OSDN Git Service

block: Fix partition support for host aware zoned block devices
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / vmx / vmx.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
4
5 #include <linux/kvm_host.h>
6
7 #include <asm/kvm.h>
8 #include <asm/intel_pt.h>
9
10 #include "capabilities.h"
11 #include "ops.h"
12 #include "vmcs.h"
13
14 extern const u32 vmx_msr_index[];
15 extern u64 host_efer;
16
17 extern u32 get_umwait_control_msr(void);
18
19 #define MSR_TYPE_R      1
20 #define MSR_TYPE_W      2
21 #define MSR_TYPE_RW     3
22
23 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
24
25 #ifdef CONFIG_X86_64
26 #define NR_SHARED_MSRS  7
27 #else
28 #define NR_SHARED_MSRS  4
29 #endif
30
31 #define NR_LOADSTORE_MSRS 8
32
33 struct vmx_msrs {
34         unsigned int            nr;
35         struct vmx_msr_entry    val[NR_LOADSTORE_MSRS];
36 };
37
38 struct shared_msr_entry {
39         unsigned index;
40         u64 data;
41         u64 mask;
42 };
43
44 enum segment_cache_field {
45         SEG_FIELD_SEL = 0,
46         SEG_FIELD_BASE = 1,
47         SEG_FIELD_LIMIT = 2,
48         SEG_FIELD_AR = 3,
49
50         SEG_FIELD_NR = 4
51 };
52
53 /* Posted-Interrupt Descriptor */
54 struct pi_desc {
55         u32 pir[8];     /* Posted interrupt requested */
56         union {
57                 struct {
58                                 /* bit 256 - Outstanding Notification */
59                         u16     on      : 1,
60                                 /* bit 257 - Suppress Notification */
61                                 sn      : 1,
62                                 /* bit 271:258 - Reserved */
63                                 rsvd_1  : 14;
64                                 /* bit 279:272 - Notification Vector */
65                         u8      nv;
66                                 /* bit 287:280 - Reserved */
67                         u8      rsvd_2;
68                                 /* bit 319:288 - Notification Destination */
69                         u32     ndst;
70                 };
71                 u64 control;
72         };
73         u32 rsvd[6];
74 } __aligned(64);
75
76 #define RTIT_ADDR_RANGE         4
77
78 struct pt_ctx {
79         u64 ctl;
80         u64 status;
81         u64 output_base;
82         u64 output_mask;
83         u64 cr3_match;
84         u64 addr_a[RTIT_ADDR_RANGE];
85         u64 addr_b[RTIT_ADDR_RANGE];
86 };
87
88 struct pt_desc {
89         u64 ctl_bitmask;
90         u32 addr_range;
91         u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
92         struct pt_ctx host;
93         struct pt_ctx guest;
94 };
95
96 /*
97  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
98  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
99  */
100 struct nested_vmx {
101         /* Has the level1 guest done vmxon? */
102         bool vmxon;
103         gpa_t vmxon_ptr;
104         bool pml_full;
105
106         /* The guest-physical address of the current VMCS L1 keeps for L2 */
107         gpa_t current_vmptr;
108         /*
109          * Cache of the guest's VMCS, existing outside of guest memory.
110          * Loaded from guest memory during VMPTRLD. Flushed to guest
111          * memory during VMCLEAR and VMPTRLD.
112          */
113         struct vmcs12 *cached_vmcs12;
114         /*
115          * Cache of the guest's shadow VMCS, existing outside of guest
116          * memory. Loaded from guest memory during VM entry. Flushed
117          * to guest memory during VM exit.
118          */
119         struct vmcs12 *cached_shadow_vmcs12;
120
121         /*
122          * Indicates if the shadow vmcs or enlightened vmcs must be updated
123          * with the data held by struct vmcs12.
124          */
125         bool need_vmcs12_to_shadow_sync;
126         bool dirty_vmcs12;
127
128         /*
129          * Indicates lazily loaded guest state has not yet been decached from
130          * vmcs02.
131          */
132         bool need_sync_vmcs02_to_vmcs12_rare;
133
134         /*
135          * vmcs02 has been initialized, i.e. state that is constant for
136          * vmcs02 has been written to the backing VMCS.  Initialization
137          * is delayed until L1 actually attempts to run a nested VM.
138          */
139         bool vmcs02_initialized;
140
141         bool change_vmcs01_virtual_apic_mode;
142
143         /*
144          * Enlightened VMCS has been enabled. It does not mean that L1 has to
145          * use it. However, VMX features available to L1 will be limited based
146          * on what the enlightened VMCS supports.
147          */
148         bool enlightened_vmcs_enabled;
149
150         /* L2 must run next, and mustn't decide to exit to L1. */
151         bool nested_run_pending;
152
153         struct loaded_vmcs vmcs02;
154
155         /*
156          * Guest pages referred to in the vmcs02 with host-physical
157          * pointers, so we must keep them pinned while L2 runs.
158          */
159         struct page *apic_access_page;
160         struct kvm_host_map virtual_apic_map;
161         struct kvm_host_map pi_desc_map;
162
163         struct kvm_host_map msr_bitmap_map;
164
165         struct pi_desc *pi_desc;
166         bool pi_pending;
167         u16 posted_intr_nv;
168
169         struct hrtimer preemption_timer;
170         bool preemption_timer_expired;
171
172         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
173         u64 vmcs01_debugctl;
174         u64 vmcs01_guest_bndcfgs;
175
176         /* to migrate it to L1 if L2 writes to L1's CR8 directly */
177         int l1_tpr_threshold;
178
179         u16 vpid02;
180         u16 last_vpid;
181
182         struct nested_vmx_msrs msrs;
183
184         /* SMM related state */
185         struct {
186                 /* in VMX operation on SMM entry? */
187                 bool vmxon;
188                 /* in guest mode on SMM entry? */
189                 bool guest_mode;
190         } smm;
191
192         gpa_t hv_evmcs_vmptr;
193         struct kvm_host_map hv_evmcs_map;
194         struct hv_enlightened_vmcs *hv_evmcs;
195 };
196
197 struct vcpu_vmx {
198         struct kvm_vcpu       vcpu;
199         u8                    fail;
200         u8                    msr_bitmap_mode;
201
202         /*
203          * If true, host state has been stored in vmx->loaded_vmcs for
204          * the CPU registers that only need to be switched when transitioning
205          * to/from the kernel, and the registers have been loaded with guest
206          * values.  If false, host state is loaded in the CPU registers
207          * and vmx->loaded_vmcs->host_state is invalid.
208          */
209         bool                  guest_state_loaded;
210
211         u32                   exit_intr_info;
212         u32                   idt_vectoring_info;
213         ulong                 rflags;
214
215         struct shared_msr_entry guest_msrs[NR_SHARED_MSRS];
216         int                   nmsrs;
217         int                   save_nmsrs;
218         bool                  guest_msrs_ready;
219 #ifdef CONFIG_X86_64
220         u64                   msr_host_kernel_gs_base;
221         u64                   msr_guest_kernel_gs_base;
222 #endif
223
224         u64                   spec_ctrl;
225         u32                   msr_ia32_umwait_control;
226
227         u32 secondary_exec_control;
228
229         /*
230          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
231          * non-nested (L1) guest, it always points to vmcs01. For a nested
232          * guest (L2), it points to a different VMCS.
233          */
234         struct loaded_vmcs    vmcs01;
235         struct loaded_vmcs   *loaded_vmcs;
236
237         struct msr_autoload {
238                 struct vmx_msrs guest;
239                 struct vmx_msrs host;
240         } msr_autoload;
241
242         struct msr_autostore {
243                 struct vmx_msrs guest;
244         } msr_autostore;
245
246         struct {
247                 int vm86_active;
248                 ulong save_rflags;
249                 struct kvm_segment segs[8];
250         } rmode;
251         struct {
252                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
253                 struct kvm_save_segment {
254                         u16 selector;
255                         unsigned long base;
256                         u32 limit;
257                         u32 ar;
258                 } seg[8];
259         } segment_cache;
260         int vpid;
261         bool emulation_required;
262
263         u32 exit_reason;
264
265         /* Posted interrupt descriptor */
266         struct pi_desc pi_desc;
267
268         /* Support for a guest hypervisor (nested VMX) */
269         struct nested_vmx nested;
270
271         /* Dynamic PLE window. */
272         unsigned int ple_window;
273         bool ple_window_dirty;
274
275         bool req_immediate_exit;
276
277         /* Support for PML */
278 #define PML_ENTITY_NUM          512
279         struct page *pml_pg;
280
281         /* apic deadline value in host tsc */
282         u64 hv_deadline_tsc;
283
284         u64 current_tsc_ratio;
285
286         u32 host_pkru;
287
288         unsigned long host_debugctlmsr;
289
290         /*
291          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
292          * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
293          * in msr_ia32_feature_control_valid_bits.
294          */
295         u64 msr_ia32_feature_control;
296         u64 msr_ia32_feature_control_valid_bits;
297         u64 ept_pointer;
298
299         struct pt_desc pt_desc;
300 };
301
302 enum ept_pointers_status {
303         EPT_POINTERS_CHECK = 0,
304         EPT_POINTERS_MATCH = 1,
305         EPT_POINTERS_MISMATCH = 2
306 };
307
308 struct kvm_vmx {
309         struct kvm kvm;
310
311         unsigned int tss_addr;
312         bool ept_identity_pagetable_done;
313         gpa_t ept_identity_map_addr;
314
315         enum ept_pointers_status ept_pointers_match;
316         spinlock_t ept_pointer_lock;
317 };
318
319 bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu);
321 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
322 int allocate_vpid(void);
323 void free_vpid(int vpid);
324 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
325 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
326 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
327                         unsigned long fs_base, unsigned long gs_base);
328 int vmx_get_cpl(struct kvm_vcpu *vcpu);
329 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
330 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
331 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
332 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
333 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
334 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
335 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
336 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
337 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
338 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
339 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
340 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
341 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
342 void update_exception_bitmap(struct kvm_vcpu *vcpu);
343 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
344 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
345 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
346 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
347 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
348 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
349 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
350 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr);
351
352 #define POSTED_INTR_ON  0
353 #define POSTED_INTR_SN  1
354
355 static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
356 {
357         return test_and_set_bit(POSTED_INTR_ON,
358                         (unsigned long *)&pi_desc->control);
359 }
360
361 static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
362 {
363         return test_and_clear_bit(POSTED_INTR_ON,
364                         (unsigned long *)&pi_desc->control);
365 }
366
367 static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
368 {
369         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
370 }
371
372 static inline bool pi_is_pir_empty(struct pi_desc *pi_desc)
373 {
374         return bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS);
375 }
376
377 static inline void pi_set_sn(struct pi_desc *pi_desc)
378 {
379         set_bit(POSTED_INTR_SN,
380                 (unsigned long *)&pi_desc->control);
381 }
382
383 static inline void pi_set_on(struct pi_desc *pi_desc)
384 {
385         set_bit(POSTED_INTR_ON,
386                 (unsigned long *)&pi_desc->control);
387 }
388
389 static inline void pi_clear_on(struct pi_desc *pi_desc)
390 {
391         clear_bit(POSTED_INTR_ON,
392                 (unsigned long *)&pi_desc->control);
393 }
394
395 static inline void pi_clear_sn(struct pi_desc *pi_desc)
396 {
397         clear_bit(POSTED_INTR_SN,
398                 (unsigned long *)&pi_desc->control);
399 }
400
401 static inline int pi_test_on(struct pi_desc *pi_desc)
402 {
403         return test_bit(POSTED_INTR_ON,
404                         (unsigned long *)&pi_desc->control);
405 }
406
407 static inline int pi_test_sn(struct pi_desc *pi_desc)
408 {
409         return test_bit(POSTED_INTR_SN,
410                         (unsigned long *)&pi_desc->control);
411 }
412
413 static inline u8 vmx_get_rvi(void)
414 {
415         return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
416 }
417
418 #define BUILD_CONTROLS_SHADOW(lname, uname)                                 \
419 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)      \
420 {                                                                           \
421         if (vmx->loaded_vmcs->controls_shadow.lname != val) {               \
422                 vmcs_write32(uname, val);                                   \
423                 vmx->loaded_vmcs->controls_shadow.lname = val;              \
424         }                                                                   \
425 }                                                                           \
426 static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)                \
427 {                                                                           \
428         return vmx->loaded_vmcs->controls_shadow.lname;                     \
429 }                                                                           \
430 static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
431 {                                                                           \
432         lname##_controls_set(vmx, lname##_controls_get(vmx) | val);         \
433 }                                                                           \
434 static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
435 {                                                                           \
436         lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);        \
437 }
438 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
439 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
440 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
441 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
442 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
443
444 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
445 {
446         vmx->segment_cache.bitmask = 0;
447 }
448
449 static inline u32 vmx_vmentry_ctrl(void)
450 {
451         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
452         if (pt_mode == PT_MODE_SYSTEM)
453                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
454                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
455         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
456         return vmentry_ctrl &
457                 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
458 }
459
460 static inline u32 vmx_vmexit_ctrl(void)
461 {
462         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
463         if (pt_mode == PT_MODE_SYSTEM)
464                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
465                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
466         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
467         return vmexit_ctrl &
468                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
469 }
470
471 u32 vmx_exec_control(struct vcpu_vmx *vmx);
472 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
473
474 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
475 {
476         return container_of(kvm, struct kvm_vmx, kvm);
477 }
478
479 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
480 {
481         return container_of(vcpu, struct vcpu_vmx, vcpu);
482 }
483
484 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
485 {
486         return &(to_vmx(vcpu)->pi_desc);
487 }
488
489 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
490 void free_vmcs(struct vmcs *vmcs);
491 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
492 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
493 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
494 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
495
496 static inline struct vmcs *alloc_vmcs(bool shadow)
497 {
498         return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
499                               GFP_KERNEL_ACCOUNT);
500 }
501
502 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
503
504 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
505                                 bool invalidate_gpa)
506 {
507         if (enable_ept && (invalidate_gpa || !enable_vpid)) {
508                 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
509                         return;
510                 ept_sync_context(construct_eptp(vcpu,
511                                                 vcpu->arch.mmu->root_hpa));
512         } else {
513                 vpid_sync_context(vpid);
514         }
515 }
516
517 static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
518 {
519         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
520 }
521
522 static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
523 {
524         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
525         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
526 }
527
528 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
529 {
530         return vmx->secondary_exec_control &
531                 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
532 }
533
534 void dump_vmcs(void);
535
536 #endif /* __KVM_X86_VMX_H */