OSDN Git Service

KVM: VMX: Use #defines in place of immediates in VM-Enter inline asm
[uclinux-h8/linux.git] / arch / x86 / kvm / vmx / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71         X86_FEATURE_MATCH(X86_FEATURE_VMX),
72         {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90                         enable_unrestricted_guest, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211
212         if (!enable_ept) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214                 return 0;
215         }
216
217         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218                 u64 msr;
219
220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223                         return 0;
224                 }
225         }
226
227         /* If set to auto use the default l1tf mitigation method */
228         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229                 switch (l1tf_mitigation) {
230                 case L1TF_MITIGATION_OFF:
231                         l1tf = VMENTER_L1D_FLUSH_NEVER;
232                         break;
233                 case L1TF_MITIGATION_FLUSH_NOWARN:
234                 case L1TF_MITIGATION_FLUSH:
235                 case L1TF_MITIGATION_FLUSH_NOSMT:
236                         l1tf = VMENTER_L1D_FLUSH_COND;
237                         break;
238                 case L1TF_MITIGATION_FULL:
239                 case L1TF_MITIGATION_FULL_FORCE:
240                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241                         break;
242                 }
243         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245         }
246
247         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
250                 if (!page)
251                         return -ENOMEM;
252                 vmx_l1d_flush_pages = page_address(page);
253
254                 /*
255                  * Initialize each page with a different pattern in
256                  * order to protect against KSM in the nested
257                  * virtualization case.
258                  */
259                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
260                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
261                                PAGE_SIZE);
262                 }
263         }
264
265         l1tf_vmx_mitigation = l1tf;
266
267         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
268                 static_branch_enable(&vmx_l1d_should_flush);
269         else
270                 static_branch_disable(&vmx_l1d_should_flush);
271
272         if (l1tf == VMENTER_L1D_FLUSH_COND)
273                 static_branch_enable(&vmx_l1d_flush_cond);
274         else
275                 static_branch_disable(&vmx_l1d_flush_cond);
276         return 0;
277 }
278
279 static int vmentry_l1d_flush_parse(const char *s)
280 {
281         unsigned int i;
282
283         if (s) {
284                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
285                         if (vmentry_l1d_param[i].for_parse &&
286                             sysfs_streq(s, vmentry_l1d_param[i].option))
287                                 return i;
288                 }
289         }
290         return -EINVAL;
291 }
292
293 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
294 {
295         int l1tf, ret;
296
297         l1tf = vmentry_l1d_flush_parse(s);
298         if (l1tf < 0)
299                 return l1tf;
300
301         if (!boot_cpu_has(X86_BUG_L1TF))
302                 return 0;
303
304         /*
305          * Has vmx_init() run already? If not then this is the pre init
306          * parameter parsing. In that case just store the value and let
307          * vmx_init() do the proper setup after enable_ept has been
308          * established.
309          */
310         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
311                 vmentry_l1d_flush_param = l1tf;
312                 return 0;
313         }
314
315         mutex_lock(&vmx_l1d_flush_mutex);
316         ret = vmx_setup_l1d_flush(l1tf);
317         mutex_unlock(&vmx_l1d_flush_mutex);
318         return ret;
319 }
320
321 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
322 {
323         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
324                 return sprintf(s, "???\n");
325
326         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
327 }
328
329 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
330         .set = vmentry_l1d_flush_set,
331         .get = vmentry_l1d_flush_get,
332 };
333 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
334
335 static bool guest_state_valid(struct kvm_vcpu *vcpu);
336 static u32 vmx_segment_access_rights(struct kvm_segment *var);
337 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
338                                                           u32 msr, int type);
339
340 void vmx_vmexit(void);
341
342 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
343 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
344 /*
345  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
346  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
347  */
348 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
349
350 /*
351  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
352  * can find which vCPU should be waken up.
353  */
354 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
355 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
356
357 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
358 static DEFINE_SPINLOCK(vmx_vpid_lock);
359
360 struct vmcs_config vmcs_config;
361 struct vmx_capability vmx_capability;
362
363 #define VMX_SEGMENT_FIELD(seg)                                  \
364         [VCPU_SREG_##seg] = {                                   \
365                 .selector = GUEST_##seg##_SELECTOR,             \
366                 .base = GUEST_##seg##_BASE,                     \
367                 .limit = GUEST_##seg##_LIMIT,                   \
368                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
369         }
370
371 static const struct kvm_vmx_segment_field {
372         unsigned selector;
373         unsigned base;
374         unsigned limit;
375         unsigned ar_bytes;
376 } kvm_vmx_segment_fields[] = {
377         VMX_SEGMENT_FIELD(CS),
378         VMX_SEGMENT_FIELD(DS),
379         VMX_SEGMENT_FIELD(ES),
380         VMX_SEGMENT_FIELD(FS),
381         VMX_SEGMENT_FIELD(GS),
382         VMX_SEGMENT_FIELD(SS),
383         VMX_SEGMENT_FIELD(TR),
384         VMX_SEGMENT_FIELD(LDTR),
385 };
386
387 u64 host_efer;
388
389 /*
390  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
391  * will emulate SYSCALL in legacy mode if the vendor string in guest
392  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
393  * support this emulation, IA32_STAR must always be included in
394  * vmx_msr_index[], even in i386 builds.
395  */
396 const u32 vmx_msr_index[] = {
397 #ifdef CONFIG_X86_64
398         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
399 #endif
400         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
401 };
402
403 #if IS_ENABLED(CONFIG_HYPERV)
404 static bool __read_mostly enlightened_vmcs = true;
405 module_param(enlightened_vmcs, bool, 0444);
406
407 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
408 static void check_ept_pointer_match(struct kvm *kvm)
409 {
410         struct kvm_vcpu *vcpu;
411         u64 tmp_eptp = INVALID_PAGE;
412         int i;
413
414         kvm_for_each_vcpu(i, vcpu, kvm) {
415                 if (!VALID_PAGE(tmp_eptp)) {
416                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
417                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
418                         to_kvm_vmx(kvm)->ept_pointers_match
419                                 = EPT_POINTERS_MISMATCH;
420                         return;
421                 }
422         }
423
424         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
425 }
426
427 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
428                 void *data)
429 {
430         struct kvm_tlb_range *range = data;
431
432         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
433                         range->pages);
434 }
435
436 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
437                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
438 {
439         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
440
441         /*
442          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
443          * of the base of EPT PML4 table, strip off EPT configuration
444          * information.
445          */
446         if (range)
447                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
448                                 kvm_fill_hv_flush_list_func, (void *)range);
449         else
450                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
451 }
452
453 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
454                 struct kvm_tlb_range *range)
455 {
456         struct kvm_vcpu *vcpu;
457         int ret = 0, i;
458
459         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
460
461         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
462                 check_ept_pointer_match(kvm);
463
464         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
465                 kvm_for_each_vcpu(i, vcpu, kvm) {
466                         /* If ept_pointer is invalid pointer, bypass flush request. */
467                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
468                                 ret |= __hv_remote_flush_tlb_with_range(
469                                         kvm, vcpu, range);
470                 }
471         } else {
472                 ret = __hv_remote_flush_tlb_with_range(kvm,
473                                 kvm_get_vcpu(kvm, 0), range);
474         }
475
476         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
477         return ret;
478 }
479 static int hv_remote_flush_tlb(struct kvm *kvm)
480 {
481         return hv_remote_flush_tlb_with_range(kvm, NULL);
482 }
483
484 #endif /* IS_ENABLED(CONFIG_HYPERV) */
485
486 /*
487  * Comment's format: document - errata name - stepping - processor name.
488  * Refer from
489  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
490  */
491 static u32 vmx_preemption_cpu_tfms[] = {
492 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
493 0x000206E6,
494 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
495 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
496 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
497 0x00020652,
498 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020655,
500 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
501 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
502 /*
503  * 320767.pdf - AAP86  - B1 -
504  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
505  */
506 0x000106E5,
507 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
508 0x000106A0,
509 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
510 0x000106A1,
511 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
512 0x000106A4,
513  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
514  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
515  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
516 0x000106A5,
517  /* Xeon E3-1220 V2 */
518 0x000306A8,
519 };
520
521 static inline bool cpu_has_broken_vmx_preemption_timer(void)
522 {
523         u32 eax = cpuid_eax(0x00000001), i;
524
525         /* Clear the reserved bits */
526         eax &= ~(0x3U << 14 | 0xfU << 28);
527         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
528                 if (eax == vmx_preemption_cpu_tfms[i])
529                         return true;
530
531         return false;
532 }
533
534 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
535 {
536         return flexpriority_enabled && lapic_in_kernel(vcpu);
537 }
538
539 static inline bool report_flexpriority(void)
540 {
541         return flexpriority_enabled;
542 }
543
544 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
545 {
546         int i;
547
548         for (i = 0; i < vmx->nmsrs; ++i)
549                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
550                         return i;
551         return -1;
552 }
553
554 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
555 {
556         int i;
557
558         i = __find_msr_index(vmx, msr);
559         if (i >= 0)
560                 return &vmx->guest_msrs[i];
561         return NULL;
562 }
563
564 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
565 {
566         vmcs_clear(loaded_vmcs->vmcs);
567         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
568                 vmcs_clear(loaded_vmcs->shadow_vmcs);
569         loaded_vmcs->cpu = -1;
570         loaded_vmcs->launched = 0;
571 }
572
573 #ifdef CONFIG_KEXEC_CORE
574 /*
575  * This bitmap is used to indicate whether the vmclear
576  * operation is enabled on all cpus. All disabled by
577  * default.
578  */
579 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
580
581 static inline void crash_enable_local_vmclear(int cpu)
582 {
583         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
584 }
585
586 static inline void crash_disable_local_vmclear(int cpu)
587 {
588         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
589 }
590
591 static inline int crash_local_vmclear_enabled(int cpu)
592 {
593         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
594 }
595
596 static void crash_vmclear_local_loaded_vmcss(void)
597 {
598         int cpu = raw_smp_processor_id();
599         struct loaded_vmcs *v;
600
601         if (!crash_local_vmclear_enabled(cpu))
602                 return;
603
604         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
605                             loaded_vmcss_on_cpu_link)
606                 vmcs_clear(v->vmcs);
607 }
608 #else
609 static inline void crash_enable_local_vmclear(int cpu) { }
610 static inline void crash_disable_local_vmclear(int cpu) { }
611 #endif /* CONFIG_KEXEC_CORE */
612
613 static void __loaded_vmcs_clear(void *arg)
614 {
615         struct loaded_vmcs *loaded_vmcs = arg;
616         int cpu = raw_smp_processor_id();
617
618         if (loaded_vmcs->cpu != cpu)
619                 return; /* vcpu migration can race with cpu offline */
620         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
621                 per_cpu(current_vmcs, cpu) = NULL;
622         crash_disable_local_vmclear(cpu);
623         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
624
625         /*
626          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
627          * is before setting loaded_vmcs->vcpu to -1 which is done in
628          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
629          * then adds the vmcs into percpu list before it is deleted.
630          */
631         smp_wmb();
632
633         loaded_vmcs_init(loaded_vmcs);
634         crash_enable_local_vmclear(cpu);
635 }
636
637 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
638 {
639         int cpu = loaded_vmcs->cpu;
640
641         if (cpu != -1)
642                 smp_call_function_single(cpu,
643                          __loaded_vmcs_clear, loaded_vmcs, 1);
644 }
645
646 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
647                                        unsigned field)
648 {
649         bool ret;
650         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
651
652         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
653                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
654                 vmx->segment_cache.bitmask = 0;
655         }
656         ret = vmx->segment_cache.bitmask & mask;
657         vmx->segment_cache.bitmask |= mask;
658         return ret;
659 }
660
661 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
662 {
663         u16 *p = &vmx->segment_cache.seg[seg].selector;
664
665         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
666                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
667         return *p;
668 }
669
670 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
671 {
672         ulong *p = &vmx->segment_cache.seg[seg].base;
673
674         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
675                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
676         return *p;
677 }
678
679 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
680 {
681         u32 *p = &vmx->segment_cache.seg[seg].limit;
682
683         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
684                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
685         return *p;
686 }
687
688 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
689 {
690         u32 *p = &vmx->segment_cache.seg[seg].ar;
691
692         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
693                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
694         return *p;
695 }
696
697 void update_exception_bitmap(struct kvm_vcpu *vcpu)
698 {
699         u32 eb;
700
701         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
702              (1u << DB_VECTOR) | (1u << AC_VECTOR);
703         /*
704          * Guest access to VMware backdoor ports could legitimately
705          * trigger #GP because of TSS I/O permission bitmap.
706          * We intercept those #GP and allow access to them anyway
707          * as VMware does.
708          */
709         if (enable_vmware_backdoor)
710                 eb |= (1u << GP_VECTOR);
711         if ((vcpu->guest_debug &
712              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
713             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
714                 eb |= 1u << BP_VECTOR;
715         if (to_vmx(vcpu)->rmode.vm86_active)
716                 eb = ~0;
717         if (enable_ept)
718                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
719
720         /* When we are running a nested L2 guest and L1 specified for it a
721          * certain exception bitmap, we must trap the same exceptions and pass
722          * them to L1. When running L2, we will only handle the exceptions
723          * specified above if L1 did not want them.
724          */
725         if (is_guest_mode(vcpu))
726                 eb |= get_vmcs12(vcpu)->exception_bitmap;
727
728         vmcs_write32(EXCEPTION_BITMAP, eb);
729 }
730
731 /*
732  * Check if MSR is intercepted for currently loaded MSR bitmap.
733  */
734 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
735 {
736         unsigned long *msr_bitmap;
737         int f = sizeof(unsigned long);
738
739         if (!cpu_has_vmx_msr_bitmap())
740                 return true;
741
742         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
743
744         if (msr <= 0x1fff) {
745                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
746         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
747                 msr &= 0x1fff;
748                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
749         }
750
751         return true;
752 }
753
754 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
755                 unsigned long entry, unsigned long exit)
756 {
757         vm_entry_controls_clearbit(vmx, entry);
758         vm_exit_controls_clearbit(vmx, exit);
759 }
760
761 static int find_msr(struct vmx_msrs *m, unsigned int msr)
762 {
763         unsigned int i;
764
765         for (i = 0; i < m->nr; ++i) {
766                 if (m->val[i].index == msr)
767                         return i;
768         }
769         return -ENOENT;
770 }
771
772 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
773 {
774         int i;
775         struct msr_autoload *m = &vmx->msr_autoload;
776
777         switch (msr) {
778         case MSR_EFER:
779                 if (cpu_has_load_ia32_efer()) {
780                         clear_atomic_switch_msr_special(vmx,
781                                         VM_ENTRY_LOAD_IA32_EFER,
782                                         VM_EXIT_LOAD_IA32_EFER);
783                         return;
784                 }
785                 break;
786         case MSR_CORE_PERF_GLOBAL_CTRL:
787                 if (cpu_has_load_perf_global_ctrl()) {
788                         clear_atomic_switch_msr_special(vmx,
789                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
790                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
791                         return;
792                 }
793                 break;
794         }
795         i = find_msr(&m->guest, msr);
796         if (i < 0)
797                 goto skip_guest;
798         --m->guest.nr;
799         m->guest.val[i] = m->guest.val[m->guest.nr];
800         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
801
802 skip_guest:
803         i = find_msr(&m->host, msr);
804         if (i < 0)
805                 return;
806
807         --m->host.nr;
808         m->host.val[i] = m->host.val[m->host.nr];
809         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
810 }
811
812 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
813                 unsigned long entry, unsigned long exit,
814                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
815                 u64 guest_val, u64 host_val)
816 {
817         vmcs_write64(guest_val_vmcs, guest_val);
818         if (host_val_vmcs != HOST_IA32_EFER)
819                 vmcs_write64(host_val_vmcs, host_val);
820         vm_entry_controls_setbit(vmx, entry);
821         vm_exit_controls_setbit(vmx, exit);
822 }
823
824 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
825                                   u64 guest_val, u64 host_val, bool entry_only)
826 {
827         int i, j = 0;
828         struct msr_autoload *m = &vmx->msr_autoload;
829
830         switch (msr) {
831         case MSR_EFER:
832                 if (cpu_has_load_ia32_efer()) {
833                         add_atomic_switch_msr_special(vmx,
834                                         VM_ENTRY_LOAD_IA32_EFER,
835                                         VM_EXIT_LOAD_IA32_EFER,
836                                         GUEST_IA32_EFER,
837                                         HOST_IA32_EFER,
838                                         guest_val, host_val);
839                         return;
840                 }
841                 break;
842         case MSR_CORE_PERF_GLOBAL_CTRL:
843                 if (cpu_has_load_perf_global_ctrl()) {
844                         add_atomic_switch_msr_special(vmx,
845                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
846                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
847                                         GUEST_IA32_PERF_GLOBAL_CTRL,
848                                         HOST_IA32_PERF_GLOBAL_CTRL,
849                                         guest_val, host_val);
850                         return;
851                 }
852                 break;
853         case MSR_IA32_PEBS_ENABLE:
854                 /* PEBS needs a quiescent period after being disabled (to write
855                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
856                  * provide that period, so a CPU could write host's record into
857                  * guest's memory.
858                  */
859                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
860         }
861
862         i = find_msr(&m->guest, msr);
863         if (!entry_only)
864                 j = find_msr(&m->host, msr);
865
866         if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
867                 printk_once(KERN_WARNING "Not enough msr switch entries. "
868                                 "Can't add msr %x\n", msr);
869                 return;
870         }
871         if (i < 0) {
872                 i = m->guest.nr++;
873                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
874         }
875         m->guest.val[i].index = msr;
876         m->guest.val[i].value = guest_val;
877
878         if (entry_only)
879                 return;
880
881         if (j < 0) {
882                 j = m->host.nr++;
883                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
884         }
885         m->host.val[j].index = msr;
886         m->host.val[j].value = host_val;
887 }
888
889 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
890 {
891         u64 guest_efer = vmx->vcpu.arch.efer;
892         u64 ignore_bits = 0;
893
894         if (!enable_ept) {
895                 /*
896                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
897                  * host CPUID is more efficient than testing guest CPUID
898                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
899                  */
900                 if (boot_cpu_has(X86_FEATURE_SMEP))
901                         guest_efer |= EFER_NX;
902                 else if (!(guest_efer & EFER_NX))
903                         ignore_bits |= EFER_NX;
904         }
905
906         /*
907          * LMA and LME handled by hardware; SCE meaningless outside long mode.
908          */
909         ignore_bits |= EFER_SCE;
910 #ifdef CONFIG_X86_64
911         ignore_bits |= EFER_LMA | EFER_LME;
912         /* SCE is meaningful only in long mode on Intel */
913         if (guest_efer & EFER_LMA)
914                 ignore_bits &= ~(u64)EFER_SCE;
915 #endif
916
917         /*
918          * On EPT, we can't emulate NX, so we must switch EFER atomically.
919          * On CPUs that support "load IA32_EFER", always switch EFER
920          * atomically, since it's faster than switching it manually.
921          */
922         if (cpu_has_load_ia32_efer() ||
923             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
924                 if (!(guest_efer & EFER_LMA))
925                         guest_efer &= ~EFER_LME;
926                 if (guest_efer != host_efer)
927                         add_atomic_switch_msr(vmx, MSR_EFER,
928                                               guest_efer, host_efer, false);
929                 else
930                         clear_atomic_switch_msr(vmx, MSR_EFER);
931                 return false;
932         } else {
933                 clear_atomic_switch_msr(vmx, MSR_EFER);
934
935                 guest_efer &= ~ignore_bits;
936                 guest_efer |= host_efer & ignore_bits;
937
938                 vmx->guest_msrs[efer_offset].data = guest_efer;
939                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
940
941                 return true;
942         }
943 }
944
945 #ifdef CONFIG_X86_32
946 /*
947  * On 32-bit kernels, VM exits still load the FS and GS bases from the
948  * VMCS rather than the segment table.  KVM uses this helper to figure
949  * out the current bases to poke them into the VMCS before entry.
950  */
951 static unsigned long segment_base(u16 selector)
952 {
953         struct desc_struct *table;
954         unsigned long v;
955
956         if (!(selector & ~SEGMENT_RPL_MASK))
957                 return 0;
958
959         table = get_current_gdt_ro();
960
961         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
962                 u16 ldt_selector = kvm_read_ldt();
963
964                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
965                         return 0;
966
967                 table = (struct desc_struct *)segment_base(ldt_selector);
968         }
969         v = get_desc_base(&table[selector >> 3]);
970         return v;
971 }
972 #endif
973
974 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
975 {
976         u32 i;
977
978         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
979         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
980         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
981         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
982         for (i = 0; i < addr_range; i++) {
983                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
984                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
985         }
986 }
987
988 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
989 {
990         u32 i;
991
992         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
993         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
994         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
995         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
996         for (i = 0; i < addr_range; i++) {
997                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
998                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
999         }
1000 }
1001
1002 static void pt_guest_enter(struct vcpu_vmx *vmx)
1003 {
1004         if (pt_mode == PT_MODE_SYSTEM)
1005                 return;
1006
1007         /*
1008          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1009          * Save host state before VM entry.
1010          */
1011         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1012         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1013                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1014                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1015                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1016         }
1017 }
1018
1019 static void pt_guest_exit(struct vcpu_vmx *vmx)
1020 {
1021         if (pt_mode == PT_MODE_SYSTEM)
1022                 return;
1023
1024         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1025                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1026                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1027         }
1028
1029         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1030         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1031 }
1032
1033 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1034 {
1035         struct vcpu_vmx *vmx = to_vmx(vcpu);
1036         struct vmcs_host_state *host_state;
1037 #ifdef CONFIG_X86_64
1038         int cpu = raw_smp_processor_id();
1039 #endif
1040         unsigned long fs_base, gs_base;
1041         u16 fs_sel, gs_sel;
1042         int i;
1043
1044         vmx->req_immediate_exit = false;
1045
1046         /*
1047          * Note that guest MSRs to be saved/restored can also be changed
1048          * when guest state is loaded. This happens when guest transitions
1049          * to/from long-mode by setting MSR_EFER.LMA.
1050          */
1051         if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1052                 vmx->guest_msrs_dirty = false;
1053                 for (i = 0; i < vmx->save_nmsrs; ++i)
1054                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1055                                            vmx->guest_msrs[i].data,
1056                                            vmx->guest_msrs[i].mask);
1057
1058         }
1059
1060         if (vmx->loaded_cpu_state)
1061                 return;
1062
1063         vmx->loaded_cpu_state = vmx->loaded_vmcs;
1064         host_state = &vmx->loaded_cpu_state->host_state;
1065
1066         /*
1067          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1068          * allow segment selectors with cpl > 0 or ti == 1.
1069          */
1070         host_state->ldt_sel = kvm_read_ldt();
1071
1072 #ifdef CONFIG_X86_64
1073         savesegment(ds, host_state->ds_sel);
1074         savesegment(es, host_state->es_sel);
1075
1076         gs_base = cpu_kernelmode_gs_base(cpu);
1077         if (likely(is_64bit_mm(current->mm))) {
1078                 save_fsgs_for_kvm();
1079                 fs_sel = current->thread.fsindex;
1080                 gs_sel = current->thread.gsindex;
1081                 fs_base = current->thread.fsbase;
1082                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1083         } else {
1084                 savesegment(fs, fs_sel);
1085                 savesegment(gs, gs_sel);
1086                 fs_base = read_msr(MSR_FS_BASE);
1087                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1088         }
1089
1090         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1091 #else
1092         savesegment(fs, fs_sel);
1093         savesegment(gs, gs_sel);
1094         fs_base = segment_base(fs_sel);
1095         gs_base = segment_base(gs_sel);
1096 #endif
1097
1098         if (unlikely(fs_sel != host_state->fs_sel)) {
1099                 if (!(fs_sel & 7))
1100                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1101                 else
1102                         vmcs_write16(HOST_FS_SELECTOR, 0);
1103                 host_state->fs_sel = fs_sel;
1104         }
1105         if (unlikely(gs_sel != host_state->gs_sel)) {
1106                 if (!(gs_sel & 7))
1107                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1108                 else
1109                         vmcs_write16(HOST_GS_SELECTOR, 0);
1110                 host_state->gs_sel = gs_sel;
1111         }
1112         if (unlikely(fs_base != host_state->fs_base)) {
1113                 vmcs_writel(HOST_FS_BASE, fs_base);
1114                 host_state->fs_base = fs_base;
1115         }
1116         if (unlikely(gs_base != host_state->gs_base)) {
1117                 vmcs_writel(HOST_GS_BASE, gs_base);
1118                 host_state->gs_base = gs_base;
1119         }
1120 }
1121
1122 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1123 {
1124         struct vmcs_host_state *host_state;
1125
1126         if (!vmx->loaded_cpu_state)
1127                 return;
1128
1129         WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1130         host_state = &vmx->loaded_cpu_state->host_state;
1131
1132         ++vmx->vcpu.stat.host_state_reload;
1133         vmx->loaded_cpu_state = NULL;
1134
1135 #ifdef CONFIG_X86_64
1136         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1137 #endif
1138         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1139                 kvm_load_ldt(host_state->ldt_sel);
1140 #ifdef CONFIG_X86_64
1141                 load_gs_index(host_state->gs_sel);
1142 #else
1143                 loadsegment(gs, host_state->gs_sel);
1144 #endif
1145         }
1146         if (host_state->fs_sel & 7)
1147                 loadsegment(fs, host_state->fs_sel);
1148 #ifdef CONFIG_X86_64
1149         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1150                 loadsegment(ds, host_state->ds_sel);
1151                 loadsegment(es, host_state->es_sel);
1152         }
1153 #endif
1154         invalidate_tss_limit();
1155 #ifdef CONFIG_X86_64
1156         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1157 #endif
1158         load_fixmap_gdt(raw_smp_processor_id());
1159 }
1160
1161 #ifdef CONFIG_X86_64
1162 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1163 {
1164         preempt_disable();
1165         if (vmx->loaded_cpu_state)
1166                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1167         preempt_enable();
1168         return vmx->msr_guest_kernel_gs_base;
1169 }
1170
1171 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1172 {
1173         preempt_disable();
1174         if (vmx->loaded_cpu_state)
1175                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1176         preempt_enable();
1177         vmx->msr_guest_kernel_gs_base = data;
1178 }
1179 #endif
1180
1181 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1182 {
1183         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1184         struct pi_desc old, new;
1185         unsigned int dest;
1186
1187         /*
1188          * In case of hot-plug or hot-unplug, we may have to undo
1189          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1190          * always keep PI.NDST up to date for simplicity: it makes the
1191          * code easier, and CPU migration is not a fast path.
1192          */
1193         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1194                 return;
1195
1196         /*
1197          * First handle the simple case where no cmpxchg is necessary; just
1198          * allow posting non-urgent interrupts.
1199          *
1200          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1201          * PI.NDST: pi_post_block will do it for us and the wakeup_handler
1202          * expects the VCPU to be on the blocked_vcpu_list that matches
1203          * PI.NDST.
1204          */
1205         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
1206             vcpu->cpu == cpu) {
1207                 pi_clear_sn(pi_desc);
1208                 return;
1209         }
1210
1211         /* The full case.  */
1212         do {
1213                 old.control = new.control = pi_desc->control;
1214
1215                 dest = cpu_physical_id(cpu);
1216
1217                 if (x2apic_enabled())
1218                         new.ndst = dest;
1219                 else
1220                         new.ndst = (dest << 8) & 0xFF00;
1221
1222                 new.sn = 0;
1223         } while (cmpxchg64(&pi_desc->control, old.control,
1224                            new.control) != old.control);
1225 }
1226
1227 /*
1228  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1229  * vcpu mutex is already taken.
1230  */
1231 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1232 {
1233         struct vcpu_vmx *vmx = to_vmx(vcpu);
1234         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1235
1236         if (!already_loaded) {
1237                 loaded_vmcs_clear(vmx->loaded_vmcs);
1238                 local_irq_disable();
1239                 crash_disable_local_vmclear(cpu);
1240
1241                 /*
1242                  * Read loaded_vmcs->cpu should be before fetching
1243                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1244                  * See the comments in __loaded_vmcs_clear().
1245                  */
1246                 smp_rmb();
1247
1248                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1249                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1250                 crash_enable_local_vmclear(cpu);
1251                 local_irq_enable();
1252         }
1253
1254         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1255                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1256                 vmcs_load(vmx->loaded_vmcs->vmcs);
1257                 indirect_branch_prediction_barrier();
1258         }
1259
1260         if (!already_loaded) {
1261                 void *gdt = get_current_gdt_ro();
1262                 unsigned long sysenter_esp;
1263
1264                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1265
1266                 /*
1267                  * Linux uses per-cpu TSS and GDT, so set these when switching
1268                  * processors.  See 22.2.4.
1269                  */
1270                 vmcs_writel(HOST_TR_BASE,
1271                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1272                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1273
1274                 /*
1275                  * VM exits change the host TR limit to 0x67 after a VM
1276                  * exit.  This is okay, since 0x67 covers everything except
1277                  * the IO bitmap and have have code to handle the IO bitmap
1278                  * being lost after a VM exit.
1279                  */
1280                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1281
1282                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1283                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1284
1285                 vmx->loaded_vmcs->cpu = cpu;
1286         }
1287
1288         /* Setup TSC multiplier */
1289         if (kvm_has_tsc_control &&
1290             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1291                 decache_tsc_multiplier(vmx);
1292
1293         vmx_vcpu_pi_load(vcpu, cpu);
1294         vmx->host_pkru = read_pkru();
1295         vmx->host_debugctlmsr = get_debugctlmsr();
1296 }
1297
1298 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1299 {
1300         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1301
1302         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1303                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1304                 !kvm_vcpu_apicv_active(vcpu))
1305                 return;
1306
1307         /* Set SN when the vCPU is preempted */
1308         if (vcpu->preempted)
1309                 pi_set_sn(pi_desc);
1310 }
1311
1312 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1313 {
1314         vmx_vcpu_pi_put(vcpu);
1315
1316         vmx_prepare_switch_to_host(to_vmx(vcpu));
1317 }
1318
1319 static bool emulation_required(struct kvm_vcpu *vcpu)
1320 {
1321         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1322 }
1323
1324 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1325
1326 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1327 {
1328         unsigned long rflags, save_rflags;
1329
1330         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1331                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1332                 rflags = vmcs_readl(GUEST_RFLAGS);
1333                 if (to_vmx(vcpu)->rmode.vm86_active) {
1334                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1335                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1336                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1337                 }
1338                 to_vmx(vcpu)->rflags = rflags;
1339         }
1340         return to_vmx(vcpu)->rflags;
1341 }
1342
1343 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1344 {
1345         unsigned long old_rflags = vmx_get_rflags(vcpu);
1346
1347         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1348         to_vmx(vcpu)->rflags = rflags;
1349         if (to_vmx(vcpu)->rmode.vm86_active) {
1350                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1351                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1352         }
1353         vmcs_writel(GUEST_RFLAGS, rflags);
1354
1355         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1356                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1357 }
1358
1359 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1360 {
1361         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1362         int ret = 0;
1363
1364         if (interruptibility & GUEST_INTR_STATE_STI)
1365                 ret |= KVM_X86_SHADOW_INT_STI;
1366         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1367                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1368
1369         return ret;
1370 }
1371
1372 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1373 {
1374         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1375         u32 interruptibility = interruptibility_old;
1376
1377         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1378
1379         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1380                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1381         else if (mask & KVM_X86_SHADOW_INT_STI)
1382                 interruptibility |= GUEST_INTR_STATE_STI;
1383
1384         if ((interruptibility != interruptibility_old))
1385                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1386 }
1387
1388 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1389 {
1390         struct vcpu_vmx *vmx = to_vmx(vcpu);
1391         unsigned long value;
1392
1393         /*
1394          * Any MSR write that attempts to change bits marked reserved will
1395          * case a #GP fault.
1396          */
1397         if (data & vmx->pt_desc.ctl_bitmask)
1398                 return 1;
1399
1400         /*
1401          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1402          * result in a #GP unless the same write also clears TraceEn.
1403          */
1404         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1405                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1406                 return 1;
1407
1408         /*
1409          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1410          * and FabricEn would cause #GP, if
1411          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1412          */
1413         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1414                 !(data & RTIT_CTL_FABRIC_EN) &&
1415                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1416                                         PT_CAP_single_range_output))
1417                 return 1;
1418
1419         /*
1420          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1421          * utilize encodings marked reserved will casue a #GP fault.
1422          */
1423         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1424         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1425                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1426                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1427                 return 1;
1428         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1429                                                 PT_CAP_cycle_thresholds);
1430         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1431                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1432                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1433                 return 1;
1434         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1435         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1436                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1437                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1438                 return 1;
1439
1440         /*
1441          * If ADDRx_CFG is reserved or the encodings is >2 will
1442          * cause a #GP fault.
1443          */
1444         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1445         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1446                 return 1;
1447         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1448         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1449                 return 1;
1450         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1451         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1452                 return 1;
1453         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1454         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1455                 return 1;
1456
1457         return 0;
1458 }
1459
1460
1461 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1462 {
1463         unsigned long rip;
1464
1465         rip = kvm_rip_read(vcpu);
1466         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1467         kvm_rip_write(vcpu, rip);
1468
1469         /* skipping an emulated instruction also counts */
1470         vmx_set_interrupt_shadow(vcpu, 0);
1471 }
1472
1473 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1474 {
1475         /*
1476          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1477          * explicitly skip the instruction because if the HLT state is set,
1478          * then the instruction is already executing and RIP has already been
1479          * advanced.
1480          */
1481         if (kvm_hlt_in_guest(vcpu->kvm) &&
1482                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1483                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1484 }
1485
1486 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1487 {
1488         struct vcpu_vmx *vmx = to_vmx(vcpu);
1489         unsigned nr = vcpu->arch.exception.nr;
1490         bool has_error_code = vcpu->arch.exception.has_error_code;
1491         u32 error_code = vcpu->arch.exception.error_code;
1492         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1493
1494         kvm_deliver_exception_payload(vcpu);
1495
1496         if (has_error_code) {
1497                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1498                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1499         }
1500
1501         if (vmx->rmode.vm86_active) {
1502                 int inc_eip = 0;
1503                 if (kvm_exception_is_soft(nr))
1504                         inc_eip = vcpu->arch.event_exit_inst_len;
1505                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1506                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1507                 return;
1508         }
1509
1510         WARN_ON_ONCE(vmx->emulation_required);
1511
1512         if (kvm_exception_is_soft(nr)) {
1513                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1514                              vmx->vcpu.arch.event_exit_inst_len);
1515                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1516         } else
1517                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1518
1519         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1520
1521         vmx_clear_hlt(vcpu);
1522 }
1523
1524 static bool vmx_rdtscp_supported(void)
1525 {
1526         return cpu_has_vmx_rdtscp();
1527 }
1528
1529 static bool vmx_invpcid_supported(void)
1530 {
1531         return cpu_has_vmx_invpcid();
1532 }
1533
1534 /*
1535  * Swap MSR entry in host/guest MSR entry array.
1536  */
1537 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1538 {
1539         struct shared_msr_entry tmp;
1540
1541         tmp = vmx->guest_msrs[to];
1542         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1543         vmx->guest_msrs[from] = tmp;
1544 }
1545
1546 /*
1547  * Set up the vmcs to automatically save and restore system
1548  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1549  * mode, as fiddling with msrs is very expensive.
1550  */
1551 static void setup_msrs(struct vcpu_vmx *vmx)
1552 {
1553         int save_nmsrs, index;
1554
1555         save_nmsrs = 0;
1556 #ifdef CONFIG_X86_64
1557         /*
1558          * The SYSCALL MSRs are only needed on long mode guests, and only
1559          * when EFER.SCE is set.
1560          */
1561         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1562                 index = __find_msr_index(vmx, MSR_STAR);
1563                 if (index >= 0)
1564                         move_msr_up(vmx, index, save_nmsrs++);
1565                 index = __find_msr_index(vmx, MSR_LSTAR);
1566                 if (index >= 0)
1567                         move_msr_up(vmx, index, save_nmsrs++);
1568                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1569                 if (index >= 0)
1570                         move_msr_up(vmx, index, save_nmsrs++);
1571         }
1572 #endif
1573         index = __find_msr_index(vmx, MSR_EFER);
1574         if (index >= 0 && update_transition_efer(vmx, index))
1575                 move_msr_up(vmx, index, save_nmsrs++);
1576         index = __find_msr_index(vmx, MSR_TSC_AUX);
1577         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1578                 move_msr_up(vmx, index, save_nmsrs++);
1579
1580         vmx->save_nmsrs = save_nmsrs;
1581         vmx->guest_msrs_dirty = true;
1582
1583         if (cpu_has_vmx_msr_bitmap())
1584                 vmx_update_msr_bitmap(&vmx->vcpu);
1585 }
1586
1587 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1588 {
1589         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1590
1591         if (is_guest_mode(vcpu) &&
1592             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1593                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1594
1595         return vcpu->arch.tsc_offset;
1596 }
1597
1598 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1599 {
1600         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1601         u64 g_tsc_offset = 0;
1602
1603         /*
1604          * We're here if L1 chose not to trap WRMSR to TSC. According
1605          * to the spec, this should set L1's TSC; The offset that L1
1606          * set for L2 remains unchanged, and still needs to be added
1607          * to the newly set TSC to get L2's TSC.
1608          */
1609         if (is_guest_mode(vcpu) &&
1610             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1611                 g_tsc_offset = vmcs12->tsc_offset;
1612
1613         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1614                                    vcpu->arch.tsc_offset - g_tsc_offset,
1615                                    offset);
1616         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1617         return offset + g_tsc_offset;
1618 }
1619
1620 /*
1621  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1622  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1623  * all guests if the "nested" module option is off, and can also be disabled
1624  * for a single guest by disabling its VMX cpuid bit.
1625  */
1626 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1627 {
1628         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1629 }
1630
1631 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1632                                                  uint64_t val)
1633 {
1634         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1635
1636         return !(val & ~valid_bits);
1637 }
1638
1639 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1640 {
1641         switch (msr->index) {
1642         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1643                 if (!nested)
1644                         return 1;
1645                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1646         default:
1647                 return 1;
1648         }
1649
1650         return 0;
1651 }
1652
1653 /*
1654  * Reads an msr value (of 'msr_index') into 'pdata'.
1655  * Returns 0 on success, non-0 otherwise.
1656  * Assumes vcpu_load() was already called.
1657  */
1658 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660         struct vcpu_vmx *vmx = to_vmx(vcpu);
1661         struct shared_msr_entry *msr;
1662         u32 index;
1663
1664         switch (msr_info->index) {
1665 #ifdef CONFIG_X86_64
1666         case MSR_FS_BASE:
1667                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1668                 break;
1669         case MSR_GS_BASE:
1670                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1671                 break;
1672         case MSR_KERNEL_GS_BASE:
1673                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1674                 break;
1675 #endif
1676         case MSR_EFER:
1677                 return kvm_get_msr_common(vcpu, msr_info);
1678         case MSR_IA32_SPEC_CTRL:
1679                 if (!msr_info->host_initiated &&
1680                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1681                         return 1;
1682
1683                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1684                 break;
1685         case MSR_IA32_ARCH_CAPABILITIES:
1686                 if (!msr_info->host_initiated &&
1687                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
1688                         return 1;
1689                 msr_info->data = to_vmx(vcpu)->arch_capabilities;
1690                 break;
1691         case MSR_IA32_SYSENTER_CS:
1692                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1693                 break;
1694         case MSR_IA32_SYSENTER_EIP:
1695                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1696                 break;
1697         case MSR_IA32_SYSENTER_ESP:
1698                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1699                 break;
1700         case MSR_IA32_BNDCFGS:
1701                 if (!kvm_mpx_supported() ||
1702                     (!msr_info->host_initiated &&
1703                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1704                         return 1;
1705                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1706                 break;
1707         case MSR_IA32_MCG_EXT_CTL:
1708                 if (!msr_info->host_initiated &&
1709                     !(vmx->msr_ia32_feature_control &
1710                       FEATURE_CONTROL_LMCE))
1711                         return 1;
1712                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1713                 break;
1714         case MSR_IA32_FEATURE_CONTROL:
1715                 msr_info->data = vmx->msr_ia32_feature_control;
1716                 break;
1717         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1718                 if (!nested_vmx_allowed(vcpu))
1719                         return 1;
1720                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1721                                        &msr_info->data);
1722         case MSR_IA32_XSS:
1723                 if (!vmx_xsaves_supported())
1724                         return 1;
1725                 msr_info->data = vcpu->arch.ia32_xss;
1726                 break;
1727         case MSR_IA32_RTIT_CTL:
1728                 if (pt_mode != PT_MODE_HOST_GUEST)
1729                         return 1;
1730                 msr_info->data = vmx->pt_desc.guest.ctl;
1731                 break;
1732         case MSR_IA32_RTIT_STATUS:
1733                 if (pt_mode != PT_MODE_HOST_GUEST)
1734                         return 1;
1735                 msr_info->data = vmx->pt_desc.guest.status;
1736                 break;
1737         case MSR_IA32_RTIT_CR3_MATCH:
1738                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1739                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1740                                                 PT_CAP_cr3_filtering))
1741                         return 1;
1742                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1743                 break;
1744         case MSR_IA32_RTIT_OUTPUT_BASE:
1745                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1746                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1747                                         PT_CAP_topa_output) &&
1748                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1749                                         PT_CAP_single_range_output)))
1750                         return 1;
1751                 msr_info->data = vmx->pt_desc.guest.output_base;
1752                 break;
1753         case MSR_IA32_RTIT_OUTPUT_MASK:
1754                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1755                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1756                                         PT_CAP_topa_output) &&
1757                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1758                                         PT_CAP_single_range_output)))
1759                         return 1;
1760                 msr_info->data = vmx->pt_desc.guest.output_mask;
1761                 break;
1762         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1763                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1764                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1765                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1766                                         PT_CAP_num_address_ranges)))
1767                         return 1;
1768                 if (index % 2)
1769                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1770                 else
1771                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1772                 break;
1773         case MSR_TSC_AUX:
1774                 if (!msr_info->host_initiated &&
1775                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1776                         return 1;
1777                 /* Else, falls through */
1778         default:
1779                 msr = find_msr_entry(vmx, msr_info->index);
1780                 if (msr) {
1781                         msr_info->data = msr->data;
1782                         break;
1783                 }
1784                 return kvm_get_msr_common(vcpu, msr_info);
1785         }
1786
1787         return 0;
1788 }
1789
1790 /*
1791  * Writes msr value into into the appropriate "register".
1792  * Returns 0 on success, non-0 otherwise.
1793  * Assumes vcpu_load() was already called.
1794  */
1795 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1796 {
1797         struct vcpu_vmx *vmx = to_vmx(vcpu);
1798         struct shared_msr_entry *msr;
1799         int ret = 0;
1800         u32 msr_index = msr_info->index;
1801         u64 data = msr_info->data;
1802         u32 index;
1803
1804         switch (msr_index) {
1805         case MSR_EFER:
1806                 ret = kvm_set_msr_common(vcpu, msr_info);
1807                 break;
1808 #ifdef CONFIG_X86_64
1809         case MSR_FS_BASE:
1810                 vmx_segment_cache_clear(vmx);
1811                 vmcs_writel(GUEST_FS_BASE, data);
1812                 break;
1813         case MSR_GS_BASE:
1814                 vmx_segment_cache_clear(vmx);
1815                 vmcs_writel(GUEST_GS_BASE, data);
1816                 break;
1817         case MSR_KERNEL_GS_BASE:
1818                 vmx_write_guest_kernel_gs_base(vmx, data);
1819                 break;
1820 #endif
1821         case MSR_IA32_SYSENTER_CS:
1822                 vmcs_write32(GUEST_SYSENTER_CS, data);
1823                 break;
1824         case MSR_IA32_SYSENTER_EIP:
1825                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1826                 break;
1827         case MSR_IA32_SYSENTER_ESP:
1828                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1829                 break;
1830         case MSR_IA32_BNDCFGS:
1831                 if (!kvm_mpx_supported() ||
1832                     (!msr_info->host_initiated &&
1833                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1834                         return 1;
1835                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1836                     (data & MSR_IA32_BNDCFGS_RSVD))
1837                         return 1;
1838                 vmcs_write64(GUEST_BNDCFGS, data);
1839                 break;
1840         case MSR_IA32_SPEC_CTRL:
1841                 if (!msr_info->host_initiated &&
1842                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1843                         return 1;
1844
1845                 /* The STIBP bit doesn't fault even if it's not advertised */
1846                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1847                         return 1;
1848
1849                 vmx->spec_ctrl = data;
1850
1851                 if (!data)
1852                         break;
1853
1854                 /*
1855                  * For non-nested:
1856                  * When it's written (to non-zero) for the first time, pass
1857                  * it through.
1858                  *
1859                  * For nested:
1860                  * The handling of the MSR bitmap for L2 guests is done in
1861                  * nested_vmx_merge_msr_bitmap. We should not touch the
1862                  * vmcs02.msr_bitmap here since it gets completely overwritten
1863                  * in the merging. We update the vmcs01 here for L1 as well
1864                  * since it will end up touching the MSR anyway now.
1865                  */
1866                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1867                                               MSR_IA32_SPEC_CTRL,
1868                                               MSR_TYPE_RW);
1869                 break;
1870         case MSR_IA32_PRED_CMD:
1871                 if (!msr_info->host_initiated &&
1872                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1873                         return 1;
1874
1875                 if (data & ~PRED_CMD_IBPB)
1876                         return 1;
1877
1878                 if (!data)
1879                         break;
1880
1881                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1882
1883                 /*
1884                  * For non-nested:
1885                  * When it's written (to non-zero) for the first time, pass
1886                  * it through.
1887                  *
1888                  * For nested:
1889                  * The handling of the MSR bitmap for L2 guests is done in
1890                  * nested_vmx_merge_msr_bitmap. We should not touch the
1891                  * vmcs02.msr_bitmap here since it gets completely overwritten
1892                  * in the merging.
1893                  */
1894                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1895                                               MSR_TYPE_W);
1896                 break;
1897         case MSR_IA32_ARCH_CAPABILITIES:
1898                 if (!msr_info->host_initiated)
1899                         return 1;
1900                 vmx->arch_capabilities = data;
1901                 break;
1902         case MSR_IA32_CR_PAT:
1903                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1904                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1905                                 return 1;
1906                         vmcs_write64(GUEST_IA32_PAT, data);
1907                         vcpu->arch.pat = data;
1908                         break;
1909                 }
1910                 ret = kvm_set_msr_common(vcpu, msr_info);
1911                 break;
1912         case MSR_IA32_TSC_ADJUST:
1913                 ret = kvm_set_msr_common(vcpu, msr_info);
1914                 break;
1915         case MSR_IA32_MCG_EXT_CTL:
1916                 if ((!msr_info->host_initiated &&
1917                      !(to_vmx(vcpu)->msr_ia32_feature_control &
1918                        FEATURE_CONTROL_LMCE)) ||
1919                     (data & ~MCG_EXT_CTL_LMCE_EN))
1920                         return 1;
1921                 vcpu->arch.mcg_ext_ctl = data;
1922                 break;
1923         case MSR_IA32_FEATURE_CONTROL:
1924                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
1925                     (to_vmx(vcpu)->msr_ia32_feature_control &
1926                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1927                         return 1;
1928                 vmx->msr_ia32_feature_control = data;
1929                 if (msr_info->host_initiated && data == 0)
1930                         vmx_leave_nested(vcpu);
1931                 break;
1932         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1933                 if (!msr_info->host_initiated)
1934                         return 1; /* they are read-only */
1935                 if (!nested_vmx_allowed(vcpu))
1936                         return 1;
1937                 return vmx_set_vmx_msr(vcpu, msr_index, data);
1938         case MSR_IA32_XSS:
1939                 if (!vmx_xsaves_supported())
1940                         return 1;
1941                 /*
1942                  * The only supported bit as of Skylake is bit 8, but
1943                  * it is not supported on KVM.
1944                  */
1945                 if (data != 0)
1946                         return 1;
1947                 vcpu->arch.ia32_xss = data;
1948                 if (vcpu->arch.ia32_xss != host_xss)
1949                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1950                                 vcpu->arch.ia32_xss, host_xss, false);
1951                 else
1952                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1953                 break;
1954         case MSR_IA32_RTIT_CTL:
1955                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1956                         vmx_rtit_ctl_check(vcpu, data) ||
1957                         vmx->nested.vmxon)
1958                         return 1;
1959                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1960                 vmx->pt_desc.guest.ctl = data;
1961                 pt_update_intercept_for_msr(vmx);
1962                 break;
1963         case MSR_IA32_RTIT_STATUS:
1964                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1965                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1966                         (data & MSR_IA32_RTIT_STATUS_MASK))
1967                         return 1;
1968                 vmx->pt_desc.guest.status = data;
1969                 break;
1970         case MSR_IA32_RTIT_CR3_MATCH:
1971                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1972                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1973                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1974                                                 PT_CAP_cr3_filtering))
1975                         return 1;
1976                 vmx->pt_desc.guest.cr3_match = data;
1977                 break;
1978         case MSR_IA32_RTIT_OUTPUT_BASE:
1979                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1980                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1981                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1982                                         PT_CAP_topa_output) &&
1983                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1984                                         PT_CAP_single_range_output)) ||
1985                         (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1986                         return 1;
1987                 vmx->pt_desc.guest.output_base = data;
1988                 break;
1989         case MSR_IA32_RTIT_OUTPUT_MASK:
1990                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1991                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1992                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1993                                         PT_CAP_topa_output) &&
1994                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1995                                         PT_CAP_single_range_output)))
1996                         return 1;
1997                 vmx->pt_desc.guest.output_mask = data;
1998                 break;
1999         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2000                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2001                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2002                         (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2003                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2004                                         PT_CAP_num_address_ranges)))
2005                         return 1;
2006                 if (index % 2)
2007                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2008                 else
2009                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2010                 break;
2011         case MSR_TSC_AUX:
2012                 if (!msr_info->host_initiated &&
2013                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2014                         return 1;
2015                 /* Check reserved bit, higher 32 bits should be zero */
2016                 if ((data >> 32) != 0)
2017                         return 1;
2018                 /* Else, falls through */
2019         default:
2020                 msr = find_msr_entry(vmx, msr_index);
2021                 if (msr) {
2022                         u64 old_msr_data = msr->data;
2023                         msr->data = data;
2024                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2025                                 preempt_disable();
2026                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2027                                                          msr->mask);
2028                                 preempt_enable();
2029                                 if (ret)
2030                                         msr->data = old_msr_data;
2031                         }
2032                         break;
2033                 }
2034                 ret = kvm_set_msr_common(vcpu, msr_info);
2035         }
2036
2037         return ret;
2038 }
2039
2040 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2041 {
2042         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2043         switch (reg) {
2044         case VCPU_REGS_RSP:
2045                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2046                 break;
2047         case VCPU_REGS_RIP:
2048                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2049                 break;
2050         case VCPU_EXREG_PDPTR:
2051                 if (enable_ept)
2052                         ept_save_pdptrs(vcpu);
2053                 break;
2054         default:
2055                 break;
2056         }
2057 }
2058
2059 static __init int cpu_has_kvm_support(void)
2060 {
2061         return cpu_has_vmx();
2062 }
2063
2064 static __init int vmx_disabled_by_bios(void)
2065 {
2066         u64 msr;
2067
2068         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2069         if (msr & FEATURE_CONTROL_LOCKED) {
2070                 /* launched w/ TXT and VMX disabled */
2071                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2072                         && tboot_enabled())
2073                         return 1;
2074                 /* launched w/o TXT and VMX only enabled w/ TXT */
2075                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2076                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2077                         && !tboot_enabled()) {
2078                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2079                                 "activate TXT before enabling KVM\n");
2080                         return 1;
2081                 }
2082                 /* launched w/o TXT and VMX disabled */
2083                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2084                         && !tboot_enabled())
2085                         return 1;
2086         }
2087
2088         return 0;
2089 }
2090
2091 static void kvm_cpu_vmxon(u64 addr)
2092 {
2093         cr4_set_bits(X86_CR4_VMXE);
2094         intel_pt_handle_vmx(1);
2095
2096         asm volatile ("vmxon %0" : : "m"(addr));
2097 }
2098
2099 static int hardware_enable(void)
2100 {
2101         int cpu = raw_smp_processor_id();
2102         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2103         u64 old, test_bits;
2104
2105         if (cr4_read_shadow() & X86_CR4_VMXE)
2106                 return -EBUSY;
2107
2108         /*
2109          * This can happen if we hot-added a CPU but failed to allocate
2110          * VP assist page for it.
2111          */
2112         if (static_branch_unlikely(&enable_evmcs) &&
2113             !hv_get_vp_assist_page(cpu))
2114                 return -EFAULT;
2115
2116         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2117         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2118         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2119
2120         /*
2121          * Now we can enable the vmclear operation in kdump
2122          * since the loaded_vmcss_on_cpu list on this cpu
2123          * has been initialized.
2124          *
2125          * Though the cpu is not in VMX operation now, there
2126          * is no problem to enable the vmclear operation
2127          * for the loaded_vmcss_on_cpu list is empty!
2128          */
2129         crash_enable_local_vmclear(cpu);
2130
2131         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2132
2133         test_bits = FEATURE_CONTROL_LOCKED;
2134         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2135         if (tboot_enabled())
2136                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2137
2138         if ((old & test_bits) != test_bits) {
2139                 /* enable and lock */
2140                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2141         }
2142         kvm_cpu_vmxon(phys_addr);
2143         if (enable_ept)
2144                 ept_sync_global();
2145
2146         return 0;
2147 }
2148
2149 static void vmclear_local_loaded_vmcss(void)
2150 {
2151         int cpu = raw_smp_processor_id();
2152         struct loaded_vmcs *v, *n;
2153
2154         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2155                                  loaded_vmcss_on_cpu_link)
2156                 __loaded_vmcs_clear(v);
2157 }
2158
2159
2160 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2161  * tricks.
2162  */
2163 static void kvm_cpu_vmxoff(void)
2164 {
2165         asm volatile (__ex("vmxoff"));
2166
2167         intel_pt_handle_vmx(0);
2168         cr4_clear_bits(X86_CR4_VMXE);
2169 }
2170
2171 static void hardware_disable(void)
2172 {
2173         vmclear_local_loaded_vmcss();
2174         kvm_cpu_vmxoff();
2175 }
2176
2177 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2178                                       u32 msr, u32 *result)
2179 {
2180         u32 vmx_msr_low, vmx_msr_high;
2181         u32 ctl = ctl_min | ctl_opt;
2182
2183         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2184
2185         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2186         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2187
2188         /* Ensure minimum (required) set of control bits are supported. */
2189         if (ctl_min & ~ctl)
2190                 return -EIO;
2191
2192         *result = ctl;
2193         return 0;
2194 }
2195
2196 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2197                                     struct vmx_capability *vmx_cap)
2198 {
2199         u32 vmx_msr_low, vmx_msr_high;
2200         u32 min, opt, min2, opt2;
2201         u32 _pin_based_exec_control = 0;
2202         u32 _cpu_based_exec_control = 0;
2203         u32 _cpu_based_2nd_exec_control = 0;
2204         u32 _vmexit_control = 0;
2205         u32 _vmentry_control = 0;
2206
2207         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2208         min = CPU_BASED_HLT_EXITING |
2209 #ifdef CONFIG_X86_64
2210               CPU_BASED_CR8_LOAD_EXITING |
2211               CPU_BASED_CR8_STORE_EXITING |
2212 #endif
2213               CPU_BASED_CR3_LOAD_EXITING |
2214               CPU_BASED_CR3_STORE_EXITING |
2215               CPU_BASED_UNCOND_IO_EXITING |
2216               CPU_BASED_MOV_DR_EXITING |
2217               CPU_BASED_USE_TSC_OFFSETING |
2218               CPU_BASED_MWAIT_EXITING |
2219               CPU_BASED_MONITOR_EXITING |
2220               CPU_BASED_INVLPG_EXITING |
2221               CPU_BASED_RDPMC_EXITING;
2222
2223         opt = CPU_BASED_TPR_SHADOW |
2224               CPU_BASED_USE_MSR_BITMAPS |
2225               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2226         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2227                                 &_cpu_based_exec_control) < 0)
2228                 return -EIO;
2229 #ifdef CONFIG_X86_64
2230         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2231                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2232                                            ~CPU_BASED_CR8_STORE_EXITING;
2233 #endif
2234         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2235                 min2 = 0;
2236                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2237                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2238                         SECONDARY_EXEC_WBINVD_EXITING |
2239                         SECONDARY_EXEC_ENABLE_VPID |
2240                         SECONDARY_EXEC_ENABLE_EPT |
2241                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2242                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2243                         SECONDARY_EXEC_DESC |
2244                         SECONDARY_EXEC_RDTSCP |
2245                         SECONDARY_EXEC_ENABLE_INVPCID |
2246                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2247                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2248                         SECONDARY_EXEC_SHADOW_VMCS |
2249                         SECONDARY_EXEC_XSAVES |
2250                         SECONDARY_EXEC_RDSEED_EXITING |
2251                         SECONDARY_EXEC_RDRAND_EXITING |
2252                         SECONDARY_EXEC_ENABLE_PML |
2253                         SECONDARY_EXEC_TSC_SCALING |
2254                         SECONDARY_EXEC_PT_USE_GPA |
2255                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2256                         SECONDARY_EXEC_ENABLE_VMFUNC |
2257                         SECONDARY_EXEC_ENCLS_EXITING;
2258                 if (adjust_vmx_controls(min2, opt2,
2259                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2260                                         &_cpu_based_2nd_exec_control) < 0)
2261                         return -EIO;
2262         }
2263 #ifndef CONFIG_X86_64
2264         if (!(_cpu_based_2nd_exec_control &
2265                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2266                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2267 #endif
2268
2269         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2270                 _cpu_based_2nd_exec_control &= ~(
2271                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2272                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2273                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2274
2275         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2276                 &vmx_cap->ept, &vmx_cap->vpid);
2277
2278         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2279                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2280                    enabled */
2281                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2282                                              CPU_BASED_CR3_STORE_EXITING |
2283                                              CPU_BASED_INVLPG_EXITING);
2284         } else if (vmx_cap->ept) {
2285                 vmx_cap->ept = 0;
2286                 pr_warn_once("EPT CAP should not exist if not support "
2287                                 "1-setting enable EPT VM-execution control\n");
2288         }
2289         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2290                 vmx_cap->vpid) {
2291                 vmx_cap->vpid = 0;
2292                 pr_warn_once("VPID CAP should not exist if not support "
2293                                 "1-setting enable VPID VM-execution control\n");
2294         }
2295
2296         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2297 #ifdef CONFIG_X86_64
2298         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2299 #endif
2300         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2301               VM_EXIT_SAVE_IA32_PAT |
2302               VM_EXIT_LOAD_IA32_PAT |
2303               VM_EXIT_LOAD_IA32_EFER |
2304               VM_EXIT_CLEAR_BNDCFGS |
2305               VM_EXIT_PT_CONCEAL_PIP |
2306               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2307         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2308                                 &_vmexit_control) < 0)
2309                 return -EIO;
2310
2311         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2312         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2313                  PIN_BASED_VMX_PREEMPTION_TIMER;
2314         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2315                                 &_pin_based_exec_control) < 0)
2316                 return -EIO;
2317
2318         if (cpu_has_broken_vmx_preemption_timer())
2319                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2320         if (!(_cpu_based_2nd_exec_control &
2321                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2322                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2323
2324         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2325         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2326               VM_ENTRY_LOAD_IA32_PAT |
2327               VM_ENTRY_LOAD_IA32_EFER |
2328               VM_ENTRY_LOAD_BNDCFGS |
2329               VM_ENTRY_PT_CONCEAL_PIP |
2330               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2331         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2332                                 &_vmentry_control) < 0)
2333                 return -EIO;
2334
2335         /*
2336          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2337          * can't be used due to an errata where VM Exit may incorrectly clear
2338          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2339          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2340          */
2341         if (boot_cpu_data.x86 == 0x6) {
2342                 switch (boot_cpu_data.x86_model) {
2343                 case 26: /* AAK155 */
2344                 case 30: /* AAP115 */
2345                 case 37: /* AAT100 */
2346                 case 44: /* BC86,AAY89,BD102 */
2347                 case 46: /* BA97 */
2348                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2349                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2350                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2351                                         "does not work properly. Using workaround\n");
2352                         break;
2353                 default:
2354                         break;
2355                 }
2356         }
2357
2358
2359         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2360
2361         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2362         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2363                 return -EIO;
2364
2365 #ifdef CONFIG_X86_64
2366         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2367         if (vmx_msr_high & (1u<<16))
2368                 return -EIO;
2369 #endif
2370
2371         /* Require Write-Back (WB) memory type for VMCS accesses. */
2372         if (((vmx_msr_high >> 18) & 15) != 6)
2373                 return -EIO;
2374
2375         vmcs_conf->size = vmx_msr_high & 0x1fff;
2376         vmcs_conf->order = get_order(vmcs_conf->size);
2377         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2378
2379         vmcs_conf->revision_id = vmx_msr_low;
2380
2381         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2382         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2383         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2384         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2385         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2386
2387         if (static_branch_unlikely(&enable_evmcs))
2388                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2389
2390         return 0;
2391 }
2392
2393 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
2394 {
2395         int node = cpu_to_node(cpu);
2396         struct page *pages;
2397         struct vmcs *vmcs;
2398
2399         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
2400         if (!pages)
2401                 return NULL;
2402         vmcs = page_address(pages);
2403         memset(vmcs, 0, vmcs_config.size);
2404
2405         /* KVM supports Enlightened VMCS v1 only */
2406         if (static_branch_unlikely(&enable_evmcs))
2407                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2408         else
2409                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2410
2411         if (shadow)
2412                 vmcs->hdr.shadow_vmcs = 1;
2413         return vmcs;
2414 }
2415
2416 void free_vmcs(struct vmcs *vmcs)
2417 {
2418         free_pages((unsigned long)vmcs, vmcs_config.order);
2419 }
2420
2421 /*
2422  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2423  */
2424 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2425 {
2426         if (!loaded_vmcs->vmcs)
2427                 return;
2428         loaded_vmcs_clear(loaded_vmcs);
2429         free_vmcs(loaded_vmcs->vmcs);
2430         loaded_vmcs->vmcs = NULL;
2431         if (loaded_vmcs->msr_bitmap)
2432                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2433         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2434 }
2435
2436 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2437 {
2438         loaded_vmcs->vmcs = alloc_vmcs(false);
2439         if (!loaded_vmcs->vmcs)
2440                 return -ENOMEM;
2441
2442         loaded_vmcs->shadow_vmcs = NULL;
2443         loaded_vmcs_init(loaded_vmcs);
2444
2445         if (cpu_has_vmx_msr_bitmap()) {
2446                 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
2447                 if (!loaded_vmcs->msr_bitmap)
2448                         goto out_vmcs;
2449                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2450
2451                 if (IS_ENABLED(CONFIG_HYPERV) &&
2452                     static_branch_unlikely(&enable_evmcs) &&
2453                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2454                         struct hv_enlightened_vmcs *evmcs =
2455                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2456
2457                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2458                 }
2459         }
2460
2461         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2462
2463         return 0;
2464
2465 out_vmcs:
2466         free_loaded_vmcs(loaded_vmcs);
2467         return -ENOMEM;
2468 }
2469
2470 static void free_kvm_area(void)
2471 {
2472         int cpu;
2473
2474         for_each_possible_cpu(cpu) {
2475                 free_vmcs(per_cpu(vmxarea, cpu));
2476                 per_cpu(vmxarea, cpu) = NULL;
2477         }
2478 }
2479
2480 static __init int alloc_kvm_area(void)
2481 {
2482         int cpu;
2483
2484         for_each_possible_cpu(cpu) {
2485                 struct vmcs *vmcs;
2486
2487                 vmcs = alloc_vmcs_cpu(false, cpu);
2488                 if (!vmcs) {
2489                         free_kvm_area();
2490                         return -ENOMEM;
2491                 }
2492
2493                 /*
2494                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2495                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2496                  * revision_id reported by MSR_IA32_VMX_BASIC.
2497                  *
2498                  * However, even though not explicitly documented by
2499                  * TLFS, VMXArea passed as VMXON argument should
2500                  * still be marked with revision_id reported by
2501                  * physical CPU.
2502                  */
2503                 if (static_branch_unlikely(&enable_evmcs))
2504                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2505
2506                 per_cpu(vmxarea, cpu) = vmcs;
2507         }
2508         return 0;
2509 }
2510
2511 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2512                 struct kvm_segment *save)
2513 {
2514         if (!emulate_invalid_guest_state) {
2515                 /*
2516                  * CS and SS RPL should be equal during guest entry according
2517                  * to VMX spec, but in reality it is not always so. Since vcpu
2518                  * is in the middle of the transition from real mode to
2519                  * protected mode it is safe to assume that RPL 0 is a good
2520                  * default value.
2521                  */
2522                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2523                         save->selector &= ~SEGMENT_RPL_MASK;
2524                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2525                 save->s = 1;
2526         }
2527         vmx_set_segment(vcpu, save, seg);
2528 }
2529
2530 static void enter_pmode(struct kvm_vcpu *vcpu)
2531 {
2532         unsigned long flags;
2533         struct vcpu_vmx *vmx = to_vmx(vcpu);
2534
2535         /*
2536          * Update real mode segment cache. It may be not up-to-date if sement
2537          * register was written while vcpu was in a guest mode.
2538          */
2539         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2540         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2541         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2542         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2543         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2544         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2545
2546         vmx->rmode.vm86_active = 0;
2547
2548         vmx_segment_cache_clear(vmx);
2549
2550         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2551
2552         flags = vmcs_readl(GUEST_RFLAGS);
2553         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2554         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2555         vmcs_writel(GUEST_RFLAGS, flags);
2556
2557         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2558                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2559
2560         update_exception_bitmap(vcpu);
2561
2562         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2563         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2564         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2565         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2566         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2567         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2568 }
2569
2570 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2571 {
2572         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2573         struct kvm_segment var = *save;
2574
2575         var.dpl = 0x3;
2576         if (seg == VCPU_SREG_CS)
2577                 var.type = 0x3;
2578
2579         if (!emulate_invalid_guest_state) {
2580                 var.selector = var.base >> 4;
2581                 var.base = var.base & 0xffff0;
2582                 var.limit = 0xffff;
2583                 var.g = 0;
2584                 var.db = 0;
2585                 var.present = 1;
2586                 var.s = 1;
2587                 var.l = 0;
2588                 var.unusable = 0;
2589                 var.type = 0x3;
2590                 var.avl = 0;
2591                 if (save->base & 0xf)
2592                         printk_once(KERN_WARNING "kvm: segment base is not "
2593                                         "paragraph aligned when entering "
2594                                         "protected mode (seg=%d)", seg);
2595         }
2596
2597         vmcs_write16(sf->selector, var.selector);
2598         vmcs_writel(sf->base, var.base);
2599         vmcs_write32(sf->limit, var.limit);
2600         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2601 }
2602
2603 static void enter_rmode(struct kvm_vcpu *vcpu)
2604 {
2605         unsigned long flags;
2606         struct vcpu_vmx *vmx = to_vmx(vcpu);
2607         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2608
2609         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2610         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2611         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2612         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2613         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2614         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2615         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2616
2617         vmx->rmode.vm86_active = 1;
2618
2619         /*
2620          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2621          * vcpu. Warn the user that an update is overdue.
2622          */
2623         if (!kvm_vmx->tss_addr)
2624                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2625                              "called before entering vcpu\n");
2626
2627         vmx_segment_cache_clear(vmx);
2628
2629         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2630         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2631         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2632
2633         flags = vmcs_readl(GUEST_RFLAGS);
2634         vmx->rmode.save_rflags = flags;
2635
2636         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2637
2638         vmcs_writel(GUEST_RFLAGS, flags);
2639         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2640         update_exception_bitmap(vcpu);
2641
2642         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2643         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2644         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2645         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2646         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2647         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2648
2649         kvm_mmu_reset_context(vcpu);
2650 }
2651
2652 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2653 {
2654         struct vcpu_vmx *vmx = to_vmx(vcpu);
2655         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2656
2657         if (!msr)
2658                 return;
2659
2660         vcpu->arch.efer = efer;
2661         if (efer & EFER_LMA) {
2662                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2663                 msr->data = efer;
2664         } else {
2665                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2666
2667                 msr->data = efer & ~EFER_LME;
2668         }
2669         setup_msrs(vmx);
2670 }
2671
2672 #ifdef CONFIG_X86_64
2673
2674 static void enter_lmode(struct kvm_vcpu *vcpu)
2675 {
2676         u32 guest_tr_ar;
2677
2678         vmx_segment_cache_clear(to_vmx(vcpu));
2679
2680         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2681         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2682                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2683                                      __func__);
2684                 vmcs_write32(GUEST_TR_AR_BYTES,
2685                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2686                              | VMX_AR_TYPE_BUSY_64_TSS);
2687         }
2688         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2689 }
2690
2691 static void exit_lmode(struct kvm_vcpu *vcpu)
2692 {
2693         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2694         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2695 }
2696
2697 #endif
2698
2699 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2700 {
2701         int vpid = to_vmx(vcpu)->vpid;
2702
2703         if (!vpid_sync_vcpu_addr(vpid, addr))
2704                 vpid_sync_context(vpid);
2705
2706         /*
2707          * If VPIDs are not supported or enabled, then the above is a no-op.
2708          * But we don't really need a TLB flush in that case anyway, because
2709          * each VM entry/exit includes an implicit flush when VPID is 0.
2710          */
2711 }
2712
2713 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2714 {
2715         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2716
2717         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2718         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2719 }
2720
2721 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2722 {
2723         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2724                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2725         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2726 }
2727
2728 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2729 {
2730         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2731
2732         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2733         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2734 }
2735
2736 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2737 {
2738         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2739
2740         if (!test_bit(VCPU_EXREG_PDPTR,
2741                       (unsigned long *)&vcpu->arch.regs_dirty))
2742                 return;
2743
2744         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2745                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2746                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2747                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2748                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2749         }
2750 }
2751
2752 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2753 {
2754         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2755
2756         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2757                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2758                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2759                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2760                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2761         }
2762
2763         __set_bit(VCPU_EXREG_PDPTR,
2764                   (unsigned long *)&vcpu->arch.regs_avail);
2765         __set_bit(VCPU_EXREG_PDPTR,
2766                   (unsigned long *)&vcpu->arch.regs_dirty);
2767 }
2768
2769 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2770                                         unsigned long cr0,
2771                                         struct kvm_vcpu *vcpu)
2772 {
2773         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2774                 vmx_decache_cr3(vcpu);
2775         if (!(cr0 & X86_CR0_PG)) {
2776                 /* From paging/starting to nonpaging */
2777                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2778                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2779                              (CPU_BASED_CR3_LOAD_EXITING |
2780                               CPU_BASED_CR3_STORE_EXITING));
2781                 vcpu->arch.cr0 = cr0;
2782                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2783         } else if (!is_paging(vcpu)) {
2784                 /* From nonpaging to paging */
2785                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2786                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2787                              ~(CPU_BASED_CR3_LOAD_EXITING |
2788                                CPU_BASED_CR3_STORE_EXITING));
2789                 vcpu->arch.cr0 = cr0;
2790                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2791         }
2792
2793         if (!(cr0 & X86_CR0_WP))
2794                 *hw_cr0 &= ~X86_CR0_WP;
2795 }
2796
2797 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2798 {
2799         struct vcpu_vmx *vmx = to_vmx(vcpu);
2800         unsigned long hw_cr0;
2801
2802         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2803         if (enable_unrestricted_guest)
2804                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2805         else {
2806                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2807
2808                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2809                         enter_pmode(vcpu);
2810
2811                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2812                         enter_rmode(vcpu);
2813         }
2814
2815 #ifdef CONFIG_X86_64
2816         if (vcpu->arch.efer & EFER_LME) {
2817                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2818                         enter_lmode(vcpu);
2819                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2820                         exit_lmode(vcpu);
2821         }
2822 #endif
2823
2824         if (enable_ept && !enable_unrestricted_guest)
2825                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2826
2827         vmcs_writel(CR0_READ_SHADOW, cr0);
2828         vmcs_writel(GUEST_CR0, hw_cr0);
2829         vcpu->arch.cr0 = cr0;
2830
2831         /* depends on vcpu->arch.cr0 to be set to a new value */
2832         vmx->emulation_required = emulation_required(vcpu);
2833 }
2834
2835 static int get_ept_level(struct kvm_vcpu *vcpu)
2836 {
2837         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2838                 return 5;
2839         return 4;
2840 }
2841
2842 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2843 {
2844         u64 eptp = VMX_EPTP_MT_WB;
2845
2846         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2847
2848         if (enable_ept_ad_bits &&
2849             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2850                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2851         eptp |= (root_hpa & PAGE_MASK);
2852
2853         return eptp;
2854 }
2855
2856 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2857 {
2858         struct kvm *kvm = vcpu->kvm;
2859         unsigned long guest_cr3;
2860         u64 eptp;
2861
2862         guest_cr3 = cr3;
2863         if (enable_ept) {
2864                 eptp = construct_eptp(vcpu, cr3);
2865                 vmcs_write64(EPT_POINTER, eptp);
2866
2867                 if (kvm_x86_ops->tlb_remote_flush) {
2868                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2869                         to_vmx(vcpu)->ept_pointer = eptp;
2870                         to_kvm_vmx(kvm)->ept_pointers_match
2871                                 = EPT_POINTERS_CHECK;
2872                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2873                 }
2874
2875                 if (enable_unrestricted_guest || is_paging(vcpu) ||
2876                     is_guest_mode(vcpu))
2877                         guest_cr3 = kvm_read_cr3(vcpu);
2878                 else
2879                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2880                 ept_load_pdptrs(vcpu);
2881         }
2882
2883         vmcs_writel(GUEST_CR3, guest_cr3);
2884 }
2885
2886 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2887 {
2888         /*
2889          * Pass through host's Machine Check Enable value to hw_cr4, which
2890          * is in force while we are in guest mode.  Do not let guests control
2891          * this bit, even if host CR4.MCE == 0.
2892          */
2893         unsigned long hw_cr4;
2894
2895         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2896         if (enable_unrestricted_guest)
2897                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2898         else if (to_vmx(vcpu)->rmode.vm86_active)
2899                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2900         else
2901                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2902
2903         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2904                 if (cr4 & X86_CR4_UMIP) {
2905                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2906                                 SECONDARY_EXEC_DESC);
2907                         hw_cr4 &= ~X86_CR4_UMIP;
2908                 } else if (!is_guest_mode(vcpu) ||
2909                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2910                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2911                                         SECONDARY_EXEC_DESC);
2912         }
2913
2914         if (cr4 & X86_CR4_VMXE) {
2915                 /*
2916                  * To use VMXON (and later other VMX instructions), a guest
2917                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
2918                  * So basically the check on whether to allow nested VMX
2919                  * is here.  We operate under the default treatment of SMM,
2920                  * so VMX cannot be enabled under SMM.
2921                  */
2922                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2923                         return 1;
2924         }
2925
2926         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2927                 return 1;
2928
2929         vcpu->arch.cr4 = cr4;
2930
2931         if (!enable_unrestricted_guest) {
2932                 if (enable_ept) {
2933                         if (!is_paging(vcpu)) {
2934                                 hw_cr4 &= ~X86_CR4_PAE;
2935                                 hw_cr4 |= X86_CR4_PSE;
2936                         } else if (!(cr4 & X86_CR4_PAE)) {
2937                                 hw_cr4 &= ~X86_CR4_PAE;
2938                         }
2939                 }
2940
2941                 /*
2942                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2943                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2944                  * to be manually disabled when guest switches to non-paging
2945                  * mode.
2946                  *
2947                  * If !enable_unrestricted_guest, the CPU is always running
2948                  * with CR0.PG=1 and CR4 needs to be modified.
2949                  * If enable_unrestricted_guest, the CPU automatically
2950                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2951                  */
2952                 if (!is_paging(vcpu))
2953                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2954         }
2955
2956         vmcs_writel(CR4_READ_SHADOW, cr4);
2957         vmcs_writel(GUEST_CR4, hw_cr4);
2958         return 0;
2959 }
2960
2961 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2962 {
2963         struct vcpu_vmx *vmx = to_vmx(vcpu);
2964         u32 ar;
2965
2966         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2967                 *var = vmx->rmode.segs[seg];
2968                 if (seg == VCPU_SREG_TR
2969                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2970                         return;
2971                 var->base = vmx_read_guest_seg_base(vmx, seg);
2972                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
2973                 return;
2974         }
2975         var->base = vmx_read_guest_seg_base(vmx, seg);
2976         var->limit = vmx_read_guest_seg_limit(vmx, seg);
2977         var->selector = vmx_read_guest_seg_selector(vmx, seg);
2978         ar = vmx_read_guest_seg_ar(vmx, seg);
2979         var->unusable = (ar >> 16) & 1;
2980         var->type = ar & 15;
2981         var->s = (ar >> 4) & 1;
2982         var->dpl = (ar >> 5) & 3;
2983         /*
2984          * Some userspaces do not preserve unusable property. Since usable
2985          * segment has to be present according to VMX spec we can use present
2986          * property to amend userspace bug by making unusable segment always
2987          * nonpresent. vmx_segment_access_rights() already marks nonpresent
2988          * segment as unusable.
2989          */
2990         var->present = !var->unusable;
2991         var->avl = (ar >> 12) & 1;
2992         var->l = (ar >> 13) & 1;
2993         var->db = (ar >> 14) & 1;
2994         var->g = (ar >> 15) & 1;
2995 }
2996
2997 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2998 {
2999         struct kvm_segment s;
3000
3001         if (to_vmx(vcpu)->rmode.vm86_active) {
3002                 vmx_get_segment(vcpu, &s, seg);
3003                 return s.base;
3004         }
3005         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3006 }
3007
3008 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3009 {
3010         struct vcpu_vmx *vmx = to_vmx(vcpu);
3011
3012         if (unlikely(vmx->rmode.vm86_active))
3013                 return 0;
3014         else {
3015                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3016                 return VMX_AR_DPL(ar);
3017         }
3018 }
3019
3020 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3021 {
3022         u32 ar;
3023
3024         if (var->unusable || !var->present)
3025                 ar = 1 << 16;
3026         else {
3027                 ar = var->type & 15;
3028                 ar |= (var->s & 1) << 4;
3029                 ar |= (var->dpl & 3) << 5;
3030                 ar |= (var->present & 1) << 7;
3031                 ar |= (var->avl & 1) << 12;
3032                 ar |= (var->l & 1) << 13;
3033                 ar |= (var->db & 1) << 14;
3034                 ar |= (var->g & 1) << 15;
3035         }
3036
3037         return ar;
3038 }
3039
3040 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3041 {
3042         struct vcpu_vmx *vmx = to_vmx(vcpu);
3043         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3044
3045         vmx_segment_cache_clear(vmx);
3046
3047         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3048                 vmx->rmode.segs[seg] = *var;
3049                 if (seg == VCPU_SREG_TR)
3050                         vmcs_write16(sf->selector, var->selector);
3051                 else if (var->s)
3052                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3053                 goto out;
3054         }
3055
3056         vmcs_writel(sf->base, var->base);
3057         vmcs_write32(sf->limit, var->limit);
3058         vmcs_write16(sf->selector, var->selector);
3059
3060         /*
3061          *   Fix the "Accessed" bit in AR field of segment registers for older
3062          * qemu binaries.
3063          *   IA32 arch specifies that at the time of processor reset the
3064          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3065          * is setting it to 0 in the userland code. This causes invalid guest
3066          * state vmexit when "unrestricted guest" mode is turned on.
3067          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3068          * tree. Newer qemu binaries with that qemu fix would not need this
3069          * kvm hack.
3070          */
3071         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3072                 var->type |= 0x1; /* Accessed */
3073
3074         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3075
3076 out:
3077         vmx->emulation_required = emulation_required(vcpu);
3078 }
3079
3080 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3081 {
3082         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3083
3084         *db = (ar >> 14) & 1;
3085         *l = (ar >> 13) & 1;
3086 }
3087
3088 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3089 {
3090         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3091         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3092 }
3093
3094 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3095 {
3096         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3097         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3098 }
3099
3100 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3101 {
3102         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3103         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3104 }
3105
3106 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3107 {
3108         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3109         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3110 }
3111
3112 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3113 {
3114         struct kvm_segment var;
3115         u32 ar;
3116
3117         vmx_get_segment(vcpu, &var, seg);
3118         var.dpl = 0x3;
3119         if (seg == VCPU_SREG_CS)
3120                 var.type = 0x3;
3121         ar = vmx_segment_access_rights(&var);
3122
3123         if (var.base != (var.selector << 4))
3124                 return false;
3125         if (var.limit != 0xffff)
3126                 return false;
3127         if (ar != 0xf3)
3128                 return false;
3129
3130         return true;
3131 }
3132
3133 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3134 {
3135         struct kvm_segment cs;
3136         unsigned int cs_rpl;
3137
3138         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3139         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3140
3141         if (cs.unusable)
3142                 return false;
3143         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3144                 return false;
3145         if (!cs.s)
3146                 return false;
3147         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3148                 if (cs.dpl > cs_rpl)
3149                         return false;
3150         } else {
3151                 if (cs.dpl != cs_rpl)
3152                         return false;
3153         }
3154         if (!cs.present)
3155                 return false;
3156
3157         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3158         return true;
3159 }
3160
3161 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3162 {
3163         struct kvm_segment ss;
3164         unsigned int ss_rpl;
3165
3166         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3167         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3168
3169         if (ss.unusable)
3170                 return true;
3171         if (ss.type != 3 && ss.type != 7)
3172                 return false;
3173         if (!ss.s)
3174                 return false;
3175         if (ss.dpl != ss_rpl) /* DPL != RPL */
3176                 return false;
3177         if (!ss.present)
3178                 return false;
3179
3180         return true;
3181 }
3182
3183 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3184 {
3185         struct kvm_segment var;
3186         unsigned int rpl;
3187
3188         vmx_get_segment(vcpu, &var, seg);
3189         rpl = var.selector & SEGMENT_RPL_MASK;
3190
3191         if (var.unusable)
3192                 return true;
3193         if (!var.s)
3194                 return false;
3195         if (!var.present)
3196                 return false;
3197         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3198                 if (var.dpl < rpl) /* DPL < RPL */
3199                         return false;
3200         }
3201
3202         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3203          * rights flags
3204          */
3205         return true;
3206 }
3207
3208 static bool tr_valid(struct kvm_vcpu *vcpu)
3209 {
3210         struct kvm_segment tr;
3211
3212         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3213
3214         if (tr.unusable)
3215                 return false;
3216         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3217                 return false;
3218         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3219                 return false;
3220         if (!tr.present)
3221                 return false;
3222
3223         return true;
3224 }
3225
3226 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3227 {
3228         struct kvm_segment ldtr;
3229
3230         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3231
3232         if (ldtr.unusable)
3233                 return true;
3234         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3235                 return false;
3236         if (ldtr.type != 2)
3237                 return false;
3238         if (!ldtr.present)
3239                 return false;
3240
3241         return true;
3242 }
3243
3244 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3245 {
3246         struct kvm_segment cs, ss;
3247
3248         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3249         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3250
3251         return ((cs.selector & SEGMENT_RPL_MASK) ==
3252                  (ss.selector & SEGMENT_RPL_MASK));
3253 }
3254
3255 /*
3256  * Check if guest state is valid. Returns true if valid, false if
3257  * not.
3258  * We assume that registers are always usable
3259  */
3260 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3261 {
3262         if (enable_unrestricted_guest)
3263                 return true;
3264
3265         /* real mode guest state checks */
3266         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3267                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3268                         return false;
3269                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3270                         return false;
3271                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3272                         return false;
3273                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3274                         return false;
3275                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3276                         return false;
3277                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3278                         return false;
3279         } else {
3280         /* protected mode guest state checks */
3281                 if (!cs_ss_rpl_check(vcpu))
3282                         return false;
3283                 if (!code_segment_valid(vcpu))
3284                         return false;
3285                 if (!stack_segment_valid(vcpu))
3286                         return false;
3287                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3288                         return false;
3289                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3290                         return false;
3291                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3292                         return false;
3293                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3294                         return false;
3295                 if (!tr_valid(vcpu))
3296                         return false;
3297                 if (!ldtr_valid(vcpu))
3298                         return false;
3299         }
3300         /* TODO:
3301          * - Add checks on RIP
3302          * - Add checks on RFLAGS
3303          */
3304
3305         return true;
3306 }
3307
3308 static int init_rmode_tss(struct kvm *kvm)
3309 {
3310         gfn_t fn;
3311         u16 data = 0;
3312         int idx, r;
3313
3314         idx = srcu_read_lock(&kvm->srcu);
3315         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3316         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3317         if (r < 0)
3318                 goto out;
3319         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3320         r = kvm_write_guest_page(kvm, fn++, &data,
3321                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3322         if (r < 0)
3323                 goto out;
3324         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3325         if (r < 0)
3326                 goto out;
3327         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3328         if (r < 0)
3329                 goto out;
3330         data = ~0;
3331         r = kvm_write_guest_page(kvm, fn, &data,
3332                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3333                                  sizeof(u8));
3334 out:
3335         srcu_read_unlock(&kvm->srcu, idx);
3336         return r;
3337 }
3338
3339 static int init_rmode_identity_map(struct kvm *kvm)
3340 {
3341         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3342         int i, idx, r = 0;
3343         kvm_pfn_t identity_map_pfn;
3344         u32 tmp;
3345
3346         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3347         mutex_lock(&kvm->slots_lock);
3348
3349         if (likely(kvm_vmx->ept_identity_pagetable_done))
3350                 goto out2;
3351
3352         if (!kvm_vmx->ept_identity_map_addr)
3353                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3354         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3355
3356         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3357                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3358         if (r < 0)
3359                 goto out2;
3360
3361         idx = srcu_read_lock(&kvm->srcu);
3362         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3363         if (r < 0)
3364                 goto out;
3365         /* Set up identity-mapping pagetable for EPT in real mode */
3366         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3367                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3368                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3369                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3370                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3371                 if (r < 0)
3372                         goto out;
3373         }
3374         kvm_vmx->ept_identity_pagetable_done = true;
3375
3376 out:
3377         srcu_read_unlock(&kvm->srcu, idx);
3378
3379 out2:
3380         mutex_unlock(&kvm->slots_lock);
3381         return r;
3382 }
3383
3384 static void seg_setup(int seg)
3385 {
3386         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3387         unsigned int ar;
3388
3389         vmcs_write16(sf->selector, 0);
3390         vmcs_writel(sf->base, 0);
3391         vmcs_write32(sf->limit, 0xffff);
3392         ar = 0x93;
3393         if (seg == VCPU_SREG_CS)
3394                 ar |= 0x08; /* code segment */
3395
3396         vmcs_write32(sf->ar_bytes, ar);
3397 }
3398
3399 static int alloc_apic_access_page(struct kvm *kvm)
3400 {
3401         struct page *page;
3402         int r = 0;
3403
3404         mutex_lock(&kvm->slots_lock);
3405         if (kvm->arch.apic_access_page_done)
3406                 goto out;
3407         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3408                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3409         if (r)
3410                 goto out;
3411
3412         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3413         if (is_error_page(page)) {
3414                 r = -EFAULT;
3415                 goto out;
3416         }
3417
3418         /*
3419          * Do not pin the page in memory, so that memory hot-unplug
3420          * is able to migrate it.
3421          */
3422         put_page(page);
3423         kvm->arch.apic_access_page_done = true;
3424 out:
3425         mutex_unlock(&kvm->slots_lock);
3426         return r;
3427 }
3428
3429 int allocate_vpid(void)
3430 {
3431         int vpid;
3432
3433         if (!enable_vpid)
3434                 return 0;
3435         spin_lock(&vmx_vpid_lock);
3436         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3437         if (vpid < VMX_NR_VPIDS)
3438                 __set_bit(vpid, vmx_vpid_bitmap);
3439         else
3440                 vpid = 0;
3441         spin_unlock(&vmx_vpid_lock);
3442         return vpid;
3443 }
3444
3445 void free_vpid(int vpid)
3446 {
3447         if (!enable_vpid || vpid == 0)
3448                 return;
3449         spin_lock(&vmx_vpid_lock);
3450         __clear_bit(vpid, vmx_vpid_bitmap);
3451         spin_unlock(&vmx_vpid_lock);
3452 }
3453
3454 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3455                                                           u32 msr, int type)
3456 {
3457         int f = sizeof(unsigned long);
3458
3459         if (!cpu_has_vmx_msr_bitmap())
3460                 return;
3461
3462         if (static_branch_unlikely(&enable_evmcs))
3463                 evmcs_touch_msr_bitmap();
3464
3465         /*
3466          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3467          * have the write-low and read-high bitmap offsets the wrong way round.
3468          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3469          */
3470         if (msr <= 0x1fff) {
3471                 if (type & MSR_TYPE_R)
3472                         /* read-low */
3473                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3474
3475                 if (type & MSR_TYPE_W)
3476                         /* write-low */
3477                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3478
3479         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3480                 msr &= 0x1fff;
3481                 if (type & MSR_TYPE_R)
3482                         /* read-high */
3483                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3484
3485                 if (type & MSR_TYPE_W)
3486                         /* write-high */
3487                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3488
3489         }
3490 }
3491
3492 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3493                                                          u32 msr, int type)
3494 {
3495         int f = sizeof(unsigned long);
3496
3497         if (!cpu_has_vmx_msr_bitmap())
3498                 return;
3499
3500         if (static_branch_unlikely(&enable_evmcs))
3501                 evmcs_touch_msr_bitmap();
3502
3503         /*
3504          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3505          * have the write-low and read-high bitmap offsets the wrong way round.
3506          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3507          */
3508         if (msr <= 0x1fff) {
3509                 if (type & MSR_TYPE_R)
3510                         /* read-low */
3511                         __set_bit(msr, msr_bitmap + 0x000 / f);
3512
3513                 if (type & MSR_TYPE_W)
3514                         /* write-low */
3515                         __set_bit(msr, msr_bitmap + 0x800 / f);
3516
3517         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3518                 msr &= 0x1fff;
3519                 if (type & MSR_TYPE_R)
3520                         /* read-high */
3521                         __set_bit(msr, msr_bitmap + 0x400 / f);
3522
3523                 if (type & MSR_TYPE_W)
3524                         /* write-high */
3525                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3526
3527         }
3528 }
3529
3530 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3531                                                       u32 msr, int type, bool value)
3532 {
3533         if (value)
3534                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3535         else
3536                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3537 }
3538
3539 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3540 {
3541         u8 mode = 0;
3542
3543         if (cpu_has_secondary_exec_ctrls() &&
3544             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3545              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3546                 mode |= MSR_BITMAP_MODE_X2APIC;
3547                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3548                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3549         }
3550
3551         return mode;
3552 }
3553
3554 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3555                                          u8 mode)
3556 {
3557         int msr;
3558
3559         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3560                 unsigned word = msr / BITS_PER_LONG;
3561                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3562                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3563         }
3564
3565         if (mode & MSR_BITMAP_MODE_X2APIC) {
3566                 /*
3567                  * TPR reads and writes can be virtualized even if virtual interrupt
3568                  * delivery is not in use.
3569                  */
3570                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3571                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3572                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3573                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3574                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3575                 }
3576         }
3577 }
3578
3579 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3580 {
3581         struct vcpu_vmx *vmx = to_vmx(vcpu);
3582         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3583         u8 mode = vmx_msr_bitmap_mode(vcpu);
3584         u8 changed = mode ^ vmx->msr_bitmap_mode;
3585
3586         if (!changed)
3587                 return;
3588
3589         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3590                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3591
3592         vmx->msr_bitmap_mode = mode;
3593 }
3594
3595 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3596 {
3597         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3598         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3599         u32 i;
3600
3601         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3602                                                         MSR_TYPE_RW, flag);
3603         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3604                                                         MSR_TYPE_RW, flag);
3605         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3606                                                         MSR_TYPE_RW, flag);
3607         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3608                                                         MSR_TYPE_RW, flag);
3609         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3610                 vmx_set_intercept_for_msr(msr_bitmap,
3611                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3612                 vmx_set_intercept_for_msr(msr_bitmap,
3613                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3614         }
3615 }
3616
3617 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3618 {
3619         return enable_apicv;
3620 }
3621
3622 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3623 {
3624         struct vcpu_vmx *vmx = to_vmx(vcpu);
3625         void *vapic_page;
3626         u32 vppr;
3627         int rvi;
3628
3629         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3630                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3631                 WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3632                 return false;
3633
3634         rvi = vmx_get_rvi();
3635
3636         vapic_page = kmap(vmx->nested.virtual_apic_page);
3637         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3638         kunmap(vmx->nested.virtual_apic_page);
3639
3640         return ((rvi & 0xf0) > (vppr & 0xf0));
3641 }
3642
3643 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3644                                                      bool nested)
3645 {
3646 #ifdef CONFIG_SMP
3647         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3648
3649         if (vcpu->mode == IN_GUEST_MODE) {
3650                 /*
3651                  * The vector of interrupt to be delivered to vcpu had
3652                  * been set in PIR before this function.
3653                  *
3654                  * Following cases will be reached in this block, and
3655                  * we always send a notification event in all cases as
3656                  * explained below.
3657                  *
3658                  * Case 1: vcpu keeps in non-root mode. Sending a
3659                  * notification event posts the interrupt to vcpu.
3660                  *
3661                  * Case 2: vcpu exits to root mode and is still
3662                  * runnable. PIR will be synced to vIRR before the
3663                  * next vcpu entry. Sending a notification event in
3664                  * this case has no effect, as vcpu is not in root
3665                  * mode.
3666                  *
3667                  * Case 3: vcpu exits to root mode and is blocked.
3668                  * vcpu_block() has already synced PIR to vIRR and
3669                  * never blocks vcpu if vIRR is not cleared. Therefore,
3670                  * a blocked vcpu here does not wait for any requested
3671                  * interrupts in PIR, and sending a notification event
3672                  * which has no effect is safe here.
3673                  */
3674
3675                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3676                 return true;
3677         }
3678 #endif
3679         return false;
3680 }
3681
3682 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3683                                                 int vector)
3684 {
3685         struct vcpu_vmx *vmx = to_vmx(vcpu);
3686
3687         if (is_guest_mode(vcpu) &&
3688             vector == vmx->nested.posted_intr_nv) {
3689                 /*
3690                  * If a posted intr is not recognized by hardware,
3691                  * we will accomplish it in the next vmentry.
3692                  */
3693                 vmx->nested.pi_pending = true;
3694                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3695                 /* the PIR and ON have been set by L1. */
3696                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3697                         kvm_vcpu_kick(vcpu);
3698                 return 0;
3699         }
3700         return -1;
3701 }
3702 /*
3703  * Send interrupt to vcpu via posted interrupt way.
3704  * 1. If target vcpu is running(non-root mode), send posted interrupt
3705  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3706  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3707  * interrupt from PIR in next vmentry.
3708  */
3709 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3710 {
3711         struct vcpu_vmx *vmx = to_vmx(vcpu);
3712         int r;
3713
3714         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3715         if (!r)
3716                 return;
3717
3718         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3719                 return;
3720
3721         /* If a previous notification has sent the IPI, nothing to do.  */
3722         if (pi_test_and_set_on(&vmx->pi_desc))
3723                 return;
3724
3725         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3726                 kvm_vcpu_kick(vcpu);
3727 }
3728
3729 /*
3730  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3731  * will not change in the lifetime of the guest.
3732  * Note that host-state that does change is set elsewhere. E.g., host-state
3733  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3734  */
3735 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3736 {
3737         u32 low32, high32;
3738         unsigned long tmpl;
3739         struct desc_ptr dt;
3740         unsigned long cr0, cr3, cr4;
3741
3742         cr0 = read_cr0();
3743         WARN_ON(cr0 & X86_CR0_TS);
3744         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3745
3746         /*
3747          * Save the most likely value for this task's CR3 in the VMCS.
3748          * We can't use __get_current_cr3_fast() because we're not atomic.
3749          */
3750         cr3 = __read_cr3();
3751         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3752         vmx->loaded_vmcs->host_state.cr3 = cr3;
3753
3754         /* Save the most likely value for this task's CR4 in the VMCS. */
3755         cr4 = cr4_read_shadow();
3756         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3757         vmx->loaded_vmcs->host_state.cr4 = cr4;
3758
3759         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3760 #ifdef CONFIG_X86_64
3761         /*
3762          * Load null selectors, so we can avoid reloading them in
3763          * vmx_prepare_switch_to_host(), in case userspace uses
3764          * the null selectors too (the expected case).
3765          */
3766         vmcs_write16(HOST_DS_SELECTOR, 0);
3767         vmcs_write16(HOST_ES_SELECTOR, 0);
3768 #else
3769         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3770         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3771 #endif
3772         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3773         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3774
3775         store_idt(&dt);
3776         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3777         vmx->host_idt_base = dt.address;
3778
3779         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3780
3781         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3782         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3783         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3784         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3785
3786         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3787                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3788                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3789         }
3790
3791         if (cpu_has_load_ia32_efer())
3792                 vmcs_write64(HOST_IA32_EFER, host_efer);
3793 }
3794
3795 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3796 {
3797         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3798         if (enable_ept)
3799                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3800         if (is_guest_mode(&vmx->vcpu))
3801                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3802                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3803         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3804 }
3805
3806 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3807 {
3808         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3809
3810         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3811                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3812
3813         if (!enable_vnmi)
3814                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3815
3816         /* Enable the preemption timer dynamically */
3817         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3818         return pin_based_exec_ctrl;
3819 }
3820
3821 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3822 {
3823         struct vcpu_vmx *vmx = to_vmx(vcpu);
3824
3825         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3826         if (cpu_has_secondary_exec_ctrls()) {
3827                 if (kvm_vcpu_apicv_active(vcpu))
3828                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3829                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3830                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3831                 else
3832                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3833                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3834                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3835         }
3836
3837         if (cpu_has_vmx_msr_bitmap())
3838                 vmx_update_msr_bitmap(vcpu);
3839 }
3840
3841 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3842 {
3843         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3844
3845         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3846                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3847
3848         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3849                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3850 #ifdef CONFIG_X86_64
3851                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3852                                 CPU_BASED_CR8_LOAD_EXITING;
3853 #endif
3854         }
3855         if (!enable_ept)
3856                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3857                                 CPU_BASED_CR3_LOAD_EXITING  |
3858                                 CPU_BASED_INVLPG_EXITING;
3859         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3860                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3861                                 CPU_BASED_MONITOR_EXITING);
3862         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3863                 exec_control &= ~CPU_BASED_HLT_EXITING;
3864         return exec_control;
3865 }
3866
3867
3868 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3869 {
3870         struct kvm_vcpu *vcpu = &vmx->vcpu;
3871
3872         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3873
3874         if (pt_mode == PT_MODE_SYSTEM)
3875                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3876         if (!cpu_need_virtualize_apic_accesses(vcpu))
3877                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3878         if (vmx->vpid == 0)
3879                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3880         if (!enable_ept) {
3881                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3882                 enable_unrestricted_guest = 0;
3883         }
3884         if (!enable_unrestricted_guest)
3885                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3886         if (kvm_pause_in_guest(vmx->vcpu.kvm))
3887                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3888         if (!kvm_vcpu_apicv_active(vcpu))
3889                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3890                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3891         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3892
3893         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3894          * in vmx_set_cr4.  */
3895         exec_control &= ~SECONDARY_EXEC_DESC;
3896
3897         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3898            (handle_vmptrld).
3899            We can NOT enable shadow_vmcs here because we don't have yet
3900            a current VMCS12
3901         */
3902         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3903
3904         if (!enable_pml)
3905                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3906
3907         if (vmx_xsaves_supported()) {
3908                 /* Exposing XSAVES only when XSAVE is exposed */
3909                 bool xsaves_enabled =
3910                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3911                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3912
3913                 if (!xsaves_enabled)
3914                         exec_control &= ~SECONDARY_EXEC_XSAVES;
3915
3916                 if (nested) {
3917                         if (xsaves_enabled)
3918                                 vmx->nested.msrs.secondary_ctls_high |=
3919                                         SECONDARY_EXEC_XSAVES;
3920                         else
3921                                 vmx->nested.msrs.secondary_ctls_high &=
3922                                         ~SECONDARY_EXEC_XSAVES;
3923                 }
3924         }
3925
3926         if (vmx_rdtscp_supported()) {
3927                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3928                 if (!rdtscp_enabled)
3929                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
3930
3931                 if (nested) {
3932                         if (rdtscp_enabled)
3933                                 vmx->nested.msrs.secondary_ctls_high |=
3934                                         SECONDARY_EXEC_RDTSCP;
3935                         else
3936                                 vmx->nested.msrs.secondary_ctls_high &=
3937                                         ~SECONDARY_EXEC_RDTSCP;
3938                 }
3939         }
3940
3941         if (vmx_invpcid_supported()) {
3942                 /* Exposing INVPCID only when PCID is exposed */
3943                 bool invpcid_enabled =
3944                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3945                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3946
3947                 if (!invpcid_enabled) {
3948                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3949                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3950                 }
3951
3952                 if (nested) {
3953                         if (invpcid_enabled)
3954                                 vmx->nested.msrs.secondary_ctls_high |=
3955                                         SECONDARY_EXEC_ENABLE_INVPCID;
3956                         else
3957                                 vmx->nested.msrs.secondary_ctls_high &=
3958                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
3959                 }
3960         }
3961
3962         if (vmx_rdrand_supported()) {
3963                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3964                 if (rdrand_enabled)
3965                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3966
3967                 if (nested) {
3968                         if (rdrand_enabled)
3969                                 vmx->nested.msrs.secondary_ctls_high |=
3970                                         SECONDARY_EXEC_RDRAND_EXITING;
3971                         else
3972                                 vmx->nested.msrs.secondary_ctls_high &=
3973                                         ~SECONDARY_EXEC_RDRAND_EXITING;
3974                 }
3975         }
3976
3977         if (vmx_rdseed_supported()) {
3978                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3979                 if (rdseed_enabled)
3980                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3981
3982                 if (nested) {
3983                         if (rdseed_enabled)
3984                                 vmx->nested.msrs.secondary_ctls_high |=
3985                                         SECONDARY_EXEC_RDSEED_EXITING;
3986                         else
3987                                 vmx->nested.msrs.secondary_ctls_high &=
3988                                         ~SECONDARY_EXEC_RDSEED_EXITING;
3989                 }
3990         }
3991
3992         vmx->secondary_exec_control = exec_control;
3993 }
3994
3995 static void ept_set_mmio_spte_mask(void)
3996 {
3997         /*
3998          * EPT Misconfigurations can be generated if the value of bits 2:0
3999          * of an EPT paging-structure entry is 110b (write/execute).
4000          */
4001         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4002                                    VMX_EPT_MISCONFIG_WX_VALUE);
4003 }
4004
4005 #define VMX_XSS_EXIT_BITMAP 0
4006
4007 /*
4008  * Sets up the vmcs for emulated real mode.
4009  */
4010 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4011 {
4012         int i;
4013
4014         if (nested)
4015                 nested_vmx_vcpu_setup();
4016
4017         if (cpu_has_vmx_msr_bitmap())
4018                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4019
4020         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4021
4022         /* Control */
4023         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4024         vmx->hv_deadline_tsc = -1;
4025
4026         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4027
4028         if (cpu_has_secondary_exec_ctrls()) {
4029                 vmx_compute_secondary_exec_control(vmx);
4030                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4031                              vmx->secondary_exec_control);
4032         }
4033
4034         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4035                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4036                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4037                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4038                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4039
4040                 vmcs_write16(GUEST_INTR_STATUS, 0);
4041
4042                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4043                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4044         }
4045
4046         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4047                 vmcs_write32(PLE_GAP, ple_gap);
4048                 vmx->ple_window = ple_window;
4049                 vmx->ple_window_dirty = true;
4050         }
4051
4052         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4053         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4054         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4055
4056         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4057         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4058         vmx_set_constant_host_state(vmx);
4059         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4060         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4061
4062         if (cpu_has_vmx_vmfunc())
4063                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4064
4065         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4066         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4067         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4068         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4069         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4070
4071         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4072                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4073
4074         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4075                 u32 index = vmx_msr_index[i];
4076                 u32 data_low, data_high;
4077                 int j = vmx->nmsrs;
4078
4079                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4080                         continue;
4081                 if (wrmsr_safe(index, data_low, data_high) < 0)
4082                         continue;
4083                 vmx->guest_msrs[j].index = i;
4084                 vmx->guest_msrs[j].data = 0;
4085                 vmx->guest_msrs[j].mask = -1ull;
4086                 ++vmx->nmsrs;
4087         }
4088
4089         vmx->arch_capabilities = kvm_get_arch_capabilities();
4090
4091         vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4092
4093         /* 22.2.1, 20.8.1 */
4094         vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4095
4096         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4097         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4098
4099         set_cr4_guest_host_mask(vmx);
4100
4101         if (vmx_xsaves_supported())
4102                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4103
4104         if (enable_pml) {
4105                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4106                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4107         }
4108
4109         if (cpu_has_vmx_encls_vmexit())
4110                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4111
4112         if (pt_mode == PT_MODE_HOST_GUEST) {
4113                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4114                 /* Bit[6~0] are forced to 1, writes are ignored. */
4115                 vmx->pt_desc.guest.output_mask = 0x7F;
4116                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4117         }
4118 }
4119
4120 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4121 {
4122         struct vcpu_vmx *vmx = to_vmx(vcpu);
4123         struct msr_data apic_base_msr;
4124         u64 cr0;
4125
4126         vmx->rmode.vm86_active = 0;
4127         vmx->spec_ctrl = 0;
4128
4129         vcpu->arch.microcode_version = 0x100000000ULL;
4130         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4131         kvm_set_cr8(vcpu, 0);
4132
4133         if (!init_event) {
4134                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4135                                      MSR_IA32_APICBASE_ENABLE;
4136                 if (kvm_vcpu_is_reset_bsp(vcpu))
4137                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4138                 apic_base_msr.host_initiated = true;
4139                 kvm_set_apic_base(vcpu, &apic_base_msr);
4140         }
4141
4142         vmx_segment_cache_clear(vmx);
4143
4144         seg_setup(VCPU_SREG_CS);
4145         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4146         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4147
4148         seg_setup(VCPU_SREG_DS);
4149         seg_setup(VCPU_SREG_ES);
4150         seg_setup(VCPU_SREG_FS);
4151         seg_setup(VCPU_SREG_GS);
4152         seg_setup(VCPU_SREG_SS);
4153
4154         vmcs_write16(GUEST_TR_SELECTOR, 0);
4155         vmcs_writel(GUEST_TR_BASE, 0);
4156         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4157         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4158
4159         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4160         vmcs_writel(GUEST_LDTR_BASE, 0);
4161         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4162         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4163
4164         if (!init_event) {
4165                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4166                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4167                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4168                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4169         }
4170
4171         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4172         kvm_rip_write(vcpu, 0xfff0);
4173
4174         vmcs_writel(GUEST_GDTR_BASE, 0);
4175         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4176
4177         vmcs_writel(GUEST_IDTR_BASE, 0);
4178         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4179
4180         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4181         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4182         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4183         if (kvm_mpx_supported())
4184                 vmcs_write64(GUEST_BNDCFGS, 0);
4185
4186         setup_msrs(vmx);
4187
4188         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4189
4190         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4191                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4192                 if (cpu_need_tpr_shadow(vcpu))
4193                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4194                                      __pa(vcpu->arch.apic->regs));
4195                 vmcs_write32(TPR_THRESHOLD, 0);
4196         }
4197
4198         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4199
4200         if (vmx->vpid != 0)
4201                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4202
4203         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4204         vmx->vcpu.arch.cr0 = cr0;
4205         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4206         vmx_set_cr4(vcpu, 0);
4207         vmx_set_efer(vcpu, 0);
4208
4209         update_exception_bitmap(vcpu);
4210
4211         vpid_sync_context(vmx->vpid);
4212         if (init_event)
4213                 vmx_clear_hlt(vcpu);
4214 }
4215
4216 static void enable_irq_window(struct kvm_vcpu *vcpu)
4217 {
4218         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4219                       CPU_BASED_VIRTUAL_INTR_PENDING);
4220 }
4221
4222 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4223 {
4224         if (!enable_vnmi ||
4225             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4226                 enable_irq_window(vcpu);
4227                 return;
4228         }
4229
4230         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4231                       CPU_BASED_VIRTUAL_NMI_PENDING);
4232 }
4233
4234 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4235 {
4236         struct vcpu_vmx *vmx = to_vmx(vcpu);
4237         uint32_t intr;
4238         int irq = vcpu->arch.interrupt.nr;
4239
4240         trace_kvm_inj_virq(irq);
4241
4242         ++vcpu->stat.irq_injections;
4243         if (vmx->rmode.vm86_active) {
4244                 int inc_eip = 0;
4245                 if (vcpu->arch.interrupt.soft)
4246                         inc_eip = vcpu->arch.event_exit_inst_len;
4247                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4248                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4249                 return;
4250         }
4251         intr = irq | INTR_INFO_VALID_MASK;
4252         if (vcpu->arch.interrupt.soft) {
4253                 intr |= INTR_TYPE_SOFT_INTR;
4254                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4255                              vmx->vcpu.arch.event_exit_inst_len);
4256         } else
4257                 intr |= INTR_TYPE_EXT_INTR;
4258         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4259
4260         vmx_clear_hlt(vcpu);
4261 }
4262
4263 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4264 {
4265         struct vcpu_vmx *vmx = to_vmx(vcpu);
4266
4267         if (!enable_vnmi) {
4268                 /*
4269                  * Tracking the NMI-blocked state in software is built upon
4270                  * finding the next open IRQ window. This, in turn, depends on
4271                  * well-behaving guests: They have to keep IRQs disabled at
4272                  * least as long as the NMI handler runs. Otherwise we may
4273                  * cause NMI nesting, maybe breaking the guest. But as this is
4274                  * highly unlikely, we can live with the residual risk.
4275                  */
4276                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4277                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4278         }
4279
4280         ++vcpu->stat.nmi_injections;
4281         vmx->loaded_vmcs->nmi_known_unmasked = false;
4282
4283         if (vmx->rmode.vm86_active) {
4284                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4285                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4286                 return;
4287         }
4288
4289         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4290                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4291
4292         vmx_clear_hlt(vcpu);
4293 }
4294
4295 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4296 {
4297         struct vcpu_vmx *vmx = to_vmx(vcpu);
4298         bool masked;
4299
4300         if (!enable_vnmi)
4301                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4302         if (vmx->loaded_vmcs->nmi_known_unmasked)
4303                 return false;
4304         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4305         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4306         return masked;
4307 }
4308
4309 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4310 {
4311         struct vcpu_vmx *vmx = to_vmx(vcpu);
4312
4313         if (!enable_vnmi) {
4314                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4315                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4316                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4317                 }
4318         } else {
4319                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4320                 if (masked)
4321                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4322                                       GUEST_INTR_STATE_NMI);
4323                 else
4324                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4325                                         GUEST_INTR_STATE_NMI);
4326         }
4327 }
4328
4329 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4330 {
4331         if (to_vmx(vcpu)->nested.nested_run_pending)
4332                 return 0;
4333
4334         if (!enable_vnmi &&
4335             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4336                 return 0;
4337
4338         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4339                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4340                    | GUEST_INTR_STATE_NMI));
4341 }
4342
4343 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4344 {
4345         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4346                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4347                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4348                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4349 }
4350
4351 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4352 {
4353         int ret;
4354
4355         if (enable_unrestricted_guest)
4356                 return 0;
4357
4358         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4359                                     PAGE_SIZE * 3);
4360         if (ret)
4361                 return ret;
4362         to_kvm_vmx(kvm)->tss_addr = addr;
4363         return init_rmode_tss(kvm);
4364 }
4365
4366 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4367 {
4368         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4369         return 0;
4370 }
4371
4372 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4373 {
4374         switch (vec) {
4375         case BP_VECTOR:
4376                 /*
4377                  * Update instruction length as we may reinject the exception
4378                  * from user space while in guest debugging mode.
4379                  */
4380                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4381                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4382                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4383                         return false;
4384                 /* fall through */
4385         case DB_VECTOR:
4386                 if (vcpu->guest_debug &
4387                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4388                         return false;
4389                 /* fall through */
4390         case DE_VECTOR:
4391         case OF_VECTOR:
4392         case BR_VECTOR:
4393         case UD_VECTOR:
4394         case DF_VECTOR:
4395         case SS_VECTOR:
4396         case GP_VECTOR:
4397         case MF_VECTOR:
4398                 return true;
4399         break;
4400         }
4401         return false;
4402 }
4403
4404 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4405                                   int vec, u32 err_code)
4406 {
4407         /*
4408          * Instruction with address size override prefix opcode 0x67
4409          * Cause the #SS fault with 0 error code in VM86 mode.
4410          */
4411         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4412                 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4413                         if (vcpu->arch.halt_request) {
4414                                 vcpu->arch.halt_request = 0;
4415                                 return kvm_vcpu_halt(vcpu);
4416                         }
4417                         return 1;
4418                 }
4419                 return 0;
4420         }
4421
4422         /*
4423          * Forward all other exceptions that are valid in real mode.
4424          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4425          *        the required debugging infrastructure rework.
4426          */
4427         kvm_queue_exception(vcpu, vec);
4428         return 1;
4429 }
4430
4431 /*
4432  * Trigger machine check on the host. We assume all the MSRs are already set up
4433  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4434  * We pass a fake environment to the machine check handler because we want
4435  * the guest to be always treated like user space, no matter what context
4436  * it used internally.
4437  */
4438 static void kvm_machine_check(void)
4439 {
4440 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4441         struct pt_regs regs = {
4442                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4443                 .flags = X86_EFLAGS_IF,
4444         };
4445
4446         do_machine_check(&regs, 0);
4447 #endif
4448 }
4449
4450 static int handle_machine_check(struct kvm_vcpu *vcpu)
4451 {
4452         /* already handled by vcpu_run */
4453         return 1;
4454 }
4455
4456 static int handle_exception(struct kvm_vcpu *vcpu)
4457 {
4458         struct vcpu_vmx *vmx = to_vmx(vcpu);
4459         struct kvm_run *kvm_run = vcpu->run;
4460         u32 intr_info, ex_no, error_code;
4461         unsigned long cr2, rip, dr6;
4462         u32 vect_info;
4463         enum emulation_result er;
4464
4465         vect_info = vmx->idt_vectoring_info;
4466         intr_info = vmx->exit_intr_info;
4467
4468         if (is_machine_check(intr_info))
4469                 return handle_machine_check(vcpu);
4470
4471         if (is_nmi(intr_info))
4472                 return 1;  /* already handled by vmx_vcpu_run() */
4473
4474         if (is_invalid_opcode(intr_info))
4475                 return handle_ud(vcpu);
4476
4477         error_code = 0;
4478         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4479                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4480
4481         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4482                 WARN_ON_ONCE(!enable_vmware_backdoor);
4483                 er = kvm_emulate_instruction(vcpu,
4484                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4485                 if (er == EMULATE_USER_EXIT)
4486                         return 0;
4487                 else if (er != EMULATE_DONE)
4488                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4489                 return 1;
4490         }
4491
4492         /*
4493          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4494          * MMIO, it is better to report an internal error.
4495          * See the comments in vmx_handle_exit.
4496          */
4497         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4498             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4499                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4500                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4501                 vcpu->run->internal.ndata = 3;
4502                 vcpu->run->internal.data[0] = vect_info;
4503                 vcpu->run->internal.data[1] = intr_info;
4504                 vcpu->run->internal.data[2] = error_code;
4505                 return 0;
4506         }
4507
4508         if (is_page_fault(intr_info)) {
4509                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4510                 /* EPT won't cause page fault directly */
4511                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4512                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4513         }
4514
4515         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4516
4517         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4518                 return handle_rmode_exception(vcpu, ex_no, error_code);
4519
4520         switch (ex_no) {
4521         case AC_VECTOR:
4522                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4523                 return 1;
4524         case DB_VECTOR:
4525                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4526                 if (!(vcpu->guest_debug &
4527                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4528                         vcpu->arch.dr6 &= ~15;
4529                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4530                         if (is_icebp(intr_info))
4531                                 skip_emulated_instruction(vcpu);
4532
4533                         kvm_queue_exception(vcpu, DB_VECTOR);
4534                         return 1;
4535                 }
4536                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4537                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4538                 /* fall through */
4539         case BP_VECTOR:
4540                 /*
4541                  * Update instruction length as we may reinject #BP from
4542                  * user space while in guest debugging mode. Reading it for
4543                  * #DB as well causes no harm, it is not used in that case.
4544                  */
4545                 vmx->vcpu.arch.event_exit_inst_len =
4546                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4547                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4548                 rip = kvm_rip_read(vcpu);
4549                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4550                 kvm_run->debug.arch.exception = ex_no;
4551                 break;
4552         default:
4553                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4554                 kvm_run->ex.exception = ex_no;
4555                 kvm_run->ex.error_code = error_code;
4556                 break;
4557         }
4558         return 0;
4559 }
4560
4561 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4562 {
4563         ++vcpu->stat.irq_exits;
4564         return 1;
4565 }
4566
4567 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4568 {
4569         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4570         vcpu->mmio_needed = 0;
4571         return 0;
4572 }
4573
4574 static int handle_io(struct kvm_vcpu *vcpu)
4575 {
4576         unsigned long exit_qualification;
4577         int size, in, string;
4578         unsigned port;
4579
4580         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4581         string = (exit_qualification & 16) != 0;
4582
4583         ++vcpu->stat.io_exits;
4584
4585         if (string)
4586                 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4587
4588         port = exit_qualification >> 16;
4589         size = (exit_qualification & 7) + 1;
4590         in = (exit_qualification & 8) != 0;
4591
4592         return kvm_fast_pio(vcpu, size, port, in);
4593 }
4594
4595 static void
4596 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4597 {
4598         /*
4599          * Patch in the VMCALL instruction:
4600          */
4601         hypercall[0] = 0x0f;
4602         hypercall[1] = 0x01;
4603         hypercall[2] = 0xc1;
4604 }
4605
4606 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4607 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4608 {
4609         if (is_guest_mode(vcpu)) {
4610                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4611                 unsigned long orig_val = val;
4612
4613                 /*
4614                  * We get here when L2 changed cr0 in a way that did not change
4615                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4616                  * but did change L0 shadowed bits. So we first calculate the
4617                  * effective cr0 value that L1 would like to write into the
4618                  * hardware. It consists of the L2-owned bits from the new
4619                  * value combined with the L1-owned bits from L1's guest_cr0.
4620                  */
4621                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4622                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4623
4624                 if (!nested_guest_cr0_valid(vcpu, val))
4625                         return 1;
4626
4627                 if (kvm_set_cr0(vcpu, val))
4628                         return 1;
4629                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4630                 return 0;
4631         } else {
4632                 if (to_vmx(vcpu)->nested.vmxon &&
4633                     !nested_host_cr0_valid(vcpu, val))
4634                         return 1;
4635
4636                 return kvm_set_cr0(vcpu, val);
4637         }
4638 }
4639
4640 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4641 {
4642         if (is_guest_mode(vcpu)) {
4643                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4644                 unsigned long orig_val = val;
4645
4646                 /* analogously to handle_set_cr0 */
4647                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4648                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4649                 if (kvm_set_cr4(vcpu, val))
4650                         return 1;
4651                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4652                 return 0;
4653         } else
4654                 return kvm_set_cr4(vcpu, val);
4655 }
4656
4657 static int handle_desc(struct kvm_vcpu *vcpu)
4658 {
4659         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4660         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4661 }
4662
4663 static int handle_cr(struct kvm_vcpu *vcpu)
4664 {
4665         unsigned long exit_qualification, val;
4666         int cr;
4667         int reg;
4668         int err;
4669         int ret;
4670
4671         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4672         cr = exit_qualification & 15;
4673         reg = (exit_qualification >> 8) & 15;
4674         switch ((exit_qualification >> 4) & 3) {
4675         case 0: /* mov to cr */
4676                 val = kvm_register_readl(vcpu, reg);
4677                 trace_kvm_cr_write(cr, val);
4678                 switch (cr) {
4679                 case 0:
4680                         err = handle_set_cr0(vcpu, val);
4681                         return kvm_complete_insn_gp(vcpu, err);
4682                 case 3:
4683                         WARN_ON_ONCE(enable_unrestricted_guest);
4684                         err = kvm_set_cr3(vcpu, val);
4685                         return kvm_complete_insn_gp(vcpu, err);
4686                 case 4:
4687                         err = handle_set_cr4(vcpu, val);
4688                         return kvm_complete_insn_gp(vcpu, err);
4689                 case 8: {
4690                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4691                                 u8 cr8 = (u8)val;
4692                                 err = kvm_set_cr8(vcpu, cr8);
4693                                 ret = kvm_complete_insn_gp(vcpu, err);
4694                                 if (lapic_in_kernel(vcpu))
4695                                         return ret;
4696                                 if (cr8_prev <= cr8)
4697                                         return ret;
4698                                 /*
4699                                  * TODO: we might be squashing a
4700                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4701                                  * KVM_EXIT_DEBUG here.
4702                                  */
4703                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4704                                 return 0;
4705                         }
4706                 }
4707                 break;
4708         case 2: /* clts */
4709                 WARN_ONCE(1, "Guest should always own CR0.TS");
4710                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4711                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4712                 return kvm_skip_emulated_instruction(vcpu);
4713         case 1: /*mov from cr*/
4714                 switch (cr) {
4715                 case 3:
4716                         WARN_ON_ONCE(enable_unrestricted_guest);
4717                         val = kvm_read_cr3(vcpu);
4718                         kvm_register_write(vcpu, reg, val);
4719                         trace_kvm_cr_read(cr, val);
4720                         return kvm_skip_emulated_instruction(vcpu);
4721                 case 8:
4722                         val = kvm_get_cr8(vcpu);
4723                         kvm_register_write(vcpu, reg, val);
4724                         trace_kvm_cr_read(cr, val);
4725                         return kvm_skip_emulated_instruction(vcpu);
4726                 }
4727                 break;
4728         case 3: /* lmsw */
4729                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4730                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4731                 kvm_lmsw(vcpu, val);
4732
4733                 return kvm_skip_emulated_instruction(vcpu);
4734         default:
4735                 break;
4736         }
4737         vcpu->run->exit_reason = 0;
4738         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4739                (int)(exit_qualification >> 4) & 3, cr);
4740         return 0;
4741 }
4742
4743 static int handle_dr(struct kvm_vcpu *vcpu)
4744 {
4745         unsigned long exit_qualification;
4746         int dr, dr7, reg;
4747
4748         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4749         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4750
4751         /* First, if DR does not exist, trigger UD */
4752         if (!kvm_require_dr(vcpu, dr))
4753                 return 1;
4754
4755         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4756         if (!kvm_require_cpl(vcpu, 0))
4757                 return 1;
4758         dr7 = vmcs_readl(GUEST_DR7);
4759         if (dr7 & DR7_GD) {
4760                 /*
4761                  * As the vm-exit takes precedence over the debug trap, we
4762                  * need to emulate the latter, either for the host or the
4763                  * guest debugging itself.
4764                  */
4765                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4766                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4767                         vcpu->run->debug.arch.dr7 = dr7;
4768                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4769                         vcpu->run->debug.arch.exception = DB_VECTOR;
4770                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4771                         return 0;
4772                 } else {
4773                         vcpu->arch.dr6 &= ~15;
4774                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4775                         kvm_queue_exception(vcpu, DB_VECTOR);
4776                         return 1;
4777                 }
4778         }
4779
4780         if (vcpu->guest_debug == 0) {
4781                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4782                                 CPU_BASED_MOV_DR_EXITING);
4783
4784                 /*
4785                  * No more DR vmexits; force a reload of the debug registers
4786                  * and reenter on this instruction.  The next vmexit will
4787                  * retrieve the full state of the debug registers.
4788                  */
4789                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4790                 return 1;
4791         }
4792
4793         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4794         if (exit_qualification & TYPE_MOV_FROM_DR) {
4795                 unsigned long val;
4796
4797                 if (kvm_get_dr(vcpu, dr, &val))
4798                         return 1;
4799                 kvm_register_write(vcpu, reg, val);
4800         } else
4801                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4802                         return 1;
4803
4804         return kvm_skip_emulated_instruction(vcpu);
4805 }
4806
4807 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4808 {
4809         return vcpu->arch.dr6;
4810 }
4811
4812 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4813 {
4814 }
4815
4816 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4817 {
4818         get_debugreg(vcpu->arch.db[0], 0);
4819         get_debugreg(vcpu->arch.db[1], 1);
4820         get_debugreg(vcpu->arch.db[2], 2);
4821         get_debugreg(vcpu->arch.db[3], 3);
4822         get_debugreg(vcpu->arch.dr6, 6);
4823         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4824
4825         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4826         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4827 }
4828
4829 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4830 {
4831         vmcs_writel(GUEST_DR7, val);
4832 }
4833
4834 static int handle_cpuid(struct kvm_vcpu *vcpu)
4835 {
4836         return kvm_emulate_cpuid(vcpu);
4837 }
4838
4839 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4840 {
4841         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4842         struct msr_data msr_info;
4843
4844         msr_info.index = ecx;
4845         msr_info.host_initiated = false;
4846         if (vmx_get_msr(vcpu, &msr_info)) {
4847                 trace_kvm_msr_read_ex(ecx);
4848                 kvm_inject_gp(vcpu, 0);
4849                 return 1;
4850         }
4851
4852         trace_kvm_msr_read(ecx, msr_info.data);
4853
4854         /* FIXME: handling of bits 32:63 of rax, rdx */
4855         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4856         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4857         return kvm_skip_emulated_instruction(vcpu);
4858 }
4859
4860 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4861 {
4862         struct msr_data msr;
4863         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4864         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4865                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4866
4867         msr.data = data;
4868         msr.index = ecx;
4869         msr.host_initiated = false;
4870         if (kvm_set_msr(vcpu, &msr) != 0) {
4871                 trace_kvm_msr_write_ex(ecx, data);
4872                 kvm_inject_gp(vcpu, 0);
4873                 return 1;
4874         }
4875
4876         trace_kvm_msr_write(ecx, data);
4877         return kvm_skip_emulated_instruction(vcpu);
4878 }
4879
4880 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4881 {
4882         kvm_apic_update_ppr(vcpu);
4883         return 1;
4884 }
4885
4886 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4887 {
4888         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4889                         CPU_BASED_VIRTUAL_INTR_PENDING);
4890
4891         kvm_make_request(KVM_REQ_EVENT, vcpu);
4892
4893         ++vcpu->stat.irq_window_exits;
4894         return 1;
4895 }
4896
4897 static int handle_halt(struct kvm_vcpu *vcpu)
4898 {
4899         return kvm_emulate_halt(vcpu);
4900 }
4901
4902 static int handle_vmcall(struct kvm_vcpu *vcpu)
4903 {
4904         return kvm_emulate_hypercall(vcpu);
4905 }
4906
4907 static int handle_invd(struct kvm_vcpu *vcpu)
4908 {
4909         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4910 }
4911
4912 static int handle_invlpg(struct kvm_vcpu *vcpu)
4913 {
4914         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4915
4916         kvm_mmu_invlpg(vcpu, exit_qualification);
4917         return kvm_skip_emulated_instruction(vcpu);
4918 }
4919
4920 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4921 {
4922         int err;
4923
4924         err = kvm_rdpmc(vcpu);
4925         return kvm_complete_insn_gp(vcpu, err);
4926 }
4927
4928 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4929 {
4930         return kvm_emulate_wbinvd(vcpu);
4931 }
4932
4933 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4934 {
4935         u64 new_bv = kvm_read_edx_eax(vcpu);
4936         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4937
4938         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4939                 return kvm_skip_emulated_instruction(vcpu);
4940         return 1;
4941 }
4942
4943 static int handle_xsaves(struct kvm_vcpu *vcpu)
4944 {
4945         kvm_skip_emulated_instruction(vcpu);
4946         WARN(1, "this should never happen\n");
4947         return 1;
4948 }
4949
4950 static int handle_xrstors(struct kvm_vcpu *vcpu)
4951 {
4952         kvm_skip_emulated_instruction(vcpu);
4953         WARN(1, "this should never happen\n");
4954         return 1;
4955 }
4956
4957 static int handle_apic_access(struct kvm_vcpu *vcpu)
4958 {
4959         if (likely(fasteoi)) {
4960                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4961                 int access_type, offset;
4962
4963                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4964                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4965                 /*
4966                  * Sane guest uses MOV to write EOI, with written value
4967                  * not cared. So make a short-circuit here by avoiding
4968                  * heavy instruction emulation.
4969                  */
4970                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4971                     (offset == APIC_EOI)) {
4972                         kvm_lapic_set_eoi(vcpu);
4973                         return kvm_skip_emulated_instruction(vcpu);
4974                 }
4975         }
4976         return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4977 }
4978
4979 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4980 {
4981         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4982         int vector = exit_qualification & 0xff;
4983
4984         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4985         kvm_apic_set_eoi_accelerated(vcpu, vector);
4986         return 1;
4987 }
4988
4989 static int handle_apic_write(struct kvm_vcpu *vcpu)
4990 {
4991         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4992         u32 offset = exit_qualification & 0xfff;
4993
4994         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
4995         kvm_apic_write_nodecode(vcpu, offset);
4996         return 1;
4997 }
4998
4999 static int handle_task_switch(struct kvm_vcpu *vcpu)
5000 {
5001         struct vcpu_vmx *vmx = to_vmx(vcpu);
5002         unsigned long exit_qualification;
5003         bool has_error_code = false;
5004         u32 error_code = 0;
5005         u16 tss_selector;
5006         int reason, type, idt_v, idt_index;
5007
5008         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5009         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5010         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5011
5012         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5013
5014         reason = (u32)exit_qualification >> 30;
5015         if (reason == TASK_SWITCH_GATE && idt_v) {
5016                 switch (type) {
5017                 case INTR_TYPE_NMI_INTR:
5018                         vcpu->arch.nmi_injected = false;
5019                         vmx_set_nmi_mask(vcpu, true);
5020                         break;
5021                 case INTR_TYPE_EXT_INTR:
5022                 case INTR_TYPE_SOFT_INTR:
5023                         kvm_clear_interrupt_queue(vcpu);
5024                         break;
5025                 case INTR_TYPE_HARD_EXCEPTION:
5026                         if (vmx->idt_vectoring_info &
5027                             VECTORING_INFO_DELIVER_CODE_MASK) {
5028                                 has_error_code = true;
5029                                 error_code =
5030                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5031                         }
5032                         /* fall through */
5033                 case INTR_TYPE_SOFT_EXCEPTION:
5034                         kvm_clear_exception_queue(vcpu);
5035                         break;
5036                 default:
5037                         break;
5038                 }
5039         }
5040         tss_selector = exit_qualification;
5041
5042         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5043                        type != INTR_TYPE_EXT_INTR &&
5044                        type != INTR_TYPE_NMI_INTR))
5045                 skip_emulated_instruction(vcpu);
5046
5047         if (kvm_task_switch(vcpu, tss_selector,
5048                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5049                             has_error_code, error_code) == EMULATE_FAIL) {
5050                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5051                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5052                 vcpu->run->internal.ndata = 0;
5053                 return 0;
5054         }
5055
5056         /*
5057          * TODO: What about debug traps on tss switch?
5058          *       Are we supposed to inject them and update dr6?
5059          */
5060
5061         return 1;
5062 }
5063
5064 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5065 {
5066         unsigned long exit_qualification;
5067         gpa_t gpa;
5068         u64 error_code;
5069
5070         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5071
5072         /*
5073          * EPT violation happened while executing iret from NMI,
5074          * "blocked by NMI" bit has to be set before next VM entry.
5075          * There are errata that may cause this bit to not be set:
5076          * AAK134, BY25.
5077          */
5078         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5079                         enable_vnmi &&
5080                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5081                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5082
5083         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5084         trace_kvm_page_fault(gpa, exit_qualification);
5085
5086         /* Is it a read fault? */
5087         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5088                      ? PFERR_USER_MASK : 0;
5089         /* Is it a write fault? */
5090         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5091                       ? PFERR_WRITE_MASK : 0;
5092         /* Is it a fetch fault? */
5093         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5094                       ? PFERR_FETCH_MASK : 0;
5095         /* ept page table entry is present? */
5096         error_code |= (exit_qualification &
5097                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5098                         EPT_VIOLATION_EXECUTABLE))
5099                       ? PFERR_PRESENT_MASK : 0;
5100
5101         error_code |= (exit_qualification & 0x100) != 0 ?
5102                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5103
5104         vcpu->arch.exit_qualification = exit_qualification;
5105         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5106 }
5107
5108 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5109 {
5110         gpa_t gpa;
5111
5112         /*
5113          * A nested guest cannot optimize MMIO vmexits, because we have an
5114          * nGPA here instead of the required GPA.
5115          */
5116         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5117         if (!is_guest_mode(vcpu) &&
5118             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5119                 trace_kvm_fast_mmio(gpa);
5120                 /*
5121                  * Doing kvm_skip_emulated_instruction() depends on undefined
5122                  * behavior: Intel's manual doesn't mandate
5123                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5124                  * occurs and while on real hardware it was observed to be set,
5125                  * other hypervisors (namely Hyper-V) don't set it, we end up
5126                  * advancing IP with some random value. Disable fast mmio when
5127                  * running nested and keep it for real hardware in hope that
5128                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5129                  */
5130                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5131                         return kvm_skip_emulated_instruction(vcpu);
5132                 else
5133                         return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5134                                                                 EMULATE_DONE;
5135         }
5136
5137         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5138 }
5139
5140 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5141 {
5142         WARN_ON_ONCE(!enable_vnmi);
5143         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5144                         CPU_BASED_VIRTUAL_NMI_PENDING);
5145         ++vcpu->stat.nmi_window_exits;
5146         kvm_make_request(KVM_REQ_EVENT, vcpu);
5147
5148         return 1;
5149 }
5150
5151 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5152 {
5153         struct vcpu_vmx *vmx = to_vmx(vcpu);
5154         enum emulation_result err = EMULATE_DONE;
5155         int ret = 1;
5156         u32 cpu_exec_ctrl;
5157         bool intr_window_requested;
5158         unsigned count = 130;
5159
5160         /*
5161          * We should never reach the point where we are emulating L2
5162          * due to invalid guest state as that means we incorrectly
5163          * allowed a nested VMEntry with an invalid vmcs12.
5164          */
5165         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5166
5167         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5168         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5169
5170         while (vmx->emulation_required && count-- != 0) {
5171                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5172                         return handle_interrupt_window(&vmx->vcpu);
5173
5174                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5175                         return 1;
5176
5177                 err = kvm_emulate_instruction(vcpu, 0);
5178
5179                 if (err == EMULATE_USER_EXIT) {
5180                         ++vcpu->stat.mmio_exits;
5181                         ret = 0;
5182                         goto out;
5183                 }
5184
5185                 if (err != EMULATE_DONE)
5186                         goto emulation_error;
5187
5188                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5189                     vcpu->arch.exception.pending)
5190                         goto emulation_error;
5191
5192                 if (vcpu->arch.halt_request) {
5193                         vcpu->arch.halt_request = 0;
5194                         ret = kvm_vcpu_halt(vcpu);
5195                         goto out;
5196                 }
5197
5198                 if (signal_pending(current))
5199                         goto out;
5200                 if (need_resched())
5201                         schedule();
5202         }
5203
5204 out:
5205         return ret;
5206
5207 emulation_error:
5208         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5209         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5210         vcpu->run->internal.ndata = 0;
5211         return 0;
5212 }
5213
5214 static void grow_ple_window(struct kvm_vcpu *vcpu)
5215 {
5216         struct vcpu_vmx *vmx = to_vmx(vcpu);
5217         int old = vmx->ple_window;
5218
5219         vmx->ple_window = __grow_ple_window(old, ple_window,
5220                                             ple_window_grow,
5221                                             ple_window_max);
5222
5223         if (vmx->ple_window != old)
5224                 vmx->ple_window_dirty = true;
5225
5226         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5227 }
5228
5229 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5230 {
5231         struct vcpu_vmx *vmx = to_vmx(vcpu);
5232         int old = vmx->ple_window;
5233
5234         vmx->ple_window = __shrink_ple_window(old, ple_window,
5235                                               ple_window_shrink,
5236                                               ple_window);
5237
5238         if (vmx->ple_window != old)
5239                 vmx->ple_window_dirty = true;
5240
5241         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5242 }
5243
5244 /*
5245  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5246  */
5247 static void wakeup_handler(void)
5248 {
5249         struct kvm_vcpu *vcpu;
5250         int cpu = smp_processor_id();
5251
5252         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5253         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5254                         blocked_vcpu_list) {
5255                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5256
5257                 if (pi_test_on(pi_desc) == 1)
5258                         kvm_vcpu_kick(vcpu);
5259         }
5260         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5261 }
5262
5263 static void vmx_enable_tdp(void)
5264 {
5265         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5266                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5267                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5268                 0ull, VMX_EPT_EXECUTABLE_MASK,
5269                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5270                 VMX_EPT_RWX_MASK, 0ull);
5271
5272         ept_set_mmio_spte_mask();
5273         kvm_enable_tdp();
5274 }
5275
5276 /*
5277  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5278  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5279  */
5280 static int handle_pause(struct kvm_vcpu *vcpu)
5281 {
5282         if (!kvm_pause_in_guest(vcpu->kvm))
5283                 grow_ple_window(vcpu);
5284
5285         /*
5286          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5287          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5288          * never set PAUSE_EXITING and just set PLE if supported,
5289          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5290          */
5291         kvm_vcpu_on_spin(vcpu, true);
5292         return kvm_skip_emulated_instruction(vcpu);
5293 }
5294
5295 static int handle_nop(struct kvm_vcpu *vcpu)
5296 {
5297         return kvm_skip_emulated_instruction(vcpu);
5298 }
5299
5300 static int handle_mwait(struct kvm_vcpu *vcpu)
5301 {
5302         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5303         return handle_nop(vcpu);
5304 }
5305
5306 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5307 {
5308         kvm_queue_exception(vcpu, UD_VECTOR);
5309         return 1;
5310 }
5311
5312 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5313 {
5314         return 1;
5315 }
5316
5317 static int handle_monitor(struct kvm_vcpu *vcpu)
5318 {
5319         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5320         return handle_nop(vcpu);
5321 }
5322
5323 static int handle_invpcid(struct kvm_vcpu *vcpu)
5324 {
5325         u32 vmx_instruction_info;
5326         unsigned long type;
5327         bool pcid_enabled;
5328         gva_t gva;
5329         struct x86_exception e;
5330         unsigned i;
5331         unsigned long roots_to_free = 0;
5332         struct {
5333                 u64 pcid;
5334                 u64 gla;
5335         } operand;
5336
5337         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5338                 kvm_queue_exception(vcpu, UD_VECTOR);
5339                 return 1;
5340         }
5341
5342         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5343         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5344
5345         if (type > 3) {
5346                 kvm_inject_gp(vcpu, 0);
5347                 return 1;
5348         }
5349
5350         /* According to the Intel instruction reference, the memory operand
5351          * is read even if it isn't needed (e.g., for type==all)
5352          */
5353         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5354                                 vmx_instruction_info, false, &gva))
5355                 return 1;
5356
5357         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5358                 kvm_inject_page_fault(vcpu, &e);
5359                 return 1;
5360         }
5361
5362         if (operand.pcid >> 12 != 0) {
5363                 kvm_inject_gp(vcpu, 0);
5364                 return 1;
5365         }
5366
5367         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5368
5369         switch (type) {
5370         case INVPCID_TYPE_INDIV_ADDR:
5371                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5372                     is_noncanonical_address(operand.gla, vcpu)) {
5373                         kvm_inject_gp(vcpu, 0);
5374                         return 1;
5375                 }
5376                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5377                 return kvm_skip_emulated_instruction(vcpu);
5378
5379         case INVPCID_TYPE_SINGLE_CTXT:
5380                 if (!pcid_enabled && (operand.pcid != 0)) {
5381                         kvm_inject_gp(vcpu, 0);
5382                         return 1;
5383                 }
5384
5385                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5386                         kvm_mmu_sync_roots(vcpu);
5387                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5388                 }
5389
5390                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5391                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5392                             == operand.pcid)
5393                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5394
5395                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5396                 /*
5397                  * If neither the current cr3 nor any of the prev_roots use the
5398                  * given PCID, then nothing needs to be done here because a
5399                  * resync will happen anyway before switching to any other CR3.
5400                  */
5401
5402                 return kvm_skip_emulated_instruction(vcpu);
5403
5404         case INVPCID_TYPE_ALL_NON_GLOBAL:
5405                 /*
5406                  * Currently, KVM doesn't mark global entries in the shadow
5407                  * page tables, so a non-global flush just degenerates to a
5408                  * global flush. If needed, we could optimize this later by
5409                  * keeping track of global entries in shadow page tables.
5410                  */
5411
5412                 /* fall-through */
5413         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5414                 kvm_mmu_unload(vcpu);
5415                 return kvm_skip_emulated_instruction(vcpu);
5416
5417         default:
5418                 BUG(); /* We have already checked above that type <= 3 */
5419         }
5420 }
5421
5422 static int handle_pml_full(struct kvm_vcpu *vcpu)
5423 {
5424         unsigned long exit_qualification;
5425
5426         trace_kvm_pml_full(vcpu->vcpu_id);
5427
5428         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5429
5430         /*
5431          * PML buffer FULL happened while executing iret from NMI,
5432          * "blocked by NMI" bit has to be set before next VM entry.
5433          */
5434         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5435                         enable_vnmi &&
5436                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5437                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5438                                 GUEST_INTR_STATE_NMI);
5439
5440         /*
5441          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5442          * here.., and there's no userspace involvement needed for PML.
5443          */
5444         return 1;
5445 }
5446
5447 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5448 {
5449         if (!to_vmx(vcpu)->req_immediate_exit)
5450                 kvm_lapic_expired_hv_timer(vcpu);
5451         return 1;
5452 }
5453
5454 /*
5455  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5456  * are overwritten by nested_vmx_setup() when nested=1.
5457  */
5458 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5459 {
5460         kvm_queue_exception(vcpu, UD_VECTOR);
5461         return 1;
5462 }
5463
5464 static int handle_encls(struct kvm_vcpu *vcpu)
5465 {
5466         /*
5467          * SGX virtualization is not yet supported.  There is no software
5468          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5469          * to prevent the guest from executing ENCLS.
5470          */
5471         kvm_queue_exception(vcpu, UD_VECTOR);
5472         return 1;
5473 }
5474
5475 /*
5476  * The exit handlers return 1 if the exit was handled fully and guest execution
5477  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5478  * to be done to userspace and return 0.
5479  */
5480 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5481         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5482         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5483         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5484         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5485         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5486         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5487         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5488         [EXIT_REASON_CPUID]                   = handle_cpuid,
5489         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5490         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5491         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5492         [EXIT_REASON_HLT]                     = handle_halt,
5493         [EXIT_REASON_INVD]                    = handle_invd,
5494         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5495         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5496         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5497         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5498         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5499         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5500         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5501         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5502         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5503         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5504         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5505         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5506         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5507         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5508         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5509         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5510         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5511         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5512         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5513         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5514         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5515         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5516         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5517         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5518         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5519         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5520         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5521         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5522         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5523         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5524         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5525         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5526         [EXIT_REASON_XSAVES]                  = handle_xsaves,
5527         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5528         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5529         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5530         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5531         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5532         [EXIT_REASON_ENCLS]                   = handle_encls,
5533 };
5534
5535 static const int kvm_vmx_max_exit_handlers =
5536         ARRAY_SIZE(kvm_vmx_exit_handlers);
5537
5538 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5539 {
5540         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5541         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5542 }
5543
5544 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5545 {
5546         if (vmx->pml_pg) {
5547                 __free_page(vmx->pml_pg);
5548                 vmx->pml_pg = NULL;
5549         }
5550 }
5551
5552 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5553 {
5554         struct vcpu_vmx *vmx = to_vmx(vcpu);
5555         u64 *pml_buf;
5556         u16 pml_idx;
5557
5558         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5559
5560         /* Do nothing if PML buffer is empty */
5561         if (pml_idx == (PML_ENTITY_NUM - 1))
5562                 return;
5563
5564         /* PML index always points to next available PML buffer entity */
5565         if (pml_idx >= PML_ENTITY_NUM)
5566                 pml_idx = 0;
5567         else
5568                 pml_idx++;
5569
5570         pml_buf = page_address(vmx->pml_pg);
5571         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5572                 u64 gpa;
5573
5574                 gpa = pml_buf[pml_idx];
5575                 WARN_ON(gpa & (PAGE_SIZE - 1));
5576                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5577         }
5578
5579         /* reset PML index */
5580         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5581 }
5582
5583 /*
5584  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5585  * Called before reporting dirty_bitmap to userspace.
5586  */
5587 static void kvm_flush_pml_buffers(struct kvm *kvm)
5588 {
5589         int i;
5590         struct kvm_vcpu *vcpu;
5591         /*
5592          * We only need to kick vcpu out of guest mode here, as PML buffer
5593          * is flushed at beginning of all VMEXITs, and it's obvious that only
5594          * vcpus running in guest are possible to have unflushed GPAs in PML
5595          * buffer.
5596          */
5597         kvm_for_each_vcpu(i, vcpu, kvm)
5598                 kvm_vcpu_kick(vcpu);
5599 }
5600
5601 static void vmx_dump_sel(char *name, uint32_t sel)
5602 {
5603         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5604                name, vmcs_read16(sel),
5605                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5606                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5607                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5608 }
5609
5610 static void vmx_dump_dtsel(char *name, uint32_t limit)
5611 {
5612         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5613                name, vmcs_read32(limit),
5614                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5615 }
5616
5617 static void dump_vmcs(void)
5618 {
5619         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5620         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5621         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5622         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5623         u32 secondary_exec_control = 0;
5624         unsigned long cr4 = vmcs_readl(GUEST_CR4);
5625         u64 efer = vmcs_read64(GUEST_IA32_EFER);
5626         int i, n;
5627
5628         if (cpu_has_secondary_exec_ctrls())
5629                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5630
5631         pr_err("*** Guest State ***\n");
5632         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5633                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5634                vmcs_readl(CR0_GUEST_HOST_MASK));
5635         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5636                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5637         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5638         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5639             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5640         {
5641                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5642                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5643                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5644                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5645         }
5646         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5647                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5648         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5649                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5650         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5651                vmcs_readl(GUEST_SYSENTER_ESP),
5652                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5653         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5654         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5655         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5656         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5657         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5658         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5659         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5660         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5661         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5662         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5663         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5664             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5665                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5666                        efer, vmcs_read64(GUEST_IA32_PAT));
5667         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5668                vmcs_read64(GUEST_IA32_DEBUGCTL),
5669                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5670         if (cpu_has_load_perf_global_ctrl() &&
5671             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5672                 pr_err("PerfGlobCtl = 0x%016llx\n",
5673                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5674         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5675                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5676         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5677                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5678                vmcs_read32(GUEST_ACTIVITY_STATE));
5679         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5680                 pr_err("InterruptStatus = %04x\n",
5681                        vmcs_read16(GUEST_INTR_STATUS));
5682
5683         pr_err("*** Host State ***\n");
5684         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5685                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5686         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5687                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5688                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5689                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5690                vmcs_read16(HOST_TR_SELECTOR));
5691         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5692                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5693                vmcs_readl(HOST_TR_BASE));
5694         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5695                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5696         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5697                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5698                vmcs_readl(HOST_CR4));
5699         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5700                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5701                vmcs_read32(HOST_IA32_SYSENTER_CS),
5702                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5703         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5704                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5705                        vmcs_read64(HOST_IA32_EFER),
5706                        vmcs_read64(HOST_IA32_PAT));
5707         if (cpu_has_load_perf_global_ctrl() &&
5708             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5709                 pr_err("PerfGlobCtl = 0x%016llx\n",
5710                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5711
5712         pr_err("*** Control State ***\n");
5713         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5714                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5715         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5716         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5717                vmcs_read32(EXCEPTION_BITMAP),
5718                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5719                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5720         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5721                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5722                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5723                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5724         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5725                vmcs_read32(VM_EXIT_INTR_INFO),
5726                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5727                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5728         pr_err("        reason=%08x qualification=%016lx\n",
5729                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5730         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5731                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5732                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5733         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5734         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5735                 pr_err("TSC Multiplier = 0x%016llx\n",
5736                        vmcs_read64(TSC_MULTIPLIER));
5737         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5738                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5739         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5740                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5741         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5742                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5743         n = vmcs_read32(CR3_TARGET_COUNT);
5744         for (i = 0; i + 1 < n; i += 4)
5745                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5746                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5747                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5748         if (i < n)
5749                 pr_err("CR3 target%u=%016lx\n",
5750                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5751         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5752                 pr_err("PLE Gap=%08x Window=%08x\n",
5753                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5754         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5755                 pr_err("Virtual processor ID = 0x%04x\n",
5756                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5757 }
5758
5759 /*
5760  * The guest has exited.  See if we can fix it or if we need userspace
5761  * assistance.
5762  */
5763 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5764 {
5765         struct vcpu_vmx *vmx = to_vmx(vcpu);
5766         u32 exit_reason = vmx->exit_reason;
5767         u32 vectoring_info = vmx->idt_vectoring_info;
5768
5769         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5770
5771         /*
5772          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5773          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5774          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5775          * mode as if vcpus is in root mode, the PML buffer must has been
5776          * flushed already.
5777          */
5778         if (enable_pml)
5779                 vmx_flush_pml_buffer(vcpu);
5780
5781         /* If guest state is invalid, start emulating */
5782         if (vmx->emulation_required)
5783                 return handle_invalid_guest_state(vcpu);
5784
5785         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5786                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5787
5788         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5789                 dump_vmcs();
5790                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5791                 vcpu->run->fail_entry.hardware_entry_failure_reason
5792                         = exit_reason;
5793                 return 0;
5794         }
5795
5796         if (unlikely(vmx->fail)) {
5797                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5798                 vcpu->run->fail_entry.hardware_entry_failure_reason
5799                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5800                 return 0;
5801         }
5802
5803         /*
5804          * Note:
5805          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5806          * delivery event since it indicates guest is accessing MMIO.
5807          * The vm-exit can be triggered again after return to guest that
5808          * will cause infinite loop.
5809          */
5810         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5811                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5812                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5813                         exit_reason != EXIT_REASON_PML_FULL &&
5814                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5815                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5816                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5817                 vcpu->run->internal.ndata = 3;
5818                 vcpu->run->internal.data[0] = vectoring_info;
5819                 vcpu->run->internal.data[1] = exit_reason;
5820                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5821                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5822                         vcpu->run->internal.ndata++;
5823                         vcpu->run->internal.data[3] =
5824                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5825                 }
5826                 return 0;
5827         }
5828
5829         if (unlikely(!enable_vnmi &&
5830                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5831                 if (vmx_interrupt_allowed(vcpu)) {
5832                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5833                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5834                            vcpu->arch.nmi_pending) {
5835                         /*
5836                          * This CPU don't support us in finding the end of an
5837                          * NMI-blocked window if the guest runs with IRQs
5838                          * disabled. So we pull the trigger after 1 s of
5839                          * futile waiting, but inform the user about this.
5840                          */
5841                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5842                                "state on VCPU %d after 1 s timeout\n",
5843                                __func__, vcpu->vcpu_id);
5844                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5845                 }
5846         }
5847
5848         if (exit_reason < kvm_vmx_max_exit_handlers
5849             && kvm_vmx_exit_handlers[exit_reason])
5850                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5851         else {
5852                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5853                                 exit_reason);
5854                 kvm_queue_exception(vcpu, UD_VECTOR);
5855                 return 1;
5856         }
5857 }
5858
5859 /*
5860  * Software based L1D cache flush which is used when microcode providing
5861  * the cache control MSR is not loaded.
5862  *
5863  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5864  * flush it is required to read in 64 KiB because the replacement algorithm
5865  * is not exactly LRU. This could be sized at runtime via topology
5866  * information but as all relevant affected CPUs have 32KiB L1D cache size
5867  * there is no point in doing so.
5868  */
5869 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5870 {
5871         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5872
5873         /*
5874          * This code is only executed when the the flush mode is 'cond' or
5875          * 'always'
5876          */
5877         if (static_branch_likely(&vmx_l1d_flush_cond)) {
5878                 bool flush_l1d;
5879
5880                 /*
5881                  * Clear the per-vcpu flush bit, it gets set again
5882                  * either from vcpu_run() or from one of the unsafe
5883                  * VMEXIT handlers.
5884                  */
5885                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5886                 vcpu->arch.l1tf_flush_l1d = false;
5887
5888                 /*
5889                  * Clear the per-cpu flush bit, it gets set again from
5890                  * the interrupt handlers.
5891                  */
5892                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5893                 kvm_clear_cpu_l1tf_flush_l1d();
5894
5895                 if (!flush_l1d)
5896                         return;
5897         }
5898
5899         vcpu->stat.l1d_flush++;
5900
5901         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5902                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5903                 return;
5904         }
5905
5906         asm volatile(
5907                 /* First ensure the pages are in the TLB */
5908                 "xorl   %%eax, %%eax\n"
5909                 ".Lpopulate_tlb:\n\t"
5910                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5911                 "addl   $4096, %%eax\n\t"
5912                 "cmpl   %%eax, %[size]\n\t"
5913                 "jne    .Lpopulate_tlb\n\t"
5914                 "xorl   %%eax, %%eax\n\t"
5915                 "cpuid\n\t"
5916                 /* Now fill the cache */
5917                 "xorl   %%eax, %%eax\n"
5918                 ".Lfill_cache:\n"
5919                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5920                 "addl   $64, %%eax\n\t"
5921                 "cmpl   %%eax, %[size]\n\t"
5922                 "jne    .Lfill_cache\n\t"
5923                 "lfence\n"
5924                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
5925                     [size] "r" (size)
5926                 : "eax", "ebx", "ecx", "edx");
5927 }
5928
5929 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5930 {
5931         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5932
5933         if (is_guest_mode(vcpu) &&
5934                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5935                 return;
5936
5937         if (irr == -1 || tpr < irr) {
5938                 vmcs_write32(TPR_THRESHOLD, 0);
5939                 return;
5940         }
5941
5942         vmcs_write32(TPR_THRESHOLD, irr);
5943 }
5944
5945 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5946 {
5947         u32 sec_exec_control;
5948
5949         if (!lapic_in_kernel(vcpu))
5950                 return;
5951
5952         if (!flexpriority_enabled &&
5953             !cpu_has_vmx_virtualize_x2apic_mode())
5954                 return;
5955
5956         /* Postpone execution until vmcs01 is the current VMCS. */
5957         if (is_guest_mode(vcpu)) {
5958                 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5959                 return;
5960         }
5961
5962         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5963         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5964                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5965
5966         switch (kvm_get_apic_mode(vcpu)) {
5967         case LAPIC_MODE_INVALID:
5968                 WARN_ONCE(true, "Invalid local APIC state");
5969         case LAPIC_MODE_DISABLED:
5970                 break;
5971         case LAPIC_MODE_XAPIC:
5972                 if (flexpriority_enabled) {
5973                         sec_exec_control |=
5974                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5975                         vmx_flush_tlb(vcpu, true);
5976                 }
5977                 break;
5978         case LAPIC_MODE_X2APIC:
5979                 if (cpu_has_vmx_virtualize_x2apic_mode())
5980                         sec_exec_control |=
5981                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5982                 break;
5983         }
5984         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5985
5986         vmx_update_msr_bitmap(vcpu);
5987 }
5988
5989 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5990 {
5991         if (!is_guest_mode(vcpu)) {
5992                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
5993                 vmx_flush_tlb(vcpu, true);
5994         }
5995 }
5996
5997 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5998 {
5999         u16 status;
6000         u8 old;
6001
6002         if (max_isr == -1)
6003                 max_isr = 0;
6004
6005         status = vmcs_read16(GUEST_INTR_STATUS);
6006         old = status >> 8;
6007         if (max_isr != old) {
6008                 status &= 0xff;
6009                 status |= max_isr << 8;
6010                 vmcs_write16(GUEST_INTR_STATUS, status);
6011         }
6012 }
6013
6014 static void vmx_set_rvi(int vector)
6015 {
6016         u16 status;
6017         u8 old;
6018
6019         if (vector == -1)
6020                 vector = 0;
6021
6022         status = vmcs_read16(GUEST_INTR_STATUS);
6023         old = (u8)status & 0xff;
6024         if ((u8)vector != old) {
6025                 status &= ~0xff;
6026                 status |= (u8)vector;
6027                 vmcs_write16(GUEST_INTR_STATUS, status);
6028         }
6029 }
6030
6031 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6032 {
6033         /*
6034          * When running L2, updating RVI is only relevant when
6035          * vmcs12 virtual-interrupt-delivery enabled.
6036          * However, it can be enabled only when L1 also
6037          * intercepts external-interrupts and in that case
6038          * we should not update vmcs02 RVI but instead intercept
6039          * interrupt. Therefore, do nothing when running L2.
6040          */
6041         if (!is_guest_mode(vcpu))
6042                 vmx_set_rvi(max_irr);
6043 }
6044
6045 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6046 {
6047         struct vcpu_vmx *vmx = to_vmx(vcpu);
6048         int max_irr;
6049         bool max_irr_updated;
6050
6051         WARN_ON(!vcpu->arch.apicv_active);
6052         if (pi_test_on(&vmx->pi_desc)) {
6053                 pi_clear_on(&vmx->pi_desc);
6054                 /*
6055                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6056                  * But on x86 this is just a compiler barrier anyway.
6057                  */
6058                 smp_mb__after_atomic();
6059                 max_irr_updated =
6060                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6061
6062                 /*
6063                  * If we are running L2 and L1 has a new pending interrupt
6064                  * which can be injected, we should re-evaluate
6065                  * what should be done with this new L1 interrupt.
6066                  * If L1 intercepts external-interrupts, we should
6067                  * exit from L2 to L1. Otherwise, interrupt should be
6068                  * delivered directly to L2.
6069                  */
6070                 if (is_guest_mode(vcpu) && max_irr_updated) {
6071                         if (nested_exit_on_intr(vcpu))
6072                                 kvm_vcpu_exiting_guest_mode(vcpu);
6073                         else
6074                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6075                 }
6076         } else {
6077                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6078         }
6079         vmx_hwapic_irr_update(vcpu, max_irr);
6080         return max_irr;
6081 }
6082
6083 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6084 {
6085         if (!kvm_vcpu_apicv_active(vcpu))
6086                 return;
6087
6088         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6089         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6090         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6091         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6092 }
6093
6094 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6095 {
6096         struct vcpu_vmx *vmx = to_vmx(vcpu);
6097
6098         pi_clear_on(&vmx->pi_desc);
6099         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6100 }
6101
6102 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6103 {
6104         u32 exit_intr_info = 0;
6105         u16 basic_exit_reason = (u16)vmx->exit_reason;
6106
6107         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6108               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6109                 return;
6110
6111         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6112                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6113         vmx->exit_intr_info = exit_intr_info;
6114
6115         /* if exit due to PF check for async PF */
6116         if (is_page_fault(exit_intr_info))
6117                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6118
6119         /* Handle machine checks before interrupts are enabled */
6120         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6121             is_machine_check(exit_intr_info))
6122                 kvm_machine_check();
6123
6124         /* We need to handle NMIs before interrupts are enabled */
6125         if (is_nmi(exit_intr_info)) {
6126                 kvm_before_interrupt(&vmx->vcpu);
6127                 asm("int $2");
6128                 kvm_after_interrupt(&vmx->vcpu);
6129         }
6130 }
6131
6132 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6133 {
6134         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6135
6136         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6137                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6138                 unsigned int vector;
6139                 unsigned long entry;
6140                 gate_desc *desc;
6141                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6142 #ifdef CONFIG_X86_64
6143                 unsigned long tmp;
6144 #endif
6145
6146                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6147                 desc = (gate_desc *)vmx->host_idt_base + vector;
6148                 entry = gate_offset(desc);
6149                 asm volatile(
6150 #ifdef CONFIG_X86_64
6151                         "mov %%" _ASM_SP ", %[sp]\n\t"
6152                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6153                         "push $%c[ss]\n\t"
6154                         "push %[sp]\n\t"
6155 #endif
6156                         "pushf\n\t"
6157                         __ASM_SIZE(push) " $%c[cs]\n\t"
6158                         CALL_NOSPEC
6159                         :
6160 #ifdef CONFIG_X86_64
6161                         [sp]"=&r"(tmp),
6162 #endif
6163                         ASM_CALL_CONSTRAINT
6164                         :
6165                         THUNK_TARGET(entry),
6166                         [ss]"i"(__KERNEL_DS),
6167                         [cs]"i"(__KERNEL_CS)
6168                         );
6169         }
6170 }
6171 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6172
6173 static bool vmx_has_emulated_msr(int index)
6174 {
6175         switch (index) {
6176         case MSR_IA32_SMBASE:
6177                 /*
6178                  * We cannot do SMM unless we can run the guest in big
6179                  * real mode.
6180                  */
6181                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6182         case MSR_AMD64_VIRT_SPEC_CTRL:
6183                 /* This is AMD only.  */
6184                 return false;
6185         default:
6186                 return true;
6187         }
6188 }
6189
6190 static bool vmx_pt_supported(void)
6191 {
6192         return pt_mode == PT_MODE_HOST_GUEST;
6193 }
6194
6195 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6196 {
6197         u32 exit_intr_info;
6198         bool unblock_nmi;
6199         u8 vector;
6200         bool idtv_info_valid;
6201
6202         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6203
6204         if (enable_vnmi) {
6205                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6206                         return;
6207                 /*
6208                  * Can't use vmx->exit_intr_info since we're not sure what
6209                  * the exit reason is.
6210                  */
6211                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6212                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6213                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6214                 /*
6215                  * SDM 3: 27.7.1.2 (September 2008)
6216                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6217                  * a guest IRET fault.
6218                  * SDM 3: 23.2.2 (September 2008)
6219                  * Bit 12 is undefined in any of the following cases:
6220                  *  If the VM exit sets the valid bit in the IDT-vectoring
6221                  *   information field.
6222                  *  If the VM exit is due to a double fault.
6223                  */
6224                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6225                     vector != DF_VECTOR && !idtv_info_valid)
6226                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6227                                       GUEST_INTR_STATE_NMI);
6228                 else
6229                         vmx->loaded_vmcs->nmi_known_unmasked =
6230                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6231                                   & GUEST_INTR_STATE_NMI);
6232         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6233                 vmx->loaded_vmcs->vnmi_blocked_time +=
6234                         ktime_to_ns(ktime_sub(ktime_get(),
6235                                               vmx->loaded_vmcs->entry_time));
6236 }
6237
6238 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6239                                       u32 idt_vectoring_info,
6240                                       int instr_len_field,
6241                                       int error_code_field)
6242 {
6243         u8 vector;
6244         int type;
6245         bool idtv_info_valid;
6246
6247         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6248
6249         vcpu->arch.nmi_injected = false;
6250         kvm_clear_exception_queue(vcpu);
6251         kvm_clear_interrupt_queue(vcpu);
6252
6253         if (!idtv_info_valid)
6254                 return;
6255
6256         kvm_make_request(KVM_REQ_EVENT, vcpu);
6257
6258         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6259         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6260
6261         switch (type) {
6262         case INTR_TYPE_NMI_INTR:
6263                 vcpu->arch.nmi_injected = true;
6264                 /*
6265                  * SDM 3: 27.7.1.2 (September 2008)
6266                  * Clear bit "block by NMI" before VM entry if a NMI
6267                  * delivery faulted.
6268                  */
6269                 vmx_set_nmi_mask(vcpu, false);
6270                 break;
6271         case INTR_TYPE_SOFT_EXCEPTION:
6272                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6273                 /* fall through */
6274         case INTR_TYPE_HARD_EXCEPTION:
6275                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6276                         u32 err = vmcs_read32(error_code_field);
6277                         kvm_requeue_exception_e(vcpu, vector, err);
6278                 } else
6279                         kvm_requeue_exception(vcpu, vector);
6280                 break;
6281         case INTR_TYPE_SOFT_INTR:
6282                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6283                 /* fall through */
6284         case INTR_TYPE_EXT_INTR:
6285                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6286                 break;
6287         default:
6288                 break;
6289         }
6290 }
6291
6292 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6293 {
6294         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6295                                   VM_EXIT_INSTRUCTION_LEN,
6296                                   IDT_VECTORING_ERROR_CODE);
6297 }
6298
6299 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6300 {
6301         __vmx_complete_interrupts(vcpu,
6302                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6303                                   VM_ENTRY_INSTRUCTION_LEN,
6304                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6305
6306         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6307 }
6308
6309 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6310 {
6311         int i, nr_msrs;
6312         struct perf_guest_switch_msr *msrs;
6313
6314         msrs = perf_guest_get_msrs(&nr_msrs);
6315
6316         if (!msrs)
6317                 return;
6318
6319         for (i = 0; i < nr_msrs; i++)
6320                 if (msrs[i].host == msrs[i].guest)
6321                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6322                 else
6323                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6324                                         msrs[i].host, false);
6325 }
6326
6327 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6328 {
6329         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6330         if (!vmx->loaded_vmcs->hv_timer_armed)
6331                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6332                               PIN_BASED_VMX_PREEMPTION_TIMER);
6333         vmx->loaded_vmcs->hv_timer_armed = true;
6334 }
6335
6336 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6337 {
6338         struct vcpu_vmx *vmx = to_vmx(vcpu);
6339         u64 tscl;
6340         u32 delta_tsc;
6341
6342         if (vmx->req_immediate_exit) {
6343                 vmx_arm_hv_timer(vmx, 0);
6344                 return;
6345         }
6346
6347         if (vmx->hv_deadline_tsc != -1) {
6348                 tscl = rdtsc();
6349                 if (vmx->hv_deadline_tsc > tscl)
6350                         /* set_hv_timer ensures the delta fits in 32-bits */
6351                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6352                                 cpu_preemption_timer_multi);
6353                 else
6354                         delta_tsc = 0;
6355
6356                 vmx_arm_hv_timer(vmx, delta_tsc);
6357                 return;
6358         }
6359
6360         if (vmx->loaded_vmcs->hv_timer_armed)
6361                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6362                                 PIN_BASED_VMX_PREEMPTION_TIMER);
6363         vmx->loaded_vmcs->hv_timer_armed = false;
6364 }
6365
6366 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6367 {
6368         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6369                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6370                 vmcs_writel(HOST_RSP, host_rsp);
6371         }
6372 }
6373
6374 #ifdef CONFIG_X86_64
6375 #define WORD_SIZE       8
6376 #else
6377 #define WORD_SIZE       4
6378 #endif
6379
6380 #define _WORD_SIZE      __stringify(WORD_SIZE)
6381
6382 #define VCPU_RAX        __stringify(__VCPU_REGS_RAX * WORD_SIZE)
6383 #define VCPU_RCX        __stringify(__VCPU_REGS_RCX * WORD_SIZE)
6384 #define VCPU_RDX        __stringify(__VCPU_REGS_RDX * WORD_SIZE)
6385 #define VCPU_RBX        __stringify(__VCPU_REGS_RBX * WORD_SIZE)
6386 /* Intentionally omit %RSP as it's context switched by hardware */
6387 #define VCPU_RBP        __stringify(__VCPU_REGS_RBP * WORD_SIZE)
6388 #define VCPU_RSI        __stringify(__VCPU_REGS_RSI * WORD_SIZE)
6389 #define VCPU_RDI        __stringify(__VCPU_REGS_RDI * WORD_SIZE)
6390 #ifdef CONFIG_X86_64
6391 #define VCPU_R8         __stringify(__VCPU_REGS_R8  * WORD_SIZE)
6392 #define VCPU_R9         __stringify(__VCPU_REGS_R9  * WORD_SIZE)
6393 #define VCPU_R10        __stringify(__VCPU_REGS_R10 * WORD_SIZE)
6394 #define VCPU_R11        __stringify(__VCPU_REGS_R11 * WORD_SIZE)
6395 #define VCPU_R12        __stringify(__VCPU_REGS_R12 * WORD_SIZE)
6396 #define VCPU_R13        __stringify(__VCPU_REGS_R13 * WORD_SIZE)
6397 #define VCPU_R14        __stringify(__VCPU_REGS_R14 * WORD_SIZE)
6398 #define VCPU_R15        __stringify(__VCPU_REGS_R15 * WORD_SIZE)
6399 #endif
6400
6401 static void __vmx_vcpu_run(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
6402 {
6403         if (static_branch_unlikely(&vmx_l1d_should_flush))
6404                 vmx_l1d_flush(vcpu);
6405
6406         if (vcpu->arch.cr2 != read_cr2())
6407                 write_cr2(vcpu->arch.cr2);
6408
6409         asm(
6410                 /* Store host registers */
6411                 "push %%" _ASM_BP " \n\t"
6412
6413                 /*
6414                  * Save @regs, _ASM_ARG2 may be modified by vmx_update_host_rsp() and
6415                  * @regs is needed after VM-Exit to save the guest's register values.
6416                  */
6417                 "push %%" _ASM_ARG2 " \n\t"
6418
6419                 /* Adjust RSP to account for the CALL to vmx_vmenter(). */
6420                 "lea -" _WORD_SIZE "(%%" _ASM_SP "), %%" _ASM_ARG2 " \n\t"
6421                 "call vmx_update_host_rsp \n\t"
6422
6423                 /* Load RCX with @regs. */
6424                 "mov (%%" _ASM_SP "), %%" _ASM_CX " \n\t"
6425
6426                 /* Check if vmlaunch or vmresume is needed */
6427                 "cmpb $0, %%bl \n\t"
6428
6429                 /* Load guest registers.  Don't clobber flags. */
6430                 "mov " VCPU_RAX "(%%" _ASM_CX "), %%" _ASM_AX " \n\t"
6431                 "mov " VCPU_RBX "(%%" _ASM_CX "), %%" _ASM_BX " \n\t"
6432                 "mov " VCPU_RDX "(%%" _ASM_CX "), %%" _ASM_DX " \n\t"
6433                 "mov " VCPU_RSI "(%%" _ASM_CX "), %%" _ASM_SI " \n\t"
6434                 "mov " VCPU_RDI "(%%" _ASM_CX "), %%" _ASM_DI " \n\t"
6435                 "mov " VCPU_RBP "(%%" _ASM_CX "), %%" _ASM_BP " \n\t"
6436 #ifdef CONFIG_X86_64
6437                 "mov " VCPU_R8  "(%%" _ASM_CX "),  %%r8  \n\t"
6438                 "mov " VCPU_R9  "(%%" _ASM_CX "),  %%r9  \n\t"
6439                 "mov " VCPU_R10 "(%%" _ASM_CX "), %%r10 \n\t"
6440                 "mov " VCPU_R11 "(%%" _ASM_CX "), %%r11 \n\t"
6441                 "mov " VCPU_R12 "(%%" _ASM_CX "), %%r12 \n\t"
6442                 "mov " VCPU_R13 "(%%" _ASM_CX "), %%r13 \n\t"
6443                 "mov " VCPU_R14 "(%%" _ASM_CX "), %%r14 \n\t"
6444                 "mov " VCPU_R15 "(%%" _ASM_CX "), %%r15 \n\t"
6445 #endif
6446                 /* Load guest RCX.  This kills the vmx_vcpu pointer! */
6447                 "mov " VCPU_RCX"(%%" _ASM_CX "), %%" _ASM_CX " \n\t"
6448
6449                 /* Enter guest mode */
6450                 "call vmx_vmenter\n\t"
6451                 "jbe 2f \n\t"
6452
6453                 /* Temporarily save guest's RCX. */
6454                 "push %%" _ASM_CX " \n\t"
6455
6456                 /* Reload RCX with @regs. */
6457                 "mov " _WORD_SIZE "(%%" _ASM_SP "), %%" _ASM_CX " \n\t"
6458
6459                 /* Save all guest registers, including RCX from the stack */
6460                 "mov %%" _ASM_AX ", " VCPU_RAX "(%%" _ASM_CX ") \n\t"
6461                 "mov %%" _ASM_BX ", " VCPU_RBX "(%%" _ASM_CX ") \n\t"
6462                 __ASM_SIZE(pop) "   " VCPU_RCX "(%%" _ASM_CX ") \n\t"
6463                 "mov %%" _ASM_DX ", " VCPU_RDX "(%%" _ASM_CX ") \n\t"
6464                 "mov %%" _ASM_SI ", " VCPU_RSI "(%%" _ASM_CX ") \n\t"
6465                 "mov %%" _ASM_DI ", " VCPU_RDI "(%%" _ASM_CX ") \n\t"
6466                 "mov %%" _ASM_BP ", " VCPU_RBP "(%%" _ASM_CX ") \n\t"
6467 #ifdef CONFIG_X86_64
6468                 "mov %%r8,  " VCPU_R8  "(%%" _ASM_CX ") \n\t"
6469                 "mov %%r9,  " VCPU_R9  "(%%" _ASM_CX ") \n\t"
6470                 "mov %%r10, " VCPU_R10 "(%%" _ASM_CX ") \n\t"
6471                 "mov %%r11, " VCPU_R11 "(%%" _ASM_CX ") \n\t"
6472                 "mov %%r12, " VCPU_R12 "(%%" _ASM_CX ") \n\t"
6473                 "mov %%r13, " VCPU_R13 "(%%" _ASM_CX ") \n\t"
6474                 "mov %%r14, " VCPU_R14 "(%%" _ASM_CX ") \n\t"
6475                 "mov %%r15, " VCPU_R15 "(%%" _ASM_CX ") \n\t"
6476 #endif
6477
6478                 /* Clear EBX to indicate VM-Exit (as opposed to VM-Fail). */
6479                 "xor %%ebx, %%ebx \n\t"
6480
6481                 /*
6482                  * Clear all general purpose registers except RSP and RBX to prevent
6483                  * speculative use of the guest's values, even those that are reloaded
6484                  * via the stack.  In theory, an L1 cache miss when restoring registers
6485                  * could lead to speculative execution with the guest's values.
6486                  * Zeroing XORs are dirt cheap, i.e. the extra paranoia is essentially
6487                  * free.  RSP and RBX are exempt as RSP is restored by hardware during
6488                  * VM-Exit and RBX is explicitly loaded with 0 or 1 to "return" VM-Fail.
6489                  */
6490                 "1: \n\t"
6491 #ifdef CONFIG_X86_64
6492                 "xor %%r8d,  %%r8d \n\t"
6493                 "xor %%r9d,  %%r9d \n\t"
6494                 "xor %%r10d, %%r10d \n\t"
6495                 "xor %%r11d, %%r11d \n\t"
6496                 "xor %%r12d, %%r12d \n\t"
6497                 "xor %%r13d, %%r13d \n\t"
6498                 "xor %%r14d, %%r14d \n\t"
6499                 "xor %%r15d, %%r15d \n\t"
6500 #endif
6501                 "xor %%eax, %%eax \n\t"
6502                 "xor %%ecx, %%ecx \n\t"
6503                 "xor %%edx, %%edx \n\t"
6504                 "xor %%esi, %%esi \n\t"
6505                 "xor %%edi, %%edi \n\t"
6506                 "xor %%ebp, %%ebp \n\t"
6507
6508                 /* "POP" the vcpu_vmx pointer. */
6509                 "add $" _WORD_SIZE ", %%" _ASM_SP " \n\t"
6510                 "pop  %%" _ASM_BP " \n\t"
6511                 "jmp 3f \n\t"
6512
6513                 /* VM-Fail.  Out-of-line to avoid a taken Jcc after VM-Exit. */
6514                 "2: \n\t"
6515                 "mov $1, %%ebx \n\t"
6516                 "jmp 1b \n\t"
6517                 "3: \n\t"
6518
6519               : ASM_CALL_CONSTRAINT, "=b"(vmx->fail),
6520 #ifdef CONFIG_X86_64
6521                 "=D"((int){0}), "=S"((int){0})
6522               : "D"(vmx), "S"(&vcpu->arch.regs),
6523 #else
6524                 "=a"((int){0}), "=d"((int){0})
6525               : "a"(vmx), "d"(&vcpu->arch.regs),
6526 #endif
6527                 "b"(vmx->loaded_vmcs->launched)
6528               : "cc", "memory"
6529 #ifdef CONFIG_X86_64
6530                 , "rax", "rcx", "rdx"
6531                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6532 #else
6533                 , "ecx", "edi", "esi"
6534 #endif
6535               );
6536
6537         vcpu->arch.cr2 = read_cr2();
6538 }
6539 STACK_FRAME_NON_STANDARD(__vmx_vcpu_run);
6540
6541 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6542 {
6543         struct vcpu_vmx *vmx = to_vmx(vcpu);
6544         unsigned long cr3, cr4;
6545
6546         /* Record the guest's net vcpu time for enforced NMI injections. */
6547         if (unlikely(!enable_vnmi &&
6548                      vmx->loaded_vmcs->soft_vnmi_blocked))
6549                 vmx->loaded_vmcs->entry_time = ktime_get();
6550
6551         /* Don't enter VMX if guest state is invalid, let the exit handler
6552            start emulation until we arrive back to a valid state */
6553         if (vmx->emulation_required)
6554                 return;
6555
6556         if (vmx->ple_window_dirty) {
6557                 vmx->ple_window_dirty = false;
6558                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6559         }
6560
6561         if (vmx->nested.need_vmcs12_sync)
6562                 nested_sync_from_vmcs12(vcpu);
6563
6564         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6565                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6566         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6567                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6568
6569         cr3 = __get_current_cr3_fast();
6570         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6571                 vmcs_writel(HOST_CR3, cr3);
6572                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6573         }
6574
6575         cr4 = cr4_read_shadow();
6576         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6577                 vmcs_writel(HOST_CR4, cr4);
6578                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6579         }
6580
6581         /* When single-stepping over STI and MOV SS, we must clear the
6582          * corresponding interruptibility bits in the guest state. Otherwise
6583          * vmentry fails as it then expects bit 14 (BS) in pending debug
6584          * exceptions being set, but that's not correct for the guest debugging
6585          * case. */
6586         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6587                 vmx_set_interrupt_shadow(vcpu, 0);
6588
6589         if (static_cpu_has(X86_FEATURE_PKU) &&
6590             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6591             vcpu->arch.pkru != vmx->host_pkru)
6592                 __write_pkru(vcpu->arch.pkru);
6593
6594         pt_guest_enter(vmx);
6595
6596         atomic_switch_perf_msrs(vmx);
6597
6598         vmx_update_hv_timer(vcpu);
6599
6600         /*
6601          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6602          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6603          * is no need to worry about the conditional branch over the wrmsr
6604          * being speculatively taken.
6605          */
6606         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6607
6608         __vmx_vcpu_run(vcpu, vmx);
6609
6610         /*
6611          * We do not use IBRS in the kernel. If this vCPU has used the
6612          * SPEC_CTRL MSR it may have left it on; save the value and
6613          * turn it off. This is much more efficient than blindly adding
6614          * it to the atomic save/restore list. Especially as the former
6615          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6616          *
6617          * For non-nested case:
6618          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6619          * save it.
6620          *
6621          * For nested case:
6622          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6623          * save it.
6624          */
6625         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6626                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6627
6628         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6629
6630         /* Eliminate branch target predictions from guest mode */
6631         vmexit_fill_RSB();
6632
6633         /* All fields are clean at this point */
6634         if (static_branch_unlikely(&enable_evmcs))
6635                 current_evmcs->hv_clean_fields |=
6636                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6637
6638         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6639         if (vmx->host_debugctlmsr)
6640                 update_debugctlmsr(vmx->host_debugctlmsr);
6641
6642 #ifndef CONFIG_X86_64
6643         /*
6644          * The sysexit path does not restore ds/es, so we must set them to
6645          * a reasonable value ourselves.
6646          *
6647          * We can't defer this to vmx_prepare_switch_to_host() since that
6648          * function may be executed in interrupt context, which saves and
6649          * restore segments around it, nullifying its effect.
6650          */
6651         loadsegment(ds, __USER_DS);
6652         loadsegment(es, __USER_DS);
6653 #endif
6654
6655         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6656                                   | (1 << VCPU_EXREG_RFLAGS)
6657                                   | (1 << VCPU_EXREG_PDPTR)
6658                                   | (1 << VCPU_EXREG_SEGMENTS)
6659                                   | (1 << VCPU_EXREG_CR3));
6660         vcpu->arch.regs_dirty = 0;
6661
6662         pt_guest_exit(vmx);
6663
6664         /*
6665          * eager fpu is enabled if PKEY is supported and CR4 is switched
6666          * back on host, so it is safe to read guest PKRU from current
6667          * XSAVE.
6668          */
6669         if (static_cpu_has(X86_FEATURE_PKU) &&
6670             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6671                 vcpu->arch.pkru = __read_pkru();
6672                 if (vcpu->arch.pkru != vmx->host_pkru)
6673                         __write_pkru(vmx->host_pkru);
6674         }
6675
6676         vmx->nested.nested_run_pending = 0;
6677         vmx->idt_vectoring_info = 0;
6678
6679         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6680         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6681                 return;
6682
6683         vmx->loaded_vmcs->launched = 1;
6684         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6685
6686         vmx_complete_atomic_exit(vmx);
6687         vmx_recover_nmi_blocking(vmx);
6688         vmx_complete_interrupts(vmx);
6689 }
6690
6691 static struct kvm *vmx_vm_alloc(void)
6692 {
6693         struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
6694         return &kvm_vmx->kvm;
6695 }
6696
6697 static void vmx_vm_free(struct kvm *kvm)
6698 {
6699         vfree(to_kvm_vmx(kvm));
6700 }
6701
6702 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6703 {
6704         struct vcpu_vmx *vmx = to_vmx(vcpu);
6705
6706         if (enable_pml)
6707                 vmx_destroy_pml_buffer(vmx);
6708         free_vpid(vmx->vpid);
6709         leave_guest_mode(vcpu);
6710         nested_vmx_free_vcpu(vcpu);
6711         free_loaded_vmcs(vmx->loaded_vmcs);
6712         kfree(vmx->guest_msrs);
6713         kvm_vcpu_uninit(vcpu);
6714         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6715         kmem_cache_free(kvm_vcpu_cache, vmx);
6716 }
6717
6718 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6719 {
6720         int err;
6721         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6722         unsigned long *msr_bitmap;
6723         int cpu;
6724
6725         if (!vmx)
6726                 return ERR_PTR(-ENOMEM);
6727
6728         vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
6729         if (!vmx->vcpu.arch.guest_fpu) {
6730                 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6731                 err = -ENOMEM;
6732                 goto free_partial_vcpu;
6733         }
6734
6735         vmx->vpid = allocate_vpid();
6736
6737         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6738         if (err)
6739                 goto free_vcpu;
6740
6741         err = -ENOMEM;
6742
6743         /*
6744          * If PML is turned on, failure on enabling PML just results in failure
6745          * of creating the vcpu, therefore we can simplify PML logic (by
6746          * avoiding dealing with cases, such as enabling PML partially on vcpus
6747          * for the guest, etc.
6748          */
6749         if (enable_pml) {
6750                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
6751                 if (!vmx->pml_pg)
6752                         goto uninit_vcpu;
6753         }
6754
6755         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6756         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6757                      > PAGE_SIZE);
6758
6759         if (!vmx->guest_msrs)
6760                 goto free_pml;
6761
6762         err = alloc_loaded_vmcs(&vmx->vmcs01);
6763         if (err < 0)
6764                 goto free_msrs;
6765
6766         msr_bitmap = vmx->vmcs01.msr_bitmap;
6767         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6768         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6769         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6770         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6771         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6772         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6773         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6774         vmx->msr_bitmap_mode = 0;
6775
6776         vmx->loaded_vmcs = &vmx->vmcs01;
6777         cpu = get_cpu();
6778         vmx_vcpu_load(&vmx->vcpu, cpu);
6779         vmx->vcpu.cpu = cpu;
6780         vmx_vcpu_setup(vmx);
6781         vmx_vcpu_put(&vmx->vcpu);
6782         put_cpu();
6783         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6784                 err = alloc_apic_access_page(kvm);
6785                 if (err)
6786                         goto free_vmcs;
6787         }
6788
6789         if (enable_ept && !enable_unrestricted_guest) {
6790                 err = init_rmode_identity_map(kvm);
6791                 if (err)
6792                         goto free_vmcs;
6793         }
6794
6795         if (nested)
6796                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6797                                            vmx_capability.ept,
6798                                            kvm_vcpu_apicv_active(&vmx->vcpu));
6799         else
6800                 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6801
6802         vmx->nested.posted_intr_nv = -1;
6803         vmx->nested.current_vmptr = -1ull;
6804
6805         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6806
6807         /*
6808          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6809          * or POSTED_INTR_WAKEUP_VECTOR.
6810          */
6811         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6812         vmx->pi_desc.sn = 1;
6813
6814         vmx->ept_pointer = INVALID_PAGE;
6815
6816         return &vmx->vcpu;
6817
6818 free_vmcs:
6819         free_loaded_vmcs(vmx->loaded_vmcs);
6820 free_msrs:
6821         kfree(vmx->guest_msrs);
6822 free_pml:
6823         vmx_destroy_pml_buffer(vmx);
6824 uninit_vcpu:
6825         kvm_vcpu_uninit(&vmx->vcpu);
6826 free_vcpu:
6827         free_vpid(vmx->vpid);
6828         kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6829 free_partial_vcpu:
6830         kmem_cache_free(kvm_vcpu_cache, vmx);
6831         return ERR_PTR(err);
6832 }
6833
6834 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6835 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6836
6837 static int vmx_vm_init(struct kvm *kvm)
6838 {
6839         spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6840
6841         if (!ple_gap)
6842                 kvm->arch.pause_in_guest = true;
6843
6844         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6845                 switch (l1tf_mitigation) {
6846                 case L1TF_MITIGATION_OFF:
6847                 case L1TF_MITIGATION_FLUSH_NOWARN:
6848                         /* 'I explicitly don't care' is set */
6849                         break;
6850                 case L1TF_MITIGATION_FLUSH:
6851                 case L1TF_MITIGATION_FLUSH_NOSMT:
6852                 case L1TF_MITIGATION_FULL:
6853                         /*
6854                          * Warn upon starting the first VM in a potentially
6855                          * insecure environment.
6856                          */
6857                         if (sched_smt_active())
6858                                 pr_warn_once(L1TF_MSG_SMT);
6859                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6860                                 pr_warn_once(L1TF_MSG_L1D);
6861                         break;
6862                 case L1TF_MITIGATION_FULL_FORCE:
6863                         /* Flush is enforced */
6864                         break;
6865                 }
6866         }
6867         return 0;
6868 }
6869
6870 static void __init vmx_check_processor_compat(void *rtn)
6871 {
6872         struct vmcs_config vmcs_conf;
6873         struct vmx_capability vmx_cap;
6874
6875         *(int *)rtn = 0;
6876         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6877                 *(int *)rtn = -EIO;
6878         if (nested)
6879                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6880                                            enable_apicv);
6881         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6882                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6883                                 smp_processor_id());
6884                 *(int *)rtn = -EIO;
6885         }
6886 }
6887
6888 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6889 {
6890         u8 cache;
6891         u64 ipat = 0;
6892
6893         /* For VT-d and EPT combination
6894          * 1. MMIO: always map as UC
6895          * 2. EPT with VT-d:
6896          *   a. VT-d without snooping control feature: can't guarantee the
6897          *      result, try to trust guest.
6898          *   b. VT-d with snooping control feature: snooping control feature of
6899          *      VT-d engine can guarantee the cache correctness. Just set it
6900          *      to WB to keep consistent with host. So the same as item 3.
6901          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6902          *    consistent with host MTRR
6903          */
6904         if (is_mmio) {
6905                 cache = MTRR_TYPE_UNCACHABLE;
6906                 goto exit;
6907         }
6908
6909         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6910                 ipat = VMX_EPT_IPAT_BIT;
6911                 cache = MTRR_TYPE_WRBACK;
6912                 goto exit;
6913         }
6914
6915         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6916                 ipat = VMX_EPT_IPAT_BIT;
6917                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6918                         cache = MTRR_TYPE_WRBACK;
6919                 else
6920                         cache = MTRR_TYPE_UNCACHABLE;
6921                 goto exit;
6922         }
6923
6924         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6925
6926 exit:
6927         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6928 }
6929
6930 static int vmx_get_lpage_level(void)
6931 {
6932         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6933                 return PT_DIRECTORY_LEVEL;
6934         else
6935                 /* For shadow and EPT supported 1GB page */
6936                 return PT_PDPE_LEVEL;
6937 }
6938
6939 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6940 {
6941         /*
6942          * These bits in the secondary execution controls field
6943          * are dynamic, the others are mostly based on the hypervisor
6944          * architecture and the guest's CPUID.  Do not touch the
6945          * dynamic bits.
6946          */
6947         u32 mask =
6948                 SECONDARY_EXEC_SHADOW_VMCS |
6949                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6950                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6951                 SECONDARY_EXEC_DESC;
6952
6953         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6954
6955         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6956                      (new_ctl & ~mask) | (cur_ctl & mask));
6957 }
6958
6959 /*
6960  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6961  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6962  */
6963 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6964 {
6965         struct vcpu_vmx *vmx = to_vmx(vcpu);
6966         struct kvm_cpuid_entry2 *entry;
6967
6968         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6969         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6970
6971 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6972         if (entry && (entry->_reg & (_cpuid_mask)))                     \
6973                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6974 } while (0)
6975
6976         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6977         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6978         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6979         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6980         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6981         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6982         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6983         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6984         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6985         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6986         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6987         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6988         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6989         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6990         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6991
6992         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6993         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6994         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6995         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6996         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6997         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6998
6999 #undef cr4_fixed1_update
7000 }
7001
7002 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7003 {
7004         struct vcpu_vmx *vmx = to_vmx(vcpu);
7005
7006         if (kvm_mpx_supported()) {
7007                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7008
7009                 if (mpx_enabled) {
7010                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7011                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7012                 } else {
7013                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7014                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7015                 }
7016         }
7017 }
7018
7019 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7020 {
7021         struct vcpu_vmx *vmx = to_vmx(vcpu);
7022         struct kvm_cpuid_entry2 *best = NULL;
7023         int i;
7024
7025         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7026                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7027                 if (!best)
7028                         return;
7029                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7030                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7031                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7032                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7033         }
7034
7035         /* Get the number of configurable Address Ranges for filtering */
7036         vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7037                                                 PT_CAP_num_address_ranges);
7038
7039         /* Initialize and clear the no dependency bits */
7040         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7041                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7042
7043         /*
7044          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7045          * will inject an #GP
7046          */
7047         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7048                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7049
7050         /*
7051          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7052          * PSBFreq can be set
7053          */
7054         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7055                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7056                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7057
7058         /*
7059          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7060          * MTCFreq can be set
7061          */
7062         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7063                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7064                                 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7065
7066         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7067         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7068                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7069                                                         RTIT_CTL_PTW_EN);
7070
7071         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7072         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7073                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7074
7075         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7076         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7077                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7078
7079         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7080         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7081                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7082
7083         /* unmask address range configure area */
7084         for (i = 0; i < vmx->pt_desc.addr_range; i++)
7085                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7086 }
7087
7088 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7089 {
7090         struct vcpu_vmx *vmx = to_vmx(vcpu);
7091
7092         if (cpu_has_secondary_exec_ctrls()) {
7093                 vmx_compute_secondary_exec_control(vmx);
7094                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
7095         }
7096
7097         if (nested_vmx_allowed(vcpu))
7098                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7099                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7100         else
7101                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7102                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7103
7104         if (nested_vmx_allowed(vcpu)) {
7105                 nested_vmx_cr_fixed1_bits_update(vcpu);
7106                 nested_vmx_entry_exit_ctls_update(vcpu);
7107         }
7108
7109         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7110                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7111                 update_intel_pt_cfg(vcpu);
7112 }
7113
7114 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7115 {
7116         if (func == 1 && nested)
7117                 entry->ecx |= bit(X86_FEATURE_VMX);
7118 }
7119
7120 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7121 {
7122         to_vmx(vcpu)->req_immediate_exit = true;
7123 }
7124
7125 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7126                                struct x86_instruction_info *info,
7127                                enum x86_intercept_stage stage)
7128 {
7129         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7130         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7131
7132         /*
7133          * RDPID causes #UD if disabled through secondary execution controls.
7134          * Because it is marked as EmulateOnUD, we need to intercept it here.
7135          */
7136         if (info->intercept == x86_intercept_rdtscp &&
7137             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7138                 ctxt->exception.vector = UD_VECTOR;
7139                 ctxt->exception.error_code_valid = false;
7140                 return X86EMUL_PROPAGATE_FAULT;
7141         }
7142
7143         /* TODO: check more intercepts... */
7144         return X86EMUL_CONTINUE;
7145 }
7146
7147 #ifdef CONFIG_X86_64
7148 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7149 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7150                                   u64 divisor, u64 *result)
7151 {
7152         u64 low = a << shift, high = a >> (64 - shift);
7153
7154         /* To avoid the overflow on divq */
7155         if (high >= divisor)
7156                 return 1;
7157
7158         /* Low hold the result, high hold rem which is discarded */
7159         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7160             "rm" (divisor), "0" (low), "1" (high));
7161         *result = low;
7162
7163         return 0;
7164 }
7165
7166 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7167 {
7168         struct vcpu_vmx *vmx;
7169         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7170
7171         if (kvm_mwait_in_guest(vcpu->kvm))
7172                 return -EOPNOTSUPP;
7173
7174         vmx = to_vmx(vcpu);
7175         tscl = rdtsc();
7176         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7177         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7178         lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
7179
7180         if (delta_tsc > lapic_timer_advance_cycles)
7181                 delta_tsc -= lapic_timer_advance_cycles;
7182         else
7183                 delta_tsc = 0;
7184
7185         /* Convert to host delta tsc if tsc scaling is enabled */
7186         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7187                         u64_shl_div_u64(delta_tsc,
7188                                 kvm_tsc_scaling_ratio_frac_bits,
7189                                 vcpu->arch.tsc_scaling_ratio,
7190                                 &delta_tsc))
7191                 return -ERANGE;
7192
7193         /*
7194          * If the delta tsc can't fit in the 32 bit after the multi shift,
7195          * we can't use the preemption timer.
7196          * It's possible that it fits on later vmentries, but checking
7197          * on every vmentry is costly so we just use an hrtimer.
7198          */
7199         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7200                 return -ERANGE;
7201
7202         vmx->hv_deadline_tsc = tscl + delta_tsc;
7203         return delta_tsc == 0;
7204 }
7205
7206 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7207 {
7208         to_vmx(vcpu)->hv_deadline_tsc = -1;
7209 }
7210 #endif
7211
7212 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7213 {
7214         if (!kvm_pause_in_guest(vcpu->kvm))
7215                 shrink_ple_window(vcpu);
7216 }
7217
7218 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7219                                      struct kvm_memory_slot *slot)
7220 {
7221         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7222         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7223 }
7224
7225 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7226                                        struct kvm_memory_slot *slot)
7227 {
7228         kvm_mmu_slot_set_dirty(kvm, slot);
7229 }
7230
7231 static void vmx_flush_log_dirty(struct kvm *kvm)
7232 {
7233         kvm_flush_pml_buffers(kvm);
7234 }
7235
7236 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7237 {
7238         struct vmcs12 *vmcs12;
7239         struct vcpu_vmx *vmx = to_vmx(vcpu);
7240         gpa_t gpa;
7241         struct page *page = NULL;
7242         u64 *pml_address;
7243
7244         if (is_guest_mode(vcpu)) {
7245                 WARN_ON_ONCE(vmx->nested.pml_full);
7246
7247                 /*
7248                  * Check if PML is enabled for the nested guest.
7249                  * Whether eptp bit 6 is set is already checked
7250                  * as part of A/D emulation.
7251                  */
7252                 vmcs12 = get_vmcs12(vcpu);
7253                 if (!nested_cpu_has_pml(vmcs12))
7254                         return 0;
7255
7256                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7257                         vmx->nested.pml_full = true;
7258                         return 1;
7259                 }
7260
7261                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7262
7263                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7264                 if (is_error_page(page))
7265                         return 0;
7266
7267                 pml_address = kmap(page);
7268                 pml_address[vmcs12->guest_pml_index--] = gpa;
7269                 kunmap(page);
7270                 kvm_release_page_clean(page);
7271         }
7272
7273         return 0;
7274 }
7275
7276 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7277                                            struct kvm_memory_slot *memslot,
7278                                            gfn_t offset, unsigned long mask)
7279 {
7280         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7281 }
7282
7283 static void __pi_post_block(struct kvm_vcpu *vcpu)
7284 {
7285         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7286         struct pi_desc old, new;
7287         unsigned int dest;
7288
7289         do {
7290                 old.control = new.control = pi_desc->control;
7291                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7292                      "Wakeup handler not enabled while the VCPU is blocked\n");
7293
7294                 dest = cpu_physical_id(vcpu->cpu);
7295
7296                 if (x2apic_enabled())
7297                         new.ndst = dest;
7298                 else
7299                         new.ndst = (dest << 8) & 0xFF00;
7300
7301                 /* set 'NV' to 'notification vector' */
7302                 new.nv = POSTED_INTR_VECTOR;
7303         } while (cmpxchg64(&pi_desc->control, old.control,
7304                            new.control) != old.control);
7305
7306         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7307                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7308                 list_del(&vcpu->blocked_vcpu_list);
7309                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7310                 vcpu->pre_pcpu = -1;
7311         }
7312 }
7313
7314 /*
7315  * This routine does the following things for vCPU which is going
7316  * to be blocked if VT-d PI is enabled.
7317  * - Store the vCPU to the wakeup list, so when interrupts happen
7318  *   we can find the right vCPU to wake up.
7319  * - Change the Posted-interrupt descriptor as below:
7320  *      'NDST' <-- vcpu->pre_pcpu
7321  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7322  * - If 'ON' is set during this process, which means at least one
7323  *   interrupt is posted for this vCPU, we cannot block it, in
7324  *   this case, return 1, otherwise, return 0.
7325  *
7326  */
7327 static int pi_pre_block(struct kvm_vcpu *vcpu)
7328 {
7329         unsigned int dest;
7330         struct pi_desc old, new;
7331         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7332
7333         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7334                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7335                 !kvm_vcpu_apicv_active(vcpu))
7336                 return 0;
7337
7338         WARN_ON(irqs_disabled());
7339         local_irq_disable();
7340         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7341                 vcpu->pre_pcpu = vcpu->cpu;
7342                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7343                 list_add_tail(&vcpu->blocked_vcpu_list,
7344                               &per_cpu(blocked_vcpu_on_cpu,
7345                                        vcpu->pre_pcpu));
7346                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7347         }
7348
7349         do {
7350                 old.control = new.control = pi_desc->control;
7351
7352                 WARN((pi_desc->sn == 1),
7353                      "Warning: SN field of posted-interrupts "
7354                      "is set before blocking\n");
7355
7356                 /*
7357                  * Since vCPU can be preempted during this process,
7358                  * vcpu->cpu could be different with pre_pcpu, we
7359                  * need to set pre_pcpu as the destination of wakeup
7360                  * notification event, then we can find the right vCPU
7361                  * to wakeup in wakeup handler if interrupts happen
7362                  * when the vCPU is in blocked state.
7363                  */
7364                 dest = cpu_physical_id(vcpu->pre_pcpu);
7365
7366                 if (x2apic_enabled())
7367                         new.ndst = dest;
7368                 else
7369                         new.ndst = (dest << 8) & 0xFF00;
7370
7371                 /* set 'NV' to 'wakeup vector' */
7372                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7373         } while (cmpxchg64(&pi_desc->control, old.control,
7374                            new.control) != old.control);
7375
7376         /* We should not block the vCPU if an interrupt is posted for it.  */
7377         if (pi_test_on(pi_desc) == 1)
7378                 __pi_post_block(vcpu);
7379
7380         local_irq_enable();
7381         return (vcpu->pre_pcpu == -1);
7382 }
7383
7384 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7385 {
7386         if (pi_pre_block(vcpu))
7387                 return 1;
7388
7389         if (kvm_lapic_hv_timer_in_use(vcpu))
7390                 kvm_lapic_switch_to_sw_timer(vcpu);
7391
7392         return 0;
7393 }
7394
7395 static void pi_post_block(struct kvm_vcpu *vcpu)
7396 {
7397         if (vcpu->pre_pcpu == -1)
7398                 return;
7399
7400         WARN_ON(irqs_disabled());
7401         local_irq_disable();
7402         __pi_post_block(vcpu);
7403         local_irq_enable();
7404 }
7405
7406 static void vmx_post_block(struct kvm_vcpu *vcpu)
7407 {
7408         if (kvm_x86_ops->set_hv_timer)
7409                 kvm_lapic_switch_to_hv_timer(vcpu);
7410
7411         pi_post_block(vcpu);
7412 }
7413
7414 /*
7415  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7416  *
7417  * @kvm: kvm
7418  * @host_irq: host irq of the interrupt
7419  * @guest_irq: gsi of the interrupt
7420  * @set: set or unset PI
7421  * returns 0 on success, < 0 on failure
7422  */
7423 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7424                               uint32_t guest_irq, bool set)
7425 {
7426         struct kvm_kernel_irq_routing_entry *e;
7427         struct kvm_irq_routing_table *irq_rt;
7428         struct kvm_lapic_irq irq;
7429         struct kvm_vcpu *vcpu;
7430         struct vcpu_data vcpu_info;
7431         int idx, ret = 0;
7432
7433         if (!kvm_arch_has_assigned_device(kvm) ||
7434                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7435                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7436                 return 0;
7437
7438         idx = srcu_read_lock(&kvm->irq_srcu);
7439         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7440         if (guest_irq >= irq_rt->nr_rt_entries ||
7441             hlist_empty(&irq_rt->map[guest_irq])) {
7442                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7443                              guest_irq, irq_rt->nr_rt_entries);
7444                 goto out;
7445         }
7446
7447         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7448                 if (e->type != KVM_IRQ_ROUTING_MSI)
7449                         continue;
7450                 /*
7451                  * VT-d PI cannot support posting multicast/broadcast
7452                  * interrupts to a vCPU, we still use interrupt remapping
7453                  * for these kind of interrupts.
7454                  *
7455                  * For lowest-priority interrupts, we only support
7456                  * those with single CPU as the destination, e.g. user
7457                  * configures the interrupts via /proc/irq or uses
7458                  * irqbalance to make the interrupts single-CPU.
7459                  *
7460                  * We will support full lowest-priority interrupt later.
7461                  */
7462
7463                 kvm_set_msi_irq(kvm, e, &irq);
7464                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7465                         /*
7466                          * Make sure the IRTE is in remapped mode if
7467                          * we don't handle it in posted mode.
7468                          */
7469                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7470                         if (ret < 0) {
7471                                 printk(KERN_INFO
7472                                    "failed to back to remapped mode, irq: %u\n",
7473                                    host_irq);
7474                                 goto out;
7475                         }
7476
7477                         continue;
7478                 }
7479
7480                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7481                 vcpu_info.vector = irq.vector;
7482
7483                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7484                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7485
7486                 if (set)
7487                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7488                 else
7489                         ret = irq_set_vcpu_affinity(host_irq, NULL);
7490
7491                 if (ret < 0) {
7492                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
7493                                         __func__);
7494                         goto out;
7495                 }
7496         }
7497
7498         ret = 0;
7499 out:
7500         srcu_read_unlock(&kvm->irq_srcu, idx);
7501         return ret;
7502 }
7503
7504 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7505 {
7506         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7507                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7508                         FEATURE_CONTROL_LMCE;
7509         else
7510                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7511                         ~FEATURE_CONTROL_LMCE;
7512 }
7513
7514 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7515 {
7516         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7517         if (to_vmx(vcpu)->nested.nested_run_pending)
7518                 return 0;
7519         return 1;
7520 }
7521
7522 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7523 {
7524         struct vcpu_vmx *vmx = to_vmx(vcpu);
7525
7526         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7527         if (vmx->nested.smm.guest_mode)
7528                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7529
7530         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7531         vmx->nested.vmxon = false;
7532         vmx_clear_hlt(vcpu);
7533         return 0;
7534 }
7535
7536 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
7537 {
7538         struct vcpu_vmx *vmx = to_vmx(vcpu);
7539         int ret;
7540
7541         if (vmx->nested.smm.vmxon) {
7542                 vmx->nested.vmxon = true;
7543                 vmx->nested.smm.vmxon = false;
7544         }
7545
7546         if (vmx->nested.smm.guest_mode) {
7547                 vcpu->arch.hflags &= ~HF_SMM_MASK;
7548                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7549                 vcpu->arch.hflags |= HF_SMM_MASK;
7550                 if (ret)
7551                         return ret;
7552
7553                 vmx->nested.smm.guest_mode = false;
7554         }
7555         return 0;
7556 }
7557
7558 static int enable_smi_window(struct kvm_vcpu *vcpu)
7559 {
7560         return 0;
7561 }
7562
7563 static __init int hardware_setup(void)
7564 {
7565         unsigned long host_bndcfgs;
7566         int r, i;
7567
7568         rdmsrl_safe(MSR_EFER, &host_efer);
7569
7570         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7571                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7572
7573         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7574                 return -EIO;
7575
7576         if (boot_cpu_has(X86_FEATURE_NX))
7577                 kvm_enable_efer_bits(EFER_NX);
7578
7579         if (boot_cpu_has(X86_FEATURE_MPX)) {
7580                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7581                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7582         }
7583
7584         if (boot_cpu_has(X86_FEATURE_XSAVES))
7585                 rdmsrl(MSR_IA32_XSS, host_xss);
7586
7587         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7588             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7589                 enable_vpid = 0;
7590
7591         if (!cpu_has_vmx_ept() ||
7592             !cpu_has_vmx_ept_4levels() ||
7593             !cpu_has_vmx_ept_mt_wb() ||
7594             !cpu_has_vmx_invept_global())
7595                 enable_ept = 0;
7596
7597         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7598                 enable_ept_ad_bits = 0;
7599
7600         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7601                 enable_unrestricted_guest = 0;
7602
7603         if (!cpu_has_vmx_flexpriority())
7604                 flexpriority_enabled = 0;
7605
7606         if (!cpu_has_virtual_nmis())
7607                 enable_vnmi = 0;
7608
7609         /*
7610          * set_apic_access_page_addr() is used to reload apic access
7611          * page upon invalidation.  No need to do anything if not
7612          * using the APIC_ACCESS_ADDR VMCS field.
7613          */
7614         if (!flexpriority_enabled)
7615                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7616
7617         if (!cpu_has_vmx_tpr_shadow())
7618                 kvm_x86_ops->update_cr8_intercept = NULL;
7619
7620         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7621                 kvm_disable_largepages();
7622
7623 #if IS_ENABLED(CONFIG_HYPERV)
7624         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7625             && enable_ept) {
7626                 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7627                 kvm_x86_ops->tlb_remote_flush_with_range =
7628                                 hv_remote_flush_tlb_with_range;
7629         }
7630 #endif
7631
7632         if (!cpu_has_vmx_ple()) {
7633                 ple_gap = 0;
7634                 ple_window = 0;
7635                 ple_window_grow = 0;
7636                 ple_window_max = 0;
7637                 ple_window_shrink = 0;
7638         }
7639
7640         if (!cpu_has_vmx_apicv()) {
7641                 enable_apicv = 0;
7642                 kvm_x86_ops->sync_pir_to_irr = NULL;
7643         }
7644
7645         if (cpu_has_vmx_tsc_scaling()) {
7646                 kvm_has_tsc_control = true;
7647                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7648                 kvm_tsc_scaling_ratio_frac_bits = 48;
7649         }
7650
7651         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7652
7653         if (enable_ept)
7654                 vmx_enable_tdp();
7655         else
7656                 kvm_disable_tdp();
7657
7658         /*
7659          * Only enable PML when hardware supports PML feature, and both EPT
7660          * and EPT A/D bit features are enabled -- PML depends on them to work.
7661          */
7662         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7663                 enable_pml = 0;
7664
7665         if (!enable_pml) {
7666                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7667                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7668                 kvm_x86_ops->flush_log_dirty = NULL;
7669                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7670         }
7671
7672         if (!cpu_has_vmx_preemption_timer())
7673                 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7674
7675         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7676                 u64 vmx_msr;
7677
7678                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7679                 cpu_preemption_timer_multi =
7680                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7681         } else {
7682                 kvm_x86_ops->set_hv_timer = NULL;
7683                 kvm_x86_ops->cancel_hv_timer = NULL;
7684         }
7685
7686         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7687
7688         kvm_mce_cap_supported |= MCG_LMCE_P;
7689
7690         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7691                 return -EINVAL;
7692         if (!enable_ept || !cpu_has_vmx_intel_pt())
7693                 pt_mode = PT_MODE_SYSTEM;
7694
7695         if (nested) {
7696                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7697                                            vmx_capability.ept, enable_apicv);
7698
7699                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7700                 if (r)
7701                         return r;
7702         }
7703
7704         r = alloc_kvm_area();
7705         if (r)
7706                 nested_vmx_hardware_unsetup();
7707         return r;
7708 }
7709
7710 static __exit void hardware_unsetup(void)
7711 {
7712         if (nested)
7713                 nested_vmx_hardware_unsetup();
7714
7715         free_kvm_area();
7716 }
7717
7718 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7719         .cpu_has_kvm_support = cpu_has_kvm_support,
7720         .disabled_by_bios = vmx_disabled_by_bios,
7721         .hardware_setup = hardware_setup,
7722         .hardware_unsetup = hardware_unsetup,
7723         .check_processor_compatibility = vmx_check_processor_compat,
7724         .hardware_enable = hardware_enable,
7725         .hardware_disable = hardware_disable,
7726         .cpu_has_accelerated_tpr = report_flexpriority,
7727         .has_emulated_msr = vmx_has_emulated_msr,
7728
7729         .vm_init = vmx_vm_init,
7730         .vm_alloc = vmx_vm_alloc,
7731         .vm_free = vmx_vm_free,
7732
7733         .vcpu_create = vmx_create_vcpu,
7734         .vcpu_free = vmx_free_vcpu,
7735         .vcpu_reset = vmx_vcpu_reset,
7736
7737         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7738         .vcpu_load = vmx_vcpu_load,
7739         .vcpu_put = vmx_vcpu_put,
7740
7741         .update_bp_intercept = update_exception_bitmap,
7742         .get_msr_feature = vmx_get_msr_feature,
7743         .get_msr = vmx_get_msr,
7744         .set_msr = vmx_set_msr,
7745         .get_segment_base = vmx_get_segment_base,
7746         .get_segment = vmx_get_segment,
7747         .set_segment = vmx_set_segment,
7748         .get_cpl = vmx_get_cpl,
7749         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7750         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7751         .decache_cr3 = vmx_decache_cr3,
7752         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7753         .set_cr0 = vmx_set_cr0,
7754         .set_cr3 = vmx_set_cr3,
7755         .set_cr4 = vmx_set_cr4,
7756         .set_efer = vmx_set_efer,
7757         .get_idt = vmx_get_idt,
7758         .set_idt = vmx_set_idt,
7759         .get_gdt = vmx_get_gdt,
7760         .set_gdt = vmx_set_gdt,
7761         .get_dr6 = vmx_get_dr6,
7762         .set_dr6 = vmx_set_dr6,
7763         .set_dr7 = vmx_set_dr7,
7764         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7765         .cache_reg = vmx_cache_reg,
7766         .get_rflags = vmx_get_rflags,
7767         .set_rflags = vmx_set_rflags,
7768
7769         .tlb_flush = vmx_flush_tlb,
7770         .tlb_flush_gva = vmx_flush_tlb_gva,
7771
7772         .run = vmx_vcpu_run,
7773         .handle_exit = vmx_handle_exit,
7774         .skip_emulated_instruction = skip_emulated_instruction,
7775         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7776         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7777         .patch_hypercall = vmx_patch_hypercall,
7778         .set_irq = vmx_inject_irq,
7779         .set_nmi = vmx_inject_nmi,
7780         .queue_exception = vmx_queue_exception,
7781         .cancel_injection = vmx_cancel_injection,
7782         .interrupt_allowed = vmx_interrupt_allowed,
7783         .nmi_allowed = vmx_nmi_allowed,
7784         .get_nmi_mask = vmx_get_nmi_mask,
7785         .set_nmi_mask = vmx_set_nmi_mask,
7786         .enable_nmi_window = enable_nmi_window,
7787         .enable_irq_window = enable_irq_window,
7788         .update_cr8_intercept = update_cr8_intercept,
7789         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7790         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7791         .get_enable_apicv = vmx_get_enable_apicv,
7792         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7793         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7794         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7795         .hwapic_irr_update = vmx_hwapic_irr_update,
7796         .hwapic_isr_update = vmx_hwapic_isr_update,
7797         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7798         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7799         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7800
7801         .set_tss_addr = vmx_set_tss_addr,
7802         .set_identity_map_addr = vmx_set_identity_map_addr,
7803         .get_tdp_level = get_ept_level,
7804         .get_mt_mask = vmx_get_mt_mask,
7805
7806         .get_exit_info = vmx_get_exit_info,
7807
7808         .get_lpage_level = vmx_get_lpage_level,
7809
7810         .cpuid_update = vmx_cpuid_update,
7811
7812         .rdtscp_supported = vmx_rdtscp_supported,
7813         .invpcid_supported = vmx_invpcid_supported,
7814
7815         .set_supported_cpuid = vmx_set_supported_cpuid,
7816
7817         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7818
7819         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7820         .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7821
7822         .set_tdp_cr3 = vmx_set_cr3,
7823
7824         .check_intercept = vmx_check_intercept,
7825         .handle_external_intr = vmx_handle_external_intr,
7826         .mpx_supported = vmx_mpx_supported,
7827         .xsaves_supported = vmx_xsaves_supported,
7828         .umip_emulated = vmx_umip_emulated,
7829         .pt_supported = vmx_pt_supported,
7830
7831         .request_immediate_exit = vmx_request_immediate_exit,
7832
7833         .sched_in = vmx_sched_in,
7834
7835         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7836         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7837         .flush_log_dirty = vmx_flush_log_dirty,
7838         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7839         .write_log_dirty = vmx_write_pml_buffer,
7840
7841         .pre_block = vmx_pre_block,
7842         .post_block = vmx_post_block,
7843
7844         .pmu_ops = &intel_pmu_ops,
7845
7846         .update_pi_irte = vmx_update_pi_irte,
7847
7848 #ifdef CONFIG_X86_64
7849         .set_hv_timer = vmx_set_hv_timer,
7850         .cancel_hv_timer = vmx_cancel_hv_timer,
7851 #endif
7852
7853         .setup_mce = vmx_setup_mce,
7854
7855         .smi_allowed = vmx_smi_allowed,
7856         .pre_enter_smm = vmx_pre_enter_smm,
7857         .pre_leave_smm = vmx_pre_leave_smm,
7858         .enable_smi_window = enable_smi_window,
7859
7860         .check_nested_events = NULL,
7861         .get_nested_state = NULL,
7862         .set_nested_state = NULL,
7863         .get_vmcs12_pages = NULL,
7864         .nested_enable_evmcs = NULL,
7865 };
7866
7867 static void vmx_cleanup_l1d_flush(void)
7868 {
7869         if (vmx_l1d_flush_pages) {
7870                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7871                 vmx_l1d_flush_pages = NULL;
7872         }
7873         /* Restore state so sysfs ignores VMX */
7874         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7875 }
7876
7877 static void vmx_exit(void)
7878 {
7879 #ifdef CONFIG_KEXEC_CORE
7880         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7881         synchronize_rcu();
7882 #endif
7883
7884         kvm_exit();
7885
7886 #if IS_ENABLED(CONFIG_HYPERV)
7887         if (static_branch_unlikely(&enable_evmcs)) {
7888                 int cpu;
7889                 struct hv_vp_assist_page *vp_ap;
7890                 /*
7891                  * Reset everything to support using non-enlightened VMCS
7892                  * access later (e.g. when we reload the module with
7893                  * enlightened_vmcs=0)
7894                  */
7895                 for_each_online_cpu(cpu) {
7896                         vp_ap = hv_get_vp_assist_page(cpu);
7897
7898                         if (!vp_ap)
7899                                 continue;
7900
7901                         vp_ap->current_nested_vmcs = 0;
7902                         vp_ap->enlighten_vmentry = 0;
7903                 }
7904
7905                 static_branch_disable(&enable_evmcs);
7906         }
7907 #endif
7908         vmx_cleanup_l1d_flush();
7909 }
7910 module_exit(vmx_exit);
7911
7912 static int __init vmx_init(void)
7913 {
7914         int r;
7915
7916 #if IS_ENABLED(CONFIG_HYPERV)
7917         /*
7918          * Enlightened VMCS usage should be recommended and the host needs
7919          * to support eVMCS v1 or above. We can also disable eVMCS support
7920          * with module parameter.
7921          */
7922         if (enlightened_vmcs &&
7923             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7924             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7925             KVM_EVMCS_VERSION) {
7926                 int cpu;
7927
7928                 /* Check that we have assist pages on all online CPUs */
7929                 for_each_online_cpu(cpu) {
7930                         if (!hv_get_vp_assist_page(cpu)) {
7931                                 enlightened_vmcs = false;
7932                                 break;
7933                         }
7934                 }
7935
7936                 if (enlightened_vmcs) {
7937                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7938                         static_branch_enable(&enable_evmcs);
7939                 }
7940         } else {
7941                 enlightened_vmcs = false;
7942         }
7943 #endif
7944
7945         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7946                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7947         if (r)
7948                 return r;
7949
7950         /*
7951          * Must be called after kvm_init() so enable_ept is properly set
7952          * up. Hand the parameter mitigation value in which was stored in
7953          * the pre module init parser. If no parameter was given, it will
7954          * contain 'auto' which will be turned into the default 'cond'
7955          * mitigation mode.
7956          */
7957         if (boot_cpu_has(X86_BUG_L1TF)) {
7958                 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7959                 if (r) {
7960                         vmx_exit();
7961                         return r;
7962                 }
7963         }
7964
7965 #ifdef CONFIG_KEXEC_CORE
7966         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7967                            crash_vmclear_local_loaded_vmcss);
7968 #endif
7969         vmx_check_vmcs12_offsets();
7970
7971         return 0;
7972 }
7973 module_init(vmx_init);