OSDN Git Service

perf/x86/uncore: Correct the number of CHAs on EMR
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10
11 #include "capabilities.h"
12 #include "../kvm_cache_regs.h"
13 #include "posted_intr.h"
14 #include "vmcs.h"
15 #include "vmx_ops.h"
16 #include "../cpuid.h"
17 #include "run_flags.h"
18
19 #define MSR_TYPE_R      1
20 #define MSR_TYPE_W      2
21 #define MSR_TYPE_RW     3
22
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24
25 #ifdef CONFIG_X86_64
26 #define MAX_NR_USER_RETURN_MSRS 7
27 #else
28 #define MAX_NR_USER_RETURN_MSRS 4
29 #endif
30
31 #define MAX_NR_LOADSTORE_MSRS   8
32
33 struct vmx_msrs {
34         unsigned int            nr;
35         struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
36 };
37
38 struct vmx_uret_msr {
39         bool load_into_hardware;
40         u64 data;
41         u64 mask;
42 };
43
44 enum segment_cache_field {
45         SEG_FIELD_SEL = 0,
46         SEG_FIELD_BASE = 1,
47         SEG_FIELD_LIMIT = 2,
48         SEG_FIELD_AR = 3,
49
50         SEG_FIELD_NR = 4
51 };
52
53 #define RTIT_ADDR_RANGE         4
54
55 struct pt_ctx {
56         u64 ctl;
57         u64 status;
58         u64 output_base;
59         u64 output_mask;
60         u64 cr3_match;
61         u64 addr_a[RTIT_ADDR_RANGE];
62         u64 addr_b[RTIT_ADDR_RANGE];
63 };
64
65 struct pt_desc {
66         u64 ctl_bitmask;
67         u32 num_address_ranges;
68         u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
69         struct pt_ctx host;
70         struct pt_ctx guest;
71 };
72
73 union vmx_exit_reason {
74         struct {
75                 u32     basic                   : 16;
76                 u32     reserved16              : 1;
77                 u32     reserved17              : 1;
78                 u32     reserved18              : 1;
79                 u32     reserved19              : 1;
80                 u32     reserved20              : 1;
81                 u32     reserved21              : 1;
82                 u32     reserved22              : 1;
83                 u32     reserved23              : 1;
84                 u32     reserved24              : 1;
85                 u32     reserved25              : 1;
86                 u32     bus_lock_detected       : 1;
87                 u32     enclave_mode            : 1;
88                 u32     smi_pending_mtf         : 1;
89                 u32     smi_from_vmx_root       : 1;
90                 u32     reserved30              : 1;
91                 u32     failed_vmentry          : 1;
92         };
93         u32 full;
94 };
95
96 struct lbr_desc {
97         /* Basic info about guest LBR records. */
98         struct x86_pmu_lbr records;
99
100         /*
101          * Emulate LBR feature via passthrough LBR registers when the
102          * per-vcpu guest LBR event is scheduled on the current pcpu.
103          *
104          * The records may be inaccurate if the host reclaims the LBR.
105          */
106         struct perf_event *event;
107
108         /* True if LBRs are marked as not intercepted in the MSR bitmap */
109         bool msr_passthrough;
110 };
111
112 /*
113  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
114  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
115  */
116 struct nested_vmx {
117         /* Has the level1 guest done vmxon? */
118         bool vmxon;
119         gpa_t vmxon_ptr;
120         bool pml_full;
121
122         /* The guest-physical address of the current VMCS L1 keeps for L2 */
123         gpa_t current_vmptr;
124         /*
125          * Cache of the guest's VMCS, existing outside of guest memory.
126          * Loaded from guest memory during VMPTRLD. Flushed to guest
127          * memory during VMCLEAR and VMPTRLD.
128          */
129         struct vmcs12 *cached_vmcs12;
130         /*
131          * Cache of the guest's shadow VMCS, existing outside of guest
132          * memory. Loaded from guest memory during VM entry. Flushed
133          * to guest memory during VM exit.
134          */
135         struct vmcs12 *cached_shadow_vmcs12;
136
137         /*
138          * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
139          */
140         struct gfn_to_hva_cache shadow_vmcs12_cache;
141
142         /*
143          * GPA to HVA cache for VMCS12
144          */
145         struct gfn_to_hva_cache vmcs12_cache;
146
147         /*
148          * Indicates if the shadow vmcs or enlightened vmcs must be updated
149          * with the data held by struct vmcs12.
150          */
151         bool need_vmcs12_to_shadow_sync;
152         bool dirty_vmcs12;
153
154         /*
155          * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
156          * changes in MSR bitmap for L1 or switching to a different L2. Note,
157          * this flag can only be used reliably in conjunction with a paravirt L1
158          * which informs L0 whether any changes to MSR bitmap for L2 were done
159          * on its side.
160          */
161         bool force_msr_bitmap_recalc;
162
163         /*
164          * Indicates lazily loaded guest state has not yet been decached from
165          * vmcs02.
166          */
167         bool need_sync_vmcs02_to_vmcs12_rare;
168
169         /*
170          * vmcs02 has been initialized, i.e. state that is constant for
171          * vmcs02 has been written to the backing VMCS.  Initialization
172          * is delayed until L1 actually attempts to run a nested VM.
173          */
174         bool vmcs02_initialized;
175
176         bool change_vmcs01_virtual_apic_mode;
177         bool reload_vmcs01_apic_access_page;
178         bool update_vmcs01_cpu_dirty_logging;
179         bool update_vmcs01_apicv_status;
180
181         /*
182          * Enlightened VMCS has been enabled. It does not mean that L1 has to
183          * use it. However, VMX features available to L1 will be limited based
184          * on what the enlightened VMCS supports.
185          */
186         bool enlightened_vmcs_enabled;
187
188         /* L2 must run next, and mustn't decide to exit to L1. */
189         bool nested_run_pending;
190
191         /* Pending MTF VM-exit into L1.  */
192         bool mtf_pending;
193
194         struct loaded_vmcs vmcs02;
195
196         /*
197          * Guest pages referred to in the vmcs02 with host-physical
198          * pointers, so we must keep them pinned while L2 runs.
199          */
200         struct kvm_host_map apic_access_page_map;
201         struct kvm_host_map virtual_apic_map;
202         struct kvm_host_map pi_desc_map;
203
204         struct kvm_host_map msr_bitmap_map;
205
206         struct pi_desc *pi_desc;
207         bool pi_pending;
208         u16 posted_intr_nv;
209
210         struct hrtimer preemption_timer;
211         u64 preemption_timer_deadline;
212         bool has_preemption_timer_deadline;
213         bool preemption_timer_expired;
214
215         /*
216          * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
217          * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
218          * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
219          * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
220          * userspace restores MSRs before nested state.  If userspace restores
221          * MSRs after nested state, the snapshot holds garbage, but KVM can't
222          * detect that, and the garbage value in vmcs02 will be overwritten by
223          * MSR restoration in any case.
224          */
225         u64 pre_vmenter_debugctl;
226         u64 pre_vmenter_bndcfgs;
227
228         /* to migrate it to L1 if L2 writes to L1's CR8 directly */
229         int l1_tpr_threshold;
230
231         u16 vpid02;
232         u16 last_vpid;
233
234         struct nested_vmx_msrs msrs;
235
236         /* SMM related state */
237         struct {
238                 /* in VMX operation on SMM entry? */
239                 bool vmxon;
240                 /* in guest mode on SMM entry? */
241                 bool guest_mode;
242         } smm;
243
244         gpa_t hv_evmcs_vmptr;
245         struct kvm_host_map hv_evmcs_map;
246         struct hv_enlightened_vmcs *hv_evmcs;
247 };
248
249 struct vcpu_vmx {
250         struct kvm_vcpu       vcpu;
251         u8                    fail;
252         u8                    x2apic_msr_bitmap_mode;
253
254         /*
255          * If true, host state has been stored in vmx->loaded_vmcs for
256          * the CPU registers that only need to be switched when transitioning
257          * to/from the kernel, and the registers have been loaded with guest
258          * values.  If false, host state is loaded in the CPU registers
259          * and vmx->loaded_vmcs->host_state is invalid.
260          */
261         bool                  guest_state_loaded;
262
263         unsigned long         exit_qualification;
264         u32                   exit_intr_info;
265         u32                   idt_vectoring_info;
266         ulong                 rflags;
267
268         /*
269          * User return MSRs are always emulated when enabled in the guest, but
270          * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
271          * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
272          * be loaded into hardware if those conditions aren't met.
273          */
274         struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
275         bool                  guest_uret_msrs_loaded;
276 #ifdef CONFIG_X86_64
277         u64                   msr_host_kernel_gs_base;
278         u64                   msr_guest_kernel_gs_base;
279 #endif
280
281         u64                   spec_ctrl;
282         u32                   msr_ia32_umwait_control;
283
284         /*
285          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
286          * non-nested (L1) guest, it always points to vmcs01. For a nested
287          * guest (L2), it points to a different VMCS.
288          */
289         struct loaded_vmcs    vmcs01;
290         struct loaded_vmcs   *loaded_vmcs;
291
292         struct msr_autoload {
293                 struct vmx_msrs guest;
294                 struct vmx_msrs host;
295         } msr_autoload;
296
297         struct msr_autostore {
298                 struct vmx_msrs guest;
299         } msr_autostore;
300
301         struct {
302                 int vm86_active;
303                 ulong save_rflags;
304                 struct kvm_segment segs[8];
305         } rmode;
306         struct {
307                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
308                 struct kvm_save_segment {
309                         u16 selector;
310                         unsigned long base;
311                         u32 limit;
312                         u32 ar;
313                 } seg[8];
314         } segment_cache;
315         int vpid;
316         bool emulation_required;
317
318         union vmx_exit_reason exit_reason;
319
320         /* Posted interrupt descriptor */
321         struct pi_desc pi_desc;
322
323         /* Used if this vCPU is waiting for PI notification wakeup. */
324         struct list_head pi_wakeup_list;
325
326         /* Support for a guest hypervisor (nested VMX) */
327         struct nested_vmx nested;
328
329         /* Dynamic PLE window. */
330         unsigned int ple_window;
331         bool ple_window_dirty;
332
333         bool req_immediate_exit;
334
335         /* Support for PML */
336 #define PML_ENTITY_NUM          512
337         struct page *pml_pg;
338
339         /* apic deadline value in host tsc */
340         u64 hv_deadline_tsc;
341
342         unsigned long host_debugctlmsr;
343
344         /*
345          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
346          * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
347          * in msr_ia32_feature_control_valid_bits.
348          */
349         u64 msr_ia32_feature_control;
350         u64 msr_ia32_feature_control_valid_bits;
351         /* SGX Launch Control public key hash */
352         u64 msr_ia32_sgxlepubkeyhash[4];
353         u64 msr_ia32_mcu_opt_ctrl;
354         bool disable_fb_clear;
355
356         struct pt_desc pt_desc;
357         struct lbr_desc lbr_desc;
358
359         /* Save desired MSR intercept (read: pass-through) state */
360 #define MAX_POSSIBLE_PASSTHROUGH_MSRS   16
361         struct {
362                 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
363                 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
364         } shadow_msr_intercept;
365 };
366
367 struct kvm_vmx {
368         struct kvm kvm;
369
370         unsigned int tss_addr;
371         bool ept_identity_pagetable_done;
372         gpa_t ept_identity_map_addr;
373         /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
374         u64 *pid_table;
375 };
376
377 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
378 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
379                         struct loaded_vmcs *buddy);
380 int allocate_vpid(void);
381 void free_vpid(int vpid);
382 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
383 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
384 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
385                         unsigned long fs_base, unsigned long gs_base);
386 int vmx_get_cpl(struct kvm_vcpu *vcpu);
387 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
388 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
389 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
390 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
391 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
392 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
393 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
394 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
395 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
396 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
397 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
398 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
399 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
400
401 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
402 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
403 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
404 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
405 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
406 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
407 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
408 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
409 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
410 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
411 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
412 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
413 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
414                     unsigned int flags);
415 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
416 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
417
418 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
419 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
420
421 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
422 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
423
424 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
425                                              int type, bool value)
426 {
427         if (value)
428                 vmx_enable_intercept_for_msr(vcpu, msr, type);
429         else
430                 vmx_disable_intercept_for_msr(vcpu, msr, type);
431 }
432
433 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
434
435 /*
436  * Note, early Intel manuals have the write-low and read-high bitmap offsets
437  * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
438  * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
439  * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
440  * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
441  * VM-Exit.
442  */
443 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
444 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
445                                                        u32 msr)                \
446 {                                                                              \
447         int f = sizeof(unsigned long);                                         \
448                                                                                \
449         if (msr <= 0x1fff)                                                     \
450                 return bitop##_bit(msr, bitmap + base / f);                    \
451         else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))                   \
452                 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
453         return (rtype)true;                                                    \
454 }
455 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)                  \
456         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
457         __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
458
459 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
460 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
461 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
462
463 static inline u8 vmx_get_rvi(void)
464 {
465         return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
466 }
467
468 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                            \
469         (VM_ENTRY_LOAD_DEBUG_CONTROLS)
470 #ifdef CONFIG_X86_64
471         #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                      \
472                 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |                 \
473                  VM_ENTRY_IA32E_MODE)
474 #else
475         #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS                      \
476                 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
477 #endif
478 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS                              \
479         (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |                          \
480          VM_ENTRY_LOAD_IA32_PAT |                                       \
481          VM_ENTRY_LOAD_IA32_EFER |                                      \
482          VM_ENTRY_LOAD_BNDCFGS |                                        \
483          VM_ENTRY_PT_CONCEAL_PIP |                                      \
484          VM_ENTRY_LOAD_IA32_RTIT_CTL)
485
486 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                             \
487         (VM_EXIT_SAVE_DEBUG_CONTROLS |                                  \
488          VM_EXIT_ACK_INTR_ON_EXIT)
489 #ifdef CONFIG_X86_64
490         #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                       \
491                 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |                  \
492                  VM_EXIT_HOST_ADDR_SPACE_SIZE)
493 #else
494         #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS                       \
495                 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
496 #endif
497 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS                               \
498               (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |                     \
499                VM_EXIT_SAVE_IA32_PAT |                                  \
500                VM_EXIT_LOAD_IA32_PAT |                                  \
501                VM_EXIT_SAVE_IA32_EFER |                                 \
502                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |                      \
503                VM_EXIT_LOAD_IA32_EFER |                                 \
504                VM_EXIT_CLEAR_BNDCFGS |                                  \
505                VM_EXIT_PT_CONCEAL_PIP |                                 \
506                VM_EXIT_CLEAR_IA32_RTIT_CTL)
507
508 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL                      \
509         (PIN_BASED_EXT_INTR_MASK |                                      \
510          PIN_BASED_NMI_EXITING)
511 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL                      \
512         (PIN_BASED_VIRTUAL_NMIS |                                       \
513          PIN_BASED_POSTED_INTR |                                        \
514          PIN_BASED_VMX_PREEMPTION_TIMER)
515
516 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL                    \
517         (CPU_BASED_HLT_EXITING |                                        \
518          CPU_BASED_CR3_LOAD_EXITING |                                   \
519          CPU_BASED_CR3_STORE_EXITING |                                  \
520          CPU_BASED_UNCOND_IO_EXITING |                                  \
521          CPU_BASED_MOV_DR_EXITING |                                     \
522          CPU_BASED_USE_TSC_OFFSETTING |                                 \
523          CPU_BASED_MWAIT_EXITING |                                      \
524          CPU_BASED_MONITOR_EXITING |                                    \
525          CPU_BASED_INVLPG_EXITING |                                     \
526          CPU_BASED_RDPMC_EXITING |                                      \
527          CPU_BASED_INTR_WINDOW_EXITING)
528
529 #ifdef CONFIG_X86_64
530         #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL              \
531                 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |         \
532                  CPU_BASED_CR8_LOAD_EXITING |                           \
533                  CPU_BASED_CR8_STORE_EXITING)
534 #else
535         #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL              \
536                 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
537 #endif
538
539 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL                      \
540         (CPU_BASED_RDTSC_EXITING |                                      \
541          CPU_BASED_TPR_SHADOW |                                         \
542          CPU_BASED_USE_IO_BITMAPS |                                     \
543          CPU_BASED_MONITOR_TRAP_FLAG |                                  \
544          CPU_BASED_USE_MSR_BITMAPS |                                    \
545          CPU_BASED_NMI_WINDOW_EXITING |                                 \
546          CPU_BASED_PAUSE_EXITING |                                      \
547          CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |                        \
548          CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
549
550 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
551 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL                      \
552         (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |                      \
553          SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |                        \
554          SECONDARY_EXEC_WBINVD_EXITING |                                \
555          SECONDARY_EXEC_ENABLE_VPID |                                   \
556          SECONDARY_EXEC_ENABLE_EPT |                                    \
557          SECONDARY_EXEC_UNRESTRICTED_GUEST |                            \
558          SECONDARY_EXEC_PAUSE_LOOP_EXITING |                            \
559          SECONDARY_EXEC_DESC |                                          \
560          SECONDARY_EXEC_ENABLE_RDTSCP |                                 \
561          SECONDARY_EXEC_ENABLE_INVPCID |                                \
562          SECONDARY_EXEC_APIC_REGISTER_VIRT |                            \
563          SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |                         \
564          SECONDARY_EXEC_SHADOW_VMCS |                                   \
565          SECONDARY_EXEC_XSAVES |                                        \
566          SECONDARY_EXEC_RDSEED_EXITING |                                \
567          SECONDARY_EXEC_RDRAND_EXITING |                                \
568          SECONDARY_EXEC_ENABLE_PML |                                    \
569          SECONDARY_EXEC_TSC_SCALING |                                   \
570          SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |                         \
571          SECONDARY_EXEC_PT_USE_GPA |                                    \
572          SECONDARY_EXEC_PT_CONCEAL_VMX |                                \
573          SECONDARY_EXEC_ENABLE_VMFUNC |                                 \
574          SECONDARY_EXEC_BUS_LOCK_DETECTION |                            \
575          SECONDARY_EXEC_NOTIFY_VM_EXITING |                             \
576          SECONDARY_EXEC_ENCLS_EXITING)
577
578 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
579 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL                       \
580         (TERTIARY_EXEC_IPI_VIRT)
581
582 #define BUILD_CONTROLS_SHADOW(lname, uname, bits)                                               \
583 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)                      \
584 {                                                                                               \
585         if (vmx->loaded_vmcs->controls_shadow.lname != val) {                                   \
586                 vmcs_write##bits(uname, val);                                                   \
587                 vmx->loaded_vmcs->controls_shadow.lname = val;                                  \
588         }                                                                                       \
589 }                                                                                               \
590 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)                        \
591 {                                                                                               \
592         return vmcs->controls_shadow.lname;                                                     \
593 }                                                                                               \
594 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)                                \
595 {                                                                                               \
596         return __##lname##_controls_get(vmx->loaded_vmcs);                                      \
597 }                                                                                               \
598 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)          \
599 {                                                                                               \
600         BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));           \
601         lname##_controls_set(vmx, lname##_controls_get(vmx) | val);                             \
602 }                                                                                               \
603 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)        \
604 {                                                                                               \
605         BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));           \
606         lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);                            \
607 }
608 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
609 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
610 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
611 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
612 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
613 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
614
615 /*
616  * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
617  * cache on demand.  Other registers not listed here are synced to
618  * the cache immediately after VM-Exit.
619  */
620 #define VMX_REGS_LAZY_LOAD_SET  ((1 << VCPU_REGS_RIP) |         \
621                                 (1 << VCPU_REGS_RSP) |          \
622                                 (1 << VCPU_EXREG_RFLAGS) |      \
623                                 (1 << VCPU_EXREG_PDPTR) |       \
624                                 (1 << VCPU_EXREG_SEGMENTS) |    \
625                                 (1 << VCPU_EXREG_CR0) |         \
626                                 (1 << VCPU_EXREG_CR3) |         \
627                                 (1 << VCPU_EXREG_CR4) |         \
628                                 (1 << VCPU_EXREG_EXIT_INFO_1) | \
629                                 (1 << VCPU_EXREG_EXIT_INFO_2))
630
631 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
632 {
633         unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
634
635         /*
636          * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
637          * in order to construct shadow PTEs with the correct protections.
638          * Note!  CR0.WP technically can be passed through to the guest if
639          * paging is disabled, but checking CR0.PG would generate a cyclical
640          * dependency of sorts due to forcing the caller to ensure CR0 holds
641          * the correct value prior to determining which CR0 bits can be owned
642          * by L1.  Keep it simple and limit the optimization to EPT.
643          */
644         if (!enable_ept)
645                 bits &= ~X86_CR0_WP;
646         return bits;
647 }
648
649 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
650 {
651         return container_of(kvm, struct kvm_vmx, kvm);
652 }
653
654 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
655 {
656         return container_of(vcpu, struct vcpu_vmx, vcpu);
657 }
658
659 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
660 {
661         return &to_vmx(vcpu)->lbr_desc;
662 }
663
664 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
665 {
666         return &vcpu_to_lbr_desc(vcpu)->records;
667 }
668
669 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
670 {
671         return !!vcpu_to_lbr_records(vcpu)->nr;
672 }
673
674 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
675 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
676 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
677
678 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
679 {
680         struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682         if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
683                 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
684
685         return vmx->exit_qualification;
686 }
687
688 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
689 {
690         struct vcpu_vmx *vmx = to_vmx(vcpu);
691
692         if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
693                 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
694
695         return vmx->exit_intr_info;
696 }
697
698 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
699 void free_vmcs(struct vmcs *vmcs);
700 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
701 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
702 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
703
704 static inline struct vmcs *alloc_vmcs(bool shadow)
705 {
706         return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
707                               GFP_KERNEL_ACCOUNT);
708 }
709
710 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
711 {
712         return secondary_exec_controls_get(vmx) &
713                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
714 }
715
716 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
717 {
718         if (!enable_ept)
719                 return true;
720
721         return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
722 }
723
724 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
725 {
726         return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
727             (secondary_exec_controls_get(to_vmx(vcpu)) &
728             SECONDARY_EXEC_UNRESTRICTED_GUEST));
729 }
730
731 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
732 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
733 {
734         return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
735 }
736
737 void dump_vmcs(struct kvm_vcpu *vcpu);
738
739 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
740 {
741         return (vmx_instr_info >> 28) & 0xf;
742 }
743
744 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
745 {
746         return  lapic_in_kernel(vcpu) && enable_ipiv;
747 }
748
749 static inline bool guest_cpuid_has_evmcs(struct kvm_vcpu *vcpu)
750 {
751         /*
752          * eVMCS is exposed to the guest if Hyper-V is enabled in CPUID and
753          * eVMCS has been explicitly enabled by userspace.
754          */
755         return vcpu->arch.hyperv_enabled &&
756                to_vmx(vcpu)->nested.enlightened_vmcs_enabled;
757 }
758
759 #endif /* __KVM_X86_VMX_H */