emulate the VMXOFF instruction */
4667 static int handle_vmoff(struct kvm_vcpu *vcpu)
4668 {
4669         if (!nested_vmx_check_permission(vcpu))
4670                 return 1;
4671
4672         free_nested(vcpu);
4673
4674         /* Process a latched INIT during time CPU was in VMX operation */
4675         kvm_make_request(KVM_REQ_EVENT, vcpu);
4676
4677         return nested_vmx_succeed(vcpu);
4678 }
4679
4680 /* Emulate the VMCLEAR instruction */
4681 static int handle_vmclear(struct kvm_vcpu *vcpu)
4682 {
4683         struct vcpu_vmx *vmx = to_vmx(vcpu);
4684         u32 zero = 0;
4685         gpa_t vmptr;
4686         u64 evmcs_gpa;
4687
4688         if (!nested_vmx_check_permission(vcpu))
4689                 return 1;
4690
4691         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4692                 return 1;
4693
4694         if (!page_address_valid(vcpu, vmptr))
4695                 return nested_vmx_failValid(vcpu,
4696                         VMXERR_VMCLEAR_INVALID_ADDRESS);
4697
4698         if (vmptr == vmx->nested.vmxon_ptr)
4699                 return nested_vmx_failValid(vcpu,
4700                         VMXERR_VMCLEAR_VMXON_POINTER);
4701
4702         /*
4703          * When Enlightened VMEntry is enabled on the calling CPU we treat
4704          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4705          * way to distinguish it from VMCS12) and we must not corrupt it by
4706          * writing to the non-existent 'launch_state' field. The area doesn't
4707          * have to be the currently active EVMCS on the calling CPU and there's
4708          * nothing KVM has to do to transition it from 'active' to 'non-active'
4709          * state. It is possible that the area will stay mapped as
4710          * vmx->nested.hv_evmcs but this shouldn't be a problem.
4711          */
4712         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4713                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4714                 if (vmptr == vmx->nested.current_vmptr)
4715                         nested_release_vmcs12(vcpu);
4716
4717                 kvm_vcpu_write_guest(vcpu,
4718                                      vmptr + offsetof(struct vmcs12,
4719                                                       launch_state),
4720                                      &zero, sizeof(zero));
4721         }
4722
4723         return nested_vmx_succeed(vcpu);
4724 }
4725
4726 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4727
4728 /* Emulate the VMLAUNCH instruction */
4729 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4730 {
4731         return nested_vmx_run(vcpu, true);
4732 }
4733
4734 /* Emulate the VMRESUME instruction */
4735 static int handle_vmresume(struct kvm_vcpu *vcpu)
4736 {
4737
4738         return nested_vmx_run(vcpu, false);
4739 }
4740
4741 static int handle_vmread(struct kvm_vcpu *vcpu)
4742 {
4743         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4744                                                     : get_vmcs12(vcpu);
4745         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4746         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4747         struct vcpu_vmx *vmx = to_vmx(vcpu);
4748         struct x86_exception e;
4749         unsigned long field;
4750         u64 value;
4751         gva_t gva = 0;
4752         short offset;
4753         int len;
4754
4755         if (!nested_vmx_check_permission(vcpu))
4756                 return 1;
4757
4758         /*
4759          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4760          * any VMREAD sets the ALU flags for VMfailInvalid.
4761          */
4762         if (vmx->nested.current_vmptr == -1ull ||
4763             (is_guest_mode(vcpu) &&
4764              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4765                 return nested_vmx_failInvalid(vcpu);
4766
4767         /* Decode instruction info and find the field to read */
4768         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4769
4770         offset = vmcs_field_to_offset(field);
4771         if (offset < 0)
4772                 return nested_vmx_failValid(vcpu,
4773                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4774
4775         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4776                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4777
4778         /* Read the field, zero-extended to a u64 value */
4779         value = vmcs12_read_any(vmcs12, field, offset);
4780
4781         /*
4782          * Now copy part of this value to register or memory, as requested.
4783          * Note that the number of bits actually copied is 32 or 64 depending
4784          * on the guest's mode (32 or 64 bit), not on the given field's length.
4785          */
4786         if (instr_info & BIT(10)) {
4787                 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4788         } else {
4789                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4790                 if (get_vmx_mem_address(vcpu, exit_qualification,
4791                                         instr_info, true, len, &gva))
4792                         return 1;
4793                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4794                 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4795                         kvm_inject_page_fault(vcpu, &e);
4796                         return 1;
4797                 }
4798         }
4799
4800         return nested_vmx_succeed(vcpu);
4801 }
4802
4803 static bool is_shadow_field_rw(unsigned long field)
4804 {
4805         switch (field) {
4806 #define SHADOW_FIELD_RW(x, y) case x:
4807 #include "vmcs_shadow_fields.h"
4808                 return true;
4809         default:
4810                 break;
4811         }
4812         return false;
4813 }
4814
4815 static bool is_shadow_field_ro(unsigned long field)
4816 {
4817         switch (field) {
4818 #define SHADOW_FIELD_RO(x, y) case x:
4819 #include "vmcs_shadow_fields.h"
4820                 return true;
4821         default:
4822                 break;
4823         }
4824         return false;
4825 }
4826
4827 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4828 {
4829         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4830                                                     : get_vmcs12(vcpu);
4831         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4832         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4833         struct vcpu_vmx *vmx = to_vmx(vcpu);
4834         struct x86_exception e;
4835         unsigned long field;
4836         short offset;
4837         gva_t gva;
4838         int len;
4839
4840         /*
4841          * The value to write might be 32 or 64 bits, depending on L1's long
4842          * mode, and eventually we need to write that into a field of several
4843          * possible lengths. The code below first zero-extends the value to 64
4844          * bit (value), and then copies only the appropriate number of
4845          * bits into the vmcs12 field.
4846          */
4847         u64 value = 0;
4848
4849         if (!nested_vmx_check_permission(vcpu))
4850                 return 1;
4851
4852         /*
4853          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4854          * any VMWRITE sets the ALU flags for VMfailInvalid.
4855          */
4856         if (vmx->nested.current_vmptr == -1ull ||
4857             (is_guest_mode(vcpu) &&
4858              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4859                 return nested_vmx_failInvalid(vcpu);
4860
4861         if (instr_info & BIT(10))
4862                 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4863         else {
4864                 len = is_64_bit_mode(vcpu) ? 8 : 4;
4865                 if (get_vmx_mem_address(vcpu, exit_qualification,
4866                                         instr_info, false, len, &gva))
4867                         return 1;
4868                 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4869                         kvm_inject_page_fault(vcpu, &e);
4870                         return 1;
4871                 }
4872         }
4873
4874         field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4875
4876         offset = vmcs_field_to_offset(field);
4877         if (offset < 0)
4878                 return nested_vmx_failValid(vcpu,
4879                         VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4880
4881         /*
4882          * If the vCPU supports "VMWRITE to any supported field in the
4883          * VMCS," then the "read-only" fields are actually read/write.
4884          */
4885         if (vmcs_field_readonly(field) &&
4886             !nested_cpu_has_vmwrite_any_field(vcpu))
4887                 return nested_vmx_failValid(vcpu,
4888                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4889
4890         /*
4891          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4892          * vmcs12, else we may crush a field or consume a stale value.
4893          */
4894         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4895                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4896
4897         /*
4898          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4899          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4900          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4901          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4902          * from L1 will return a different value than VMREAD from L2 (L1 sees
4903          * the stripped down value, L2 sees the full value as stored by KVM).
4904          */
4905         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4906                 value &= 0x1f0ff;
4907
4908         vmcs12_write_any(vmcs12, field, offset, value);
4909
4910         /*
4911          * Do not track vmcs12 dirty-state if in guest-mode as we actually
4912          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4913          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4914          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4915          */
4916         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4917                 /*
4918                  * L1 can read these fields without exiting, ensure the
4919                  * shadow VMCS is up-to-date.
4920                  */
4921                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4922                         preempt_disable();
4923                         vmcs_load(vmx->vmcs01.shadow_vmcs);
4924
4925                         __vmcs_writel(field, value);
4926
4927                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
4928                         vmcs_load(vmx->loaded_vmcs->vmcs);
4929                         preempt_enable();
4930                 }
4931                 vmx->nested.dirty_vmcs12 = true;
4932         }
4933
4934         return nested_vmx_succeed(vcpu);
4935 }
4936
4937 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4938 {
4939         vmx->nested.current_vmptr = vmptr;
4940         if (enable_shadow_vmcs) {
4941                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4942                 vmcs_write64(VMCS_LINK_POINTER,
4943                              __pa(vmx->vmcs01.shadow_vmcs));
4944                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4945         }
4946         vmx->nested.dirty_vmcs12 = true;
4947 }
4948
4949 /* Emulate the VMPTRLD instruction */
4950 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4951 {
4952         struct vcpu_vmx *vmx = to_vmx(vcpu);
4953         gpa_t vmptr;
4954
4955         if (!nested_vmx_check_permission(vcpu))
4956                 return 1;
4957
4958         if (nested_vmx_get_vmptr(vcpu, &vmptr))
4959                 return 1;
4960
4961         if (!page_address_valid(vcpu, vmptr))
4962                 return nested_vmx_failValid(vcpu,
4963                         VMXERR_VMPTRLD_INVALID_ADDRESS);
4964
4965         if (vmptr == vmx->nested.vmxon_ptr)
4966                 return nested_vmx_failValid(vcpu,
4967                         VMXERR_VMPTRLD_VMXON_POINTER);
4968
4969         /* Forbid normal VMPTRLD if Enlightened version was used */
4970         if (vmx->nested.hv_evmcs)
4971                 return 1;
4972
4973         if (vmx->nested.current_vmptr != vmptr) {
4974                 struct kvm_host_map map;
4975                 struct vmcs12 *new_vmcs12;
4976
4977                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4978                         /*
4979                          * Reads from an unbacked page return all 1s,
4980                          * which means that the 32 bits located at the
4981                          * given physical address won't match the required
4982                          * VMCS12_REVISION identifier.
4983                          */
4984                         return nested_vmx_failValid(vcpu,
4985                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4986                 }
4987
4988                 new_vmcs12 = map.hva;
4989
4990                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4991                     (new_vmcs12->hdr.shadow_vmcs &&
4992                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4993                         kvm_vcpu_unmap(vcpu, &map, false);
4994                         return nested_vmx_failValid(vcpu,
4995                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4996                 }
4997
4998                 nested_release_vmcs12(vcpu);
4999
5000                 /*
5001                  * Load VMCS12 from guest memory since it is not already
5002                  * cached.
5003                  */
5004                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5005                 kvm_vcpu_unmap(vcpu, &map, false);
5006
5007                 set_current_vmptr(vmx, vmptr);
5008         }
5009
5010         return nested_vmx_succeed(vcpu);
5011 }
5012
5013 /* Emulate the VMPTRST instruction */
5014 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5015 {
5016         unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5017         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5018         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5019         struct x86_exception e;
5020         gva_t gva;
5021
5022         if (!nested_vmx_check_permission(vcpu))
5023                 return 1;
5024
5025         if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5026                 return 1;
5027
5028         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5029                                 true, sizeof(gpa_t), &gva))
5030                 return 1;
5031         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5032         if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5033                                         sizeof(gpa_t), &e)) {
5034                 kvm_inject_page_fault(vcpu, &e);
5035                 return 1;
5036         }
5037         return nested_vmx_succeed(vcpu);
5038 }
5039
5040 /* Emulate the INVEPT instruction */
5041 static int handle_invept(struct kvm_vcpu *vcpu)
5042 {
5043         struct vcpu_vmx *vmx = to_vmx(vcpu);
5044         u32 vmx_instruction_info, types;
5045         unsigned long type;
5046         gva_t gva;
5047         struct x86_exception e;
5048         struct {
5049                 u64 eptp, gpa;
5050         } operand;
5051
5052         if (!(vmx->nested.msrs.secondary_ctls_high &
5053               SECONDARY_EXEC_ENABLE_EPT) ||
5054             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5055                 kvm_queue_exception(vcpu, UD_VECTOR);
5056                 return 1;
5057         }
5058
5059         if (!nested_vmx_check_permission(vcpu))
5060                 return 1;
5061
5062         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5063         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5064
5065         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5066
5067         if (type >= 32 || !(types & (1 << type)))
5068                 return nested_vmx_failValid(vcpu,
5069                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5070
5071         /* According to the Intel VMX instruction reference, the memory
5072          * operand is read even if it isn't needed (e.g., for type==global)
5073          */
5074         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5075                         vmx_instruction_info, false, sizeof(operand), &gva))
5076                 return 1;
5077         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5078                 kvm_inject_page_fault(vcpu, &e);
5079                 return 1;
5080         }
5081
5082         switch (type) {
5083         case VMX_EPT_EXTENT_GLOBAL:
5084         case VMX_EPT_EXTENT_CONTEXT:
5085         /*
5086          * TODO: Sync the necessary shadow EPT roots here, rather than
5087          * at the next emulated VM-entry.
5088          */
5089                 break;
5090         default:
5091                 BUG_ON(1);
5092                 break;
5093         }
5094
5095         return nested_vmx_succeed(vcpu);
5096 }
5097
5098 static int handle_invvpid(struct kvm_vcpu *vcpu)
5099 {
5100         struct vcpu_vmx *vmx = to_vmx(vcpu);
5101         u32 vmx_instruction_info;
5102         unsigned long type, types;
5103         gva_t gva;
5104         struct x86_exception e;
5105         struct {
5106                 u64 vpid;
5107                 u64 gla;
5108         } operand;
5109         u16 vpid02;
5110
5111         if (!(vmx->nested.msrs.secondary_ctls_high &
5112               SECONDARY_EXEC_ENABLE_VPID) ||
5113                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5114                 kvm_queue_exception(vcpu, UD_VECTOR);
5115                 return 1;
5116         }
5117
5118         if (!nested_vmx_check_permission(vcpu))
5119                 return 1;
5120
5121         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5122         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5123
5124         types = (vmx->nested.msrs.vpid_caps &
5125                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5126
5127         if (type >= 32 || !(types & (1 << type)))
5128                 return nested_vmx_failValid(vcpu,
5129                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5130
5131         /* according to the intel vmx instruction reference, the memory
5132          * operand is read even if it isn't needed (e.g., for type==global)
5133          */
5134         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5135                         vmx_instruction_info, false, sizeof(operand), &gva))
5136                 return 1;
5137         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5138                 kvm_inject_page_fault(vcpu, &e);
5139                 return 1;
5140         }
5141         if (operand.vpid >> 16)
5142                 return nested_vmx_failValid(vcpu,
5143                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5144
5145         vpid02 = nested_get_vpid02(vcpu);
5146         switch (type) {
5147         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5148                 if (!operand.vpid ||
5149                     is_noncanonical_address(operand.gla, vcpu))
5150                         return nested_vmx_failValid(vcpu,
5151                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5152                 if (cpu_has_vmx_invvpid_individual_addr()) {
5153                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5154                                 vpid02, operand.gla);
5155                 } else
5156                         __vmx_flush_tlb(vcpu, vpid02, false);
5157                 break;
5158         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5159         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5160                 if (!operand.vpid)
5161                         return nested_vmx_failValid(vcpu,
5162                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5163                 __vmx_flush_tlb(vcpu, vpid02, false);
5164                 break;
5165         case VMX_VPID_EXTENT_ALL_CONTEXT:
5166                 __vmx_flush_tlb(vcpu, vpid02, false);
5167                 break;
5168         default:
5169                 WARN_ON_ONCE(1);
5170                 return kvm_skip_emulated_instruction(vcpu);
5171         }
5172
5173         return nested_vmx_succeed(vcpu);
5174 }
5175
5176 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5177                                      struct vmcs12 *vmcs12)
5178 {
5179         u32 index = kvm_rcx_read(vcpu);
5180         u64 address;
5181         bool accessed_dirty;
5182         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5183
5184         if (!nested_cpu_has_eptp_switching(vmcs12) ||
5185             !nested_cpu_has_ept(vmcs12))
5186                 return 1;
5187
5188         if (index >= VMFUNC_EPTP_ENTRIES)
5189                 return 1;
5190
5191
5192         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5193                                      &address, index * 8, 8))
5194                 return 1;
5195
5196         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5197
5198         /*
5199          * If the (L2) guest does a vmfunc to the currently
5200          * active ept pointer, we don't have to do anything else
5201          */
5202         if (vmcs12->ept_pointer != address) {
5203                 if (!valid_ept_address(vcpu, address))
5204                         return 1;
5205
5206                 kvm_mmu_unload(vcpu);
5207                 mmu->ept_ad = accessed_dirty;
5208                 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5209                 vmcs12->ept_pointer = address;
5210                 /*
5211                  * TODO: Check what's the correct approach in case
5212                  * mmu reload fails. Currently, we just let the next
5213                  * reload potentially fail
5214                  */
5215                 kvm_mmu_reload(vcpu);
5216         }
5217
5218         return 0;
5219 }
5220
5221 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5222 {
5223         struct vcpu_vmx *vmx = to_vmx(vcpu);
5224         struct vmcs12 *vmcs12;
5225         u32 function = kvm_rax_read(vcpu);
5226
5227         /*
5228          * VMFUNC is only supported for nested guests, but we always enable the
5229          * secondary control for simplicity; for non-nested mode, fake that we
5230          * didn't by injecting #UD.
5231          */
5232         if (!is_guest_mode(vcpu)) {
5233                 kvm_queue_exception(vcpu, UD_VECTOR);
5234                 return 1;
5235         }
5236
5237         vmcs12 = get_vmcs12(vcpu);
5238         if ((vmcs12->vm_function_control & (1 << function)) == 0)
5239                 goto fail;
5240
5241         switch (function) {
5242         case 0:
5243                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5244                         goto fail;
5245                 break;
5246         default:
5247                 goto fail;
5248         }
5249         return kvm_skip_emulated_instruction(vcpu);
5250
5251 fail:
5252         nested_vmx_vmexit(vcpu, vmx->exit_reason,
5253                           vmcs_read32(VM_EXIT_INTR_INFO),
5254                           vmcs_readl(EXIT_QUALIFICATION));
5255         return 1;
5256 }
5257
5258
5259 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5260                                        struct vmcs12 *vmcs12)
5261 {
5262         unsigned long exit_qualification;
5263         gpa_t bitmap, last_bitmap;
5264         unsigned int port;
5265         int size;
5266         u8 b;
5267
5268         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5269                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5270
5271         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5272
5273         port = exit_qualification >> 16;
5274         size = (exit_qualification & 7) + 1;
5275
5276         last_bitmap = (gpa_t)-1;
5277         b = -1;
5278
5279         while (size > 0) {
5280                 if (port < 0x8000)
5281                         bitmap = vmcs12->io_bitmap_a;
5282                 else if (port < 0x10000)
5283                         bitmap = vmcs12->io_bitmap_b;
5284                 else
5285                         return true;
5286                 bitmap += (port & 0x7fff) / 8;
5287
5288                 if (last_bitmap != bitmap)
5289                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5290                                 return true;
5291                 if (b & (1 << (port & 7)))
5292                         return true;
5293
5294                 port++;
5295                 size--;
5296                 last_bitmap = bitmap;
5297         }
5298
5299         return false;
5300 }
5301
5302 /*
5303  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5304  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5305  * disinterest in the current event (read or write a specific MSR) by using an
5306  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5307  */
5308 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5309         struct vmcs12 *vmcs12, u32 exit_reason)
5310 {
5311         u32 msr_index = kvm_rcx_read(vcpu);
5312         gpa_t bitmap;
5313
5314         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5315                 return true;
5316
5317         /*
5318          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5319          * for the four combinations of read/write and low/high MSR numbers.
5320          * First we need to figure out which of the four to use:
5321          */
5322         bitmap = vmcs12->msr_bitmap;
5323         if (exit_reason == EXIT_REASON_MSR_WRITE)
5324                 bitmap += 2048;
5325         if (msr_index >= 0xc0000000) {
5326                 msr_index -= 0xc0000000;
5327                 bitmap += 1024;
5328         }
5329
5330         /* Then read the msr_index'th bit from this bitmap: */
5331         if (msr_index < 1024*8) {
5332                 unsigned char b;
5333                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5334                         return true;
5335                 return 1 & (b >> (msr_index & 7));
5336         } else
5337                 return true; /* let L1 handle the wrong parameter */
5338 }
5339
5340 /*
5341  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5342  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5343  * intercept (via guest_host_mask etc.) the current event.
5344  */
5345 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5346         struct vmcs12 *vmcs12)
5347 {
5348         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5349         int cr = exit_qualification & 15;
5350         int reg;
5351         unsigned long val;
5352
5353         switch ((exit_qualification >> 4) & 3) {
5354         case 0: /* mov to cr */
5355                 reg = (exit_qualification >> 8) & 15;
5356                 val = kvm_register_readl(vcpu, reg);
5357                 switch (cr) {
5358                 case 0:
5359                         if (vmcs12->cr0_guest_host_mask &
5360                             (val ^ vmcs12->cr0_read_shadow))
5361                                 return true;
5362                         break;
5363                 case 3:
5364                         if ((vmcs12->cr3_target_count >= 1 &&
5365                                         vmcs12->cr3_target_value0 == val) ||
5366                                 (vmcs12->cr3_target_count >= 2 &&
5367                                         vmcs12->cr3_target_value1 == val) ||
5368                                 (vmcs12->cr3_target_count >= 3 &&
5369                                         vmcs12->cr3_target_value2 == val) ||
5370                                 (vmcs12->cr3_target_count >= 4 &&
5371                                         vmcs12->cr3_target_value3 == val))
5372                                 return false;
5373                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5374                                 return true;
5375                         break;
5376                 case 4:
5377                         if (vmcs12->cr4_guest_host_mask &
5378                             (vmcs12->cr4_read_shadow ^ val))
5379                                 return true;
5380                         break;
5381                 case 8:
5382                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5383                                 return true;
5384                         break;
5385                 }
5386                 break;
5387         case 2: /* clts */
5388                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5389                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5390                         return true;
5391                 break;
5392         case 1: /* mov from cr */
5393                 switch (cr) {
5394                 case 3:
5395                         if (vmcs12->cpu_based_vm_exec_control &
5396                             CPU_BASED_CR3_STORE_EXITING)
5397                                 return true;
5398                         break;
5399                 case 8:
5400                         if (vmcs12->cpu_based_vm_exec_control &
5401                             CPU_BASED_CR8_STORE_EXITING)
5402                                 return true;
5403                         break;
5404                 }
5405                 break;
5406         case 3: /* lmsw */
5407                 /*
5408                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5409                  * cr0. Other attempted changes are ignored, with no exit.
5410                  */
5411                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5412                 if (vmcs12->cr0_guest_host_mask & 0xe &
5413                     (val ^ vmcs12->cr0_read_shadow))
5414                         return true;
5415                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5416                     !(vmcs12->cr0_read_shadow & 0x1) &&
5417                     (val & 0x1))
5418                         return true;
5419                 break;
5420         }
5421         return false;
5422 }
5423
5424 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5425         struct vmcs12 *vmcs12, gpa_t bitmap)
5426 {
5427         u32 vmx_instruction_info;
5428         unsigned long field;
5429         u8 b;
5430
5431         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5432                 return true;
5433
5434         /* Decode instruction info and find the field to access */
5435         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5436         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5437
5438         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5439         if (field >> 15)
5440                 return true;
5441
5442         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5443                 return true;
5444
5445         return 1 & (b >> (field & 7));
5446 }
5447
5448 /*
5449  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5450  * should handle it ourselves in L0 (and then continue L2). Only call this
5451  * when in is_guest_mode (L2).
5452  */
5453 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5454 {
5455         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5456         struct vcpu_vmx *vmx = to_vmx(vcpu);
5457         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5458
5459         if (vmx->nested.nested_run_pending)
5460                 return false;
5461
5462         if (unlikely(vmx->fail)) {
5463                 trace_kvm_nested_vmenter_failed(
5464                         "hardware VM-instruction error: ",
5465                         vmcs_read32(VM_INSTRUCTION_ERROR));
5466                 return true;
5467         }
5468
5469         /*
5470          * The host physical addresses of some pages of guest memory
5471          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5472          * Page). The CPU may write to these pages via their host
5473          * physical address while L2 is running, bypassing any
5474          * address-translation-based dirty tracking (e.g. EPT write
5475          * protection).
5476          *
5477          * Mark them dirty on every exit from L2 to prevent them from
5478          * getting out of sync with dirty tracking.
5479          */
5480         nested_mark_vmcs12_pages_dirty(vcpu);
5481
5482         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5483                                 vmcs_readl(EXIT_QUALIFICATION),
5484                                 vmx->idt_vectoring_info,
5485                                 intr_info,
5486                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5487                                 KVM_ISA_VMX);
5488
5489         switch (exit_reason) {
5490         case EXIT_REASON_EXCEPTION_NMI:
5491                 if (is_nmi(intr_info))
5492                         return false;
5493                 else if (is_page_fault(intr_info))
5494                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5495                 else if (is_debug(intr_info) &&
5496                          vcpu->guest_debug &
5497                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5498                         return false;
5499                 else if (is_breakpoint(intr_info) &&
5500                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5501                         return false;
5502                 return vmcs12->exception_bitmap &
5503                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5504         case EXIT_REASON_EXTERNAL_INTERRUPT:
5505                 return false;
5506         case EXIT_REASON_TRIPLE_FAULT:
5507                 return true;
5508         case EXIT_REASON_INTERRUPT_WINDOW:
5509                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5510         case EXIT_REASON_NMI_WINDOW:
5511                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5512         case EXIT_REASON_TASK_SWITCH:
5513                 return true;
5514         case EXIT_REASON_CPUID:
5515                 return true;
5516         case EXIT_REASON_HLT:
5517                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5518         case EXIT_REASON_INVD:
5519                 return true;
5520         case EXIT_REASON_INVLPG:
5521                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5522         case EXIT_REASON_RDPMC:
5523                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5524         case EXIT_REASON_RDRAND:
5525                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5526         case EXIT_REASON_RDSEED:
5527                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5528         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5529                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5530         case EXIT_REASON_VMREAD:
5531                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5532                         vmcs12->vmread_bitmap);
5533         case EXIT_REASON_VMWRITE:
5534                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5535                         vmcs12->vmwrite_bitmap);
5536         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5537         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5538         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5539         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5540         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5541                 /*
5542                  * VMX instructions trap unconditionally. This allows L1 to
5543                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5544                  */
5545                 return true;
5546         case EXIT_REASON_CR_ACCESS:
5547                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5548         case EXIT_REASON_DR_ACCESS:
5549                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5550         case EXIT_REASON_IO_INSTRUCTION:
5551                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5552         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5553                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5554         case EXIT_REASON_MSR_READ:
5555         case EXIT_REASON_MSR_WRITE:
5556                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5557         case EXIT_REASON_INVALID_STATE:
5558                 return true;
5559         case EXIT_REASON_MWAIT_INSTRUCTION:
5560                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5561         case EXIT_REASON_MONITOR_TRAP_FLAG:
5562                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5563         case EXIT_REASON_MONITOR_INSTRUCTION:
5564                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5565         case EXIT_REASON_PAUSE_INSTRUCTION:
5566                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5567                         nested_cpu_has2(vmcs12,
5568                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5569         case EXIT_REASON_MCE_DURING_VMENTRY:
5570                 return false;
5571         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5572                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5573         case EXIT_REASON_APIC_ACCESS:
5574         case EXIT_REASON_APIC_WRITE:
5575         case EXIT_REASON_EOI_INDUCED:
5576                 /*
5577                  * The controls for "virtualize APIC accesses," "APIC-
5578                  * register virtualization," and "virtual-interrupt
5579                  * delivery" only come from vmcs12.
5580                  */
5581                 return true;
5582         case EXIT_REASON_EPT_VIOLATION:
5583                 /*
5584                  * L0 always deals with the EPT violation. If nested EPT is
5585                  * used, and the nested mmu code discovers that the address is
5586                  * missing in the guest EPT table (EPT12), the EPT violation
5587                  * will be injected with nested_ept_inject_page_fault()
5588                  */
5589                 return false;
5590         case EXIT_REASON_EPT_MISCONFIG:
5591                 /*
5592                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5593                  * table (shadow on EPT) or a merged EPT table that L0 built
5594                  * (EPT on EPT). So any problems with the structure of the
5595                  * table is L0's fault.
5596                  */
5597                 return false;
5598         case EXIT_REASON_INVPCID:
5599                 return
5600                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5601                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5602         case EXIT_REASON_WBINVD:
5603                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5604         case EXIT_REASON_XSETBV:
5605                 return true;
5606         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5607                 /*
5608                  * This should never happen, since it is not possible to
5609                  * set XSS to a non-zero value---neither in L1 nor in L2.
5610                  * If if it were, XSS would have to be checked against
5611                  * the XSS exit bitmap in vmcs12.
5612                  */
5613                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5614         case EXIT_REASON_PREEMPTION_TIMER:
5615                 return false;
5616         case EXIT_REASON_PML_FULL:
5617                 /* We emulate PML support to L1. */
5618                 return false;
5619         case EXIT_REASON_VMFUNC:
5620                 /* VM functions are emulated through L2->L0 vmexits. */
5621                 return false;
5622         case EXIT_REASON_ENCLS:
5623                 /* SGX is never exposed to L1 */
5624                 return false;
5625         case EXIT_REASON_UMWAIT:
5626         case EXIT_REASON_TPAUSE:
5627                 return nested_cpu_has2(vmcs12,
5628                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5629         default:
5630                 return true;
5631         }
5632 }
5633
5634
5635 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5636                                 struct kvm_nested_state __user *user_kvm_nested_state,
5637                                 u32 user_data_size)
5638 {
5639         struct vcpu_vmx *vmx;
5640         struct vmcs12 *vmcs12;
5641         struct kvm_nested_state kvm_state = {
5642                 .flags = 0,
5643                 .format = KVM_STATE_NESTED_FORMAT_VMX,
5644                 .size = sizeof(kvm_state),
5645                 .hdr.vmx.vmxon_pa = -1ull,
5646                 .hdr.vmx.vmcs12_pa = -1ull,
5647         };
5648         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5649                 &user_kvm_nested_state->data.vmx[0];
5650
5651         if (!vcpu)
5652                 return kvm_state.size + sizeof(*user_vmx_nested_state);
5653
5654         vmx = to_vmx(vcpu);
5655         vmcs12 = get_vmcs12(vcpu);
5656
5657         if (nested_vmx_allowed(vcpu) &&
5658             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5659                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5660                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5661
5662                 if (vmx_has_valid_vmcs12(vcpu)) {
5663                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5664
5665                         if (vmx->nested.hv_evmcs)
5666                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5667
5668                         if (is_guest_mode(vcpu) &&
5669                             nested_cpu_has_shadow_vmcs(vmcs12) &&
5670                             vmcs12->vmcs_link_pointer != -1ull)
5671                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5672                 }
5673
5674                 if (vmx->nested.smm.vmxon)
5675                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5676
5677                 if (vmx->nested.smm.guest_mode)
5678                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5679
5680                 if (is_guest_mode(vcpu)) {
5681                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5682
5683                         if (vmx->nested.nested_run_pending)
5684                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5685                 }
5686         }
5687
5688         if (user_data_size < kvm_state.size)
5689                 goto out;
5690
5691         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5692                 return -EFAULT;
5693
5694         if (!vmx_has_valid_vmcs12(vcpu))
5695                 goto out;
5696
5697         /*
5698          * When running L2, the authoritative vmcs12 state is in the
5699          * vmcs02. When running L1, the authoritative vmcs12 state is
5700          * in the shadow or enlightened vmcs linked to vmcs01, unless
5701          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5702          * vmcs12 state is in the vmcs12 already.
5703          */
5704         if (is_guest_mode(vcpu)) {
5705                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5706                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5707         } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5708                 if (vmx->nested.hv_evmcs)
5709                         copy_enlightened_to_vmcs12(vmx);
5710                 else if (enable_shadow_vmcs)
5711                         copy_shadow_to_vmcs12(vmx);
5712         }
5713
5714         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5715         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5716
5717         /*
5718          * Copy over the full allocated size of vmcs12 rather than just the size
5719          * of the struct.
5720          */
5721         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5722                 return -EFAULT;
5723
5724         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5725             vmcs12->vmcs_link_pointer != -1ull) {
5726                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5727                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5728                         return -EFAULT;
5729         }
5730
5731 out:
5732         return kvm_state.size;
5733 }
5734
5735 /*
5736  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5737  */
5738 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5739 {
5740         if (is_guest_mode(vcpu)) {
5741                 to_vmx(vcpu)->nested.nested_run_pending = 0;
5742                 nested_vmx_vmexit(vcpu, -1, 0, 0);
5743         }
5744         free_nested(vcpu);
5745 }
5746
5747 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5748                                 struct kvm_nested_state __user *user_kvm_nested_state,
5749                                 struct kvm_nested_state *kvm_state)
5750 {
5751         struct vcpu_vmx *vmx = to_vmx(vcpu);
5752         struct vmcs12 *vmcs12;
5753         u32 exit_qual;
5754         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5755                 &user_kvm_nested_state->data.vmx[0];
5756         int ret;
5757
5758         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5759                 return -EINVAL;
5760
5761         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5762                 if (kvm_state->hdr.vmx.smm.flags)
5763                         return -EINVAL;
5764
5765                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5766                         return -EINVAL;
5767
5768                 /*
5769                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5770                  * enable eVMCS capability on vCPU. However, since then
5771                  * code was changed such that flag signals vmcs12 should
5772                  * be copied into eVMCS in guest memory.
5773                  *
5774                  * To preserve backwards compatability, allow user
5775                  * to set this flag even when there is no VMXON region.
5776                  */
5777                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5778                         return -EINVAL;
5779         } else {
5780                 if (!nested_vmx_allowed(vcpu))
5781                         return -EINVAL;
5782
5783                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5784                         return -EINVAL;
5785         }
5786
5787         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5788             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5789                 return -EINVAL;
5790
5791         if (kvm_state->hdr.vmx.smm.flags &
5792             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5793                 return -EINVAL;
5794
5795         /*
5796          * SMM temporarily disables VMX, so we cannot be in guest mode,
5797          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5798          * must be zero.
5799          */
5800         if (is_smm(vcpu) ?
5801                 (kvm_state->flags &
5802                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5803                 : kvm_state->hdr.vmx.smm.flags)
5804                 return -EINVAL;
5805
5806         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5807             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5808                 return -EINVAL;
5809
5810         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5811                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5812                         return -EINVAL;
5813
5814         vmx_leave_nested(vcpu);
5815
5816         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5817                 return 0;
5818
5819         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5820         ret = enter_vmx_operation(vcpu);
5821         if (ret)
5822                 return ret;
5823
5824         /* Empty 'VMXON' state is permitted */
5825         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5826                 return 0;
5827
5828         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5829                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5830                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5831                         return -EINVAL;
5832
5833                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5834         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5835                 /*
5836                  * Sync eVMCS upon entry as we may not have
5837                  * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5838                  */
5839                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5840         } else {
5841                 return -EINVAL;
5842         }
5843
5844         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5845                 vmx->nested.smm.vmxon = true;
5846                 vmx->nested.vmxon = false;
5847
5848                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5849                         vmx->nested.smm.guest_mode = true;
5850         }
5851
5852         vmcs12 = get_vmcs12(vcpu);
5853         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5854                 return -EFAULT;
5855
5856         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5857                 return -EINVAL;
5858
5859         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5860                 return 0;
5861
5862         vmx->nested.nested_run_pending =
5863                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5864
5865         ret = -EINVAL;
5866         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5867             vmcs12->vmcs_link_pointer != -1ull) {
5868                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5869
5870                 if (kvm_state->size <
5871                     sizeof(*kvm_state) +
5872                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5873                         goto error_guest_mode;
5874
5875                 if (copy_from_user(shadow_vmcs12,
5876                                    user_vmx_nested_state->shadow_vmcs12,
5877                                    sizeof(*shadow_vmcs12))) {
5878                         ret = -EFAULT;
5879                         goto error_guest_mode;
5880                 }
5881
5882                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5883                     !shadow_vmcs12->hdr.shadow_vmcs)
5884                         goto error_guest_mode;
5885         }
5886
5887         if (nested_vmx_check_controls(vcpu, vmcs12) ||
5888             nested_vmx_check_host_state(vcpu, vmcs12) ||
5889             nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5890                 goto error_guest_mode;
5891
5892         vmx->nested.dirty_vmcs12 = true;
5893         ret = nested_vmx_enter_non_root_mode(vcpu, false);
5894         if (ret)
5895                 goto error_guest_mode;
5896
5897         return 0;
5898
5899 error_guest_mode:
5900         vmx->nested.nested_run_pending = 0;
5901         return ret;
5902 }
5903
5904 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5905 {
5906         if (enable_shadow_vmcs) {
5907                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5908                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5909         }
5910 }
5911
5912 /*
5913  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5914  * returned for the various VMX controls MSRs when nested VMX is enabled.
5915  * The same values should also be used to verify that vmcs12 control fields are
5916  * valid during nested entry from L1 to L2.
5917  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5918  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5919  * bit in the high half is on if the corresponding bit in the control field
5920  * may be on. See also vmx_control_verify().
5921  */
5922 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5923                                 bool apicv)
5924 {
5925         /*
5926          * Note that as a general rule, the high half of the MSRs (bits in
5927          * the control fields which may be 1) should be initialized by the
5928          * intersection of the underlying hardware's MSR (i.e., features which
5929          * can be supported) and the list of features we want to expose -
5930          * because they are known to be properly supported in our code.
5931          * Also, usually, the low half of the MSRs (bits which must be 1) can
5932          * be set to 0, meaning that L1 may turn off any of these bits. The
5933          * reason is that if one of these bits is necessary, it will appear
5934          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5935          * fields of vmcs01 and vmcs02, will turn these bits off - and
5936          * nested_vmx_exit_reflected() will not pass related exits to L1.
5937          * These rules have exceptions below.
5938          */
5939
5940         /* pin-based controls */
5941         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5942                 msrs->pinbased_ctls_low,
5943                 msrs->pinbased_ctls_high);
5944         msrs->pinbased_ctls_low |=
5945                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5946         msrs->pinbased_ctls_high &=
5947                 PIN_BASED_EXT_INTR_MASK |
5948                 PIN_BASED_NMI_EXITING |
5949                 PIN_BASED_VIRTUAL_NMIS |
5950                 (apicv ? PIN_BASED_POSTED_INTR : 0);
5951         msrs->pinbased_ctls_high |=
5952                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5953                 PIN_BASED_VMX_PREEMPTION_TIMER;
5954
5955         /* exit controls */
5956         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5957                 msrs->exit_ctls_low,
5958                 msrs->exit_ctls_high);
5959         msrs->exit_ctls_low =
5960                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5961
5962         msrs->exit_ctls_high &=
5963 #ifdef CONFIG_X86_64
5964                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5965 #endif
5966                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5967         msrs->exit_ctls_high |=
5968                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5969                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5970                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5971
5972         /* We support free control of debug control saving. */
5973         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5974
5975         /* entry controls */
5976         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5977                 msrs->entry_ctls_low,
5978                 msrs->entry_ctls_high);
5979         msrs->entry_ctls_low =
5980                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5981         msrs->entry_ctls_high &=
5982 #ifdef CONFIG_X86_64
5983                 VM_ENTRY_IA32E_MODE |
5984 #endif
5985                 VM_ENTRY_LOAD_IA32_PAT;
5986         msrs->entry_ctls_high |=
5987                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5988
5989         /* We support free control of debug control loading. */
5990         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5991
5992         /* cpu-based controls */
5993         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5994                 msrs->procbased_ctls_low,
5995                 msrs->procbased_ctls_high);
5996         msrs->procbased_ctls_low =
5997                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5998         msrs->procbased_ctls_high &=
5999                 CPU_BASED_INTR_WINDOW_EXITING |
6000                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6001                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6002                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6003                 CPU_BASED_CR3_STORE_EXITING |
6004 #ifdef CONFIG_X86_64
6005                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6006 #endif
6007                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6008                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6009                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6010                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6011                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6012         /*
6013          * We can allow some features even when not supported by the
6014          * hardware. For example, L1 can specify an MSR bitmap - and we
6015          * can use it to avoid exits to L1 - even when L0 runs L2
6016          * without MSR bitmaps.
6017          */
6018         msrs->procbased_ctls_high |=
6019                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6020                 CPU_BASED_USE_MSR_BITMAPS;
6021
6022         /* We support free control of CR3 access interception. */
6023         msrs->procbased_ctls_low &=
6024                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6025
6026         /*
6027          * secondary cpu-based controls.  Do not include those that
6028          * depend on CPUID bits, they are added later by vmx_cpuid_update.
6029          */
6030         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6031                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6032                       msrs->secondary_ctls_low,
6033                       msrs->secondary_ctls_high);
6034
6035         msrs->secondary_ctls_low = 0;
6036         msrs->secondary_ctls_high &=
6037                 SECONDARY_EXEC_DESC |
6038                 SECONDARY_EXEC_RDTSCP |
6039                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6040                 SECONDARY_EXEC_WBINVD_EXITING |
6041                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6042                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6043                 SECONDARY_EXEC_RDRAND_EXITING |
6044                 SECONDARY_EXEC_ENABLE_INVPCID |
6045                 SECONDARY_EXEC_RDSEED_EXITING |
6046                 SECONDARY_EXEC_XSAVES;
6047
6048         /*
6049          * We can emulate "VMCS shadowing," even if the hardware
6050          * doesn't support it.
6051          */
6052         msrs->secondary_ctls_high |=
6053                 SECONDARY_EXEC_SHADOW_VMCS;
6054
6055         if (enable_ept) {
6056                 /* nested EPT: emulate EPT also to L1 */
6057                 msrs->secondary_ctls_high |=
6058                         SECONDARY_EXEC_ENABLE_EPT;
6059                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
6060                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
6061                 if (cpu_has_vmx_ept_execute_only())
6062                         msrs->ept_caps |=
6063                                 VMX_EPT_EXECUTE_ONLY_BIT;
6064                 msrs->ept_caps &= ept_caps;
6065                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6066                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6067                         VMX_EPT_1GB_PAGE_BIT;
6068                 if (enable_ept_ad_bits) {
6069                         msrs->secondary_ctls_high |=
6070                                 SECONDARY_EXEC_ENABLE_PML;
6071                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6072                 }
6073         }
6074
6075         if (cpu_has_vmx_vmfunc()) {
6076                 msrs->secondary_ctls_high |=
6077                         SECONDARY_EXEC_ENABLE_VMFUNC;
6078                 /*
6079                  * Advertise EPTP switching unconditionally
6080                  * since we emulate it
6081                  */
6082                 if (enable_ept)
6083                         msrs->vmfunc_controls =
6084                                 VMX_VMFUNC_EPTP_SWITCHING;
6085         }
6086
6087         /*
6088          * Old versions of KVM use the single-context version without
6089          * checking for support, so declare that it is supported even
6090          * though it is treated as global context.  The alternative is
6091          * not failing the single-context invvpid, and it is worse.
6092          */
6093         if (enable_vpid) {
6094                 msrs->secondary_ctls_high |=
6095                         SECONDARY_EXEC_ENABLE_VPID;
6096                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6097                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6098         }
6099
6100         if (enable_unrestricted_guest)
6101                 msrs->secondary_ctls_high |=
6102                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6103
6104         if (flexpriority_enabled)
6105                 msrs->secondary_ctls_high |=
6106                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6107
6108         /* miscellaneous data */
6109         rdmsr(MSR_IA32_VMX_MISC,
6110                 msrs->misc_low,
6111                 msrs->misc_high);
6112         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6113         msrs->misc_low |=
6114                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6115                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6116                 VMX_MISC_ACTIVITY_HLT;
6117         msrs->misc_high = 0;
6118
6119         /*
6120          * This MSR reports some information about VMX support. We
6121          * should return information about the VMX we emulate for the
6122          * guest, and the VMCS structure we give it - not about the
6123          * VMX support of the underlying hardware.
6124          */
6125         msrs->basic =
6126                 VMCS12_REVISION |
6127                 VMX_BASIC_TRUE_CTLS |
6128                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6129                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6130
6131         if (cpu_has_vmx_basic_inout())
6132                 msrs->basic |= VMX_BASIC_INOUT;
6133
6134         /*
6135          * These MSRs specify bits which the guest must keep fixed on
6136          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6137          * We picked the standard core2 setting.
6138          */
6139 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6140 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6141         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6142         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6143
6144         /* These MSRs specify bits which the guest must keep fixed off. */
6145         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6146         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6147
6148         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6149         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6150 }
6151
6152 void nested_vmx_hardware_unsetup(void)
6153 {
6154         int i;
6155
6156         if (enable_shadow_vmcs) {
6157                 for (i = 0; i < VMX_BITMAP_NR; i++)
6158                         free_page((unsigned long)vmx_bitmap[i]);
6159         }
6160 }
6161
6162 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6163 {
6164         int i;
6165
6166         if (!cpu_has_vmx_shadow_vmcs())
6167                 enable_shadow_vmcs = 0;
6168         if (enable_shadow_vmcs) {
6169                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6170                         /*
6171                          * The vmx_bitmap is not tied to a VM and so should
6172                          * not be charged to a memcg.
6173                          */
6174                         vmx_bitmap[i] = (unsigned long *)
6175                                 __get_free_page(GFP_KERNEL);
6176                         if (!vmx_bitmap[i]) {
6177                                 nested_vmx_hardware_unsetup();
6178                                 return -ENOMEM;
6179                         }
6180                 }
6181
6182                 init_vmcs_shadow_fields();
6183         }
6184
6185         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6186         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6187         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6188         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6189         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6190         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6191         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6192         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6193         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6194         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6195         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6196         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6197
6198         kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6199         kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6200         kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6201         kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6202         kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6203         kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6204
6205         return 0;
6206 }