OSDN Git Service

KVM: x86: clean/fix memory barriers in irqchip_in_kernel
[uclinux-h8/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32  kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123         int nr;
124         u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128         struct user_return_notifier urn;
129         bool registered;
130         struct kvm_shared_msr_values {
131                 u64 host;
132                 u64 curr;
133         } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140         { "pf_fixed", VCPU_STAT(pf_fixed) },
141         { "pf_guest", VCPU_STAT(pf_guest) },
142         { "tlb_flush", VCPU_STAT(tlb_flush) },
143         { "invlpg", VCPU_STAT(invlpg) },
144         { "exits", VCPU_STAT(exits) },
145         { "io_exits", VCPU_STAT(io_exits) },
146         { "mmio_exits", VCPU_STAT(mmio_exits) },
147         { "signal_exits", VCPU_STAT(signal_exits) },
148         { "irq_window", VCPU_STAT(irq_window_exits) },
149         { "nmi_window", VCPU_STAT(nmi_window_exits) },
150         { "halt_exits", VCPU_STAT(halt_exits) },
151         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
153         { "hypercalls", VCPU_STAT(hypercalls) },
154         { "request_irq", VCPU_STAT(request_irq_exits) },
155         { "irq_exits", VCPU_STAT(irq_exits) },
156         { "host_state_reload", VCPU_STAT(host_state_reload) },
157         { "efer_reload", VCPU_STAT(efer_reload) },
158         { "fpu_reload", VCPU_STAT(fpu_reload) },
159         { "insn_emulation", VCPU_STAT(insn_emulation) },
160         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
161         { "irq_injections", VCPU_STAT(irq_injections) },
162         { "nmi_injections", VCPU_STAT(nmi_injections) },
163         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
164         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
165         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
166         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
167         { "mmu_flooded", VM_STAT(mmu_flooded) },
168         { "mmu_recycled", VM_STAT(mmu_recycled) },
169         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
170         { "mmu_unsync", VM_STAT(mmu_unsync) },
171         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
172         { "largepages", VM_STAT(lpages) },
173         { NULL }
174 };
175
176 u64 __read_mostly host_xcr0;
177
178 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
179
180 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
181 {
182         int i;
183         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
184                 vcpu->arch.apf.gfns[i] = ~0;
185 }
186
187 static void kvm_on_user_return(struct user_return_notifier *urn)
188 {
189         unsigned slot;
190         struct kvm_shared_msrs *locals
191                 = container_of(urn, struct kvm_shared_msrs, urn);
192         struct kvm_shared_msr_values *values;
193
194         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
195                 values = &locals->values[slot];
196                 if (values->host != values->curr) {
197                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
198                         values->curr = values->host;
199                 }
200         }
201         locals->registered = false;
202         user_return_notifier_unregister(urn);
203 }
204
205 static void shared_msr_update(unsigned slot, u32 msr)
206 {
207         u64 value;
208         unsigned int cpu = smp_processor_id();
209         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
210
211         /* only read, and nobody should modify it at this time,
212          * so don't need lock */
213         if (slot >= shared_msrs_global.nr) {
214                 printk(KERN_ERR "kvm: invalid MSR slot!");
215                 return;
216         }
217         rdmsrl_safe(msr, &value);
218         smsr->values[slot].host = value;
219         smsr->values[slot].curr = value;
220 }
221
222 void kvm_define_shared_msr(unsigned slot, u32 msr)
223 {
224         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
225         shared_msrs_global.msrs[slot] = msr;
226         if (slot >= shared_msrs_global.nr)
227                 shared_msrs_global.nr = slot + 1;
228 }
229 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
230
231 static void kvm_shared_msr_cpu_online(void)
232 {
233         unsigned i;
234
235         for (i = 0; i < shared_msrs_global.nr; ++i)
236                 shared_msr_update(i, shared_msrs_global.msrs[i]);
237 }
238
239 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
240 {
241         unsigned int cpu = smp_processor_id();
242         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
243         int err;
244
245         if (((value ^ smsr->values[slot].curr) & mask) == 0)
246                 return 0;
247         smsr->values[slot].curr = value;
248         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
249         if (err)
250                 return 1;
251
252         if (!smsr->registered) {
253                 smsr->urn.on_user_return = kvm_on_user_return;
254                 user_return_notifier_register(&smsr->urn);
255                 smsr->registered = true;
256         }
257         return 0;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
260
261 static void drop_user_return_notifiers(void)
262 {
263         unsigned int cpu = smp_processor_id();
264         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266         if (smsr->registered)
267                 kvm_on_user_return(&smsr->urn);
268 }
269
270 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
271 {
272         return vcpu->arch.apic_base;
273 }
274 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
275
276 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
277 {
278         u64 old_state = vcpu->arch.apic_base &
279                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
280         u64 new_state = msr_info->data &
281                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
282         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
283                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
284
285         if (!msr_info->host_initiated &&
286             ((msr_info->data & reserved_bits) != 0 ||
287              new_state == X2APIC_ENABLE ||
288              (new_state == MSR_IA32_APICBASE_ENABLE &&
289               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
290              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
291               old_state == 0)))
292                 return 1;
293
294         kvm_lapic_set_base(vcpu, msr_info->data);
295         return 0;
296 }
297 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
298
299 asmlinkage __visible void kvm_spurious_fault(void)
300 {
301         /* Fault while not rebooting.  We want the trace. */
302         BUG();
303 }
304 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
305
306 #define EXCPT_BENIGN            0
307 #define EXCPT_CONTRIBUTORY      1
308 #define EXCPT_PF                2
309
310 static int exception_class(int vector)
311 {
312         switch (vector) {
313         case PF_VECTOR:
314                 return EXCPT_PF;
315         case DE_VECTOR:
316         case TS_VECTOR:
317         case NP_VECTOR:
318         case SS_VECTOR:
319         case GP_VECTOR:
320                 return EXCPT_CONTRIBUTORY;
321         default:
322                 break;
323         }
324         return EXCPT_BENIGN;
325 }
326
327 #define EXCPT_FAULT             0
328 #define EXCPT_TRAP              1
329 #define EXCPT_ABORT             2
330 #define EXCPT_INTERRUPT         3
331
332 static int exception_type(int vector)
333 {
334         unsigned int mask;
335
336         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
337                 return EXCPT_INTERRUPT;
338
339         mask = 1 << vector;
340
341         /* #DB is trap, as instruction watchpoints are handled elsewhere */
342         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
343                 return EXCPT_TRAP;
344
345         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
346                 return EXCPT_ABORT;
347
348         /* Reserved exceptions will result in fault */
349         return EXCPT_FAULT;
350 }
351
352 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
353                 unsigned nr, bool has_error, u32 error_code,
354                 bool reinject)
355 {
356         u32 prev_nr;
357         int class1, class2;
358
359         kvm_make_request(KVM_REQ_EVENT, vcpu);
360
361         if (!vcpu->arch.exception.pending) {
362         queue:
363                 if (has_error && !is_protmode(vcpu))
364                         has_error = false;
365                 vcpu->arch.exception.pending = true;
366                 vcpu->arch.exception.has_error_code = has_error;
367                 vcpu->arch.exception.nr = nr;
368                 vcpu->arch.exception.error_code = error_code;
369                 vcpu->arch.exception.reinject = reinject;
370                 return;
371         }
372
373         /* to check exception */
374         prev_nr = vcpu->arch.exception.nr;
375         if (prev_nr == DF_VECTOR) {
376                 /* triple fault -> shutdown */
377                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
378                 return;
379         }
380         class1 = exception_class(prev_nr);
381         class2 = exception_class(nr);
382         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
383                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
384                 /* generate double fault per SDM Table 5-5 */
385                 vcpu->arch.exception.pending = true;
386                 vcpu->arch.exception.has_error_code = true;
387                 vcpu->arch.exception.nr = DF_VECTOR;
388                 vcpu->arch.exception.error_code = 0;
389         } else
390                 /* replace previous exception with a new one in a hope
391                    that instruction re-execution will regenerate lost
392                    exception */
393                 goto queue;
394 }
395
396 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
397 {
398         kvm_multiple_exception(vcpu, nr, false, 0, false);
399 }
400 EXPORT_SYMBOL_GPL(kvm_queue_exception);
401
402 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
403 {
404         kvm_multiple_exception(vcpu, nr, false, 0, true);
405 }
406 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
407
408 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
409 {
410         if (err)
411                 kvm_inject_gp(vcpu, 0);
412         else
413                 kvm_x86_ops->skip_emulated_instruction(vcpu);
414 }
415 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
416
417 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
418 {
419         ++vcpu->stat.pf_guest;
420         vcpu->arch.cr2 = fault->address;
421         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
422 }
423 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
424
425 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
426 {
427         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
428                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
429         else
430                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
431
432         return fault->nested_page_fault;
433 }
434
435 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
436 {
437         atomic_inc(&vcpu->arch.nmi_queued);
438         kvm_make_request(KVM_REQ_NMI, vcpu);
439 }
440 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
441
442 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
443 {
444         kvm_multiple_exception(vcpu, nr, true, error_code, false);
445 }
446 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
447
448 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
449 {
450         kvm_multiple_exception(vcpu, nr, true, error_code, true);
451 }
452 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
453
454 /*
455  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
456  * a #GP and return false.
457  */
458 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
459 {
460         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
461                 return true;
462         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
463         return false;
464 }
465 EXPORT_SYMBOL_GPL(kvm_require_cpl);
466
467 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
468 {
469         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
470                 return true;
471
472         kvm_queue_exception(vcpu, UD_VECTOR);
473         return false;
474 }
475 EXPORT_SYMBOL_GPL(kvm_require_dr);
476
477 /*
478  * This function will be used to read from the physical memory of the currently
479  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
480  * can read from guest physical or from the guest's guest physical memory.
481  */
482 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
483                             gfn_t ngfn, void *data, int offset, int len,
484                             u32 access)
485 {
486         struct x86_exception exception;
487         gfn_t real_gfn;
488         gpa_t ngpa;
489
490         ngpa     = gfn_to_gpa(ngfn);
491         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
492         if (real_gfn == UNMAPPED_GVA)
493                 return -EFAULT;
494
495         real_gfn = gpa_to_gfn(real_gfn);
496
497         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
498 }
499 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
500
501 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
502                                void *data, int offset, int len, u32 access)
503 {
504         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
505                                        data, offset, len, access);
506 }
507
508 /*
509  * Load the pae pdptrs.  Return true is they are all valid.
510  */
511 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
512 {
513         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
514         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
515         int i;
516         int ret;
517         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
518
519         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
520                                       offset * sizeof(u64), sizeof(pdpte),
521                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
522         if (ret < 0) {
523                 ret = 0;
524                 goto out;
525         }
526         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
527                 if (is_present_gpte(pdpte[i]) &&
528                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
529                         ret = 0;
530                         goto out;
531                 }
532         }
533         ret = 1;
534
535         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
536         __set_bit(VCPU_EXREG_PDPTR,
537                   (unsigned long *)&vcpu->arch.regs_avail);
538         __set_bit(VCPU_EXREG_PDPTR,
539                   (unsigned long *)&vcpu->arch.regs_dirty);
540 out:
541
542         return ret;
543 }
544 EXPORT_SYMBOL_GPL(load_pdptrs);
545
546 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
547 {
548         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
549         bool changed = true;
550         int offset;
551         gfn_t gfn;
552         int r;
553
554         if (is_long_mode(vcpu) || !is_pae(vcpu))
555                 return false;
556
557         if (!test_bit(VCPU_EXREG_PDPTR,
558                       (unsigned long *)&vcpu->arch.regs_avail))
559                 return true;
560
561         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
562         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
563         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
564                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
565         if (r < 0)
566                 goto out;
567         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
568 out:
569
570         return changed;
571 }
572
573 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
574 {
575         unsigned long old_cr0 = kvm_read_cr0(vcpu);
576         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622
623         if ((cr0 ^ old_cr0) & X86_CR0_CD)
624                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
625
626         return 0;
627 }
628 EXPORT_SYMBOL_GPL(kvm_set_cr0);
629
630 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
631 {
632         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
633 }
634 EXPORT_SYMBOL_GPL(kvm_lmsw);
635
636 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
637 {
638         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
639                         !vcpu->guest_xcr0_loaded) {
640                 /* kvm_set_xcr() also depends on this */
641                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
642                 vcpu->guest_xcr0_loaded = 1;
643         }
644 }
645
646 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
647 {
648         if (vcpu->guest_xcr0_loaded) {
649                 if (vcpu->arch.xcr0 != host_xcr0)
650                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
651                 vcpu->guest_xcr0_loaded = 0;
652         }
653 }
654
655 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
656 {
657         u64 xcr0 = xcr;
658         u64 old_xcr0 = vcpu->arch.xcr0;
659         u64 valid_bits;
660
661         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
662         if (index != XCR_XFEATURE_ENABLED_MASK)
663                 return 1;
664         if (!(xcr0 & XSTATE_FP))
665                 return 1;
666         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
667                 return 1;
668
669         /*
670          * Do not allow the guest to set bits that we do not support
671          * saving.  However, xcr0 bit 0 is always set, even if the
672          * emulated CPU does not support XSAVE (see fx_init).
673          */
674         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
675         if (xcr0 & ~valid_bits)
676                 return 1;
677
678         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
679                 return 1;
680
681         if (xcr0 & XSTATE_AVX512) {
682                 if (!(xcr0 & XSTATE_YMM))
683                         return 1;
684                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
685                         return 1;
686         }
687         kvm_put_guest_xcr0(vcpu);
688         vcpu->arch.xcr0 = xcr0;
689
690         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
691                 kvm_update_cpuid(vcpu);
692         return 0;
693 }
694
695 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
696 {
697         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
698             __kvm_set_xcr(vcpu, index, xcr)) {
699                 kvm_inject_gp(vcpu, 0);
700                 return 1;
701         }
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(kvm_set_xcr);
705
706 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
707 {
708         unsigned long old_cr4 = kvm_read_cr4(vcpu);
709         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
710                                    X86_CR4_SMEP | X86_CR4_SMAP;
711
712         if (cr4 & CR4_RESERVED_BITS)
713                 return 1;
714
715         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
716                 return 1;
717
718         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
719                 return 1;
720
721         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
722                 return 1;
723
724         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
725                 return 1;
726
727         if (is_long_mode(vcpu)) {
728                 if (!(cr4 & X86_CR4_PAE))
729                         return 1;
730         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
731                    && ((cr4 ^ old_cr4) & pdptr_bits)
732                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
733                                    kvm_read_cr3(vcpu)))
734                 return 1;
735
736         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
737                 if (!guest_cpuid_has_pcid(vcpu))
738                         return 1;
739
740                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
741                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
742                         return 1;
743         }
744
745         if (kvm_x86_ops->set_cr4(vcpu, cr4))
746                 return 1;
747
748         if (((cr4 ^ old_cr4) & pdptr_bits) ||
749             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
750                 kvm_mmu_reset_context(vcpu);
751
752         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
753                 kvm_update_cpuid(vcpu);
754
755         return 0;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_cr4);
758
759 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
760 {
761 #ifdef CONFIG_X86_64
762         cr3 &= ~CR3_PCID_INVD;
763 #endif
764
765         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
766                 kvm_mmu_sync_roots(vcpu);
767                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
768                 return 0;
769         }
770
771         if (is_long_mode(vcpu)) {
772                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
773                         return 1;
774         } else if (is_pae(vcpu) && is_paging(vcpu) &&
775                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
776                 return 1;
777
778         vcpu->arch.cr3 = cr3;
779         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
780         kvm_mmu_new_cr3(vcpu);
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_set_cr3);
784
785 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
786 {
787         if (cr8 & CR8_RESERVED_BITS)
788                 return 1;
789         if (irqchip_in_kernel(vcpu->kvm))
790                 kvm_lapic_set_tpr(vcpu, cr8);
791         else
792                 vcpu->arch.cr8 = cr8;
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr8);
796
797 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
798 {
799         if (irqchip_in_kernel(vcpu->kvm))
800                 return kvm_lapic_get_cr8(vcpu);
801         else
802                 return vcpu->arch.cr8;
803 }
804 EXPORT_SYMBOL_GPL(kvm_get_cr8);
805
806 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
807 {
808         int i;
809
810         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
811                 for (i = 0; i < KVM_NR_DB_REGS; i++)
812                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
813                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
814         }
815 }
816
817 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
818 {
819         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
820                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
821 }
822
823 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
824 {
825         unsigned long dr7;
826
827         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
828                 dr7 = vcpu->arch.guest_debug_dr7;
829         else
830                 dr7 = vcpu->arch.dr7;
831         kvm_x86_ops->set_dr7(vcpu, dr7);
832         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
833         if (dr7 & DR7_BP_EN_MASK)
834                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
835 }
836
837 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
838 {
839         u64 fixed = DR6_FIXED_1;
840
841         if (!guest_cpuid_has_rtm(vcpu))
842                 fixed |= DR6_RTM;
843         return fixed;
844 }
845
846 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
847 {
848         switch (dr) {
849         case 0 ... 3:
850                 vcpu->arch.db[dr] = val;
851                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
852                         vcpu->arch.eff_db[dr] = val;
853                 break;
854         case 4:
855                 /* fall through */
856         case 6:
857                 if (val & 0xffffffff00000000ULL)
858                         return -1; /* #GP */
859                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
860                 kvm_update_dr6(vcpu);
861                 break;
862         case 5:
863                 /* fall through */
864         default: /* 7 */
865                 if (val & 0xffffffff00000000ULL)
866                         return -1; /* #GP */
867                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
868                 kvm_update_dr7(vcpu);
869                 break;
870         }
871
872         return 0;
873 }
874
875 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
876 {
877         if (__kvm_set_dr(vcpu, dr, val)) {
878                 kvm_inject_gp(vcpu, 0);
879                 return 1;
880         }
881         return 0;
882 }
883 EXPORT_SYMBOL_GPL(kvm_set_dr);
884
885 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
886 {
887         switch (dr) {
888         case 0 ... 3:
889                 *val = vcpu->arch.db[dr];
890                 break;
891         case 4:
892                 /* fall through */
893         case 6:
894                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
895                         *val = vcpu->arch.dr6;
896                 else
897                         *val = kvm_x86_ops->get_dr6(vcpu);
898                 break;
899         case 5:
900                 /* fall through */
901         default: /* 7 */
902                 *val = vcpu->arch.dr7;
903                 break;
904         }
905         return 0;
906 }
907 EXPORT_SYMBOL_GPL(kvm_get_dr);
908
909 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
910 {
911         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
912         u64 data;
913         int err;
914
915         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
916         if (err)
917                 return err;
918         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
919         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
920         return err;
921 }
922 EXPORT_SYMBOL_GPL(kvm_rdpmc);
923
924 /*
925  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
926  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
927  *
928  * This list is modified at module load time to reflect the
929  * capabilities of the host cpu. This capabilities test skips MSRs that are
930  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
931  * may depend on host virtualization features rather than host cpu features.
932  */
933
934 static u32 msrs_to_save[] = {
935         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
936         MSR_STAR,
937 #ifdef CONFIG_X86_64
938         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
939 #endif
940         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
941         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
942 };
943
944 static unsigned num_msrs_to_save;
945
946 static u32 emulated_msrs[] = {
947         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
948         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
949         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
950         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
951         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
952         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
953         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
954         MSR_KVM_PV_EOI_EN,
955
956         MSR_IA32_TSC_ADJUST,
957         MSR_IA32_TSCDEADLINE,
958         MSR_IA32_MISC_ENABLE,
959         MSR_IA32_MCG_STATUS,
960         MSR_IA32_MCG_CTL,
961         MSR_IA32_SMBASE,
962 };
963
964 static unsigned num_emulated_msrs;
965
966 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
967 {
968         if (efer & efer_reserved_bits)
969                 return false;
970
971         if (efer & EFER_FFXSR) {
972                 struct kvm_cpuid_entry2 *feat;
973
974                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
976                         return false;
977         }
978
979         if (efer & EFER_SVME) {
980                 struct kvm_cpuid_entry2 *feat;
981
982                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
983                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
984                         return false;
985         }
986
987         return true;
988 }
989 EXPORT_SYMBOL_GPL(kvm_valid_efer);
990
991 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
992 {
993         u64 old_efer = vcpu->arch.efer;
994
995         if (!kvm_valid_efer(vcpu, efer))
996                 return 1;
997
998         if (is_paging(vcpu)
999             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1000                 return 1;
1001
1002         efer &= ~EFER_LMA;
1003         efer |= vcpu->arch.efer & EFER_LMA;
1004
1005         kvm_x86_ops->set_efer(vcpu, efer);
1006
1007         /* Update reserved bits */
1008         if ((efer ^ old_efer) & EFER_NX)
1009                 kvm_mmu_reset_context(vcpu);
1010
1011         return 0;
1012 }
1013
1014 void kvm_enable_efer_bits(u64 mask)
1015 {
1016        efer_reserved_bits &= ~mask;
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1019
1020 /*
1021  * Writes msr value into into the appropriate "register".
1022  * Returns 0 on success, non-0 otherwise.
1023  * Assumes vcpu_load() was already called.
1024  */
1025 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1026 {
1027         switch (msr->index) {
1028         case MSR_FS_BASE:
1029         case MSR_GS_BASE:
1030         case MSR_KERNEL_GS_BASE:
1031         case MSR_CSTAR:
1032         case MSR_LSTAR:
1033                 if (is_noncanonical_address(msr->data))
1034                         return 1;
1035                 break;
1036         case MSR_IA32_SYSENTER_EIP:
1037         case MSR_IA32_SYSENTER_ESP:
1038                 /*
1039                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1040                  * non-canonical address is written on Intel but not on
1041                  * AMD (which ignores the top 32-bits, because it does
1042                  * not implement 64-bit SYSENTER).
1043                  *
1044                  * 64-bit code should hence be able to write a non-canonical
1045                  * value on AMD.  Making the address canonical ensures that
1046                  * vmentry does not fail on Intel after writing a non-canonical
1047                  * value, and that something deterministic happens if the guest
1048                  * invokes 64-bit SYSENTER.
1049                  */
1050                 msr->data = get_canonical(msr->data);
1051         }
1052         return kvm_x86_ops->set_msr(vcpu, msr);
1053 }
1054 EXPORT_SYMBOL_GPL(kvm_set_msr);
1055
1056 /*
1057  * Adapt set_msr() to msr_io()'s calling convention
1058  */
1059 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1060 {
1061         struct msr_data msr;
1062         int r;
1063
1064         msr.index = index;
1065         msr.host_initiated = true;
1066         r = kvm_get_msr(vcpu, &msr);
1067         if (r)
1068                 return r;
1069
1070         *data = msr.data;
1071         return 0;
1072 }
1073
1074 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076         struct msr_data msr;
1077
1078         msr.data = *data;
1079         msr.index = index;
1080         msr.host_initiated = true;
1081         return kvm_set_msr(vcpu, &msr);
1082 }
1083
1084 #ifdef CONFIG_X86_64
1085 struct pvclock_gtod_data {
1086         seqcount_t      seq;
1087
1088         struct { /* extract of a clocksource struct */
1089                 int vclock_mode;
1090                 cycle_t cycle_last;
1091                 cycle_t mask;
1092                 u32     mult;
1093                 u32     shift;
1094         } clock;
1095
1096         u64             boot_ns;
1097         u64             nsec_base;
1098 };
1099
1100 static struct pvclock_gtod_data pvclock_gtod_data;
1101
1102 static void update_pvclock_gtod(struct timekeeper *tk)
1103 {
1104         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1105         u64 boot_ns;
1106
1107         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1108
1109         write_seqcount_begin(&vdata->seq);
1110
1111         /* copy pvclock gtod data */
1112         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1113         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1114         vdata->clock.mask               = tk->tkr_mono.mask;
1115         vdata->clock.mult               = tk->tkr_mono.mult;
1116         vdata->clock.shift              = tk->tkr_mono.shift;
1117
1118         vdata->boot_ns                  = boot_ns;
1119         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1120
1121         write_seqcount_end(&vdata->seq);
1122 }
1123 #endif
1124
1125 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1126 {
1127         /*
1128          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1129          * vcpu_enter_guest.  This function is only called from
1130          * the physical CPU that is running vcpu.
1131          */
1132         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1133 }
1134
1135 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1136 {
1137         int version;
1138         int r;
1139         struct pvclock_wall_clock wc;
1140         struct timespec boot;
1141
1142         if (!wall_clock)
1143                 return;
1144
1145         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1146         if (r)
1147                 return;
1148
1149         if (version & 1)
1150                 ++version;  /* first time write, random junk */
1151
1152         ++version;
1153
1154         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1155
1156         /*
1157          * The guest calculates current wall clock time by adding
1158          * system time (updated by kvm_guest_time_update below) to the
1159          * wall clock specified here.  guest system time equals host
1160          * system time for us, thus we must fill in host boot time here.
1161          */
1162         getboottime(&boot);
1163
1164         if (kvm->arch.kvmclock_offset) {
1165                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1166                 boot = timespec_sub(boot, ts);
1167         }
1168         wc.sec = boot.tv_sec;
1169         wc.nsec = boot.tv_nsec;
1170         wc.version = version;
1171
1172         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1173
1174         version++;
1175         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1176 }
1177
1178 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1179 {
1180         uint32_t quotient, remainder;
1181
1182         /* Don't try to replace with do_div(), this one calculates
1183          * "(dividend << 32) / divisor" */
1184         __asm__ ( "divl %4"
1185                   : "=a" (quotient), "=d" (remainder)
1186                   : "0" (0), "1" (dividend), "r" (divisor) );
1187         return quotient;
1188 }
1189
1190 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1191                                s8 *pshift, u32 *pmultiplier)
1192 {
1193         uint64_t scaled64;
1194         int32_t  shift = 0;
1195         uint64_t tps64;
1196         uint32_t tps32;
1197
1198         tps64 = base_khz * 1000LL;
1199         scaled64 = scaled_khz * 1000LL;
1200         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1201                 tps64 >>= 1;
1202                 shift--;
1203         }
1204
1205         tps32 = (uint32_t)tps64;
1206         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1207                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1208                         scaled64 >>= 1;
1209                 else
1210                         tps32 <<= 1;
1211                 shift++;
1212         }
1213
1214         *pshift = shift;
1215         *pmultiplier = div_frac(scaled64, tps32);
1216
1217         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1218                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1219 }
1220
1221 #ifdef CONFIG_X86_64
1222 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1223 #endif
1224
1225 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1226 static unsigned long max_tsc_khz;
1227
1228 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1229 {
1230         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1231                                    vcpu->arch.virtual_tsc_shift);
1232 }
1233
1234 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1235 {
1236         u64 v = (u64)khz * (1000000 + ppm);
1237         do_div(v, 1000000);
1238         return v;
1239 }
1240
1241 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1242 {
1243         u32 thresh_lo, thresh_hi;
1244         int use_scaling = 0;
1245
1246         /* tsc_khz can be zero if TSC calibration fails */
1247         if (this_tsc_khz == 0)
1248                 return;
1249
1250         /* Compute a scale to convert nanoseconds in TSC cycles */
1251         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1252                            &vcpu->arch.virtual_tsc_shift,
1253                            &vcpu->arch.virtual_tsc_mult);
1254         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1255
1256         /*
1257          * Compute the variation in TSC rate which is acceptable
1258          * within the range of tolerance and decide if the
1259          * rate being applied is within that bounds of the hardware
1260          * rate.  If so, no scaling or compensation need be done.
1261          */
1262         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1263         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1264         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1265                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1266                 use_scaling = 1;
1267         }
1268         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1269 }
1270
1271 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1272 {
1273         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1274                                       vcpu->arch.virtual_tsc_mult,
1275                                       vcpu->arch.virtual_tsc_shift);
1276         tsc += vcpu->arch.this_tsc_write;
1277         return tsc;
1278 }
1279
1280 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1281 {
1282 #ifdef CONFIG_X86_64
1283         bool vcpus_matched;
1284         struct kvm_arch *ka = &vcpu->kvm->arch;
1285         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1286
1287         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1288                          atomic_read(&vcpu->kvm->online_vcpus));
1289
1290         /*
1291          * Once the masterclock is enabled, always perform request in
1292          * order to update it.
1293          *
1294          * In order to enable masterclock, the host clocksource must be TSC
1295          * and the vcpus need to have matched TSCs.  When that happens,
1296          * perform request to enable masterclock.
1297          */
1298         if (ka->use_master_clock ||
1299             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1300                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1301
1302         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1303                             atomic_read(&vcpu->kvm->online_vcpus),
1304                             ka->use_master_clock, gtod->clock.vclock_mode);
1305 #endif
1306 }
1307
1308 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1309 {
1310         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1311         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1312 }
1313
1314 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1315 {
1316         struct kvm *kvm = vcpu->kvm;
1317         u64 offset, ns, elapsed;
1318         unsigned long flags;
1319         s64 usdiff;
1320         bool matched;
1321         bool already_matched;
1322         u64 data = msr->data;
1323
1324         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1325         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1326         ns = get_kernel_ns();
1327         elapsed = ns - kvm->arch.last_tsc_nsec;
1328
1329         if (vcpu->arch.virtual_tsc_khz) {
1330                 int faulted = 0;
1331
1332                 /* n.b - signed multiplication and division required */
1333                 usdiff = data - kvm->arch.last_tsc_write;
1334 #ifdef CONFIG_X86_64
1335                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1336 #else
1337                 /* do_div() only does unsigned */
1338                 asm("1: idivl %[divisor]\n"
1339                     "2: xor %%edx, %%edx\n"
1340                     "   movl $0, %[faulted]\n"
1341                     "3:\n"
1342                     ".section .fixup,\"ax\"\n"
1343                     "4: movl $1, %[faulted]\n"
1344                     "   jmp  3b\n"
1345                     ".previous\n"
1346
1347                 _ASM_EXTABLE(1b, 4b)
1348
1349                 : "=A"(usdiff), [faulted] "=r" (faulted)
1350                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1351
1352 #endif
1353                 do_div(elapsed, 1000);
1354                 usdiff -= elapsed;
1355                 if (usdiff < 0)
1356                         usdiff = -usdiff;
1357
1358                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1359                 if (faulted)
1360                         usdiff = USEC_PER_SEC;
1361         } else
1362                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1363
1364         /*
1365          * Special case: TSC write with a small delta (1 second) of virtual
1366          * cycle time against real time is interpreted as an attempt to
1367          * synchronize the CPU.
1368          *
1369          * For a reliable TSC, we can match TSC offsets, and for an unstable
1370          * TSC, we add elapsed time in this computation.  We could let the
1371          * compensation code attempt to catch up if we fall behind, but
1372          * it's better to try to match offsets from the beginning.
1373          */
1374         if (usdiff < USEC_PER_SEC &&
1375             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1376                 if (!check_tsc_unstable()) {
1377                         offset = kvm->arch.cur_tsc_offset;
1378                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1379                 } else {
1380                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1381                         data += delta;
1382                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1383                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1384                 }
1385                 matched = true;
1386                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1387         } else {
1388                 /*
1389                  * We split periods of matched TSC writes into generations.
1390                  * For each generation, we track the original measured
1391                  * nanosecond time, offset, and write, so if TSCs are in
1392                  * sync, we can match exact offset, and if not, we can match
1393                  * exact software computation in compute_guest_tsc()
1394                  *
1395                  * These values are tracked in kvm->arch.cur_xxx variables.
1396                  */
1397                 kvm->arch.cur_tsc_generation++;
1398                 kvm->arch.cur_tsc_nsec = ns;
1399                 kvm->arch.cur_tsc_write = data;
1400                 kvm->arch.cur_tsc_offset = offset;
1401                 matched = false;
1402                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1403                          kvm->arch.cur_tsc_generation, data);
1404         }
1405
1406         /*
1407          * We also track th most recent recorded KHZ, write and time to
1408          * allow the matching interval to be extended at each write.
1409          */
1410         kvm->arch.last_tsc_nsec = ns;
1411         kvm->arch.last_tsc_write = data;
1412         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1413
1414         vcpu->arch.last_guest_tsc = data;
1415
1416         /* Keep track of which generation this VCPU has synchronized to */
1417         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1418         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1419         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1420
1421         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1422                 update_ia32_tsc_adjust_msr(vcpu, offset);
1423         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1424         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1425
1426         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1427         if (!matched) {
1428                 kvm->arch.nr_vcpus_matched_tsc = 0;
1429         } else if (!already_matched) {
1430                 kvm->arch.nr_vcpus_matched_tsc++;
1431         }
1432
1433         kvm_track_tsc_matching(vcpu);
1434         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1435 }
1436
1437 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1438
1439 #ifdef CONFIG_X86_64
1440
1441 static cycle_t read_tsc(void)
1442 {
1443         cycle_t ret;
1444         u64 last;
1445
1446         /*
1447          * Empirically, a fence (of type that depends on the CPU)
1448          * before rdtsc is enough to ensure that rdtsc is ordered
1449          * with respect to loads.  The various CPU manuals are unclear
1450          * as to whether rdtsc can be reordered with later loads,
1451          * but no one has ever seen it happen.
1452          */
1453         rdtsc_barrier();
1454         ret = (cycle_t)vget_cycles();
1455
1456         last = pvclock_gtod_data.clock.cycle_last;
1457
1458         if (likely(ret >= last))
1459                 return ret;
1460
1461         /*
1462          * GCC likes to generate cmov here, but this branch is extremely
1463          * predictable (it's just a funciton of time and the likely is
1464          * very likely) and there's a data dependence, so force GCC
1465          * to generate a branch instead.  I don't barrier() because
1466          * we don't actually need a barrier, and if this function
1467          * ever gets inlined it will generate worse code.
1468          */
1469         asm volatile ("");
1470         return last;
1471 }
1472
1473 static inline u64 vgettsc(cycle_t *cycle_now)
1474 {
1475         long v;
1476         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1477
1478         *cycle_now = read_tsc();
1479
1480         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1481         return v * gtod->clock.mult;
1482 }
1483
1484 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1485 {
1486         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1487         unsigned long seq;
1488         int mode;
1489         u64 ns;
1490
1491         do {
1492                 seq = read_seqcount_begin(&gtod->seq);
1493                 mode = gtod->clock.vclock_mode;
1494                 ns = gtod->nsec_base;
1495                 ns += vgettsc(cycle_now);
1496                 ns >>= gtod->clock.shift;
1497                 ns += gtod->boot_ns;
1498         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1499         *t = ns;
1500
1501         return mode;
1502 }
1503
1504 /* returns true if host is using tsc clocksource */
1505 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1506 {
1507         /* checked again under seqlock below */
1508         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1509                 return false;
1510
1511         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1512 }
1513 #endif
1514
1515 /*
1516  *
1517  * Assuming a stable TSC across physical CPUS, and a stable TSC
1518  * across virtual CPUs, the following condition is possible.
1519  * Each numbered line represents an event visible to both
1520  * CPUs at the next numbered event.
1521  *
1522  * "timespecX" represents host monotonic time. "tscX" represents
1523  * RDTSC value.
1524  *
1525  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1526  *
1527  * 1.  read timespec0,tsc0
1528  * 2.                                   | timespec1 = timespec0 + N
1529  *                                      | tsc1 = tsc0 + M
1530  * 3. transition to guest               | transition to guest
1531  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1532  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1533  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1534  *
1535  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1536  *
1537  *      - ret0 < ret1
1538  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1539  *              ...
1540  *      - 0 < N - M => M < N
1541  *
1542  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1543  * always the case (the difference between two distinct xtime instances
1544  * might be smaller then the difference between corresponding TSC reads,
1545  * when updating guest vcpus pvclock areas).
1546  *
1547  * To avoid that problem, do not allow visibility of distinct
1548  * system_timestamp/tsc_timestamp values simultaneously: use a master
1549  * copy of host monotonic time values. Update that master copy
1550  * in lockstep.
1551  *
1552  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1553  *
1554  */
1555
1556 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1557 {
1558 #ifdef CONFIG_X86_64
1559         struct kvm_arch *ka = &kvm->arch;
1560         int vclock_mode;
1561         bool host_tsc_clocksource, vcpus_matched;
1562
1563         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1564                         atomic_read(&kvm->online_vcpus));
1565
1566         /*
1567          * If the host uses TSC clock, then passthrough TSC as stable
1568          * to the guest.
1569          */
1570         host_tsc_clocksource = kvm_get_time_and_clockread(
1571                                         &ka->master_kernel_ns,
1572                                         &ka->master_cycle_now);
1573
1574         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1575                                 && !backwards_tsc_observed
1576                                 && !ka->boot_vcpu_runs_old_kvmclock;
1577
1578         if (ka->use_master_clock)
1579                 atomic_set(&kvm_guest_has_master_clock, 1);
1580
1581         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1582         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1583                                         vcpus_matched);
1584 #endif
1585 }
1586
1587 static void kvm_gen_update_masterclock(struct kvm *kvm)
1588 {
1589 #ifdef CONFIG_X86_64
1590         int i;
1591         struct kvm_vcpu *vcpu;
1592         struct kvm_arch *ka = &kvm->arch;
1593
1594         spin_lock(&ka->pvclock_gtod_sync_lock);
1595         kvm_make_mclock_inprogress_request(kvm);
1596         /* no guest entries from this point */
1597         pvclock_update_vm_gtod_copy(kvm);
1598
1599         kvm_for_each_vcpu(i, vcpu, kvm)
1600                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1601
1602         /* guest entries allowed */
1603         kvm_for_each_vcpu(i, vcpu, kvm)
1604                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1605
1606         spin_unlock(&ka->pvclock_gtod_sync_lock);
1607 #endif
1608 }
1609
1610 static int kvm_guest_time_update(struct kvm_vcpu *v)
1611 {
1612         unsigned long flags, this_tsc_khz;
1613         struct kvm_vcpu_arch *vcpu = &v->arch;
1614         struct kvm_arch *ka = &v->kvm->arch;
1615         s64 kernel_ns;
1616         u64 tsc_timestamp, host_tsc;
1617         struct pvclock_vcpu_time_info guest_hv_clock;
1618         u8 pvclock_flags;
1619         bool use_master_clock;
1620
1621         kernel_ns = 0;
1622         host_tsc = 0;
1623
1624         /*
1625          * If the host uses TSC clock, then passthrough TSC as stable
1626          * to the guest.
1627          */
1628         spin_lock(&ka->pvclock_gtod_sync_lock);
1629         use_master_clock = ka->use_master_clock;
1630         if (use_master_clock) {
1631                 host_tsc = ka->master_cycle_now;
1632                 kernel_ns = ka->master_kernel_ns;
1633         }
1634         spin_unlock(&ka->pvclock_gtod_sync_lock);
1635
1636         /* Keep irq disabled to prevent changes to the clock */
1637         local_irq_save(flags);
1638         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1639         if (unlikely(this_tsc_khz == 0)) {
1640                 local_irq_restore(flags);
1641                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1642                 return 1;
1643         }
1644         if (!use_master_clock) {
1645                 host_tsc = native_read_tsc();
1646                 kernel_ns = get_kernel_ns();
1647         }
1648
1649         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1650
1651         /*
1652          * We may have to catch up the TSC to match elapsed wall clock
1653          * time for two reasons, even if kvmclock is used.
1654          *   1) CPU could have been running below the maximum TSC rate
1655          *   2) Broken TSC compensation resets the base at each VCPU
1656          *      entry to avoid unknown leaps of TSC even when running
1657          *      again on the same CPU.  This may cause apparent elapsed
1658          *      time to disappear, and the guest to stand still or run
1659          *      very slowly.
1660          */
1661         if (vcpu->tsc_catchup) {
1662                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1663                 if (tsc > tsc_timestamp) {
1664                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1665                         tsc_timestamp = tsc;
1666                 }
1667         }
1668
1669         local_irq_restore(flags);
1670
1671         if (!vcpu->pv_time_enabled)
1672                 return 0;
1673
1674         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1675                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1676                                    &vcpu->hv_clock.tsc_shift,
1677                                    &vcpu->hv_clock.tsc_to_system_mul);
1678                 vcpu->hw_tsc_khz = this_tsc_khz;
1679         }
1680
1681         /* With all the info we got, fill in the values */
1682         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1683         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1684         vcpu->last_guest_tsc = tsc_timestamp;
1685
1686         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1687                 &guest_hv_clock, sizeof(guest_hv_clock))))
1688                 return 0;
1689
1690         /* This VCPU is paused, but it's legal for a guest to read another
1691          * VCPU's kvmclock, so we really have to follow the specification where
1692          * it says that version is odd if data is being modified, and even after
1693          * it is consistent.
1694          *
1695          * Version field updates must be kept separate.  This is because
1696          * kvm_write_guest_cached might use a "rep movs" instruction, and
1697          * writes within a string instruction are weakly ordered.  So there
1698          * are three writes overall.
1699          *
1700          * As a small optimization, only write the version field in the first
1701          * and third write.  The vcpu->pv_time cache is still valid, because the
1702          * version field is the first in the struct.
1703          */
1704         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1705
1706         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1707         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1708                                 &vcpu->hv_clock,
1709                                 sizeof(vcpu->hv_clock.version));
1710
1711         smp_wmb();
1712
1713         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1714         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1715
1716         if (vcpu->pvclock_set_guest_stopped_request) {
1717                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1718                 vcpu->pvclock_set_guest_stopped_request = false;
1719         }
1720
1721         pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1722
1723         /* If the host uses TSC clocksource, then it is stable */
1724         if (use_master_clock)
1725                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1726
1727         vcpu->hv_clock.flags = pvclock_flags;
1728
1729         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1730
1731         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1732                                 &vcpu->hv_clock,
1733                                 sizeof(vcpu->hv_clock));
1734
1735         smp_wmb();
1736
1737         vcpu->hv_clock.version++;
1738         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1739                                 &vcpu->hv_clock,
1740                                 sizeof(vcpu->hv_clock.version));
1741         return 0;
1742 }
1743
1744 /*
1745  * kvmclock updates which are isolated to a given vcpu, such as
1746  * vcpu->cpu migration, should not allow system_timestamp from
1747  * the rest of the vcpus to remain static. Otherwise ntp frequency
1748  * correction applies to one vcpu's system_timestamp but not
1749  * the others.
1750  *
1751  * So in those cases, request a kvmclock update for all vcpus.
1752  * We need to rate-limit these requests though, as they can
1753  * considerably slow guests that have a large number of vcpus.
1754  * The time for a remote vcpu to update its kvmclock is bound
1755  * by the delay we use to rate-limit the updates.
1756  */
1757
1758 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1759
1760 static void kvmclock_update_fn(struct work_struct *work)
1761 {
1762         int i;
1763         struct delayed_work *dwork = to_delayed_work(work);
1764         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1765                                            kvmclock_update_work);
1766         struct kvm *kvm = container_of(ka, struct kvm, arch);
1767         struct kvm_vcpu *vcpu;
1768
1769         kvm_for_each_vcpu(i, vcpu, kvm) {
1770                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1771                 kvm_vcpu_kick(vcpu);
1772         }
1773 }
1774
1775 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1776 {
1777         struct kvm *kvm = v->kvm;
1778
1779         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1780         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1781                                         KVMCLOCK_UPDATE_DELAY);
1782 }
1783
1784 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1785
1786 static void kvmclock_sync_fn(struct work_struct *work)
1787 {
1788         struct delayed_work *dwork = to_delayed_work(work);
1789         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1790                                            kvmclock_sync_work);
1791         struct kvm *kvm = container_of(ka, struct kvm, arch);
1792
1793         if (!kvmclock_periodic_sync)
1794                 return;
1795
1796         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1797         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1798                                         KVMCLOCK_SYNC_PERIOD);
1799 }
1800
1801 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1802 {
1803         u64 mcg_cap = vcpu->arch.mcg_cap;
1804         unsigned bank_num = mcg_cap & 0xff;
1805
1806         switch (msr) {
1807         case MSR_IA32_MCG_STATUS:
1808                 vcpu->arch.mcg_status = data;
1809                 break;
1810         case MSR_IA32_MCG_CTL:
1811                 if (!(mcg_cap & MCG_CTL_P))
1812                         return 1;
1813                 if (data != 0 && data != ~(u64)0)
1814                         return -1;
1815                 vcpu->arch.mcg_ctl = data;
1816                 break;
1817         default:
1818                 if (msr >= MSR_IA32_MC0_CTL &&
1819                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1820                         u32 offset = msr - MSR_IA32_MC0_CTL;
1821                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1822                          * some Linux kernels though clear bit 10 in bank 4 to
1823                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1824                          * this to avoid an uncatched #GP in the guest
1825                          */
1826                         if ((offset & 0x3) == 0 &&
1827                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1828                                 return -1;
1829                         vcpu->arch.mce_banks[offset] = data;
1830                         break;
1831                 }
1832                 return 1;
1833         }
1834         return 0;
1835 }
1836
1837 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1838 {
1839         struct kvm *kvm = vcpu->kvm;
1840         int lm = is_long_mode(vcpu);
1841         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1842                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1843         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1844                 : kvm->arch.xen_hvm_config.blob_size_32;
1845         u32 page_num = data & ~PAGE_MASK;
1846         u64 page_addr = data & PAGE_MASK;
1847         u8 *page;
1848         int r;
1849
1850         r = -E2BIG;
1851         if (page_num >= blob_size)
1852                 goto out;
1853         r = -ENOMEM;
1854         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1855         if (IS_ERR(page)) {
1856                 r = PTR_ERR(page);
1857                 goto out;
1858         }
1859         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1860                 goto out_free;
1861         r = 0;
1862 out_free:
1863         kfree(page);
1864 out:
1865         return r;
1866 }
1867
1868 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1869 {
1870         gpa_t gpa = data & ~0x3f;
1871
1872         /* Bits 2:5 are reserved, Should be zero */
1873         if (data & 0x3c)
1874                 return 1;
1875
1876         vcpu->arch.apf.msr_val = data;
1877
1878         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1879                 kvm_clear_async_pf_completion_queue(vcpu);
1880                 kvm_async_pf_hash_reset(vcpu);
1881                 return 0;
1882         }
1883
1884         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1885                                         sizeof(u32)))
1886                 return 1;
1887
1888         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1889         kvm_async_pf_wakeup_all(vcpu);
1890         return 0;
1891 }
1892
1893 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1894 {
1895         vcpu->arch.pv_time_enabled = false;
1896 }
1897
1898 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1899 {
1900         u64 delta;
1901
1902         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1903                 return;
1904
1905         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1906         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1907         vcpu->arch.st.accum_steal = delta;
1908 }
1909
1910 static void record_steal_time(struct kvm_vcpu *vcpu)
1911 {
1912         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1913                 return;
1914
1915         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1916                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1917                 return;
1918
1919         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1920         vcpu->arch.st.steal.version += 2;
1921         vcpu->arch.st.accum_steal = 0;
1922
1923         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1924                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1925 }
1926
1927 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1928 {
1929         bool pr = false;
1930         u32 msr = msr_info->index;
1931         u64 data = msr_info->data;
1932
1933         switch (msr) {
1934         case MSR_AMD64_NB_CFG:
1935         case MSR_IA32_UCODE_REV:
1936         case MSR_IA32_UCODE_WRITE:
1937         case MSR_VM_HSAVE_PA:
1938         case MSR_AMD64_PATCH_LOADER:
1939         case MSR_AMD64_BU_CFG2:
1940                 break;
1941
1942         case MSR_EFER:
1943                 return set_efer(vcpu, data);
1944         case MSR_K7_HWCR:
1945                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1946                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1947                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1948                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
1949                 if (data != 0) {
1950                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1951                                     data);
1952                         return 1;
1953                 }
1954                 break;
1955         case MSR_FAM10H_MMIO_CONF_BASE:
1956                 if (data != 0) {
1957                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1958                                     "0x%llx\n", data);
1959                         return 1;
1960                 }
1961                 break;
1962         case MSR_IA32_DEBUGCTLMSR:
1963                 if (!data) {
1964                         /* We support the non-activated case already */
1965                         break;
1966                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1967                         /* Values other than LBR and BTF are vendor-specific,
1968                            thus reserved and should throw a #GP */
1969                         return 1;
1970                 }
1971                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1972                             __func__, data);
1973                 break;
1974         case 0x200 ... 0x2ff:
1975                 return kvm_mtrr_set_msr(vcpu, msr, data);
1976         case MSR_IA32_APICBASE:
1977                 return kvm_set_apic_base(vcpu, msr_info);
1978         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1979                 return kvm_x2apic_msr_write(vcpu, msr, data);
1980         case MSR_IA32_TSCDEADLINE:
1981                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1982                 break;
1983         case MSR_IA32_TSC_ADJUST:
1984                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1985                         if (!msr_info->host_initiated) {
1986                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1987                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1988                         }
1989                         vcpu->arch.ia32_tsc_adjust_msr = data;
1990                 }
1991                 break;
1992         case MSR_IA32_MISC_ENABLE:
1993                 vcpu->arch.ia32_misc_enable_msr = data;
1994                 break;
1995         case MSR_IA32_SMBASE:
1996                 if (!msr_info->host_initiated)
1997                         return 1;
1998                 vcpu->arch.smbase = data;
1999                 break;
2000         case MSR_KVM_WALL_CLOCK_NEW:
2001         case MSR_KVM_WALL_CLOCK:
2002                 vcpu->kvm->arch.wall_clock = data;
2003                 kvm_write_wall_clock(vcpu->kvm, data);
2004                 break;
2005         case MSR_KVM_SYSTEM_TIME_NEW:
2006         case MSR_KVM_SYSTEM_TIME: {
2007                 u64 gpa_offset;
2008                 struct kvm_arch *ka = &vcpu->kvm->arch;
2009
2010                 kvmclock_reset(vcpu);
2011
2012                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2013                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2014
2015                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2016                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2017                                         &vcpu->requests);
2018
2019                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2020
2021                         ka->kvmclock_offset = -get_kernel_ns();
2022                 }
2023
2024                 vcpu->arch.time = data;
2025                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2026
2027                 /* we verify if the enable bit is set... */
2028                 if (!(data & 1))
2029                         break;
2030
2031                 gpa_offset = data & ~(PAGE_MASK | 1);
2032
2033                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2034                      &vcpu->arch.pv_time, data & ~1ULL,
2035                      sizeof(struct pvclock_vcpu_time_info)))
2036                         vcpu->arch.pv_time_enabled = false;
2037                 else
2038                         vcpu->arch.pv_time_enabled = true;
2039
2040                 break;
2041         }
2042         case MSR_KVM_ASYNC_PF_EN:
2043                 if (kvm_pv_enable_async_pf(vcpu, data))
2044                         return 1;
2045                 break;
2046         case MSR_KVM_STEAL_TIME:
2047
2048                 if (unlikely(!sched_info_on()))
2049                         return 1;
2050
2051                 if (data & KVM_STEAL_RESERVED_MASK)
2052                         return 1;
2053
2054                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2055                                                 data & KVM_STEAL_VALID_BITS,
2056                                                 sizeof(struct kvm_steal_time)))
2057                         return 1;
2058
2059                 vcpu->arch.st.msr_val = data;
2060
2061                 if (!(data & KVM_MSR_ENABLED))
2062                         break;
2063
2064                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2065
2066                 preempt_disable();
2067                 accumulate_steal_time(vcpu);
2068                 preempt_enable();
2069
2070                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2071
2072                 break;
2073         case MSR_KVM_PV_EOI_EN:
2074                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2075                         return 1;
2076                 break;
2077
2078         case MSR_IA32_MCG_CTL:
2079         case MSR_IA32_MCG_STATUS:
2080         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2081                 return set_msr_mce(vcpu, msr, data);
2082
2083         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2084         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2085                 pr = true; /* fall through */
2086         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2087         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2088                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2089                         return kvm_pmu_set_msr(vcpu, msr_info);
2090
2091                 if (pr || data != 0)
2092                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2093                                     "0x%x data 0x%llx\n", msr, data);
2094                 break;
2095         case MSR_K7_CLK_CTL:
2096                 /*
2097                  * Ignore all writes to this no longer documented MSR.
2098                  * Writes are only relevant for old K7 processors,
2099                  * all pre-dating SVM, but a recommended workaround from
2100                  * AMD for these chips. It is possible to specify the
2101                  * affected processor models on the command line, hence
2102                  * the need to ignore the workaround.
2103                  */
2104                 break;
2105         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2106         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2107         case HV_X64_MSR_CRASH_CTL:
2108                 return kvm_hv_set_msr_common(vcpu, msr, data,
2109                                              msr_info->host_initiated);
2110         case MSR_IA32_BBL_CR_CTL3:
2111                 /* Drop writes to this legacy MSR -- see rdmsr
2112                  * counterpart for further detail.
2113                  */
2114                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2115                 break;
2116         case MSR_AMD64_OSVW_ID_LENGTH:
2117                 if (!guest_cpuid_has_osvw(vcpu))
2118                         return 1;
2119                 vcpu->arch.osvw.length = data;
2120                 break;
2121         case MSR_AMD64_OSVW_STATUS:
2122                 if (!guest_cpuid_has_osvw(vcpu))
2123                         return 1;
2124                 vcpu->arch.osvw.status = data;
2125                 break;
2126         default:
2127                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2128                         return xen_hvm_config(vcpu, data);
2129                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2130                         return kvm_pmu_set_msr(vcpu, msr_info);
2131                 if (!ignore_msrs) {
2132                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2133                                     msr, data);
2134                         return 1;
2135                 } else {
2136                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2137                                     msr, data);
2138                         break;
2139                 }
2140         }
2141         return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2144
2145
2146 /*
2147  * Reads an msr value (of 'msr_index') into 'pdata'.
2148  * Returns 0 on success, non-0 otherwise.
2149  * Assumes vcpu_load() was already called.
2150  */
2151 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2152 {
2153         return kvm_x86_ops->get_msr(vcpu, msr);
2154 }
2155 EXPORT_SYMBOL_GPL(kvm_get_msr);
2156
2157 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2158 {
2159         u64 data;
2160         u64 mcg_cap = vcpu->arch.mcg_cap;
2161         unsigned bank_num = mcg_cap & 0xff;
2162
2163         switch (msr) {
2164         case MSR_IA32_P5_MC_ADDR:
2165         case MSR_IA32_P5_MC_TYPE:
2166                 data = 0;
2167                 break;
2168         case MSR_IA32_MCG_CAP:
2169                 data = vcpu->arch.mcg_cap;
2170                 break;
2171         case MSR_IA32_MCG_CTL:
2172                 if (!(mcg_cap & MCG_CTL_P))
2173                         return 1;
2174                 data = vcpu->arch.mcg_ctl;
2175                 break;
2176         case MSR_IA32_MCG_STATUS:
2177                 data = vcpu->arch.mcg_status;
2178                 break;
2179         default:
2180                 if (msr >= MSR_IA32_MC0_CTL &&
2181                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2182                         u32 offset = msr - MSR_IA32_MC0_CTL;
2183                         data = vcpu->arch.mce_banks[offset];
2184                         break;
2185                 }
2186                 return 1;
2187         }
2188         *pdata = data;
2189         return 0;
2190 }
2191
2192 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2193 {
2194         switch (msr_info->index) {
2195         case MSR_IA32_PLATFORM_ID:
2196         case MSR_IA32_EBL_CR_POWERON:
2197         case MSR_IA32_DEBUGCTLMSR:
2198         case MSR_IA32_LASTBRANCHFROMIP:
2199         case MSR_IA32_LASTBRANCHTOIP:
2200         case MSR_IA32_LASTINTFROMIP:
2201         case MSR_IA32_LASTINTTOIP:
2202         case MSR_K8_SYSCFG:
2203         case MSR_K7_HWCR:
2204         case MSR_VM_HSAVE_PA:
2205         case MSR_K8_INT_PENDING_MSG:
2206         case MSR_AMD64_NB_CFG:
2207         case MSR_FAM10H_MMIO_CONF_BASE:
2208         case MSR_AMD64_BU_CFG2:
2209                 msr_info->data = 0;
2210                 break;
2211         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2212         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2213         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2214         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2215                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2216                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2217                 msr_info->data = 0;
2218                 break;
2219         case MSR_IA32_UCODE_REV:
2220                 msr_info->data = 0x100000000ULL;
2221                 break;
2222         case MSR_MTRRcap:
2223         case 0x200 ... 0x2ff:
2224                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2225         case 0xcd: /* fsb frequency */
2226                 msr_info->data = 3;
2227                 break;
2228                 /*
2229                  * MSR_EBC_FREQUENCY_ID
2230                  * Conservative value valid for even the basic CPU models.
2231                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2232                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2233                  * and 266MHz for model 3, or 4. Set Core Clock
2234                  * Frequency to System Bus Frequency Ratio to 1 (bits
2235                  * 31:24) even though these are only valid for CPU
2236                  * models > 2, however guests may end up dividing or
2237                  * multiplying by zero otherwise.
2238                  */
2239         case MSR_EBC_FREQUENCY_ID:
2240                 msr_info->data = 1 << 24;
2241                 break;
2242         case MSR_IA32_APICBASE:
2243                 msr_info->data = kvm_get_apic_base(vcpu);
2244                 break;
2245         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2246                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2247                 break;
2248         case MSR_IA32_TSCDEADLINE:
2249                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2250                 break;
2251         case MSR_IA32_TSC_ADJUST:
2252                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2253                 break;
2254         case MSR_IA32_MISC_ENABLE:
2255                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2256                 break;
2257         case MSR_IA32_SMBASE:
2258                 if (!msr_info->host_initiated)
2259                         return 1;
2260                 msr_info->data = vcpu->arch.smbase;
2261                 break;
2262         case MSR_IA32_PERF_STATUS:
2263                 /* TSC increment by tick */
2264                 msr_info->data = 1000ULL;
2265                 /* CPU multiplier */
2266                 msr_info->data |= (((uint64_t)4ULL) << 40);
2267                 break;
2268         case MSR_EFER:
2269                 msr_info->data = vcpu->arch.efer;
2270                 break;
2271         case MSR_KVM_WALL_CLOCK:
2272         case MSR_KVM_WALL_CLOCK_NEW:
2273                 msr_info->data = vcpu->kvm->arch.wall_clock;
2274                 break;
2275         case MSR_KVM_SYSTEM_TIME:
2276         case MSR_KVM_SYSTEM_TIME_NEW:
2277                 msr_info->data = vcpu->arch.time;
2278                 break;
2279         case MSR_KVM_ASYNC_PF_EN:
2280                 msr_info->data = vcpu->arch.apf.msr_val;
2281                 break;
2282         case MSR_KVM_STEAL_TIME:
2283                 msr_info->data = vcpu->arch.st.msr_val;
2284                 break;
2285         case MSR_KVM_PV_EOI_EN:
2286                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2287                 break;
2288         case MSR_IA32_P5_MC_ADDR:
2289         case MSR_IA32_P5_MC_TYPE:
2290         case MSR_IA32_MCG_CAP:
2291         case MSR_IA32_MCG_CTL:
2292         case MSR_IA32_MCG_STATUS:
2293         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2294                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2295         case MSR_K7_CLK_CTL:
2296                 /*
2297                  * Provide expected ramp-up count for K7. All other
2298                  * are set to zero, indicating minimum divisors for
2299                  * every field.
2300                  *
2301                  * This prevents guest kernels on AMD host with CPU
2302                  * type 6, model 8 and higher from exploding due to
2303                  * the rdmsr failing.
2304                  */
2305                 msr_info->data = 0x20000000;
2306                 break;
2307         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2308         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2309         case HV_X64_MSR_CRASH_CTL:
2310                 return kvm_hv_get_msr_common(vcpu,
2311                                              msr_info->index, &msr_info->data);
2312                 break;
2313         case MSR_IA32_BBL_CR_CTL3:
2314                 /* This legacy MSR exists but isn't fully documented in current
2315                  * silicon.  It is however accessed by winxp in very narrow
2316                  * scenarios where it sets bit #19, itself documented as
2317                  * a "reserved" bit.  Best effort attempt to source coherent
2318                  * read data here should the balance of the register be
2319                  * interpreted by the guest:
2320                  *
2321                  * L2 cache control register 3: 64GB range, 256KB size,
2322                  * enabled, latency 0x1, configured
2323                  */
2324                 msr_info->data = 0xbe702111;
2325                 break;
2326         case MSR_AMD64_OSVW_ID_LENGTH:
2327                 if (!guest_cpuid_has_osvw(vcpu))
2328                         return 1;
2329                 msr_info->data = vcpu->arch.osvw.length;
2330                 break;
2331         case MSR_AMD64_OSVW_STATUS:
2332                 if (!guest_cpuid_has_osvw(vcpu))
2333                         return 1;
2334                 msr_info->data = vcpu->arch.osvw.status;
2335                 break;
2336         default:
2337                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2338                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2339                 if (!ignore_msrs) {
2340                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2341                         return 1;
2342                 } else {
2343                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2344                         msr_info->data = 0;
2345                 }
2346                 break;
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2351
2352 /*
2353  * Read or write a bunch of msrs. All parameters are kernel addresses.
2354  *
2355  * @return number of msrs set successfully.
2356  */
2357 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2358                     struct kvm_msr_entry *entries,
2359                     int (*do_msr)(struct kvm_vcpu *vcpu,
2360                                   unsigned index, u64 *data))
2361 {
2362         int i, idx;
2363
2364         idx = srcu_read_lock(&vcpu->kvm->srcu);
2365         for (i = 0; i < msrs->nmsrs; ++i)
2366                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2367                         break;
2368         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2369
2370         return i;
2371 }
2372
2373 /*
2374  * Read or write a bunch of msrs. Parameters are user addresses.
2375  *
2376  * @return number of msrs set successfully.
2377  */
2378 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2379                   int (*do_msr)(struct kvm_vcpu *vcpu,
2380                                 unsigned index, u64 *data),
2381                   int writeback)
2382 {
2383         struct kvm_msrs msrs;
2384         struct kvm_msr_entry *entries;
2385         int r, n;
2386         unsigned size;
2387
2388         r = -EFAULT;
2389         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2390                 goto out;
2391
2392         r = -E2BIG;
2393         if (msrs.nmsrs >= MAX_IO_MSRS)
2394                 goto out;
2395
2396         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2397         entries = memdup_user(user_msrs->entries, size);
2398         if (IS_ERR(entries)) {
2399                 r = PTR_ERR(entries);
2400                 goto out;
2401         }
2402
2403         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2404         if (r < 0)
2405                 goto out_free;
2406
2407         r = -EFAULT;
2408         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2409                 goto out_free;
2410
2411         r = n;
2412
2413 out_free:
2414         kfree(entries);
2415 out:
2416         return r;
2417 }
2418
2419 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2420 {
2421         int r;
2422
2423         switch (ext) {
2424         case KVM_CAP_IRQCHIP:
2425         case KVM_CAP_HLT:
2426         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2427         case KVM_CAP_SET_TSS_ADDR:
2428         case KVM_CAP_EXT_CPUID:
2429         case KVM_CAP_EXT_EMUL_CPUID:
2430         case KVM_CAP_CLOCKSOURCE:
2431         case KVM_CAP_PIT:
2432         case KVM_CAP_NOP_IO_DELAY:
2433         case KVM_CAP_MP_STATE:
2434         case KVM_CAP_SYNC_MMU:
2435         case KVM_CAP_USER_NMI:
2436         case KVM_CAP_REINJECT_CONTROL:
2437         case KVM_CAP_IRQ_INJECT_STATUS:
2438         case KVM_CAP_IOEVENTFD:
2439         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2440         case KVM_CAP_PIT2:
2441         case KVM_CAP_PIT_STATE2:
2442         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2443         case KVM_CAP_XEN_HVM:
2444         case KVM_CAP_ADJUST_CLOCK:
2445         case KVM_CAP_VCPU_EVENTS:
2446         case KVM_CAP_HYPERV:
2447         case KVM_CAP_HYPERV_VAPIC:
2448         case KVM_CAP_HYPERV_SPIN:
2449         case KVM_CAP_PCI_SEGMENT:
2450         case KVM_CAP_DEBUGREGS:
2451         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2452         case KVM_CAP_XSAVE:
2453         case KVM_CAP_ASYNC_PF:
2454         case KVM_CAP_GET_TSC_KHZ:
2455         case KVM_CAP_KVMCLOCK_CTRL:
2456         case KVM_CAP_READONLY_MEM:
2457         case KVM_CAP_HYPERV_TIME:
2458         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2459         case KVM_CAP_TSC_DEADLINE_TIMER:
2460         case KVM_CAP_ENABLE_CAP_VM:
2461         case KVM_CAP_DISABLE_QUIRKS:
2462         case KVM_CAP_SET_BOOT_CPU_ID:
2463 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2464         case KVM_CAP_ASSIGN_DEV_IRQ:
2465         case KVM_CAP_PCI_2_3:
2466 #endif
2467                 r = 1;
2468                 break;
2469         case KVM_CAP_X86_SMM:
2470                 /* SMBASE is usually relocated above 1M on modern chipsets,
2471                  * and SMM handlers might indeed rely on 4G segment limits,
2472                  * so do not report SMM to be available if real mode is
2473                  * emulated via vm86 mode.  Still, do not go to great lengths
2474                  * to avoid userspace's usage of the feature, because it is a
2475                  * fringe case that is not enabled except via specific settings
2476                  * of the module parameters.
2477                  */
2478                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2479                 break;
2480         case KVM_CAP_COALESCED_MMIO:
2481                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2482                 break;
2483         case KVM_CAP_VAPIC:
2484                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2485                 break;
2486         case KVM_CAP_NR_VCPUS:
2487                 r = KVM_SOFT_MAX_VCPUS;
2488                 break;
2489         case KVM_CAP_MAX_VCPUS:
2490                 r = KVM_MAX_VCPUS;
2491                 break;
2492         case KVM_CAP_NR_MEMSLOTS:
2493                 r = KVM_USER_MEM_SLOTS;
2494                 break;
2495         case KVM_CAP_PV_MMU:    /* obsolete */
2496                 r = 0;
2497                 break;
2498 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2499         case KVM_CAP_IOMMU:
2500                 r = iommu_present(&pci_bus_type);
2501                 break;
2502 #endif
2503         case KVM_CAP_MCE:
2504                 r = KVM_MAX_MCE_BANKS;
2505                 break;
2506         case KVM_CAP_XCRS:
2507                 r = cpu_has_xsave;
2508                 break;
2509         case KVM_CAP_TSC_CONTROL:
2510                 r = kvm_has_tsc_control;
2511                 break;
2512         default:
2513                 r = 0;
2514                 break;
2515         }
2516         return r;
2517
2518 }
2519
2520 long kvm_arch_dev_ioctl(struct file *filp,
2521                         unsigned int ioctl, unsigned long arg)
2522 {
2523         void __user *argp = (void __user *)arg;
2524         long r;
2525
2526         switch (ioctl) {
2527         case KVM_GET_MSR_INDEX_LIST: {
2528                 struct kvm_msr_list __user *user_msr_list = argp;
2529                 struct kvm_msr_list msr_list;
2530                 unsigned n;
2531
2532                 r = -EFAULT;
2533                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2534                         goto out;
2535                 n = msr_list.nmsrs;
2536                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2537                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2538                         goto out;
2539                 r = -E2BIG;
2540                 if (n < msr_list.nmsrs)
2541                         goto out;
2542                 r = -EFAULT;
2543                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2544                                  num_msrs_to_save * sizeof(u32)))
2545                         goto out;
2546                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2547                                  &emulated_msrs,
2548                                  num_emulated_msrs * sizeof(u32)))
2549                         goto out;
2550                 r = 0;
2551                 break;
2552         }
2553         case KVM_GET_SUPPORTED_CPUID:
2554         case KVM_GET_EMULATED_CPUID: {
2555                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2556                 struct kvm_cpuid2 cpuid;
2557
2558                 r = -EFAULT;
2559                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2560                         goto out;
2561
2562                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2563                                             ioctl);
2564                 if (r)
2565                         goto out;
2566
2567                 r = -EFAULT;
2568                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2569                         goto out;
2570                 r = 0;
2571                 break;
2572         }
2573         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2574                 u64 mce_cap;
2575
2576                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2577                 r = -EFAULT;
2578                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2579                         goto out;
2580                 r = 0;
2581                 break;
2582         }
2583         default:
2584                 r = -EINVAL;
2585         }
2586 out:
2587         return r;
2588 }
2589
2590 static void wbinvd_ipi(void *garbage)
2591 {
2592         wbinvd();
2593 }
2594
2595 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2596 {
2597         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2598 }
2599
2600 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2601 {
2602         /* Address WBINVD may be executed by guest */
2603         if (need_emulate_wbinvd(vcpu)) {
2604                 if (kvm_x86_ops->has_wbinvd_exit())
2605                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2606                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2607                         smp_call_function_single(vcpu->cpu,
2608                                         wbinvd_ipi, NULL, 1);
2609         }
2610
2611         kvm_x86_ops->vcpu_load(vcpu, cpu);
2612
2613         /* Apply any externally detected TSC adjustments (due to suspend) */
2614         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2615                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2616                 vcpu->arch.tsc_offset_adjustment = 0;
2617                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2618         }
2619
2620         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2621                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2622                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2623                 if (tsc_delta < 0)
2624                         mark_tsc_unstable("KVM discovered backwards TSC");
2625                 if (check_tsc_unstable()) {
2626                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2627                                                 vcpu->arch.last_guest_tsc);
2628                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2629                         vcpu->arch.tsc_catchup = 1;
2630                 }
2631                 /*
2632                  * On a host with synchronized TSC, there is no need to update
2633                  * kvmclock on vcpu->cpu migration
2634                  */
2635                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2636                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2637                 if (vcpu->cpu != cpu)
2638                         kvm_migrate_timers(vcpu);
2639                 vcpu->cpu = cpu;
2640         }
2641
2642         accumulate_steal_time(vcpu);
2643         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2644 }
2645
2646 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2647 {
2648         kvm_x86_ops->vcpu_put(vcpu);
2649         kvm_put_guest_fpu(vcpu);
2650         vcpu->arch.last_host_tsc = native_read_tsc();
2651 }
2652
2653 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2654                                     struct kvm_lapic_state *s)
2655 {
2656         kvm_x86_ops->sync_pir_to_irr(vcpu);
2657         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2658
2659         return 0;
2660 }
2661
2662 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2663                                     struct kvm_lapic_state *s)
2664 {
2665         kvm_apic_post_state_restore(vcpu, s);
2666         update_cr8_intercept(vcpu);
2667
2668         return 0;
2669 }
2670
2671 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2672                                     struct kvm_interrupt *irq)
2673 {
2674         if (irq->irq >= KVM_NR_INTERRUPTS)
2675                 return -EINVAL;
2676         if (irqchip_in_kernel(vcpu->kvm))
2677                 return -ENXIO;
2678
2679         kvm_queue_interrupt(vcpu, irq->irq, false);
2680         kvm_make_request(KVM_REQ_EVENT, vcpu);
2681
2682         return 0;
2683 }
2684
2685 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2686 {
2687         kvm_inject_nmi(vcpu);
2688
2689         return 0;
2690 }
2691
2692 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2693 {
2694         kvm_make_request(KVM_REQ_SMI, vcpu);
2695
2696         return 0;
2697 }
2698
2699 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2700                                            struct kvm_tpr_access_ctl *tac)
2701 {
2702         if (tac->flags)
2703                 return -EINVAL;
2704         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2705         return 0;
2706 }
2707
2708 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2709                                         u64 mcg_cap)
2710 {
2711         int r;
2712         unsigned bank_num = mcg_cap & 0xff, bank;
2713
2714         r = -EINVAL;
2715         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2716                 goto out;
2717         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2718                 goto out;
2719         r = 0;
2720         vcpu->arch.mcg_cap = mcg_cap;
2721         /* Init IA32_MCG_CTL to all 1s */
2722         if (mcg_cap & MCG_CTL_P)
2723                 vcpu->arch.mcg_ctl = ~(u64)0;
2724         /* Init IA32_MCi_CTL to all 1s */
2725         for (bank = 0; bank < bank_num; bank++)
2726                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2727 out:
2728         return r;
2729 }
2730
2731 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2732                                       struct kvm_x86_mce *mce)
2733 {
2734         u64 mcg_cap = vcpu->arch.mcg_cap;
2735         unsigned bank_num = mcg_cap & 0xff;
2736         u64 *banks = vcpu->arch.mce_banks;
2737
2738         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2739                 return -EINVAL;
2740         /*
2741          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2742          * reporting is disabled
2743          */
2744         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2745             vcpu->arch.mcg_ctl != ~(u64)0)
2746                 return 0;
2747         banks += 4 * mce->bank;
2748         /*
2749          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2750          * reporting is disabled for the bank
2751          */
2752         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2753                 return 0;
2754         if (mce->status & MCI_STATUS_UC) {
2755                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2756                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2757                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2758                         return 0;
2759                 }
2760                 if (banks[1] & MCI_STATUS_VAL)
2761                         mce->status |= MCI_STATUS_OVER;
2762                 banks[2] = mce->addr;
2763                 banks[3] = mce->misc;
2764                 vcpu->arch.mcg_status = mce->mcg_status;
2765                 banks[1] = mce->status;
2766                 kvm_queue_exception(vcpu, MC_VECTOR);
2767         } else if (!(banks[1] & MCI_STATUS_VAL)
2768                    || !(banks[1] & MCI_STATUS_UC)) {
2769                 if (banks[1] & MCI_STATUS_VAL)
2770                         mce->status |= MCI_STATUS_OVER;
2771                 banks[2] = mce->addr;
2772                 banks[3] = mce->misc;
2773                 banks[1] = mce->status;
2774         } else
2775                 banks[1] |= MCI_STATUS_OVER;
2776         return 0;
2777 }
2778
2779 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2780                                                struct kvm_vcpu_events *events)
2781 {
2782         process_nmi(vcpu);
2783         events->exception.injected =
2784                 vcpu->arch.exception.pending &&
2785                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2786         events->exception.nr = vcpu->arch.exception.nr;
2787         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2788         events->exception.pad = 0;
2789         events->exception.error_code = vcpu->arch.exception.error_code;
2790
2791         events->interrupt.injected =
2792                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2793         events->interrupt.nr = vcpu->arch.interrupt.nr;
2794         events->interrupt.soft = 0;
2795         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2796
2797         events->nmi.injected = vcpu->arch.nmi_injected;
2798         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2799         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2800         events->nmi.pad = 0;
2801
2802         events->sipi_vector = 0; /* never valid when reporting to user space */
2803
2804         events->smi.smm = is_smm(vcpu);
2805         events->smi.pending = vcpu->arch.smi_pending;
2806         events->smi.smm_inside_nmi =
2807                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2808         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2809
2810         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2811                          | KVM_VCPUEVENT_VALID_SHADOW
2812                          | KVM_VCPUEVENT_VALID_SMM);
2813         memset(&events->reserved, 0, sizeof(events->reserved));
2814 }
2815
2816 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2817                                               struct kvm_vcpu_events *events)
2818 {
2819         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2820                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2821                               | KVM_VCPUEVENT_VALID_SHADOW
2822                               | KVM_VCPUEVENT_VALID_SMM))
2823                 return -EINVAL;
2824
2825         process_nmi(vcpu);
2826         vcpu->arch.exception.pending = events->exception.injected;
2827         vcpu->arch.exception.nr = events->exception.nr;
2828         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2829         vcpu->arch.exception.error_code = events->exception.error_code;
2830
2831         vcpu->arch.interrupt.pending = events->interrupt.injected;
2832         vcpu->arch.interrupt.nr = events->interrupt.nr;
2833         vcpu->arch.interrupt.soft = events->interrupt.soft;
2834         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2835                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2836                                                   events->interrupt.shadow);
2837
2838         vcpu->arch.nmi_injected = events->nmi.injected;
2839         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2840                 vcpu->arch.nmi_pending = events->nmi.pending;
2841         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2842
2843         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2844             kvm_vcpu_has_lapic(vcpu))
2845                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2846
2847         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2848                 if (events->smi.smm)
2849                         vcpu->arch.hflags |= HF_SMM_MASK;
2850                 else
2851                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2852                 vcpu->arch.smi_pending = events->smi.pending;
2853                 if (events->smi.smm_inside_nmi)
2854                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2855                 else
2856                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2857                 if (kvm_vcpu_has_lapic(vcpu)) {
2858                         if (events->smi.latched_init)
2859                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2860                         else
2861                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2862                 }
2863         }
2864
2865         kvm_make_request(KVM_REQ_EVENT, vcpu);
2866
2867         return 0;
2868 }
2869
2870 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2871                                              struct kvm_debugregs *dbgregs)
2872 {
2873         unsigned long val;
2874
2875         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2876         kvm_get_dr(vcpu, 6, &val);
2877         dbgregs->dr6 = val;
2878         dbgregs->dr7 = vcpu->arch.dr7;
2879         dbgregs->flags = 0;
2880         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2881 }
2882
2883 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2884                                             struct kvm_debugregs *dbgregs)
2885 {
2886         if (dbgregs->flags)
2887                 return -EINVAL;
2888
2889         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2890         kvm_update_dr0123(vcpu);
2891         vcpu->arch.dr6 = dbgregs->dr6;
2892         kvm_update_dr6(vcpu);
2893         vcpu->arch.dr7 = dbgregs->dr7;
2894         kvm_update_dr7(vcpu);
2895
2896         return 0;
2897 }
2898
2899 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2900
2901 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2902 {
2903         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2904         u64 xstate_bv = xsave->header.xfeatures;
2905         u64 valid;
2906
2907         /*
2908          * Copy legacy XSAVE area, to avoid complications with CPUID
2909          * leaves 0 and 1 in the loop below.
2910          */
2911         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2912
2913         /* Set XSTATE_BV */
2914         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2915
2916         /*
2917          * Copy each region from the possibly compacted offset to the
2918          * non-compacted offset.
2919          */
2920         valid = xstate_bv & ~XSTATE_FPSSE;
2921         while (valid) {
2922                 u64 feature = valid & -valid;
2923                 int index = fls64(feature) - 1;
2924                 void *src = get_xsave_addr(xsave, feature);
2925
2926                 if (src) {
2927                         u32 size, offset, ecx, edx;
2928                         cpuid_count(XSTATE_CPUID, index,
2929                                     &size, &offset, &ecx, &edx);
2930                         memcpy(dest + offset, src, size);
2931                 }
2932
2933                 valid -= feature;
2934         }
2935 }
2936
2937 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2938 {
2939         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2940         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2941         u64 valid;
2942
2943         /*
2944          * Copy legacy XSAVE area, to avoid complications with CPUID
2945          * leaves 0 and 1 in the loop below.
2946          */
2947         memcpy(xsave, src, XSAVE_HDR_OFFSET);
2948
2949         /* Set XSTATE_BV and possibly XCOMP_BV.  */
2950         xsave->header.xfeatures = xstate_bv;
2951         if (cpu_has_xsaves)
2952                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2953
2954         /*
2955          * Copy each region from the non-compacted offset to the
2956          * possibly compacted offset.
2957          */
2958         valid = xstate_bv & ~XSTATE_FPSSE;
2959         while (valid) {
2960                 u64 feature = valid & -valid;
2961                 int index = fls64(feature) - 1;
2962                 void *dest = get_xsave_addr(xsave, feature);
2963
2964                 if (dest) {
2965                         u32 size, offset, ecx, edx;
2966                         cpuid_count(XSTATE_CPUID, index,
2967                                     &size, &offset, &ecx, &edx);
2968                         memcpy(dest, src + offset, size);
2969                 }
2970
2971                 valid -= feature;
2972         }
2973 }
2974
2975 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2976                                          struct kvm_xsave *guest_xsave)
2977 {
2978         if (cpu_has_xsave) {
2979                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2980                 fill_xsave((u8 *) guest_xsave->region, vcpu);
2981         } else {
2982                 memcpy(guest_xsave->region,
2983                         &vcpu->arch.guest_fpu.state.fxsave,
2984                         sizeof(struct fxregs_state));
2985                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2986                         XSTATE_FPSSE;
2987         }
2988 }
2989
2990 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2991                                         struct kvm_xsave *guest_xsave)
2992 {
2993         u64 xstate_bv =
2994                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2995
2996         if (cpu_has_xsave) {
2997                 /*
2998                  * Here we allow setting states that are not present in
2999                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3000                  * with old userspace.
3001                  */
3002                 if (xstate_bv & ~kvm_supported_xcr0())
3003                         return -EINVAL;
3004                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3005         } else {
3006                 if (xstate_bv & ~XSTATE_FPSSE)
3007                         return -EINVAL;
3008                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3009                         guest_xsave->region, sizeof(struct fxregs_state));
3010         }
3011         return 0;
3012 }
3013
3014 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3015                                         struct kvm_xcrs *guest_xcrs)
3016 {
3017         if (!cpu_has_xsave) {
3018                 guest_xcrs->nr_xcrs = 0;
3019                 return;
3020         }
3021
3022         guest_xcrs->nr_xcrs = 1;
3023         guest_xcrs->flags = 0;
3024         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3025         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3026 }
3027
3028 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3029                                        struct kvm_xcrs *guest_xcrs)
3030 {
3031         int i, r = 0;
3032
3033         if (!cpu_has_xsave)
3034                 return -EINVAL;
3035
3036         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3037                 return -EINVAL;
3038
3039         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3040                 /* Only support XCR0 currently */
3041                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3042                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3043                                 guest_xcrs->xcrs[i].value);
3044                         break;
3045                 }
3046         if (r)
3047                 r = -EINVAL;
3048         return r;
3049 }
3050
3051 /*
3052  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3053  * stopped by the hypervisor.  This function will be called from the host only.
3054  * EINVAL is returned when the host attempts to set the flag for a guest that
3055  * does not support pv clocks.
3056  */
3057 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3058 {
3059         if (!vcpu->arch.pv_time_enabled)
3060                 return -EINVAL;
3061         vcpu->arch.pvclock_set_guest_stopped_request = true;
3062         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3063         return 0;
3064 }
3065
3066 long kvm_arch_vcpu_ioctl(struct file *filp,
3067                          unsigned int ioctl, unsigned long arg)
3068 {
3069         struct kvm_vcpu *vcpu = filp->private_data;
3070         void __user *argp = (void __user *)arg;
3071         int r;
3072         union {
3073                 struct kvm_lapic_state *lapic;
3074                 struct kvm_xsave *xsave;
3075                 struct kvm_xcrs *xcrs;
3076                 void *buffer;
3077         } u;
3078
3079         u.buffer = NULL;
3080         switch (ioctl) {
3081         case KVM_GET_LAPIC: {
3082                 r = -EINVAL;
3083                 if (!vcpu->arch.apic)
3084                         goto out;
3085                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3086
3087                 r = -ENOMEM;
3088                 if (!u.lapic)
3089                         goto out;
3090                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3091                 if (r)
3092                         goto out;
3093                 r = -EFAULT;
3094                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3095                         goto out;
3096                 r = 0;
3097                 break;
3098         }
3099         case KVM_SET_LAPIC: {
3100                 r = -EINVAL;
3101                 if (!vcpu->arch.apic)
3102                         goto out;
3103                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3104                 if (IS_ERR(u.lapic))
3105                         return PTR_ERR(u.lapic);
3106
3107                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3108                 break;
3109         }
3110         case KVM_INTERRUPT: {
3111                 struct kvm_interrupt irq;
3112
3113                 r = -EFAULT;
3114                 if (copy_from_user(&irq, argp, sizeof irq))
3115                         goto out;
3116                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3117                 break;
3118         }
3119         case KVM_NMI: {
3120                 r = kvm_vcpu_ioctl_nmi(vcpu);
3121                 break;
3122         }
3123         case KVM_SMI: {
3124                 r = kvm_vcpu_ioctl_smi(vcpu);
3125                 break;
3126         }
3127         case KVM_SET_CPUID: {
3128                 struct kvm_cpuid __user *cpuid_arg = argp;
3129                 struct kvm_cpuid cpuid;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3133                         goto out;
3134                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3135                 break;
3136         }
3137         case KVM_SET_CPUID2: {
3138                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3139                 struct kvm_cpuid2 cpuid;
3140
3141                 r = -EFAULT;
3142                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143                         goto out;
3144                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3145                                               cpuid_arg->entries);
3146                 break;
3147         }
3148         case KVM_GET_CPUID2: {
3149                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3150                 struct kvm_cpuid2 cpuid;
3151
3152                 r = -EFAULT;
3153                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3154                         goto out;
3155                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3156                                               cpuid_arg->entries);
3157                 if (r)
3158                         goto out;
3159                 r = -EFAULT;
3160                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3161                         goto out;
3162                 r = 0;
3163                 break;
3164         }
3165         case KVM_GET_MSRS:
3166                 r = msr_io(vcpu, argp, do_get_msr, 1);
3167                 break;
3168         case KVM_SET_MSRS:
3169                 r = msr_io(vcpu, argp, do_set_msr, 0);
3170                 break;
3171         case KVM_TPR_ACCESS_REPORTING: {
3172                 struct kvm_tpr_access_ctl tac;
3173
3174                 r = -EFAULT;
3175                 if (copy_from_user(&tac, argp, sizeof tac))
3176                         goto out;
3177                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3178                 if (r)
3179                         goto out;
3180                 r = -EFAULT;
3181                 if (copy_to_user(argp, &tac, sizeof tac))
3182                         goto out;
3183                 r = 0;
3184                 break;
3185         };
3186         case KVM_SET_VAPIC_ADDR: {
3187                 struct kvm_vapic_addr va;
3188
3189                 r = -EINVAL;
3190                 if (!irqchip_in_kernel(vcpu->kvm))
3191                         goto out;
3192                 r = -EFAULT;
3193                 if (copy_from_user(&va, argp, sizeof va))
3194                         goto out;
3195                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3196                 break;
3197         }
3198         case KVM_X86_SETUP_MCE: {
3199                 u64 mcg_cap;
3200
3201                 r = -EFAULT;
3202                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3203                         goto out;
3204                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3205                 break;
3206         }
3207         case KVM_X86_SET_MCE: {
3208                 struct kvm_x86_mce mce;
3209
3210                 r = -EFAULT;
3211                 if (copy_from_user(&mce, argp, sizeof mce))
3212                         goto out;
3213                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3214                 break;
3215         }
3216         case KVM_GET_VCPU_EVENTS: {
3217                 struct kvm_vcpu_events events;
3218
3219                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3220
3221                 r = -EFAULT;
3222                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3223                         break;
3224                 r = 0;
3225                 break;
3226         }
3227         case KVM_SET_VCPU_EVENTS: {
3228                 struct kvm_vcpu_events events;
3229
3230                 r = -EFAULT;
3231                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3232                         break;
3233
3234                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3235                 break;
3236         }
3237         case KVM_GET_DEBUGREGS: {
3238                 struct kvm_debugregs dbgregs;
3239
3240                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3241
3242                 r = -EFAULT;
3243                 if (copy_to_user(argp, &dbgregs,
3244                                  sizeof(struct kvm_debugregs)))
3245                         break;
3246                 r = 0;
3247                 break;
3248         }
3249         case KVM_SET_DEBUGREGS: {
3250                 struct kvm_debugregs dbgregs;
3251
3252                 r = -EFAULT;
3253                 if (copy_from_user(&dbgregs, argp,
3254                                    sizeof(struct kvm_debugregs)))
3255                         break;
3256
3257                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3258                 break;
3259         }
3260         case KVM_GET_XSAVE: {
3261                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3262                 r = -ENOMEM;
3263                 if (!u.xsave)
3264                         break;
3265
3266                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3267
3268                 r = -EFAULT;
3269                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3270                         break;
3271                 r = 0;
3272                 break;
3273         }
3274         case KVM_SET_XSAVE: {
3275                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3276                 if (IS_ERR(u.xsave))
3277                         return PTR_ERR(u.xsave);
3278
3279                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3280                 break;
3281         }
3282         case KVM_GET_XCRS: {
3283                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3284                 r = -ENOMEM;
3285                 if (!u.xcrs)
3286                         break;
3287
3288                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3289
3290                 r = -EFAULT;
3291                 if (copy_to_user(argp, u.xcrs,
3292                                  sizeof(struct kvm_xcrs)))
3293                         break;
3294                 r = 0;
3295                 break;
3296         }
3297         case KVM_SET_XCRS: {
3298                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3299                 if (IS_ERR(u.xcrs))
3300                         return PTR_ERR(u.xcrs);
3301
3302                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3303                 break;
3304         }
3305         case KVM_SET_TSC_KHZ: {
3306                 u32 user_tsc_khz;
3307
3308                 r = -EINVAL;
3309                 user_tsc_khz = (u32)arg;
3310
3311                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3312                         goto out;
3313
3314                 if (user_tsc_khz == 0)
3315                         user_tsc_khz = tsc_khz;
3316
3317                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3318
3319                 r = 0;
3320                 goto out;
3321         }
3322         case KVM_GET_TSC_KHZ: {
3323                 r = vcpu->arch.virtual_tsc_khz;
3324                 goto out;
3325         }
3326         case KVM_KVMCLOCK_CTRL: {
3327                 r = kvm_set_guest_paused(vcpu);
3328                 goto out;
3329         }
3330         default:
3331                 r = -EINVAL;
3332         }
3333 out:
3334         kfree(u.buffer);
3335         return r;
3336 }
3337
3338 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3339 {
3340         return VM_FAULT_SIGBUS;
3341 }
3342
3343 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3344 {
3345         int ret;
3346
3347         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3348                 return -EINVAL;
3349         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3350         return ret;
3351 }
3352
3353 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3354                                               u64 ident_addr)
3355 {
3356         kvm->arch.ept_identity_map_addr = ident_addr;
3357         return 0;
3358 }
3359
3360 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3361                                           u32 kvm_nr_mmu_pages)
3362 {
3363         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3364                 return -EINVAL;
3365
3366         mutex_lock(&kvm->slots_lock);
3367
3368         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3369         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3370
3371         mutex_unlock(&kvm->slots_lock);
3372         return 0;
3373 }
3374
3375 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3376 {
3377         return kvm->arch.n_max_mmu_pages;
3378 }
3379
3380 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3381 {
3382         int r;
3383
3384         r = 0;
3385         switch (chip->chip_id) {
3386         case KVM_IRQCHIP_PIC_MASTER:
3387                 memcpy(&chip->chip.pic,
3388                         &pic_irqchip(kvm)->pics[0],
3389                         sizeof(struct kvm_pic_state));
3390                 break;
3391         case KVM_IRQCHIP_PIC_SLAVE:
3392                 memcpy(&chip->chip.pic,
3393                         &pic_irqchip(kvm)->pics[1],
3394                         sizeof(struct kvm_pic_state));
3395                 break;
3396         case KVM_IRQCHIP_IOAPIC:
3397                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3398                 break;
3399         default:
3400                 r = -EINVAL;
3401                 break;
3402         }
3403         return r;
3404 }
3405
3406 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3407 {
3408         int r;
3409
3410         r = 0;
3411         switch (chip->chip_id) {
3412         case KVM_IRQCHIP_PIC_MASTER:
3413                 spin_lock(&pic_irqchip(kvm)->lock);
3414                 memcpy(&pic_irqchip(kvm)->pics[0],
3415                         &chip->chip.pic,
3416                         sizeof(struct kvm_pic_state));
3417                 spin_unlock(&pic_irqchip(kvm)->lock);
3418                 break;
3419         case KVM_IRQCHIP_PIC_SLAVE:
3420                 spin_lock(&pic_irqchip(kvm)->lock);
3421                 memcpy(&pic_irqchip(kvm)->pics[1],
3422                         &chip->chip.pic,
3423                         sizeof(struct kvm_pic_state));
3424                 spin_unlock(&pic_irqchip(kvm)->lock);
3425                 break;
3426         case KVM_IRQCHIP_IOAPIC:
3427                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3428                 break;
3429         default:
3430                 r = -EINVAL;
3431                 break;
3432         }
3433         kvm_pic_update_irq(pic_irqchip(kvm));
3434         return r;
3435 }
3436
3437 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3438 {
3439         int r = 0;
3440
3441         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3442         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3443         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3444         return r;
3445 }
3446
3447 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3448 {
3449         int r = 0;
3450
3451         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3452         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3453         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3454         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3455         return r;
3456 }
3457
3458 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3459 {
3460         int r = 0;
3461
3462         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3463         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3464                 sizeof(ps->channels));
3465         ps->flags = kvm->arch.vpit->pit_state.flags;
3466         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3467         memset(&ps->reserved, 0, sizeof(ps->reserved));
3468         return r;
3469 }
3470
3471 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3472 {
3473         int r = 0, start = 0;
3474         u32 prev_legacy, cur_legacy;
3475         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3476         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3477         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3478         if (!prev_legacy && cur_legacy)
3479                 start = 1;
3480         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3481                sizeof(kvm->arch.vpit->pit_state.channels));
3482         kvm->arch.vpit->pit_state.flags = ps->flags;
3483         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3484         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3485         return r;
3486 }
3487
3488 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3489                                  struct kvm_reinject_control *control)
3490 {
3491         if (!kvm->arch.vpit)
3492                 return -ENXIO;
3493         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3494         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3495         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3496         return 0;
3497 }
3498
3499 /**
3500  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3501  * @kvm: kvm instance
3502  * @log: slot id and address to which we copy the log
3503  *
3504  * Steps 1-4 below provide general overview of dirty page logging. See
3505  * kvm_get_dirty_log_protect() function description for additional details.
3506  *
3507  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3508  * always flush the TLB (step 4) even if previous step failed  and the dirty
3509  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3510  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3511  * writes will be marked dirty for next log read.
3512  *
3513  *   1. Take a snapshot of the bit and clear it if needed.
3514  *   2. Write protect the corresponding page.
3515  *   3. Copy the snapshot to the userspace.
3516  *   4. Flush TLB's if needed.
3517  */
3518 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3519 {
3520         bool is_dirty = false;
3521         int r;
3522
3523         mutex_lock(&kvm->slots_lock);
3524
3525         /*
3526          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3527          */
3528         if (kvm_x86_ops->flush_log_dirty)
3529                 kvm_x86_ops->flush_log_dirty(kvm);
3530
3531         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3532
3533         /*
3534          * All the TLBs can be flushed out of mmu lock, see the comments in
3535          * kvm_mmu_slot_remove_write_access().
3536          */
3537         lockdep_assert_held(&kvm->slots_lock);
3538         if (is_dirty)
3539                 kvm_flush_remote_tlbs(kvm);
3540
3541         mutex_unlock(&kvm->slots_lock);
3542         return r;
3543 }
3544
3545 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3546                         bool line_status)
3547 {
3548         if (!irqchip_in_kernel(kvm))
3549                 return -ENXIO;
3550
3551         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3552                                         irq_event->irq, irq_event->level,
3553                                         line_status);
3554         return 0;
3555 }
3556
3557 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3558                                    struct kvm_enable_cap *cap)
3559 {
3560         int r;
3561
3562         if (cap->flags)
3563                 return -EINVAL;
3564
3565         switch (cap->cap) {
3566         case KVM_CAP_DISABLE_QUIRKS:
3567                 kvm->arch.disabled_quirks = cap->args[0];
3568                 r = 0;
3569                 break;
3570         default:
3571                 r = -EINVAL;
3572                 break;
3573         }
3574         return r;
3575 }
3576
3577 long kvm_arch_vm_ioctl(struct file *filp,
3578                        unsigned int ioctl, unsigned long arg)
3579 {
3580         struct kvm *kvm = filp->private_data;
3581         void __user *argp = (void __user *)arg;
3582         int r = -ENOTTY;
3583         /*
3584          * This union makes it completely explicit to gcc-3.x
3585          * that these two variables' stack usage should be
3586          * combined, not added together.
3587          */
3588         union {
3589                 struct kvm_pit_state ps;
3590                 struct kvm_pit_state2 ps2;
3591                 struct kvm_pit_config pit_config;
3592         } u;
3593
3594         switch (ioctl) {
3595         case KVM_SET_TSS_ADDR:
3596                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3597                 break;
3598         case KVM_SET_IDENTITY_MAP_ADDR: {
3599                 u64 ident_addr;
3600
3601                 r = -EFAULT;
3602                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3603                         goto out;
3604                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3605                 break;
3606         }
3607         case KVM_SET_NR_MMU_PAGES:
3608                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3609                 break;
3610         case KVM_GET_NR_MMU_PAGES:
3611                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3612                 break;
3613         case KVM_CREATE_IRQCHIP: {
3614                 struct kvm_pic *vpic;
3615
3616                 mutex_lock(&kvm->lock);
3617                 r = -EEXIST;
3618                 if (kvm->arch.vpic)
3619                         goto create_irqchip_unlock;
3620                 r = -EINVAL;
3621                 if (atomic_read(&kvm->online_vcpus))
3622                         goto create_irqchip_unlock;
3623                 r = -ENOMEM;
3624                 vpic = kvm_create_pic(kvm);
3625                 if (vpic) {
3626                         r = kvm_ioapic_init(kvm);
3627                         if (r) {
3628                                 mutex_lock(&kvm->slots_lock);
3629                                 kvm_destroy_pic(vpic);
3630                                 mutex_unlock(&kvm->slots_lock);
3631                                 goto create_irqchip_unlock;
3632                         }
3633                 } else
3634                         goto create_irqchip_unlock;
3635                 r = kvm_setup_default_irq_routing(kvm);
3636                 if (r) {
3637                         mutex_lock(&kvm->slots_lock);
3638                         mutex_lock(&kvm->irq_lock);
3639                         kvm_ioapic_destroy(kvm);
3640                         kvm_destroy_pic(vpic);
3641                         mutex_unlock(&kvm->irq_lock);
3642                         mutex_unlock(&kvm->slots_lock);
3643                         goto create_irqchip_unlock;
3644                 }
3645                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3646                 smp_wmb();
3647                 kvm->arch.vpic = vpic;
3648         create_irqchip_unlock:
3649                 mutex_unlock(&kvm->lock);
3650                 break;
3651         }
3652         case KVM_CREATE_PIT:
3653                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3654                 goto create_pit;
3655         case KVM_CREATE_PIT2:
3656                 r = -EFAULT;
3657                 if (copy_from_user(&u.pit_config, argp,
3658                                    sizeof(struct kvm_pit_config)))
3659                         goto out;
3660         create_pit:
3661                 mutex_lock(&kvm->slots_lock);
3662                 r = -EEXIST;
3663                 if (kvm->arch.vpit)
3664                         goto create_pit_unlock;
3665                 r = -ENOMEM;
3666                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3667                 if (kvm->arch.vpit)
3668                         r = 0;
3669         create_pit_unlock:
3670                 mutex_unlock(&kvm->slots_lock);
3671                 break;
3672         case KVM_GET_IRQCHIP: {
3673                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3674                 struct kvm_irqchip *chip;
3675
3676                 chip = memdup_user(argp, sizeof(*chip));
3677                 if (IS_ERR(chip)) {
3678                         r = PTR_ERR(chip);
3679                         goto out;
3680                 }
3681
3682                 r = -ENXIO;
3683                 if (!irqchip_in_kernel(kvm))
3684                         goto get_irqchip_out;
3685                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3686                 if (r)
3687                         goto get_irqchip_out;
3688                 r = -EFAULT;
3689                 if (copy_to_user(argp, chip, sizeof *chip))
3690                         goto get_irqchip_out;
3691                 r = 0;
3692         get_irqchip_out:
3693                 kfree(chip);
3694                 break;
3695         }
3696         case KVM_SET_IRQCHIP: {
3697                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3698                 struct kvm_irqchip *chip;
3699
3700                 chip = memdup_user(argp, sizeof(*chip));
3701                 if (IS_ERR(chip)) {
3702                         r = PTR_ERR(chip);
3703                         goto out;
3704                 }
3705
3706                 r = -ENXIO;
3707                 if (!irqchip_in_kernel(kvm))
3708                         goto set_irqchip_out;
3709                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3710                 if (r)
3711                         goto set_irqchip_out;
3712                 r = 0;
3713         set_irqchip_out:
3714                 kfree(chip);
3715                 break;
3716         }
3717         case KVM_GET_PIT: {
3718                 r = -EFAULT;
3719                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3720                         goto out;
3721                 r = -ENXIO;
3722                 if (!kvm->arch.vpit)
3723                         goto out;
3724                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3725                 if (r)
3726                         goto out;
3727                 r = -EFAULT;
3728                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3729                         goto out;
3730                 r = 0;
3731                 break;
3732         }
3733         case KVM_SET_PIT: {
3734                 r = -EFAULT;
3735                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3736                         goto out;
3737                 r = -ENXIO;
3738                 if (!kvm->arch.vpit)
3739                         goto out;
3740                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3741                 break;
3742         }
3743         case KVM_GET_PIT2: {
3744                 r = -ENXIO;
3745                 if (!kvm->arch.vpit)
3746                         goto out;
3747                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3748                 if (r)
3749                         goto out;
3750                 r = -EFAULT;
3751                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3752                         goto out;
3753                 r = 0;
3754                 break;
3755         }
3756         case KVM_SET_PIT2: {
3757                 r = -EFAULT;
3758                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3759                         goto out;
3760                 r = -ENXIO;
3761                 if (!kvm->arch.vpit)
3762                         goto out;
3763                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3764                 break;
3765         }
3766         case KVM_REINJECT_CONTROL: {
3767                 struct kvm_reinject_control control;
3768                 r =  -EFAULT;
3769                 if (copy_from_user(&control, argp, sizeof(control)))
3770                         goto out;
3771                 r = kvm_vm_ioctl_reinject(kvm, &control);
3772                 break;
3773         }
3774         case KVM_SET_BOOT_CPU_ID:
3775                 r = 0;
3776                 mutex_lock(&kvm->lock);
3777                 if (atomic_read(&kvm->online_vcpus) != 0)
3778                         r = -EBUSY;
3779                 else
3780                         kvm->arch.bsp_vcpu_id = arg;
3781                 mutex_unlock(&kvm->lock);
3782                 break;
3783         case KVM_XEN_HVM_CONFIG: {
3784                 r = -EFAULT;
3785                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3786                                    sizeof(struct kvm_xen_hvm_config)))
3787                         goto out;
3788                 r = -EINVAL;
3789                 if (kvm->arch.xen_hvm_config.flags)
3790                         goto out;
3791                 r = 0;
3792                 break;
3793         }
3794         case KVM_SET_CLOCK: {
3795                 struct kvm_clock_data user_ns;
3796                 u64 now_ns;
3797                 s64 delta;
3798
3799                 r = -EFAULT;
3800                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3801                         goto out;
3802
3803                 r = -EINVAL;
3804                 if (user_ns.flags)
3805                         goto out;
3806
3807                 r = 0;
3808                 local_irq_disable();
3809                 now_ns = get_kernel_ns();
3810                 delta = user_ns.clock - now_ns;
3811                 local_irq_enable();
3812                 kvm->arch.kvmclock_offset = delta;
3813                 kvm_gen_update_masterclock(kvm);
3814                 break;
3815         }
3816         case KVM_GET_CLOCK: {
3817                 struct kvm_clock_data user_ns;
3818                 u64 now_ns;
3819
3820                 local_irq_disable();
3821                 now_ns = get_kernel_ns();
3822                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3823                 local_irq_enable();
3824                 user_ns.flags = 0;
3825                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3826
3827                 r = -EFAULT;
3828                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3829                         goto out;
3830                 r = 0;
3831                 break;
3832         }
3833         case KVM_ENABLE_CAP: {
3834                 struct kvm_enable_cap cap;
3835
3836                 r = -EFAULT;
3837                 if (copy_from_user(&cap, argp, sizeof(cap)))
3838                         goto out;
3839                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3840                 break;
3841         }
3842         default:
3843                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3844         }
3845 out:
3846         return r;
3847 }
3848
3849 static void kvm_init_msr_list(void)
3850 {
3851         u32 dummy[2];
3852         unsigned i, j;
3853
3854         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3855                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3856                         continue;
3857
3858                 /*
3859                  * Even MSRs that are valid in the host may not be exposed
3860                  * to the guests in some cases.  We could work around this
3861                  * in VMX with the generic MSR save/load machinery, but it
3862                  * is not really worthwhile since it will really only
3863                  * happen with nested virtualization.
3864                  */
3865                 switch (msrs_to_save[i]) {
3866                 case MSR_IA32_BNDCFGS:
3867                         if (!kvm_x86_ops->mpx_supported())
3868                                 continue;
3869                         break;
3870                 default:
3871                         break;
3872                 }
3873
3874                 if (j < i)
3875                         msrs_to_save[j] = msrs_to_save[i];
3876                 j++;
3877         }
3878         num_msrs_to_save = j;
3879
3880         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3881                 switch (emulated_msrs[i]) {
3882                 case MSR_IA32_SMBASE:
3883                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3884                                 continue;
3885                         break;
3886                 default:
3887                         break;
3888                 }
3889
3890                 if (j < i)
3891                         emulated_msrs[j] = emulated_msrs[i];
3892                 j++;
3893         }
3894         num_emulated_msrs = j;
3895 }
3896
3897 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3898                            const void *v)
3899 {
3900         int handled = 0;
3901         int n;
3902
3903         do {
3904                 n = min(len, 8);
3905                 if (!(vcpu->arch.apic &&
3906                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3907                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3908                         break;
3909                 handled += n;
3910                 addr += n;
3911                 len -= n;
3912                 v += n;
3913         } while (len);
3914
3915         return handled;
3916 }
3917
3918 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3919 {
3920         int handled = 0;
3921         int n;
3922
3923         do {
3924                 n = min(len, 8);
3925                 if (!(vcpu->arch.apic &&
3926                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3927                                          addr, n, v))
3928                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3929                         break;
3930                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3931                 handled += n;
3932                 addr += n;
3933                 len -= n;
3934                 v += n;
3935         } while (len);
3936
3937         return handled;
3938 }
3939
3940 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3941                         struct kvm_segment *var, int seg)
3942 {
3943         kvm_x86_ops->set_segment(vcpu, var, seg);
3944 }
3945
3946 void kvm_get_segment(struct kvm_vcpu *vcpu,
3947                      struct kvm_segment *var, int seg)
3948 {
3949         kvm_x86_ops->get_segment(vcpu, var, seg);
3950 }
3951
3952 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3953                            struct x86_exception *exception)
3954 {
3955         gpa_t t_gpa;
3956
3957         BUG_ON(!mmu_is_nested(vcpu));
3958
3959         /* NPT walks are always user-walks */
3960         access |= PFERR_USER_MASK;
3961         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3962
3963         return t_gpa;
3964 }
3965
3966 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3967                               struct x86_exception *exception)
3968 {
3969         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3970         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3971 }
3972
3973  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3974                                 struct x86_exception *exception)
3975 {
3976         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3977         access |= PFERR_FETCH_MASK;
3978         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3979 }
3980
3981 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3982                                struct x86_exception *exception)
3983 {
3984         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3985         access |= PFERR_WRITE_MASK;
3986         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3987 }
3988
3989 /* uses this to access any guest's mapped memory without checking CPL */
3990 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3991                                 struct x86_exception *exception)
3992 {
3993         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3994 }
3995
3996 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3997                                       struct kvm_vcpu *vcpu, u32 access,
3998                                       struct x86_exception *exception)
3999 {
4000         void *data = val;
4001         int r = X86EMUL_CONTINUE;
4002
4003         while (bytes) {
4004                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4005                                                             exception);
4006                 unsigned offset = addr & (PAGE_SIZE-1);
4007                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4008                 int ret;
4009
4010                 if (gpa == UNMAPPED_GVA)
4011                         return X86EMUL_PROPAGATE_FAULT;
4012                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4013                                                offset, toread);
4014                 if (ret < 0) {
4015                         r = X86EMUL_IO_NEEDED;
4016                         goto out;
4017                 }
4018
4019                 bytes -= toread;
4020                 data += toread;
4021                 addr += toread;
4022         }
4023 out:
4024         return r;
4025 }
4026
4027 /* used for instruction fetching */
4028 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4029                                 gva_t addr, void *val, unsigned int bytes,
4030                                 struct x86_exception *exception)
4031 {
4032         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4034         unsigned offset;
4035         int ret;
4036
4037         /* Inline kvm_read_guest_virt_helper for speed.  */
4038         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4039                                                     exception);
4040         if (unlikely(gpa == UNMAPPED_GVA))
4041                 return X86EMUL_PROPAGATE_FAULT;
4042
4043         offset = addr & (PAGE_SIZE-1);
4044         if (WARN_ON(offset + bytes > PAGE_SIZE))
4045                 bytes = (unsigned)PAGE_SIZE - offset;
4046         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4047                                        offset, bytes);
4048         if (unlikely(ret < 0))
4049                 return X86EMUL_IO_NEEDED;
4050
4051         return X86EMUL_CONTINUE;
4052 }
4053
4054 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4055                                gva_t addr, void *val, unsigned int bytes,
4056                                struct x86_exception *exception)
4057 {
4058         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4059         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4060
4061         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4062                                           exception);
4063 }
4064 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4065
4066 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4067                                       gva_t addr, void *val, unsigned int bytes,
4068                                       struct x86_exception *exception)
4069 {
4070         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4071         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4072 }
4073
4074 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4075                                        gva_t addr, void *val,
4076                                        unsigned int bytes,
4077                                        struct x86_exception *exception)
4078 {
4079         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4080         void *data = val;
4081         int r = X86EMUL_CONTINUE;
4082
4083         while (bytes) {
4084                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4085                                                              PFERR_WRITE_MASK,
4086                                                              exception);
4087                 unsigned offset = addr & (PAGE_SIZE-1);
4088                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4089                 int ret;
4090
4091                 if (gpa == UNMAPPED_GVA)
4092                         return X86EMUL_PROPAGATE_FAULT;
4093                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4094                 if (ret < 0) {
4095                         r = X86EMUL_IO_NEEDED;
4096                         goto out;
4097                 }
4098
4099                 bytes -= towrite;
4100                 data += towrite;
4101                 addr += towrite;
4102         }
4103 out:
4104         return r;
4105 }
4106 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4107
4108 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4109                                 gpa_t *gpa, struct x86_exception *exception,
4110                                 bool write)
4111 {
4112         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4113                 | (write ? PFERR_WRITE_MASK : 0);
4114
4115         if (vcpu_match_mmio_gva(vcpu, gva)
4116             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4117                                  vcpu->arch.access, access)) {
4118                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4119                                         (gva & (PAGE_SIZE - 1));
4120                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4121                 return 1;
4122         }
4123
4124         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4125
4126         if (*gpa == UNMAPPED_GVA)
4127                 return -1;
4128
4129         /* For APIC access vmexit */
4130         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4131                 return 1;
4132
4133         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4134                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4135                 return 1;
4136         }
4137
4138         return 0;
4139 }
4140
4141 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4142                         const void *val, int bytes)
4143 {
4144         int ret;
4145
4146         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4147         if (ret < 0)
4148                 return 0;
4149         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4150         return 1;
4151 }
4152
4153 struct read_write_emulator_ops {
4154         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4155                                   int bytes);
4156         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4157                                   void *val, int bytes);
4158         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4159                                int bytes, void *val);
4160         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4161                                     void *val, int bytes);
4162         bool write;
4163 };
4164
4165 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4166 {
4167         if (vcpu->mmio_read_completed) {
4168                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4169                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4170                 vcpu->mmio_read_completed = 0;
4171                 return 1;
4172         }
4173
4174         return 0;
4175 }
4176
4177 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4178                         void *val, int bytes)
4179 {
4180         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4181 }
4182
4183 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4184                          void *val, int bytes)
4185 {
4186         return emulator_write_phys(vcpu, gpa, val, bytes);
4187 }
4188
4189 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4190 {
4191         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4192         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4193 }
4194
4195 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4196                           void *val, int bytes)
4197 {
4198         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4199         return X86EMUL_IO_NEEDED;
4200 }
4201
4202 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4203                            void *val, int bytes)
4204 {
4205         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4206
4207         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4208         return X86EMUL_CONTINUE;
4209 }
4210
4211 static const struct read_write_emulator_ops read_emultor = {
4212         .read_write_prepare = read_prepare,
4213         .read_write_emulate = read_emulate,
4214         .read_write_mmio = vcpu_mmio_read,
4215         .read_write_exit_mmio = read_exit_mmio,
4216 };
4217
4218 static const struct read_write_emulator_ops write_emultor = {
4219         .read_write_emulate = write_emulate,
4220         .read_write_mmio = write_mmio,
4221         .read_write_exit_mmio = write_exit_mmio,
4222         .write = true,
4223 };
4224
4225 static int emulator_read_write_onepage(unsigned long addr, void *val,
4226                                        unsigned int bytes,
4227                                        struct x86_exception *exception,
4228                                        struct kvm_vcpu *vcpu,
4229                                        const struct read_write_emulator_ops *ops)
4230 {
4231         gpa_t gpa;
4232         int handled, ret;
4233         bool write = ops->write;
4234         struct kvm_mmio_fragment *frag;
4235
4236         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4237
4238         if (ret < 0)
4239                 return X86EMUL_PROPAGATE_FAULT;
4240
4241         /* For APIC access vmexit */
4242         if (ret)
4243                 goto mmio;
4244
4245         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4246                 return X86EMUL_CONTINUE;
4247
4248 mmio:
4249         /*
4250          * Is this MMIO handled locally?
4251          */
4252         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4253         if (handled == bytes)
4254                 return X86EMUL_CONTINUE;
4255
4256         gpa += handled;
4257         bytes -= handled;
4258         val += handled;
4259
4260         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4261         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4262         frag->gpa = gpa;
4263         frag->data = val;
4264         frag->len = bytes;
4265         return X86EMUL_CONTINUE;
4266 }
4267
4268 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4269                         unsigned long addr,
4270                         void *val, unsigned int bytes,
4271                         struct x86_exception *exception,
4272                         const struct read_write_emulator_ops *ops)
4273 {
4274         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4275         gpa_t gpa;
4276         int rc;
4277
4278         if (ops->read_write_prepare &&
4279                   ops->read_write_prepare(vcpu, val, bytes))
4280                 return X86EMUL_CONTINUE;
4281
4282         vcpu->mmio_nr_fragments = 0;
4283
4284         /* Crossing a page boundary? */
4285         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4286                 int now;
4287
4288                 now = -addr & ~PAGE_MASK;
4289                 rc = emulator_read_write_onepage(addr, val, now, exception,
4290                                                  vcpu, ops);
4291
4292                 if (rc != X86EMUL_CONTINUE)
4293                         return rc;
4294                 addr += now;
4295                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4296                         addr = (u32)addr;
4297                 val += now;
4298                 bytes -= now;
4299         }
4300
4301         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4302                                          vcpu, ops);
4303         if (rc != X86EMUL_CONTINUE)
4304                 return rc;
4305
4306         if (!vcpu->mmio_nr_fragments)
4307                 return rc;
4308
4309         gpa = vcpu->mmio_fragments[0].gpa;
4310
4311         vcpu->mmio_needed = 1;
4312         vcpu->mmio_cur_fragment = 0;
4313
4314         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4315         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4316         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4317         vcpu->run->mmio.phys_addr = gpa;
4318
4319         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4320 }
4321
4322 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4323                                   unsigned long addr,
4324                                   void *val,
4325                                   unsigned int bytes,
4326                                   struct x86_exception *exception)
4327 {
4328         return emulator_read_write(ctxt, addr, val, bytes,
4329                                    exception, &read_emultor);
4330 }
4331
4332 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4333                             unsigned long addr,
4334                             const void *val,
4335                             unsigned int bytes,
4336                             struct x86_exception *exception)
4337 {
4338         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4339                                    exception, &write_emultor);
4340 }
4341
4342 #define CMPXCHG_TYPE(t, ptr, old, new) \
4343         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4344
4345 #ifdef CONFIG_X86_64
4346 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4347 #else
4348 #  define CMPXCHG64(ptr, old, new) \
4349         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4350 #endif
4351
4352 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4353                                      unsigned long addr,
4354                                      const void *old,
4355                                      const void *new,
4356                                      unsigned int bytes,
4357                                      struct x86_exception *exception)
4358 {
4359         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4360         gpa_t gpa;
4361         struct page *page;
4362         char *kaddr;
4363         bool exchanged;
4364
4365         /* guests cmpxchg8b have to be emulated atomically */
4366         if (bytes > 8 || (bytes & (bytes - 1)))
4367                 goto emul_write;
4368
4369         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4370
4371         if (gpa == UNMAPPED_GVA ||
4372             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4373                 goto emul_write;
4374
4375         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4376                 goto emul_write;
4377
4378         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4379         if (is_error_page(page))
4380                 goto emul_write;
4381
4382         kaddr = kmap_atomic(page);
4383         kaddr += offset_in_page(gpa);
4384         switch (bytes) {
4385         case 1:
4386                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4387                 break;
4388         case 2:
4389                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4390                 break;
4391         case 4:
4392                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4393                 break;
4394         case 8:
4395                 exchanged = CMPXCHG64(kaddr, old, new);
4396                 break;
4397         default:
4398                 BUG();
4399         }
4400         kunmap_atomic(kaddr);
4401         kvm_release_page_dirty(page);
4402
4403         if (!exchanged)
4404                 return X86EMUL_CMPXCHG_FAILED;
4405
4406         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4407         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4408
4409         return X86EMUL_CONTINUE;
4410
4411 emul_write:
4412         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4413
4414         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4415 }
4416
4417 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4418 {
4419         /* TODO: String I/O for in kernel device */
4420         int r;
4421
4422         if (vcpu->arch.pio.in)
4423                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4424                                     vcpu->arch.pio.size, pd);
4425         else
4426                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4427                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4428                                      pd);
4429         return r;
4430 }
4431
4432 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4433                                unsigned short port, void *val,
4434                                unsigned int count, bool in)
4435 {
4436         vcpu->arch.pio.port = port;
4437         vcpu->arch.pio.in = in;
4438         vcpu->arch.pio.count  = count;
4439         vcpu->arch.pio.size = size;
4440
4441         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4442                 vcpu->arch.pio.count = 0;
4443                 return 1;
4444         }
4445
4446         vcpu->run->exit_reason = KVM_EXIT_IO;
4447         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4448         vcpu->run->io.size = size;
4449         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4450         vcpu->run->io.count = count;
4451         vcpu->run->io.port = port;
4452
4453         return 0;
4454 }
4455
4456 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4457                                     int size, unsigned short port, void *val,
4458                                     unsigned int count)
4459 {
4460         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4461         int ret;
4462
4463         if (vcpu->arch.pio.count)
4464                 goto data_avail;
4465
4466         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4467         if (ret) {
4468 data_avail:
4469                 memcpy(val, vcpu->arch.pio_data, size * count);
4470                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4471                 vcpu->arch.pio.count = 0;
4472                 return 1;
4473         }
4474
4475         return 0;
4476 }
4477
4478 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4479                                      int size, unsigned short port,
4480                                      const void *val, unsigned int count)
4481 {
4482         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4483
4484         memcpy(vcpu->arch.pio_data, val, size * count);
4485         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4486         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4487 }
4488
4489 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4490 {
4491         return kvm_x86_ops->get_segment_base(vcpu, seg);
4492 }
4493
4494 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4495 {
4496         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4497 }
4498
4499 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4500 {
4501         if (!need_emulate_wbinvd(vcpu))
4502                 return X86EMUL_CONTINUE;
4503
4504         if (kvm_x86_ops->has_wbinvd_exit()) {
4505                 int cpu = get_cpu();
4506
4507                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4508                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4509                                 wbinvd_ipi, NULL, 1);
4510                 put_cpu();
4511                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4512         } else
4513                 wbinvd();
4514         return X86EMUL_CONTINUE;
4515 }
4516
4517 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4518 {
4519         kvm_x86_ops->skip_emulated_instruction(vcpu);
4520         return kvm_emulate_wbinvd_noskip(vcpu);
4521 }
4522 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4523
4524
4525
4526 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4527 {
4528         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4529 }
4530
4531 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4532                            unsigned long *dest)
4533 {
4534         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4535 }
4536
4537 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4538                            unsigned long value)
4539 {
4540
4541         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4542 }
4543
4544 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4545 {
4546         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4547 }
4548
4549 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4550 {
4551         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4552         unsigned long value;
4553
4554         switch (cr) {
4555         case 0:
4556                 value = kvm_read_cr0(vcpu);
4557                 break;
4558         case 2:
4559                 value = vcpu->arch.cr2;
4560                 break;
4561         case 3:
4562                 value = kvm_read_cr3(vcpu);
4563                 break;
4564         case 4:
4565                 value = kvm_read_cr4(vcpu);
4566                 break;
4567         case 8:
4568                 value = kvm_get_cr8(vcpu);
4569                 break;
4570         default:
4571                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4572                 return 0;
4573         }
4574
4575         return value;
4576 }
4577
4578 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4579 {
4580         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4581         int res = 0;
4582
4583         switch (cr) {
4584         case 0:
4585                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4586                 break;
4587         case 2:
4588                 vcpu->arch.cr2 = val;
4589                 break;
4590         case 3:
4591                 res = kvm_set_cr3(vcpu, val);
4592                 break;
4593         case 4:
4594                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4595                 break;
4596         case 8:
4597                 res = kvm_set_cr8(vcpu, val);
4598                 break;
4599         default:
4600                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4601                 res = -1;
4602         }
4603
4604         return res;
4605 }
4606
4607 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4608 {
4609         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4610 }
4611
4612 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4613 {
4614         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4615 }
4616
4617 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4618 {
4619         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4620 }
4621
4622 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4623 {
4624         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4625 }
4626
4627 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4628 {
4629         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4630 }
4631
4632 static unsigned long emulator_get_cached_segment_base(
4633         struct x86_emulate_ctxt *ctxt, int seg)
4634 {
4635         return get_segment_base(emul_to_vcpu(ctxt), seg);
4636 }
4637
4638 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4639                                  struct desc_struct *desc, u32 *base3,
4640                                  int seg)
4641 {
4642         struct kvm_segment var;
4643
4644         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4645         *selector = var.selector;
4646
4647         if (var.unusable) {
4648                 memset(desc, 0, sizeof(*desc));
4649                 return false;
4650         }
4651
4652         if (var.g)
4653                 var.limit >>= 12;
4654         set_desc_limit(desc, var.limit);
4655         set_desc_base(desc, (unsigned long)var.base);
4656 #ifdef CONFIG_X86_64
4657         if (base3)
4658                 *base3 = var.base >> 32;
4659 #endif
4660         desc->type = var.type;
4661         desc->s = var.s;
4662         desc->dpl = var.dpl;
4663         desc->p = var.present;
4664         desc->avl = var.avl;
4665         desc->l = var.l;
4666         desc->d = var.db;
4667         desc->g = var.g;
4668
4669         return true;
4670 }
4671
4672 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4673                                  struct desc_struct *desc, u32 base3,
4674                                  int seg)
4675 {
4676         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4677         struct kvm_segment var;
4678
4679         var.selector = selector;
4680         var.base = get_desc_base(desc);
4681 #ifdef CONFIG_X86_64
4682         var.base |= ((u64)base3) << 32;
4683 #endif
4684         var.limit = get_desc_limit(desc);
4685         if (desc->g)
4686                 var.limit = (var.limit << 12) | 0xfff;
4687         var.type = desc->type;
4688         var.dpl = desc->dpl;
4689         var.db = desc->d;
4690         var.s = desc->s;
4691         var.l = desc->l;
4692         var.g = desc->g;
4693         var.avl = desc->avl;
4694         var.present = desc->p;
4695         var.unusable = !var.present;
4696         var.padding = 0;
4697
4698         kvm_set_segment(vcpu, &var, seg);
4699         return;
4700 }
4701
4702 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4703                             u32 msr_index, u64 *pdata)
4704 {
4705         struct msr_data msr;
4706         int r;
4707
4708         msr.index = msr_index;
4709         msr.host_initiated = false;
4710         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4711         if (r)
4712                 return r;
4713
4714         *pdata = msr.data;
4715         return 0;
4716 }
4717
4718 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4719                             u32 msr_index, u64 data)
4720 {
4721         struct msr_data msr;
4722
4723         msr.data = data;
4724         msr.index = msr_index;
4725         msr.host_initiated = false;
4726         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4727 }
4728
4729 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4730 {
4731         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4732
4733         return vcpu->arch.smbase;
4734 }
4735
4736 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4737 {
4738         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4739
4740         vcpu->arch.smbase = smbase;
4741 }
4742
4743 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4744                               u32 pmc)
4745 {
4746         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4747 }
4748
4749 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4750                              u32 pmc, u64 *pdata)
4751 {
4752         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4753 }
4754
4755 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4756 {
4757         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4758 }
4759
4760 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4761 {
4762         preempt_disable();
4763         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4764         /*
4765          * CR0.TS may reference the host fpu state, not the guest fpu state,
4766          * so it may be clear at this point.
4767          */
4768         clts();
4769 }
4770
4771 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4772 {
4773         preempt_enable();
4774 }
4775
4776 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4777                               struct x86_instruction_info *info,
4778                               enum x86_intercept_stage stage)
4779 {
4780         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4781 }
4782
4783 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4784                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4785 {
4786         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4787 }
4788
4789 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4790 {
4791         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4792 }
4793
4794 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4795 {
4796         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4797 }
4798
4799 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4800 {
4801         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4802 }
4803
4804 static const struct x86_emulate_ops emulate_ops = {
4805         .read_gpr            = emulator_read_gpr,
4806         .write_gpr           = emulator_write_gpr,
4807         .read_std            = kvm_read_guest_virt_system,
4808         .write_std           = kvm_write_guest_virt_system,
4809         .fetch               = kvm_fetch_guest_virt,
4810         .read_emulated       = emulator_read_emulated,
4811         .write_emulated      = emulator_write_emulated,
4812         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4813         .invlpg              = emulator_invlpg,
4814         .pio_in_emulated     = emulator_pio_in_emulated,
4815         .pio_out_emulated    = emulator_pio_out_emulated,
4816         .get_segment         = emulator_get_segment,
4817         .set_segment         = emulator_set_segment,
4818         .get_cached_segment_base = emulator_get_cached_segment_base,
4819         .get_gdt             = emulator_get_gdt,
4820         .get_idt             = emulator_get_idt,
4821         .set_gdt             = emulator_set_gdt,
4822         .set_idt             = emulator_set_idt,
4823         .get_cr              = emulator_get_cr,
4824         .set_cr              = emulator_set_cr,
4825         .cpl                 = emulator_get_cpl,
4826         .get_dr              = emulator_get_dr,
4827         .set_dr              = emulator_set_dr,
4828         .get_smbase          = emulator_get_smbase,
4829         .set_smbase          = emulator_set_smbase,
4830         .set_msr             = emulator_set_msr,
4831         .get_msr             = emulator_get_msr,
4832         .check_pmc           = emulator_check_pmc,
4833         .read_pmc            = emulator_read_pmc,
4834         .halt                = emulator_halt,
4835         .wbinvd              = emulator_wbinvd,
4836         .fix_hypercall       = emulator_fix_hypercall,
4837         .get_fpu             = emulator_get_fpu,
4838         .put_fpu             = emulator_put_fpu,
4839         .intercept           = emulator_intercept,
4840         .get_cpuid           = emulator_get_cpuid,
4841         .set_nmi_mask        = emulator_set_nmi_mask,
4842 };
4843
4844 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4845 {
4846         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4847         /*
4848          * an sti; sti; sequence only disable interrupts for the first
4849          * instruction. So, if the last instruction, be it emulated or
4850          * not, left the system with the INT_STI flag enabled, it
4851          * means that the last instruction is an sti. We should not
4852          * leave the flag on in this case. The same goes for mov ss
4853          */
4854         if (int_shadow & mask)
4855                 mask = 0;
4856         if (unlikely(int_shadow || mask)) {
4857                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4858                 if (!mask)
4859                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4860         }
4861 }
4862
4863 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4864 {
4865         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4866         if (ctxt->exception.vector == PF_VECTOR)
4867                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4868
4869         if (ctxt->exception.error_code_valid)
4870                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4871                                       ctxt->exception.error_code);
4872         else
4873                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4874         return false;
4875 }
4876
4877 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4878 {
4879         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4880         int cs_db, cs_l;
4881
4882         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4883
4884         ctxt->eflags = kvm_get_rflags(vcpu);
4885         ctxt->eip = kvm_rip_read(vcpu);
4886         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4887                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4888                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4889                      cs_db                              ? X86EMUL_MODE_PROT32 :
4890                                                           X86EMUL_MODE_PROT16;
4891         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4892         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4893         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4894         ctxt->emul_flags = vcpu->arch.hflags;
4895
4896         init_decode_cache(ctxt);
4897         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4898 }
4899
4900 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4901 {
4902         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4903         int ret;
4904
4905         init_emulate_ctxt(vcpu);
4906
4907         ctxt->op_bytes = 2;
4908         ctxt->ad_bytes = 2;
4909         ctxt->_eip = ctxt->eip + inc_eip;
4910         ret = emulate_int_real(ctxt, irq);
4911
4912         if (ret != X86EMUL_CONTINUE)
4913                 return EMULATE_FAIL;
4914
4915         ctxt->eip = ctxt->_eip;
4916         kvm_rip_write(vcpu, ctxt->eip);
4917         kvm_set_rflags(vcpu, ctxt->eflags);
4918
4919         if (irq == NMI_VECTOR)
4920                 vcpu->arch.nmi_pending = 0;
4921         else
4922                 vcpu->arch.interrupt.pending = false;
4923
4924         return EMULATE_DONE;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4927
4928 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4929 {
4930         int r = EMULATE_DONE;
4931
4932         ++vcpu->stat.insn_emulation_fail;
4933         trace_kvm_emulate_insn_failed(vcpu);
4934         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4935                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4936                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4937                 vcpu->run->internal.ndata = 0;
4938                 r = EMULATE_FAIL;
4939         }
4940         kvm_queue_exception(vcpu, UD_VECTOR);
4941
4942         return r;
4943 }
4944
4945 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4946                                   bool write_fault_to_shadow_pgtable,
4947                                   int emulation_type)
4948 {
4949         gpa_t gpa = cr2;
4950         pfn_t pfn;
4951
4952         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4953                 return false;
4954
4955         if (!vcpu->arch.mmu.direct_map) {
4956                 /*
4957                  * Write permission should be allowed since only
4958                  * write access need to be emulated.
4959                  */
4960                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4961
4962                 /*
4963                  * If the mapping is invalid in guest, let cpu retry
4964                  * it to generate fault.
4965                  */
4966                 if (gpa == UNMAPPED_GVA)
4967                         return true;
4968         }
4969
4970         /*
4971          * Do not retry the unhandleable instruction if it faults on the
4972          * readonly host memory, otherwise it will goto a infinite loop:
4973          * retry instruction -> write #PF -> emulation fail -> retry
4974          * instruction -> ...
4975          */
4976         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4977
4978         /*
4979          * If the instruction failed on the error pfn, it can not be fixed,
4980          * report the error to userspace.
4981          */
4982         if (is_error_noslot_pfn(pfn))
4983                 return false;
4984
4985         kvm_release_pfn_clean(pfn);
4986
4987         /* The instructions are well-emulated on direct mmu. */
4988         if (vcpu->arch.mmu.direct_map) {
4989                 unsigned int indirect_shadow_pages;
4990
4991                 spin_lock(&vcpu->kvm->mmu_lock);
4992                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4993                 spin_unlock(&vcpu->kvm->mmu_lock);
4994
4995                 if (indirect_shadow_pages)
4996                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4997
4998                 return true;
4999         }
5000
5001         /*
5002          * if emulation was due to access to shadowed page table
5003          * and it failed try to unshadow page and re-enter the
5004          * guest to let CPU execute the instruction.
5005          */
5006         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5007
5008         /*
5009          * If the access faults on its page table, it can not
5010          * be fixed by unprotecting shadow page and it should
5011          * be reported to userspace.
5012          */
5013         return !write_fault_to_shadow_pgtable;
5014 }
5015
5016 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5017                               unsigned long cr2,  int emulation_type)
5018 {
5019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5020         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5021
5022         last_retry_eip = vcpu->arch.last_retry_eip;
5023         last_retry_addr = vcpu->arch.last_retry_addr;
5024
5025         /*
5026          * If the emulation is caused by #PF and it is non-page_table
5027          * writing instruction, it means the VM-EXIT is caused by shadow
5028          * page protected, we can zap the shadow page and retry this
5029          * instruction directly.
5030          *
5031          * Note: if the guest uses a non-page-table modifying instruction
5032          * on the PDE that points to the instruction, then we will unmap
5033          * the instruction and go to an infinite loop. So, we cache the
5034          * last retried eip and the last fault address, if we meet the eip
5035          * and the address again, we can break out of the potential infinite
5036          * loop.
5037          */
5038         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5039
5040         if (!(emulation_type & EMULTYPE_RETRY))
5041                 return false;
5042
5043         if (x86_page_table_writing_insn(ctxt))
5044                 return false;
5045
5046         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5047                 return false;
5048
5049         vcpu->arch.last_retry_eip = ctxt->eip;
5050         vcpu->arch.last_retry_addr = cr2;
5051
5052         if (!vcpu->arch.mmu.direct_map)
5053                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5054
5055         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5056
5057         return true;
5058 }
5059
5060 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5061 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5062
5063 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5064 {
5065         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5066                 /* This is a good place to trace that we are exiting SMM.  */
5067                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5068
5069                 if (unlikely(vcpu->arch.smi_pending)) {
5070                         kvm_make_request(KVM_REQ_SMI, vcpu);
5071                         vcpu->arch.smi_pending = 0;
5072                 } else {
5073                         /* Process a latched INIT, if any.  */
5074                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5075                 }
5076         }
5077
5078         kvm_mmu_reset_context(vcpu);
5079 }
5080
5081 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5082 {
5083         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5084
5085         vcpu->arch.hflags = emul_flags;
5086
5087         if (changed & HF_SMM_MASK)
5088                 kvm_smm_changed(vcpu);
5089 }
5090
5091 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5092                                 unsigned long *db)
5093 {
5094         u32 dr6 = 0;
5095         int i;
5096         u32 enable, rwlen;
5097
5098         enable = dr7;
5099         rwlen = dr7 >> 16;
5100         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5101                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5102                         dr6 |= (1 << i);
5103         return dr6;
5104 }
5105
5106 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5107 {
5108         struct kvm_run *kvm_run = vcpu->run;
5109
5110         /*
5111          * rflags is the old, "raw" value of the flags.  The new value has
5112          * not been saved yet.
5113          *
5114          * This is correct even for TF set by the guest, because "the
5115          * processor will not generate this exception after the instruction
5116          * that sets the TF flag".
5117          */
5118         if (unlikely(rflags & X86_EFLAGS_TF)) {
5119                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5120                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5121                                                   DR6_RTM;
5122                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5123                         kvm_run->debug.arch.exception = DB_VECTOR;
5124                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5125                         *r = EMULATE_USER_EXIT;
5126                 } else {
5127                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5128                         /*
5129                          * "Certain debug exceptions may clear bit 0-3.  The
5130                          * remaining contents of the DR6 register are never
5131                          * cleared by the processor".
5132                          */
5133                         vcpu->arch.dr6 &= ~15;
5134                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5135                         kvm_queue_exception(vcpu, DB_VECTOR);
5136                 }
5137         }
5138 }
5139
5140 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5141 {
5142         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5143             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5144                 struct kvm_run *kvm_run = vcpu->run;
5145                 unsigned long eip = kvm_get_linear_rip(vcpu);
5146                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5147                                            vcpu->arch.guest_debug_dr7,
5148                                            vcpu->arch.eff_db);
5149
5150                 if (dr6 != 0) {
5151                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5152                         kvm_run->debug.arch.pc = eip;
5153                         kvm_run->debug.arch.exception = DB_VECTOR;
5154                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5155                         *r = EMULATE_USER_EXIT;
5156                         return true;
5157                 }
5158         }
5159
5160         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5161             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5162                 unsigned long eip = kvm_get_linear_rip(vcpu);
5163                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5164                                            vcpu->arch.dr7,
5165                                            vcpu->arch.db);
5166
5167                 if (dr6 != 0) {
5168                         vcpu->arch.dr6 &= ~15;
5169                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5170                         kvm_queue_exception(vcpu, DB_VECTOR);
5171                         *r = EMULATE_DONE;
5172                         return true;
5173                 }
5174         }
5175
5176         return false;
5177 }
5178
5179 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5180                             unsigned long cr2,
5181                             int emulation_type,
5182                             void *insn,
5183                             int insn_len)
5184 {
5185         int r;
5186         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5187         bool writeback = true;
5188         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5189
5190         /*
5191          * Clear write_fault_to_shadow_pgtable here to ensure it is
5192          * never reused.
5193          */
5194         vcpu->arch.write_fault_to_shadow_pgtable = false;
5195         kvm_clear_exception_queue(vcpu);
5196
5197         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5198                 init_emulate_ctxt(vcpu);
5199
5200                 /*
5201                  * We will reenter on the same instruction since
5202                  * we do not set complete_userspace_io.  This does not
5203                  * handle watchpoints yet, those would be handled in
5204                  * the emulate_ops.
5205                  */
5206                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5207                         return r;
5208
5209                 ctxt->interruptibility = 0;
5210                 ctxt->have_exception = false;
5211                 ctxt->exception.vector = -1;
5212                 ctxt->perm_ok = false;
5213
5214                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5215
5216                 r = x86_decode_insn(ctxt, insn, insn_len);
5217
5218                 trace_kvm_emulate_insn_start(vcpu);
5219                 ++vcpu->stat.insn_emulation;
5220                 if (r != EMULATION_OK)  {
5221                         if (emulation_type & EMULTYPE_TRAP_UD)
5222                                 return EMULATE_FAIL;
5223                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5224                                                 emulation_type))
5225                                 return EMULATE_DONE;
5226                         if (emulation_type & EMULTYPE_SKIP)
5227                                 return EMULATE_FAIL;
5228                         return handle_emulation_failure(vcpu);
5229                 }
5230         }
5231
5232         if (emulation_type & EMULTYPE_SKIP) {
5233                 kvm_rip_write(vcpu, ctxt->_eip);
5234                 if (ctxt->eflags & X86_EFLAGS_RF)
5235                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5236                 return EMULATE_DONE;
5237         }
5238
5239         if (retry_instruction(ctxt, cr2, emulation_type))
5240                 return EMULATE_DONE;
5241
5242         /* this is needed for vmware backdoor interface to work since it
5243            changes registers values  during IO operation */
5244         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5245                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5246                 emulator_invalidate_register_cache(ctxt);
5247         }
5248
5249 restart:
5250         r = x86_emulate_insn(ctxt);
5251
5252         if (r == EMULATION_INTERCEPTED)
5253                 return EMULATE_DONE;
5254
5255         if (r == EMULATION_FAILED) {
5256                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5257                                         emulation_type))
5258                         return EMULATE_DONE;
5259
5260                 return handle_emulation_failure(vcpu);
5261         }
5262
5263         if (ctxt->have_exception) {
5264                 r = EMULATE_DONE;
5265                 if (inject_emulated_exception(vcpu))
5266                         return r;
5267         } else if (vcpu->arch.pio.count) {
5268                 if (!vcpu->arch.pio.in) {
5269                         /* FIXME: return into emulator if single-stepping.  */
5270                         vcpu->arch.pio.count = 0;
5271                 } else {
5272                         writeback = false;
5273                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5274                 }
5275                 r = EMULATE_USER_EXIT;
5276         } else if (vcpu->mmio_needed) {
5277                 if (!vcpu->mmio_is_write)
5278                         writeback = false;
5279                 r = EMULATE_USER_EXIT;
5280                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5281         } else if (r == EMULATION_RESTART)
5282                 goto restart;
5283         else
5284                 r = EMULATE_DONE;
5285
5286         if (writeback) {
5287                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5288                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5289                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5290                 if (vcpu->arch.hflags != ctxt->emul_flags)
5291                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5292                 kvm_rip_write(vcpu, ctxt->eip);
5293                 if (r == EMULATE_DONE)
5294                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5295                 if (!ctxt->have_exception ||
5296                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5297                         __kvm_set_rflags(vcpu, ctxt->eflags);
5298
5299                 /*
5300                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5301                  * do nothing, and it will be requested again as soon as
5302                  * the shadow expires.  But we still need to check here,
5303                  * because POPF has no interrupt shadow.
5304                  */
5305                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5306                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5307         } else
5308                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5309
5310         return r;
5311 }
5312 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5313
5314 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5315 {
5316         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5317         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5318                                             size, port, &val, 1);
5319         /* do not return to emulator after return from userspace */
5320         vcpu->arch.pio.count = 0;
5321         return ret;
5322 }
5323 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5324
5325 static void tsc_bad(void *info)
5326 {
5327         __this_cpu_write(cpu_tsc_khz, 0);
5328 }
5329
5330 static void tsc_khz_changed(void *data)
5331 {
5332         struct cpufreq_freqs *freq = data;
5333         unsigned long khz = 0;
5334
5335         if (data)
5336                 khz = freq->new;
5337         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5338                 khz = cpufreq_quick_get(raw_smp_processor_id());
5339         if (!khz)
5340                 khz = tsc_khz;
5341         __this_cpu_write(cpu_tsc_khz, khz);
5342 }
5343
5344 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5345                                      void *data)
5346 {
5347         struct cpufreq_freqs *freq = data;
5348         struct kvm *kvm;
5349         struct kvm_vcpu *vcpu;
5350         int i, send_ipi = 0;
5351
5352         /*
5353          * We allow guests to temporarily run on slowing clocks,
5354          * provided we notify them after, or to run on accelerating
5355          * clocks, provided we notify them before.  Thus time never
5356          * goes backwards.
5357          *
5358          * However, we have a problem.  We can't atomically update
5359          * the frequency of a given CPU from this function; it is
5360          * merely a notifier, which can be called from any CPU.
5361          * Changing the TSC frequency at arbitrary points in time
5362          * requires a recomputation of local variables related to
5363          * the TSC for each VCPU.  We must flag these local variables
5364          * to be updated and be sure the update takes place with the
5365          * new frequency before any guests proceed.
5366          *
5367          * Unfortunately, the combination of hotplug CPU and frequency
5368          * change creates an intractable locking scenario; the order
5369          * of when these callouts happen is undefined with respect to
5370          * CPU hotplug, and they can race with each other.  As such,
5371          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5372          * undefined; you can actually have a CPU frequency change take
5373          * place in between the computation of X and the setting of the
5374          * variable.  To protect against this problem, all updates of
5375          * the per_cpu tsc_khz variable are done in an interrupt
5376          * protected IPI, and all callers wishing to update the value
5377          * must wait for a synchronous IPI to complete (which is trivial
5378          * if the caller is on the CPU already).  This establishes the
5379          * necessary total order on variable updates.
5380          *
5381          * Note that because a guest time update may take place
5382          * anytime after the setting of the VCPU's request bit, the
5383          * correct TSC value must be set before the request.  However,
5384          * to ensure the update actually makes it to any guest which
5385          * starts running in hardware virtualization between the set
5386          * and the acquisition of the spinlock, we must also ping the
5387          * CPU after setting the request bit.
5388          *
5389          */
5390
5391         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5392                 return 0;
5393         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5394                 return 0;
5395
5396         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5397
5398         spin_lock(&kvm_lock);
5399         list_for_each_entry(kvm, &vm_list, vm_list) {
5400                 kvm_for_each_vcpu(i, vcpu, kvm) {
5401                         if (vcpu->cpu != freq->cpu)
5402                                 continue;
5403                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5404                         if (vcpu->cpu != smp_processor_id())
5405                                 send_ipi = 1;
5406                 }
5407         }
5408         spin_unlock(&kvm_lock);
5409
5410         if (freq->old < freq->new && send_ipi) {
5411                 /*
5412                  * We upscale the frequency.  Must make the guest
5413                  * doesn't see old kvmclock values while running with
5414                  * the new frequency, otherwise we risk the guest sees
5415                  * time go backwards.
5416                  *
5417                  * In case we update the frequency for another cpu
5418                  * (which might be in guest context) send an interrupt
5419                  * to kick the cpu out of guest context.  Next time
5420                  * guest context is entered kvmclock will be updated,
5421                  * so the guest will not see stale values.
5422                  */
5423                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5424         }
5425         return 0;
5426 }
5427
5428 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5429         .notifier_call  = kvmclock_cpufreq_notifier
5430 };
5431
5432 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5433                                         unsigned long action, void *hcpu)
5434 {
5435         unsigned int cpu = (unsigned long)hcpu;
5436
5437         switch (action) {
5438                 case CPU_ONLINE:
5439                 case CPU_DOWN_FAILED:
5440                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5441                         break;
5442                 case CPU_DOWN_PREPARE:
5443                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5444                         break;
5445         }
5446         return NOTIFY_OK;
5447 }
5448
5449 static struct notifier_block kvmclock_cpu_notifier_block = {
5450         .notifier_call  = kvmclock_cpu_notifier,
5451         .priority = -INT_MAX
5452 };
5453
5454 static void kvm_timer_init(void)
5455 {
5456         int cpu;
5457
5458         max_tsc_khz = tsc_khz;
5459
5460         cpu_notifier_register_begin();
5461         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5462 #ifdef CONFIG_CPU_FREQ
5463                 struct cpufreq_policy policy;
5464                 memset(&policy, 0, sizeof(policy));
5465                 cpu = get_cpu();
5466                 cpufreq_get_policy(&policy, cpu);
5467                 if (policy.cpuinfo.max_freq)
5468                         max_tsc_khz = policy.cpuinfo.max_freq;
5469                 put_cpu();
5470 #endif
5471                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5472                                           CPUFREQ_TRANSITION_NOTIFIER);
5473         }
5474         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5475         for_each_online_cpu(cpu)
5476                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5477
5478         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5479         cpu_notifier_register_done();
5480
5481 }
5482
5483 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5484
5485 int kvm_is_in_guest(void)
5486 {
5487         return __this_cpu_read(current_vcpu) != NULL;
5488 }
5489
5490 static int kvm_is_user_mode(void)
5491 {
5492         int user_mode = 3;
5493
5494         if (__this_cpu_read(current_vcpu))
5495                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5496
5497         return user_mode != 0;
5498 }
5499
5500 static unsigned long kvm_get_guest_ip(void)
5501 {
5502         unsigned long ip = 0;
5503
5504         if (__this_cpu_read(current_vcpu))
5505                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5506
5507         return ip;
5508 }
5509
5510 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5511         .is_in_guest            = kvm_is_in_guest,
5512         .is_user_mode           = kvm_is_user_mode,
5513         .get_guest_ip           = kvm_get_guest_ip,
5514 };
5515
5516 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5517 {
5518         __this_cpu_write(current_vcpu, vcpu);
5519 }
5520 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5521
5522 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5523 {
5524         __this_cpu_write(current_vcpu, NULL);
5525 }
5526 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5527
5528 static void kvm_set_mmio_spte_mask(void)
5529 {
5530         u64 mask;
5531         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5532
5533         /*
5534          * Set the reserved bits and the present bit of an paging-structure
5535          * entry to generate page fault with PFER.RSV = 1.
5536          */
5537          /* Mask the reserved physical address bits. */
5538         mask = rsvd_bits(maxphyaddr, 51);
5539
5540         /* Bit 62 is always reserved for 32bit host. */
5541         mask |= 0x3ull << 62;
5542
5543         /* Set the present bit. */
5544         mask |= 1ull;
5545
5546 #ifdef CONFIG_X86_64
5547         /*
5548          * If reserved bit is not supported, clear the present bit to disable
5549          * mmio page fault.
5550          */
5551         if (maxphyaddr == 52)
5552                 mask &= ~1ull;
5553 #endif
5554
5555         kvm_mmu_set_mmio_spte_mask(mask);
5556 }
5557
5558 #ifdef CONFIG_X86_64
5559 static void pvclock_gtod_update_fn(struct work_struct *work)
5560 {
5561         struct kvm *kvm;
5562
5563         struct kvm_vcpu *vcpu;
5564         int i;
5565
5566         spin_lock(&kvm_lock);
5567         list_for_each_entry(kvm, &vm_list, vm_list)
5568                 kvm_for_each_vcpu(i, vcpu, kvm)
5569                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5570         atomic_set(&kvm_guest_has_master_clock, 0);
5571         spin_unlock(&kvm_lock);
5572 }
5573
5574 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5575
5576 /*
5577  * Notification about pvclock gtod data update.
5578  */
5579 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5580                                void *priv)
5581 {
5582         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5583         struct timekeeper *tk = priv;
5584
5585         update_pvclock_gtod(tk);
5586
5587         /* disable master clock if host does not trust, or does not
5588          * use, TSC clocksource
5589          */
5590         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5591             atomic_read(&kvm_guest_has_master_clock) != 0)
5592                 queue_work(system_long_wq, &pvclock_gtod_work);
5593
5594         return 0;
5595 }
5596
5597 static struct notifier_block pvclock_gtod_notifier = {
5598         .notifier_call = pvclock_gtod_notify,
5599 };
5600 #endif
5601
5602 int kvm_arch_init(void *opaque)
5603 {
5604         int r;
5605         struct kvm_x86_ops *ops = opaque;
5606
5607         if (kvm_x86_ops) {
5608                 printk(KERN_ERR "kvm: already loaded the other module\n");
5609                 r = -EEXIST;
5610                 goto out;
5611         }
5612
5613         if (!ops->cpu_has_kvm_support()) {
5614                 printk(KERN_ERR "kvm: no hardware support\n");
5615                 r = -EOPNOTSUPP;
5616                 goto out;
5617         }
5618         if (ops->disabled_by_bios()) {
5619                 printk(KERN_ERR "kvm: disabled by bios\n");
5620                 r = -EOPNOTSUPP;
5621                 goto out;
5622         }
5623
5624         r = -ENOMEM;
5625         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5626         if (!shared_msrs) {
5627                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5628                 goto out;
5629         }
5630
5631         r = kvm_mmu_module_init();
5632         if (r)
5633                 goto out_free_percpu;
5634
5635         kvm_set_mmio_spte_mask();
5636
5637         kvm_x86_ops = ops;
5638
5639         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5640                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5641
5642         kvm_timer_init();
5643
5644         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5645
5646         if (cpu_has_xsave)
5647                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5648
5649         kvm_lapic_init();
5650 #ifdef CONFIG_X86_64
5651         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5652 #endif
5653
5654         return 0;
5655
5656 out_free_percpu:
5657         free_percpu(shared_msrs);
5658 out:
5659         return r;
5660 }
5661
5662 void kvm_arch_exit(void)
5663 {
5664         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5665
5666         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5667                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5668                                             CPUFREQ_TRANSITION_NOTIFIER);
5669         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5670 #ifdef CONFIG_X86_64
5671         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5672 #endif
5673         kvm_x86_ops = NULL;
5674         kvm_mmu_module_exit();
5675         free_percpu(shared_msrs);
5676 }
5677
5678 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5679 {
5680         ++vcpu->stat.halt_exits;
5681         if (irqchip_in_kernel(vcpu->kvm)) {
5682                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5683                 return 1;
5684         } else {
5685                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5686                 return 0;
5687         }
5688 }
5689 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5690
5691 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5692 {
5693         kvm_x86_ops->skip_emulated_instruction(vcpu);
5694         return kvm_vcpu_halt(vcpu);
5695 }
5696 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5697
5698 /*
5699  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5700  *
5701  * @apicid - apicid of vcpu to be kicked.
5702  */
5703 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5704 {
5705         struct kvm_lapic_irq lapic_irq;
5706
5707         lapic_irq.shorthand = 0;
5708         lapic_irq.dest_mode = 0;
5709         lapic_irq.dest_id = apicid;
5710         lapic_irq.msi_redir_hint = false;
5711
5712         lapic_irq.delivery_mode = APIC_DM_REMRD;
5713         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5714 }
5715
5716 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5717 {
5718         unsigned long nr, a0, a1, a2, a3, ret;
5719         int op_64_bit, r = 1;
5720
5721         kvm_x86_ops->skip_emulated_instruction(vcpu);
5722
5723         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5724                 return kvm_hv_hypercall(vcpu);
5725
5726         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5727         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5728         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5729         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5730         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5731
5732         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5733
5734         op_64_bit = is_64_bit_mode(vcpu);
5735         if (!op_64_bit) {
5736                 nr &= 0xFFFFFFFF;
5737                 a0 &= 0xFFFFFFFF;
5738                 a1 &= 0xFFFFFFFF;
5739                 a2 &= 0xFFFFFFFF;
5740                 a3 &= 0xFFFFFFFF;
5741         }
5742
5743         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5744                 ret = -KVM_EPERM;
5745                 goto out;
5746         }
5747
5748         switch (nr) {
5749         case KVM_HC_VAPIC_POLL_IRQ:
5750                 ret = 0;
5751                 break;
5752         case KVM_HC_KICK_CPU:
5753                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5754                 ret = 0;
5755                 break;
5756         default:
5757                 ret = -KVM_ENOSYS;
5758                 break;
5759         }
5760 out:
5761         if (!op_64_bit)
5762                 ret = (u32)ret;
5763         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5764         ++vcpu->stat.hypercalls;
5765         return r;
5766 }
5767 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5768
5769 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5770 {
5771         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5772         char instruction[3];
5773         unsigned long rip = kvm_rip_read(vcpu);
5774
5775         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5776
5777         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5778 }
5779
5780 /*
5781  * Check if userspace requested an interrupt window, and that the
5782  * interrupt window is open.
5783  *
5784  * No need to exit to userspace if we already have an interrupt queued.
5785  */
5786 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5787 {
5788         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5789                 vcpu->run->request_interrupt_window &&
5790                 kvm_arch_interrupt_allowed(vcpu));
5791 }
5792
5793 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5794 {
5795         struct kvm_run *kvm_run = vcpu->run;
5796
5797         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5798         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5799         kvm_run->cr8 = kvm_get_cr8(vcpu);
5800         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5801         if (irqchip_in_kernel(vcpu->kvm))
5802                 kvm_run->ready_for_interrupt_injection = 1;
5803         else
5804                 kvm_run->ready_for_interrupt_injection =
5805                         kvm_arch_interrupt_allowed(vcpu) &&
5806                         !kvm_cpu_has_interrupt(vcpu) &&
5807                         !kvm_event_needs_reinjection(vcpu);
5808 }
5809
5810 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5811 {
5812         int max_irr, tpr;
5813
5814         if (!kvm_x86_ops->update_cr8_intercept)
5815                 return;
5816
5817         if (!vcpu->arch.apic)
5818                 return;
5819
5820         if (!vcpu->arch.apic->vapic_addr)
5821                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5822         else
5823                 max_irr = -1;
5824
5825         if (max_irr != -1)
5826                 max_irr >>= 4;
5827
5828         tpr = kvm_lapic_get_cr8(vcpu);
5829
5830         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5831 }
5832
5833 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5834 {
5835         int r;
5836
5837         /* try to reinject previous events if any */
5838         if (vcpu->arch.exception.pending) {
5839                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5840                                         vcpu->arch.exception.has_error_code,
5841                                         vcpu->arch.exception.error_code);
5842
5843                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5844                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5845                                              X86_EFLAGS_RF);
5846
5847                 if (vcpu->arch.exception.nr == DB_VECTOR &&
5848                     (vcpu->arch.dr7 & DR7_GD)) {
5849                         vcpu->arch.dr7 &= ~DR7_GD;
5850                         kvm_update_dr7(vcpu);
5851                 }
5852
5853                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5854                                           vcpu->arch.exception.has_error_code,
5855                                           vcpu->arch.exception.error_code,
5856                                           vcpu->arch.exception.reinject);
5857                 return 0;
5858         }
5859
5860         if (vcpu->arch.nmi_injected) {
5861                 kvm_x86_ops->set_nmi(vcpu);
5862                 return 0;
5863         }
5864
5865         if (vcpu->arch.interrupt.pending) {
5866                 kvm_x86_ops->set_irq(vcpu);
5867                 return 0;
5868         }
5869
5870         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5871                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5872                 if (r != 0)
5873                         return r;
5874         }
5875
5876         /* try to inject new event if pending */
5877         if (vcpu->arch.nmi_pending) {
5878                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5879                         --vcpu->arch.nmi_pending;
5880                         vcpu->arch.nmi_injected = true;
5881                         kvm_x86_ops->set_nmi(vcpu);
5882                 }
5883         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5884                 /*
5885                  * Because interrupts can be injected asynchronously, we are
5886                  * calling check_nested_events again here to avoid a race condition.
5887                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5888                  * proposal and current concerns.  Perhaps we should be setting
5889                  * KVM_REQ_EVENT only on certain events and not unconditionally?
5890                  */
5891                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5892                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5893                         if (r != 0)
5894                                 return r;
5895                 }
5896                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5897                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5898                                             false);
5899                         kvm_x86_ops->set_irq(vcpu);
5900                 }
5901         }
5902         return 0;
5903 }
5904
5905 static void process_nmi(struct kvm_vcpu *vcpu)
5906 {
5907         unsigned limit = 2;
5908
5909         /*
5910          * x86 is limited to one NMI running, and one NMI pending after it.
5911          * If an NMI is already in progress, limit further NMIs to just one.
5912          * Otherwise, allow two (and we'll inject the first one immediately).
5913          */
5914         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5915                 limit = 1;
5916
5917         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5918         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5919         kvm_make_request(KVM_REQ_EVENT, vcpu);
5920 }
5921
5922 #define put_smstate(type, buf, offset, val)                       \
5923         *(type *)((buf) + (offset) - 0x7e00) = val
5924
5925 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5926 {
5927         u32 flags = 0;
5928         flags |= seg->g       << 23;
5929         flags |= seg->db      << 22;
5930         flags |= seg->l       << 21;
5931         flags |= seg->avl     << 20;
5932         flags |= seg->present << 15;
5933         flags |= seg->dpl     << 13;
5934         flags |= seg->s       << 12;
5935         flags |= seg->type    << 8;
5936         return flags;
5937 }
5938
5939 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5940 {
5941         struct kvm_segment seg;
5942         int offset;
5943
5944         kvm_get_segment(vcpu, &seg, n);
5945         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5946
5947         if (n < 3)
5948                 offset = 0x7f84 + n * 12;
5949         else
5950                 offset = 0x7f2c + (n - 3) * 12;
5951
5952         put_smstate(u32, buf, offset + 8, seg.base);
5953         put_smstate(u32, buf, offset + 4, seg.limit);
5954         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5955 }
5956
5957 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5958 {
5959         struct kvm_segment seg;
5960         int offset;
5961         u16 flags;
5962
5963         kvm_get_segment(vcpu, &seg, n);
5964         offset = 0x7e00 + n * 16;
5965
5966         flags = process_smi_get_segment_flags(&seg) >> 8;
5967         put_smstate(u16, buf, offset, seg.selector);
5968         put_smstate(u16, buf, offset + 2, flags);
5969         put_smstate(u32, buf, offset + 4, seg.limit);
5970         put_smstate(u64, buf, offset + 8, seg.base);
5971 }
5972
5973 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5974 {
5975         struct desc_ptr dt;
5976         struct kvm_segment seg;
5977         unsigned long val;
5978         int i;
5979
5980         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5981         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5982         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5983         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5984
5985         for (i = 0; i < 8; i++)
5986                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5987
5988         kvm_get_dr(vcpu, 6, &val);
5989         put_smstate(u32, buf, 0x7fcc, (u32)val);
5990         kvm_get_dr(vcpu, 7, &val);
5991         put_smstate(u32, buf, 0x7fc8, (u32)val);
5992
5993         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5994         put_smstate(u32, buf, 0x7fc4, seg.selector);
5995         put_smstate(u32, buf, 0x7f64, seg.base);
5996         put_smstate(u32, buf, 0x7f60, seg.limit);
5997         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5998
5999         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6000         put_smstate(u32, buf, 0x7fc0, seg.selector);
6001         put_smstate(u32, buf, 0x7f80, seg.base);
6002         put_smstate(u32, buf, 0x7f7c, seg.limit);
6003         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6004
6005         kvm_x86_ops->get_gdt(vcpu, &dt);
6006         put_smstate(u32, buf, 0x7f74, dt.address);
6007         put_smstate(u32, buf, 0x7f70, dt.size);
6008
6009         kvm_x86_ops->get_idt(vcpu, &dt);
6010         put_smstate(u32, buf, 0x7f58, dt.address);
6011         put_smstate(u32, buf, 0x7f54, dt.size);
6012
6013         for (i = 0; i < 6; i++)
6014                 process_smi_save_seg_32(vcpu, buf, i);
6015
6016         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6017
6018         /* revision id */
6019         put_smstate(u32, buf, 0x7efc, 0x00020000);
6020         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6021 }
6022
6023 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6024 {
6025 #ifdef CONFIG_X86_64
6026         struct desc_ptr dt;
6027         struct kvm_segment seg;
6028         unsigned long val;
6029         int i;
6030
6031         for (i = 0; i < 16; i++)
6032                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6033
6034         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6035         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6036
6037         kvm_get_dr(vcpu, 6, &val);
6038         put_smstate(u64, buf, 0x7f68, val);
6039         kvm_get_dr(vcpu, 7, &val);
6040         put_smstate(u64, buf, 0x7f60, val);
6041
6042         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6043         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6044         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6045
6046         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6047
6048         /* revision id */
6049         put_smstate(u32, buf, 0x7efc, 0x00020064);
6050
6051         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6052
6053         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6054         put_smstate(u16, buf, 0x7e90, seg.selector);
6055         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6056         put_smstate(u32, buf, 0x7e94, seg.limit);
6057         put_smstate(u64, buf, 0x7e98, seg.base);
6058
6059         kvm_x86_ops->get_idt(vcpu, &dt);
6060         put_smstate(u32, buf, 0x7e84, dt.size);
6061         put_smstate(u64, buf, 0x7e88, dt.address);
6062
6063         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6064         put_smstate(u16, buf, 0x7e70, seg.selector);
6065         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6066         put_smstate(u32, buf, 0x7e74, seg.limit);
6067         put_smstate(u64, buf, 0x7e78, seg.base);
6068
6069         kvm_x86_ops->get_gdt(vcpu, &dt);
6070         put_smstate(u32, buf, 0x7e64, dt.size);
6071         put_smstate(u64, buf, 0x7e68, dt.address);
6072
6073         for (i = 0; i < 6; i++)
6074                 process_smi_save_seg_64(vcpu, buf, i);
6075 #else
6076         WARN_ON_ONCE(1);
6077 #endif
6078 }
6079
6080 static void process_smi(struct kvm_vcpu *vcpu)
6081 {
6082         struct kvm_segment cs, ds;
6083         char buf[512];
6084         u32 cr0;
6085
6086         if (is_smm(vcpu)) {
6087                 vcpu->arch.smi_pending = true;
6088                 return;
6089         }
6090
6091         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6092         vcpu->arch.hflags |= HF_SMM_MASK;
6093         memset(buf, 0, 512);
6094         if (guest_cpuid_has_longmode(vcpu))
6095                 process_smi_save_state_64(vcpu, buf);
6096         else
6097                 process_smi_save_state_32(vcpu, buf);
6098
6099         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6100
6101         if (kvm_x86_ops->get_nmi_mask(vcpu))
6102                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6103         else
6104                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6105
6106         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6107         kvm_rip_write(vcpu, 0x8000);
6108
6109         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6110         kvm_x86_ops->set_cr0(vcpu, cr0);
6111         vcpu->arch.cr0 = cr0;
6112
6113         kvm_x86_ops->set_cr4(vcpu, 0);
6114
6115         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6116
6117         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6118         cs.base = vcpu->arch.smbase;
6119
6120         ds.selector = 0;
6121         ds.base = 0;
6122
6123         cs.limit    = ds.limit = 0xffffffff;
6124         cs.type     = ds.type = 0x3;
6125         cs.dpl      = ds.dpl = 0;
6126         cs.db       = ds.db = 0;
6127         cs.s        = ds.s = 1;
6128         cs.l        = ds.l = 0;
6129         cs.g        = ds.g = 1;
6130         cs.avl      = ds.avl = 0;
6131         cs.present  = ds.present = 1;
6132         cs.unusable = ds.unusable = 0;
6133         cs.padding  = ds.padding = 0;
6134
6135         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6136         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6137         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6138         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6139         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6140         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6141
6142         if (guest_cpuid_has_longmode(vcpu))
6143                 kvm_x86_ops->set_efer(vcpu, 0);
6144
6145         kvm_update_cpuid(vcpu);
6146         kvm_mmu_reset_context(vcpu);
6147 }
6148
6149 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6150 {
6151         u64 eoi_exit_bitmap[4];
6152         u32 tmr[8];
6153
6154         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6155                 return;
6156
6157         memset(eoi_exit_bitmap, 0, 32);
6158         memset(tmr, 0, 32);
6159
6160         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6161         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6162         kvm_apic_update_tmr(vcpu, tmr);
6163 }
6164
6165 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6166 {
6167         ++vcpu->stat.tlb_flush;
6168         kvm_x86_ops->tlb_flush(vcpu);
6169 }
6170
6171 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6172 {
6173         struct page *page = NULL;
6174
6175         if (!irqchip_in_kernel(vcpu->kvm))
6176                 return;
6177
6178         if (!kvm_x86_ops->set_apic_access_page_addr)
6179                 return;
6180
6181         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6182         if (is_error_page(page))
6183                 return;
6184         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6185
6186         /*
6187          * Do not pin apic access page in memory, the MMU notifier
6188          * will call us again if it is migrated or swapped out.
6189          */
6190         put_page(page);
6191 }
6192 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6193
6194 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6195                                            unsigned long address)
6196 {
6197         /*
6198          * The physical address of apic access page is stored in the VMCS.
6199          * Update it when it becomes invalid.
6200          */
6201         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6202                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6203 }
6204
6205 /*
6206  * Returns 1 to let vcpu_run() continue the guest execution loop without
6207  * exiting to the userspace.  Otherwise, the value will be returned to the
6208  * userspace.
6209  */
6210 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6211 {
6212         int r;
6213         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6214                 vcpu->run->request_interrupt_window;
6215         bool req_immediate_exit = false;
6216
6217         if (vcpu->requests) {
6218                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6219                         kvm_mmu_unload(vcpu);
6220                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6221                         __kvm_migrate_timers(vcpu);
6222                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6223                         kvm_gen_update_masterclock(vcpu->kvm);
6224                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6225                         kvm_gen_kvmclock_update(vcpu);
6226                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6227                         r = kvm_guest_time_update(vcpu);
6228                         if (unlikely(r))
6229                                 goto out;
6230                 }
6231                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6232                         kvm_mmu_sync_roots(vcpu);
6233                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6234                         kvm_vcpu_flush_tlb(vcpu);
6235                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6236                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6237                         r = 0;
6238                         goto out;
6239                 }
6240                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6241                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6242                         r = 0;
6243                         goto out;
6244                 }
6245                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6246                         vcpu->fpu_active = 0;
6247                         kvm_x86_ops->fpu_deactivate(vcpu);
6248                 }
6249                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6250                         /* Page is swapped out. Do synthetic halt */
6251                         vcpu->arch.apf.halted = true;
6252                         r = 1;
6253                         goto out;
6254                 }
6255                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6256                         record_steal_time(vcpu);
6257                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6258                         process_smi(vcpu);
6259                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6260                         process_nmi(vcpu);
6261                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6262                         kvm_pmu_handle_event(vcpu);
6263                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6264                         kvm_pmu_deliver_pmi(vcpu);
6265                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6266                         vcpu_scan_ioapic(vcpu);
6267                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6268                         kvm_vcpu_reload_apic_access_page(vcpu);
6269                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6270                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6271                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6272                         r = 0;
6273                         goto out;
6274                 }
6275         }
6276
6277         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6278                 kvm_apic_accept_events(vcpu);
6279                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6280                         r = 1;
6281                         goto out;
6282                 }
6283
6284                 if (inject_pending_event(vcpu, req_int_win) != 0)
6285                         req_immediate_exit = true;
6286                 /* enable NMI/IRQ window open exits if needed */
6287                 else if (vcpu->arch.nmi_pending)
6288                         kvm_x86_ops->enable_nmi_window(vcpu);
6289                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6290                         kvm_x86_ops->enable_irq_window(vcpu);
6291
6292                 if (kvm_lapic_enabled(vcpu)) {
6293                         /*
6294                          * Update architecture specific hints for APIC
6295                          * virtual interrupt delivery.
6296                          */
6297                         if (kvm_x86_ops->hwapic_irr_update)
6298                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6299                                         kvm_lapic_find_highest_irr(vcpu));
6300                         update_cr8_intercept(vcpu);
6301                         kvm_lapic_sync_to_vapic(vcpu);
6302                 }
6303         }
6304
6305         r = kvm_mmu_reload(vcpu);
6306         if (unlikely(r)) {
6307                 goto cancel_injection;
6308         }
6309
6310         preempt_disable();
6311
6312         kvm_x86_ops->prepare_guest_switch(vcpu);
6313         if (vcpu->fpu_active)
6314                 kvm_load_guest_fpu(vcpu);
6315         kvm_load_guest_xcr0(vcpu);
6316
6317         vcpu->mode = IN_GUEST_MODE;
6318
6319         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6320
6321         /* We should set ->mode before check ->requests,
6322          * see the comment in make_all_cpus_request.
6323          */
6324         smp_mb__after_srcu_read_unlock();
6325
6326         local_irq_disable();
6327
6328         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6329             || need_resched() || signal_pending(current)) {
6330                 vcpu->mode = OUTSIDE_GUEST_MODE;
6331                 smp_wmb();
6332                 local_irq_enable();
6333                 preempt_enable();
6334                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6335                 r = 1;
6336                 goto cancel_injection;
6337         }
6338
6339         if (req_immediate_exit)
6340                 smp_send_reschedule(vcpu->cpu);
6341
6342         __kvm_guest_enter();
6343
6344         if (unlikely(vcpu->arch.switch_db_regs)) {
6345                 set_debugreg(0, 7);
6346                 set_debugreg(vcpu->arch.eff_db[0], 0);
6347                 set_debugreg(vcpu->arch.eff_db[1], 1);
6348                 set_debugreg(vcpu->arch.eff_db[2], 2);
6349                 set_debugreg(vcpu->arch.eff_db[3], 3);
6350                 set_debugreg(vcpu->arch.dr6, 6);
6351                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6352         }
6353
6354         trace_kvm_entry(vcpu->vcpu_id);
6355         wait_lapic_expire(vcpu);
6356         kvm_x86_ops->run(vcpu);
6357
6358         /*
6359          * Do this here before restoring debug registers on the host.  And
6360          * since we do this before handling the vmexit, a DR access vmexit
6361          * can (a) read the correct value of the debug registers, (b) set
6362          * KVM_DEBUGREG_WONT_EXIT again.
6363          */
6364         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6365                 int i;
6366
6367                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6368                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6369                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6370                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6371         }
6372
6373         /*
6374          * If the guest has used debug registers, at least dr7
6375          * will be disabled while returning to the host.
6376          * If we don't have active breakpoints in the host, we don't
6377          * care about the messed up debug address registers. But if
6378          * we have some of them active, restore the old state.
6379          */
6380         if (hw_breakpoint_active())
6381                 hw_breakpoint_restore();
6382
6383         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6384                                                            native_read_tsc());
6385
6386         vcpu->mode = OUTSIDE_GUEST_MODE;
6387         smp_wmb();
6388
6389         /* Interrupt is enabled by handle_external_intr() */
6390         kvm_x86_ops->handle_external_intr(vcpu);
6391
6392         ++vcpu->stat.exits;
6393
6394         /*
6395          * We must have an instruction between local_irq_enable() and
6396          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6397          * the interrupt shadow.  The stat.exits increment will do nicely.
6398          * But we need to prevent reordering, hence this barrier():
6399          */
6400         barrier();
6401
6402         kvm_guest_exit();
6403
6404         preempt_enable();
6405
6406         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6407
6408         /*
6409          * Profile KVM exit RIPs:
6410          */
6411         if (unlikely(prof_on == KVM_PROFILING)) {
6412                 unsigned long rip = kvm_rip_read(vcpu);
6413                 profile_hit(KVM_PROFILING, (void *)rip);
6414         }
6415
6416         if (unlikely(vcpu->arch.tsc_always_catchup))
6417                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6418
6419         if (vcpu->arch.apic_attention)
6420                 kvm_lapic_sync_from_vapic(vcpu);
6421
6422         r = kvm_x86_ops->handle_exit(vcpu);
6423         return r;
6424
6425 cancel_injection:
6426         kvm_x86_ops->cancel_injection(vcpu);
6427         if (unlikely(vcpu->arch.apic_attention))
6428                 kvm_lapic_sync_from_vapic(vcpu);
6429 out:
6430         return r;
6431 }
6432
6433 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6434 {
6435         if (!kvm_arch_vcpu_runnable(vcpu)) {
6436                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6437                 kvm_vcpu_block(vcpu);
6438                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6439                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6440                         return 1;
6441         }
6442
6443         kvm_apic_accept_events(vcpu);
6444         switch(vcpu->arch.mp_state) {
6445         case KVM_MP_STATE_HALTED:
6446                 vcpu->arch.pv.pv_unhalted = false;
6447                 vcpu->arch.mp_state =
6448                         KVM_MP_STATE_RUNNABLE;
6449         case KVM_MP_STATE_RUNNABLE:
6450                 vcpu->arch.apf.halted = false;
6451                 break;
6452         case KVM_MP_STATE_INIT_RECEIVED:
6453                 break;
6454         default:
6455                 return -EINTR;
6456                 break;
6457         }
6458         return 1;
6459 }
6460
6461 static int vcpu_run(struct kvm_vcpu *vcpu)
6462 {
6463         int r;
6464         struct kvm *kvm = vcpu->kvm;
6465
6466         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6467
6468         for (;;) {
6469                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6470                     !vcpu->arch.apf.halted)
6471                         r = vcpu_enter_guest(vcpu);
6472                 else
6473                         r = vcpu_block(kvm, vcpu);
6474                 if (r <= 0)
6475                         break;
6476
6477                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6478                 if (kvm_cpu_has_pending_timer(vcpu))
6479                         kvm_inject_pending_timer_irqs(vcpu);
6480
6481                 if (dm_request_for_irq_injection(vcpu)) {
6482                         r = -EINTR;
6483                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6484                         ++vcpu->stat.request_irq_exits;
6485                         break;
6486                 }
6487
6488                 kvm_check_async_pf_completion(vcpu);
6489
6490                 if (signal_pending(current)) {
6491                         r = -EINTR;
6492                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6493                         ++vcpu->stat.signal_exits;
6494                         break;
6495                 }
6496                 if (need_resched()) {
6497                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6498                         cond_resched();
6499                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6500                 }
6501         }
6502
6503         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6504
6505         return r;
6506 }
6507
6508 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6509 {
6510         int r;
6511         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6512         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6513         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6514         if (r != EMULATE_DONE)
6515                 return 0;
6516         return 1;
6517 }
6518
6519 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6520 {
6521         BUG_ON(!vcpu->arch.pio.count);
6522
6523         return complete_emulated_io(vcpu);
6524 }
6525
6526 /*
6527  * Implements the following, as a state machine:
6528  *
6529  * read:
6530  *   for each fragment
6531  *     for each mmio piece in the fragment
6532  *       write gpa, len
6533  *       exit
6534  *       copy data
6535  *   execute insn
6536  *
6537  * write:
6538  *   for each fragment
6539  *     for each mmio piece in the fragment
6540  *       write gpa, len
6541  *       copy data
6542  *       exit
6543  */
6544 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6545 {
6546         struct kvm_run *run = vcpu->run;
6547         struct kvm_mmio_fragment *frag;
6548         unsigned len;
6549
6550         BUG_ON(!vcpu->mmio_needed);
6551
6552         /* Complete previous fragment */
6553         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6554         len = min(8u, frag->len);
6555         if (!vcpu->mmio_is_write)
6556                 memcpy(frag->data, run->mmio.data, len);
6557
6558         if (frag->len <= 8) {
6559                 /* Switch to the next fragment. */
6560                 frag++;
6561                 vcpu->mmio_cur_fragment++;
6562         } else {
6563                 /* Go forward to the next mmio piece. */
6564                 frag->data += len;
6565                 frag->gpa += len;
6566                 frag->len -= len;
6567         }
6568
6569         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6570                 vcpu->mmio_needed = 0;
6571
6572                 /* FIXME: return into emulator if single-stepping.  */
6573                 if (vcpu->mmio_is_write)
6574                         return 1;
6575                 vcpu->mmio_read_completed = 1;
6576                 return complete_emulated_io(vcpu);
6577         }
6578
6579         run->exit_reason = KVM_EXIT_MMIO;
6580         run->mmio.phys_addr = frag->gpa;
6581         if (vcpu->mmio_is_write)
6582                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6583         run->mmio.len = min(8u, frag->len);
6584         run->mmio.is_write = vcpu->mmio_is_write;
6585         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6586         return 0;
6587 }
6588
6589
6590 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6591 {
6592         struct fpu *fpu = &current->thread.fpu;
6593         int r;
6594         sigset_t sigsaved;
6595
6596         fpu__activate_curr(fpu);
6597
6598         if (vcpu->sigset_active)
6599                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6600
6601         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6602                 kvm_vcpu_block(vcpu);
6603                 kvm_apic_accept_events(vcpu);
6604                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6605                 r = -EAGAIN;
6606                 goto out;
6607         }
6608
6609         /* re-sync apic's tpr */
6610         if (!irqchip_in_kernel(vcpu->kvm)) {
6611                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6612                         r = -EINVAL;
6613                         goto out;
6614                 }
6615         }
6616
6617         if (unlikely(vcpu->arch.complete_userspace_io)) {
6618                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6619                 vcpu->arch.complete_userspace_io = NULL;
6620                 r = cui(vcpu);
6621                 if (r <= 0)
6622                         goto out;
6623         } else
6624                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6625
6626         r = vcpu_run(vcpu);
6627
6628 out:
6629         post_kvm_run_save(vcpu);
6630         if (vcpu->sigset_active)
6631                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6632
6633         return r;
6634 }
6635
6636 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6637 {
6638         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6639                 /*
6640                  * We are here if userspace calls get_regs() in the middle of
6641                  * instruction emulation. Registers state needs to be copied
6642                  * back from emulation context to vcpu. Userspace shouldn't do
6643                  * that usually, but some bad designed PV devices (vmware
6644                  * backdoor interface) need this to work
6645                  */
6646                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6647                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6648         }
6649         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6650         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6651         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6652         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6653         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6654         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6655         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6656         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6657 #ifdef CONFIG_X86_64
6658         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6659         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6660         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6661         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6662         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6663         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6664         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6665         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6666 #endif
6667
6668         regs->rip = kvm_rip_read(vcpu);
6669         regs->rflags = kvm_get_rflags(vcpu);
6670
6671         return 0;
6672 }
6673
6674 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6675 {
6676         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6677         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6678
6679         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6680         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6681         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6682         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6683         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6684         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6685         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6686         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6687 #ifdef CONFIG_X86_64
6688         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6689         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6690         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6691         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6692         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6693         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6694         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6695         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6696 #endif
6697
6698         kvm_rip_write(vcpu, regs->rip);
6699         kvm_set_rflags(vcpu, regs->rflags);
6700
6701         vcpu->arch.exception.pending = false;
6702
6703         kvm_make_request(KVM_REQ_EVENT, vcpu);
6704
6705         return 0;
6706 }
6707
6708 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6709 {
6710         struct kvm_segment cs;
6711
6712         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6713         *db = cs.db;
6714         *l = cs.l;
6715 }
6716 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6717
6718 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6719                                   struct kvm_sregs *sregs)
6720 {
6721         struct desc_ptr dt;
6722
6723         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6724         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6725         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6726         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6727         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6728         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6729
6730         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6731         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6732
6733         kvm_x86_ops->get_idt(vcpu, &dt);
6734         sregs->idt.limit = dt.size;
6735         sregs->idt.base = dt.address;
6736         kvm_x86_ops->get_gdt(vcpu, &dt);
6737         sregs->gdt.limit = dt.size;
6738         sregs->gdt.base = dt.address;
6739
6740         sregs->cr0 = kvm_read_cr0(vcpu);
6741         sregs->cr2 = vcpu->arch.cr2;
6742         sregs->cr3 = kvm_read_cr3(vcpu);
6743         sregs->cr4 = kvm_read_cr4(vcpu);
6744         sregs->cr8 = kvm_get_cr8(vcpu);
6745         sregs->efer = vcpu->arch.efer;
6746         sregs->apic_base = kvm_get_apic_base(vcpu);
6747
6748         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6749
6750         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6751                 set_bit(vcpu->arch.interrupt.nr,
6752                         (unsigned long *)sregs->interrupt_bitmap);
6753
6754         return 0;
6755 }
6756
6757 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6758                                     struct kvm_mp_state *mp_state)
6759 {
6760         kvm_apic_accept_events(vcpu);
6761         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6762                                         vcpu->arch.pv.pv_unhalted)
6763                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6764         else
6765                 mp_state->mp_state = vcpu->arch.mp_state;
6766
6767         return 0;
6768 }
6769
6770 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6771                                     struct kvm_mp_state *mp_state)
6772 {
6773         if (!kvm_vcpu_has_lapic(vcpu) &&
6774             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6775                 return -EINVAL;
6776
6777         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6778                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6779                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6780         } else
6781                 vcpu->arch.mp_state = mp_state->mp_state;
6782         kvm_make_request(KVM_REQ_EVENT, vcpu);
6783         return 0;
6784 }
6785
6786 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6787                     int reason, bool has_error_code, u32 error_code)
6788 {
6789         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6790         int ret;
6791
6792         init_emulate_ctxt(vcpu);
6793
6794         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6795                                    has_error_code, error_code);
6796
6797         if (ret)
6798                 return EMULATE_FAIL;
6799
6800         kvm_rip_write(vcpu, ctxt->eip);
6801         kvm_set_rflags(vcpu, ctxt->eflags);
6802         kvm_make_request(KVM_REQ_EVENT, vcpu);
6803         return EMULATE_DONE;
6804 }
6805 EXPORT_SYMBOL_GPL(kvm_task_switch);
6806
6807 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6808                                   struct kvm_sregs *sregs)
6809 {
6810         struct msr_data apic_base_msr;
6811         int mmu_reset_needed = 0;
6812         int pending_vec, max_bits, idx;
6813         struct desc_ptr dt;
6814
6815         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6816                 return -EINVAL;
6817
6818         dt.size = sregs->idt.limit;
6819         dt.address = sregs->idt.base;
6820         kvm_x86_ops->set_idt(vcpu, &dt);
6821         dt.size = sregs->gdt.limit;
6822         dt.address = sregs->gdt.base;
6823         kvm_x86_ops->set_gdt(vcpu, &dt);
6824
6825         vcpu->arch.cr2 = sregs->cr2;
6826         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6827         vcpu->arch.cr3 = sregs->cr3;
6828         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6829
6830         kvm_set_cr8(vcpu, sregs->cr8);
6831
6832         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6833         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6834         apic_base_msr.data = sregs->apic_base;
6835         apic_base_msr.host_initiated = true;
6836         kvm_set_apic_base(vcpu, &apic_base_msr);
6837
6838         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6839         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6840         vcpu->arch.cr0 = sregs->cr0;
6841
6842         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6843         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6844         if (sregs->cr4 & X86_CR4_OSXSAVE)
6845                 kvm_update_cpuid(vcpu);
6846
6847         idx = srcu_read_lock(&vcpu->kvm->srcu);
6848         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6849                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6850                 mmu_reset_needed = 1;
6851         }
6852         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6853
6854         if (mmu_reset_needed)
6855                 kvm_mmu_reset_context(vcpu);
6856
6857         max_bits = KVM_NR_INTERRUPTS;
6858         pending_vec = find_first_bit(
6859                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6860         if (pending_vec < max_bits) {
6861                 kvm_queue_interrupt(vcpu, pending_vec, false);
6862                 pr_debug("Set back pending irq %d\n", pending_vec);
6863         }
6864
6865         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6866         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6867         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6868         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6869         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6870         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6871
6872         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6873         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6874
6875         update_cr8_intercept(vcpu);
6876
6877         /* Older userspace won't unhalt the vcpu on reset. */
6878         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6879             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6880             !is_protmode(vcpu))
6881                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6882
6883         kvm_make_request(KVM_REQ_EVENT, vcpu);
6884
6885         return 0;
6886 }
6887
6888 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6889                                         struct kvm_guest_debug *dbg)
6890 {
6891         unsigned long rflags;
6892         int i, r;
6893
6894         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6895                 r = -EBUSY;
6896                 if (vcpu->arch.exception.pending)
6897                         goto out;
6898                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6899                         kvm_queue_exception(vcpu, DB_VECTOR);
6900                 else
6901                         kvm_queue_exception(vcpu, BP_VECTOR);
6902         }
6903
6904         /*
6905          * Read rflags as long as potentially injected trace flags are still
6906          * filtered out.
6907          */
6908         rflags = kvm_get_rflags(vcpu);
6909
6910         vcpu->guest_debug = dbg->control;
6911         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6912                 vcpu->guest_debug = 0;
6913
6914         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6915                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6916                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6917                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6918         } else {
6919                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6920                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6921         }
6922         kvm_update_dr7(vcpu);
6923
6924         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6925                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6926                         get_segment_base(vcpu, VCPU_SREG_CS);
6927
6928         /*
6929          * Trigger an rflags update that will inject or remove the trace
6930          * flags.
6931          */
6932         kvm_set_rflags(vcpu, rflags);
6933
6934         kvm_x86_ops->update_db_bp_intercept(vcpu);
6935
6936         r = 0;
6937
6938 out:
6939
6940         return r;
6941 }
6942
6943 /*
6944  * Translate a guest virtual address to a guest physical address.
6945  */
6946 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6947                                     struct kvm_translation *tr)
6948 {
6949         unsigned long vaddr = tr->linear_address;
6950         gpa_t gpa;
6951         int idx;
6952
6953         idx = srcu_read_lock(&vcpu->kvm->srcu);
6954         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6955         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6956         tr->physical_address = gpa;
6957         tr->valid = gpa != UNMAPPED_GVA;
6958         tr->writeable = 1;
6959         tr->usermode = 0;
6960
6961         return 0;
6962 }
6963
6964 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6965 {
6966         struct fxregs_state *fxsave =
6967                         &vcpu->arch.guest_fpu.state.fxsave;
6968
6969         memcpy(fpu->fpr, fxsave->st_space, 128);
6970         fpu->fcw = fxsave->cwd;
6971         fpu->fsw = fxsave->swd;
6972         fpu->ftwx = fxsave->twd;
6973         fpu->last_opcode = fxsave->fop;
6974         fpu->last_ip = fxsave->rip;
6975         fpu->last_dp = fxsave->rdp;
6976         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6977
6978         return 0;
6979 }
6980
6981 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6982 {
6983         struct fxregs_state *fxsave =
6984                         &vcpu->arch.guest_fpu.state.fxsave;
6985
6986         memcpy(fxsave->st_space, fpu->fpr, 128);
6987         fxsave->cwd = fpu->fcw;
6988         fxsave->swd = fpu->fsw;
6989         fxsave->twd = fpu->ftwx;
6990         fxsave->fop = fpu->last_opcode;
6991         fxsave->rip = fpu->last_ip;
6992         fxsave->rdp = fpu->last_dp;
6993         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6994
6995         return 0;
6996 }
6997
6998 static void fx_init(struct kvm_vcpu *vcpu)
6999 {
7000         fpstate_init(&vcpu->arch.guest_fpu.state);
7001         if (cpu_has_xsaves)
7002                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7003                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7004
7005         /*
7006          * Ensure guest xcr0 is valid for loading
7007          */
7008         vcpu->arch.xcr0 = XSTATE_FP;
7009
7010         vcpu->arch.cr0 |= X86_CR0_ET;
7011 }
7012
7013 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7014 {
7015         if (vcpu->guest_fpu_loaded)
7016                 return;
7017
7018         /*
7019          * Restore all possible states in the guest,
7020          * and assume host would use all available bits.
7021          * Guest xcr0 would be loaded later.
7022          */
7023         kvm_put_guest_xcr0(vcpu);
7024         vcpu->guest_fpu_loaded = 1;
7025         __kernel_fpu_begin();
7026         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7027         trace_kvm_fpu(1);
7028 }
7029
7030 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7031 {
7032         kvm_put_guest_xcr0(vcpu);
7033
7034         if (!vcpu->guest_fpu_loaded) {
7035                 vcpu->fpu_counter = 0;
7036                 return;
7037         }
7038
7039         vcpu->guest_fpu_loaded = 0;
7040         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7041         __kernel_fpu_end();
7042         ++vcpu->stat.fpu_reload;
7043         /*
7044          * If using eager FPU mode, or if the guest is a frequent user
7045          * of the FPU, just leave the FPU active for next time.
7046          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7047          * the FPU in bursts will revert to loading it on demand.
7048          */
7049         if (!vcpu->arch.eager_fpu) {
7050                 if (++vcpu->fpu_counter < 5)
7051                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7052         }
7053         trace_kvm_fpu(0);
7054 }
7055
7056 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7057 {
7058         kvmclock_reset(vcpu);
7059
7060         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7061         kvm_x86_ops->vcpu_free(vcpu);
7062 }
7063
7064 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7065                                                 unsigned int id)
7066 {
7067         struct kvm_vcpu *vcpu;
7068
7069         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7070                 printk_once(KERN_WARNING
7071                 "kvm: SMP vm created on host with unstable TSC; "
7072                 "guest TSC will not be reliable\n");
7073
7074         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7075
7076         return vcpu;
7077 }
7078
7079 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7080 {
7081         int r;
7082
7083         kvm_vcpu_mtrr_init(vcpu);
7084         r = vcpu_load(vcpu);
7085         if (r)
7086                 return r;
7087         kvm_vcpu_reset(vcpu, false);
7088         kvm_mmu_setup(vcpu);
7089         vcpu_put(vcpu);
7090         return r;
7091 }
7092
7093 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7094 {
7095         struct msr_data msr;
7096         struct kvm *kvm = vcpu->kvm;
7097
7098         if (vcpu_load(vcpu))
7099                 return;
7100         msr.data = 0x0;
7101         msr.index = MSR_IA32_TSC;
7102         msr.host_initiated = true;
7103         kvm_write_tsc(vcpu, &msr);
7104         vcpu_put(vcpu);
7105
7106         if (!kvmclock_periodic_sync)
7107                 return;
7108
7109         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7110                                         KVMCLOCK_SYNC_PERIOD);
7111 }
7112
7113 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7114 {
7115         int r;
7116         vcpu->arch.apf.msr_val = 0;
7117
7118         r = vcpu_load(vcpu);
7119         BUG_ON(r);
7120         kvm_mmu_unload(vcpu);
7121         vcpu_put(vcpu);
7122
7123         kvm_x86_ops->vcpu_free(vcpu);
7124 }
7125
7126 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7127 {
7128         vcpu->arch.hflags = 0;
7129
7130         atomic_set(&vcpu->arch.nmi_queued, 0);
7131         vcpu->arch.nmi_pending = 0;
7132         vcpu->arch.nmi_injected = false;
7133         kvm_clear_interrupt_queue(vcpu);
7134         kvm_clear_exception_queue(vcpu);
7135
7136         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7137         kvm_update_dr0123(vcpu);
7138         vcpu->arch.dr6 = DR6_INIT;
7139         kvm_update_dr6(vcpu);
7140         vcpu->arch.dr7 = DR7_FIXED_1;
7141         kvm_update_dr7(vcpu);
7142
7143         vcpu->arch.cr2 = 0;
7144
7145         kvm_make_request(KVM_REQ_EVENT, vcpu);
7146         vcpu->arch.apf.msr_val = 0;
7147         vcpu->arch.st.msr_val = 0;
7148
7149         kvmclock_reset(vcpu);
7150
7151         kvm_clear_async_pf_completion_queue(vcpu);
7152         kvm_async_pf_hash_reset(vcpu);
7153         vcpu->arch.apf.halted = false;
7154
7155         if (!init_event) {
7156                 kvm_pmu_reset(vcpu);
7157                 vcpu->arch.smbase = 0x30000;
7158         }
7159
7160         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7161         vcpu->arch.regs_avail = ~0;
7162         vcpu->arch.regs_dirty = ~0;
7163
7164         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7165 }
7166
7167 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7168 {
7169         struct kvm_segment cs;
7170
7171         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7172         cs.selector = vector << 8;
7173         cs.base = vector << 12;
7174         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7175         kvm_rip_write(vcpu, 0);
7176 }
7177
7178 int kvm_arch_hardware_enable(void)
7179 {
7180         struct kvm *kvm;
7181         struct kvm_vcpu *vcpu;
7182         int i;
7183         int ret;
7184         u64 local_tsc;
7185         u64 max_tsc = 0;
7186         bool stable, backwards_tsc = false;
7187
7188         kvm_shared_msr_cpu_online();
7189         ret = kvm_x86_ops->hardware_enable();
7190         if (ret != 0)
7191                 return ret;
7192
7193         local_tsc = native_read_tsc();
7194         stable = !check_tsc_unstable();
7195         list_for_each_entry(kvm, &vm_list, vm_list) {
7196                 kvm_for_each_vcpu(i, vcpu, kvm) {
7197                         if (!stable && vcpu->cpu == smp_processor_id())
7198                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7199                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7200                                 backwards_tsc = true;
7201                                 if (vcpu->arch.last_host_tsc > max_tsc)
7202                                         max_tsc = vcpu->arch.last_host_tsc;
7203                         }
7204                 }
7205         }
7206
7207         /*
7208          * Sometimes, even reliable TSCs go backwards.  This happens on
7209          * platforms that reset TSC during suspend or hibernate actions, but
7210          * maintain synchronization.  We must compensate.  Fortunately, we can
7211          * detect that condition here, which happens early in CPU bringup,
7212          * before any KVM threads can be running.  Unfortunately, we can't
7213          * bring the TSCs fully up to date with real time, as we aren't yet far
7214          * enough into CPU bringup that we know how much real time has actually
7215          * elapsed; our helper function, get_kernel_ns() will be using boot
7216          * variables that haven't been updated yet.
7217          *
7218          * So we simply find the maximum observed TSC above, then record the
7219          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7220          * the adjustment will be applied.  Note that we accumulate
7221          * adjustments, in case multiple suspend cycles happen before some VCPU
7222          * gets a chance to run again.  In the event that no KVM threads get a
7223          * chance to run, we will miss the entire elapsed period, as we'll have
7224          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7225          * loose cycle time.  This isn't too big a deal, since the loss will be
7226          * uniform across all VCPUs (not to mention the scenario is extremely
7227          * unlikely). It is possible that a second hibernate recovery happens
7228          * much faster than a first, causing the observed TSC here to be
7229          * smaller; this would require additional padding adjustment, which is
7230          * why we set last_host_tsc to the local tsc observed here.
7231          *
7232          * N.B. - this code below runs only on platforms with reliable TSC,
7233          * as that is the only way backwards_tsc is set above.  Also note
7234          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7235          * have the same delta_cyc adjustment applied if backwards_tsc
7236          * is detected.  Note further, this adjustment is only done once,
7237          * as we reset last_host_tsc on all VCPUs to stop this from being
7238          * called multiple times (one for each physical CPU bringup).
7239          *
7240          * Platforms with unreliable TSCs don't have to deal with this, they
7241          * will be compensated by the logic in vcpu_load, which sets the TSC to
7242          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7243          * guarantee that they stay in perfect synchronization.
7244          */
7245         if (backwards_tsc) {
7246                 u64 delta_cyc = max_tsc - local_tsc;
7247                 backwards_tsc_observed = true;
7248                 list_for_each_entry(kvm, &vm_list, vm_list) {
7249                         kvm_for_each_vcpu(i, vcpu, kvm) {
7250                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7251                                 vcpu->arch.last_host_tsc = local_tsc;
7252                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7253                         }
7254
7255                         /*
7256                          * We have to disable TSC offset matching.. if you were
7257                          * booting a VM while issuing an S4 host suspend....
7258                          * you may have some problem.  Solving this issue is
7259                          * left as an exercise to the reader.
7260                          */
7261                         kvm->arch.last_tsc_nsec = 0;
7262                         kvm->arch.last_tsc_write = 0;
7263                 }
7264
7265         }
7266         return 0;
7267 }
7268
7269 void kvm_arch_hardware_disable(void)
7270 {
7271         kvm_x86_ops->hardware_disable();
7272         drop_user_return_notifiers();
7273 }
7274
7275 int kvm_arch_hardware_setup(void)
7276 {
7277         int r;
7278
7279         r = kvm_x86_ops->hardware_setup();
7280         if (r != 0)
7281                 return r;
7282
7283         kvm_init_msr_list();
7284         return 0;
7285 }
7286
7287 void kvm_arch_hardware_unsetup(void)
7288 {
7289         kvm_x86_ops->hardware_unsetup();
7290 }
7291
7292 void kvm_arch_check_processor_compat(void *rtn)
7293 {
7294         kvm_x86_ops->check_processor_compatibility(rtn);
7295 }
7296
7297 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7298 {
7299         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7300 }
7301 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7302
7303 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7304 {
7305         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7306 }
7307
7308 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7309 {
7310         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7311 }
7312
7313 struct static_key kvm_no_apic_vcpu __read_mostly;
7314
7315 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7316 {
7317         struct page *page;
7318         struct kvm *kvm;
7319         int r;
7320
7321         BUG_ON(vcpu->kvm == NULL);
7322         kvm = vcpu->kvm;
7323
7324         vcpu->arch.pv.pv_unhalted = false;
7325         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7326         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7327                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7328         else
7329                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7330
7331         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7332         if (!page) {
7333                 r = -ENOMEM;
7334                 goto fail;
7335         }
7336         vcpu->arch.pio_data = page_address(page);
7337
7338         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7339
7340         r = kvm_mmu_create(vcpu);
7341         if (r < 0)
7342                 goto fail_free_pio_data;
7343
7344         if (irqchip_in_kernel(kvm)) {
7345                 r = kvm_create_lapic(vcpu);
7346                 if (r < 0)
7347                         goto fail_mmu_destroy;
7348         } else
7349                 static_key_slow_inc(&kvm_no_apic_vcpu);
7350
7351         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7352                                        GFP_KERNEL);
7353         if (!vcpu->arch.mce_banks) {
7354                 r = -ENOMEM;
7355                 goto fail_free_lapic;
7356         }
7357         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7358
7359         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7360                 r = -ENOMEM;
7361                 goto fail_free_mce_banks;
7362         }
7363
7364         fx_init(vcpu);
7365
7366         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7367         vcpu->arch.pv_time_enabled = false;
7368
7369         vcpu->arch.guest_supported_xcr0 = 0;
7370         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7371
7372         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7373
7374         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7375
7376         kvm_async_pf_hash_reset(vcpu);
7377         kvm_pmu_init(vcpu);
7378
7379         return 0;
7380
7381 fail_free_mce_banks:
7382         kfree(vcpu->arch.mce_banks);
7383 fail_free_lapic:
7384         kvm_free_lapic(vcpu);
7385 fail_mmu_destroy:
7386         kvm_mmu_destroy(vcpu);
7387 fail_free_pio_data:
7388         free_page((unsigned long)vcpu->arch.pio_data);
7389 fail:
7390         return r;
7391 }
7392
7393 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7394 {
7395         int idx;
7396
7397         kvm_pmu_destroy(vcpu);
7398         kfree(vcpu->arch.mce_banks);
7399         kvm_free_lapic(vcpu);
7400         idx = srcu_read_lock(&vcpu->kvm->srcu);
7401         kvm_mmu_destroy(vcpu);
7402         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7403         free_page((unsigned long)vcpu->arch.pio_data);
7404         if (!irqchip_in_kernel(vcpu->kvm))
7405                 static_key_slow_dec(&kvm_no_apic_vcpu);
7406 }
7407
7408 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7409 {
7410         kvm_x86_ops->sched_in(vcpu, cpu);
7411 }
7412
7413 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7414 {
7415         if (type)
7416                 return -EINVAL;
7417
7418         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7419         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7420         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7421         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7422         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7423
7424         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7425         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7426         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7427         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7428                 &kvm->arch.irq_sources_bitmap);
7429
7430         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7431         mutex_init(&kvm->arch.apic_map_lock);
7432         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7433
7434         pvclock_update_vm_gtod_copy(kvm);
7435
7436         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7437         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7438
7439         return 0;
7440 }
7441
7442 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7443 {
7444         int r;
7445         r = vcpu_load(vcpu);
7446         BUG_ON(r);
7447         kvm_mmu_unload(vcpu);
7448         vcpu_put(vcpu);
7449 }
7450
7451 static void kvm_free_vcpus(struct kvm *kvm)
7452 {
7453         unsigned int i;
7454         struct kvm_vcpu *vcpu;
7455
7456         /*
7457          * Unpin any mmu pages first.
7458          */
7459         kvm_for_each_vcpu(i, vcpu, kvm) {
7460                 kvm_clear_async_pf_completion_queue(vcpu);
7461                 kvm_unload_vcpu_mmu(vcpu);
7462         }
7463         kvm_for_each_vcpu(i, vcpu, kvm)
7464                 kvm_arch_vcpu_free(vcpu);
7465
7466         mutex_lock(&kvm->lock);
7467         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7468                 kvm->vcpus[i] = NULL;
7469
7470         atomic_set(&kvm->online_vcpus, 0);
7471         mutex_unlock(&kvm->lock);
7472 }
7473
7474 void kvm_arch_sync_events(struct kvm *kvm)
7475 {
7476         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7477         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7478         kvm_free_all_assigned_devices(kvm);
7479         kvm_free_pit(kvm);
7480 }
7481
7482 int __x86_set_memory_region(struct kvm *kvm,
7483                             const struct kvm_userspace_memory_region *mem)
7484 {
7485         int i, r;
7486
7487         /* Called with kvm->slots_lock held.  */
7488         BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7489
7490         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7491                 struct kvm_userspace_memory_region m = *mem;
7492
7493                 m.slot |= i << 16;
7494                 r = __kvm_set_memory_region(kvm, &m);
7495                 if (r < 0)
7496                         return r;
7497         }
7498
7499         return 0;
7500 }
7501 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7502
7503 int x86_set_memory_region(struct kvm *kvm,
7504                           const struct kvm_userspace_memory_region *mem)
7505 {
7506         int r;
7507
7508         mutex_lock(&kvm->slots_lock);
7509         r = __x86_set_memory_region(kvm, mem);
7510         mutex_unlock(&kvm->slots_lock);
7511
7512         return r;
7513 }
7514 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7515
7516 void kvm_arch_destroy_vm(struct kvm *kvm)
7517 {
7518         if (current->mm == kvm->mm) {
7519                 /*
7520                  * Free memory regions allocated on behalf of userspace,
7521                  * unless the the memory map has changed due to process exit
7522                  * or fd copying.
7523                  */
7524                 struct kvm_userspace_memory_region mem;
7525                 memset(&mem, 0, sizeof(mem));
7526                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7527                 x86_set_memory_region(kvm, &mem);
7528
7529                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7530                 x86_set_memory_region(kvm, &mem);
7531
7532                 mem.slot = TSS_PRIVATE_MEMSLOT;
7533                 x86_set_memory_region(kvm, &mem);
7534         }
7535         kvm_iommu_unmap_guest(kvm);
7536         kfree(kvm->arch.vpic);
7537         kfree(kvm->arch.vioapic);
7538         kvm_free_vcpus(kvm);
7539         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7540 }
7541
7542 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7543                            struct kvm_memory_slot *dont)
7544 {
7545         int i;
7546
7547         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7548                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7549                         kvfree(free->arch.rmap[i]);
7550                         free->arch.rmap[i] = NULL;
7551                 }
7552                 if (i == 0)
7553                         continue;
7554
7555                 if (!dont || free->arch.lpage_info[i - 1] !=
7556                              dont->arch.lpage_info[i - 1]) {
7557                         kvfree(free->arch.lpage_info[i - 1]);
7558                         free->arch.lpage_info[i - 1] = NULL;
7559                 }
7560         }
7561 }
7562
7563 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7564                             unsigned long npages)
7565 {
7566         int i;
7567
7568         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7569                 unsigned long ugfn;
7570                 int lpages;
7571                 int level = i + 1;
7572
7573                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7574                                       slot->base_gfn, level) + 1;
7575
7576                 slot->arch.rmap[i] =
7577                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7578                 if (!slot->arch.rmap[i])
7579                         goto out_free;
7580                 if (i == 0)
7581                         continue;
7582
7583                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7584                                         sizeof(*slot->arch.lpage_info[i - 1]));
7585                 if (!slot->arch.lpage_info[i - 1])
7586                         goto out_free;
7587
7588                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7589                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7590                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7591                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7592                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7593                 /*
7594                  * If the gfn and userspace address are not aligned wrt each
7595                  * other, or if explicitly asked to, disable large page
7596                  * support for this slot
7597                  */
7598                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7599                     !kvm_largepages_enabled()) {
7600                         unsigned long j;
7601
7602                         for (j = 0; j < lpages; ++j)
7603                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7604                 }
7605         }
7606
7607         return 0;
7608
7609 out_free:
7610         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7611                 kvfree(slot->arch.rmap[i]);
7612                 slot->arch.rmap[i] = NULL;
7613                 if (i == 0)
7614                         continue;
7615
7616                 kvfree(slot->arch.lpage_info[i - 1]);
7617                 slot->arch.lpage_info[i - 1] = NULL;
7618         }
7619         return -ENOMEM;
7620 }
7621
7622 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7623 {
7624         /*
7625          * memslots->generation has been incremented.
7626          * mmio generation may have reached its maximum value.
7627          */
7628         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7629 }
7630
7631 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7632                                 struct kvm_memory_slot *memslot,
7633                                 const struct kvm_userspace_memory_region *mem,
7634                                 enum kvm_mr_change change)
7635 {
7636         /*
7637          * Only private memory slots need to be mapped here since
7638          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7639          */
7640         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7641                 unsigned long userspace_addr;
7642
7643                 /*
7644                  * MAP_SHARED to prevent internal slot pages from being moved
7645                  * by fork()/COW.
7646                  */
7647                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7648                                          PROT_READ | PROT_WRITE,
7649                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7650
7651                 if (IS_ERR((void *)userspace_addr))
7652                         return PTR_ERR((void *)userspace_addr);
7653
7654                 memslot->userspace_addr = userspace_addr;
7655         }
7656
7657         return 0;
7658 }
7659
7660 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7661                                      struct kvm_memory_slot *new)
7662 {
7663         /* Still write protect RO slot */
7664         if (new->flags & KVM_MEM_READONLY) {
7665                 kvm_mmu_slot_remove_write_access(kvm, new);
7666                 return;
7667         }
7668
7669         /*
7670          * Call kvm_x86_ops dirty logging hooks when they are valid.
7671          *
7672          * kvm_x86_ops->slot_disable_log_dirty is called when:
7673          *
7674          *  - KVM_MR_CREATE with dirty logging is disabled
7675          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7676          *
7677          * The reason is, in case of PML, we need to set D-bit for any slots
7678          * with dirty logging disabled in order to eliminate unnecessary GPA
7679          * logging in PML buffer (and potential PML buffer full VMEXT). This
7680          * guarantees leaving PML enabled during guest's lifetime won't have
7681          * any additonal overhead from PML when guest is running with dirty
7682          * logging disabled for memory slots.
7683          *
7684          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7685          * to dirty logging mode.
7686          *
7687          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7688          *
7689          * In case of write protect:
7690          *
7691          * Write protect all pages for dirty logging.
7692          *
7693          * All the sptes including the large sptes which point to this
7694          * slot are set to readonly. We can not create any new large
7695          * spte on this slot until the end of the logging.
7696          *
7697          * See the comments in fast_page_fault().
7698          */
7699         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7700                 if (kvm_x86_ops->slot_enable_log_dirty)
7701                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7702                 else
7703                         kvm_mmu_slot_remove_write_access(kvm, new);
7704         } else {
7705                 if (kvm_x86_ops->slot_disable_log_dirty)
7706                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7707         }
7708 }
7709
7710 void kvm_arch_commit_memory_region(struct kvm *kvm,
7711                                 const struct kvm_userspace_memory_region *mem,
7712                                 const struct kvm_memory_slot *old,
7713                                 const struct kvm_memory_slot *new,
7714                                 enum kvm_mr_change change)
7715 {
7716         int nr_mmu_pages = 0;
7717
7718         if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7719                 int ret;
7720
7721                 ret = vm_munmap(old->userspace_addr,
7722                                 old->npages * PAGE_SIZE);
7723                 if (ret < 0)
7724                         printk(KERN_WARNING
7725                                "kvm_vm_ioctl_set_memory_region: "
7726                                "failed to munmap memory\n");
7727         }
7728
7729         if (!kvm->arch.n_requested_mmu_pages)
7730                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7731
7732         if (nr_mmu_pages)
7733                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7734
7735         /*
7736          * Dirty logging tracks sptes in 4k granularity, meaning that large
7737          * sptes have to be split.  If live migration is successful, the guest
7738          * in the source machine will be destroyed and large sptes will be
7739          * created in the destination. However, if the guest continues to run
7740          * in the source machine (for example if live migration fails), small
7741          * sptes will remain around and cause bad performance.
7742          *
7743          * Scan sptes if dirty logging has been stopped, dropping those
7744          * which can be collapsed into a single large-page spte.  Later
7745          * page faults will create the large-page sptes.
7746          */
7747         if ((change != KVM_MR_DELETE) &&
7748                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7749                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7750                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7751
7752         /*
7753          * Set up write protection and/or dirty logging for the new slot.
7754          *
7755          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7756          * been zapped so no dirty logging staff is needed for old slot. For
7757          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7758          * new and it's also covered when dealing with the new slot.
7759          *
7760          * FIXME: const-ify all uses of struct kvm_memory_slot.
7761          */
7762         if (change != KVM_MR_DELETE)
7763                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7764 }
7765
7766 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7767 {
7768         kvm_mmu_invalidate_zap_all_pages(kvm);
7769 }
7770
7771 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7772                                    struct kvm_memory_slot *slot)
7773 {
7774         kvm_mmu_invalidate_zap_all_pages(kvm);
7775 }
7776
7777 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7778 {
7779         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7780                 kvm_x86_ops->check_nested_events(vcpu, false);
7781
7782         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7783                 !vcpu->arch.apf.halted)
7784                 || !list_empty_careful(&vcpu->async_pf.done)
7785                 || kvm_apic_has_events(vcpu)
7786                 || vcpu->arch.pv.pv_unhalted
7787                 || atomic_read(&vcpu->arch.nmi_queued) ||
7788                 (kvm_arch_interrupt_allowed(vcpu) &&
7789                  kvm_cpu_has_interrupt(vcpu));
7790 }
7791
7792 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7793 {
7794         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7795 }
7796
7797 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7798 {
7799         return kvm_x86_ops->interrupt_allowed(vcpu);
7800 }
7801
7802 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7803 {
7804         if (is_64_bit_mode(vcpu))
7805                 return kvm_rip_read(vcpu);
7806         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7807                      kvm_rip_read(vcpu));
7808 }
7809 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7810
7811 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7812 {
7813         return kvm_get_linear_rip(vcpu) == linear_rip;
7814 }
7815 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7816
7817 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7818 {
7819         unsigned long rflags;
7820
7821         rflags = kvm_x86_ops->get_rflags(vcpu);
7822         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7823                 rflags &= ~X86_EFLAGS_TF;
7824         return rflags;
7825 }
7826 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7827
7828 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7829 {
7830         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7831             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7832                 rflags |= X86_EFLAGS_TF;
7833         kvm_x86_ops->set_rflags(vcpu, rflags);
7834 }
7835
7836 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7837 {
7838         __kvm_set_rflags(vcpu, rflags);
7839         kvm_make_request(KVM_REQ_EVENT, vcpu);
7840 }
7841 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7842
7843 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7844 {
7845         int r;
7846
7847         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7848               work->wakeup_all)
7849                 return;
7850
7851         r = kvm_mmu_reload(vcpu);
7852         if (unlikely(r))
7853                 return;
7854
7855         if (!vcpu->arch.mmu.direct_map &&
7856               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7857                 return;
7858
7859         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7860 }
7861
7862 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7863 {
7864         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7865 }
7866
7867 static inline u32 kvm_async_pf_next_probe(u32 key)
7868 {
7869         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7870 }
7871
7872 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7873 {
7874         u32 key = kvm_async_pf_hash_fn(gfn);
7875
7876         while (vcpu->arch.apf.gfns[key] != ~0)
7877                 key = kvm_async_pf_next_probe(key);
7878
7879         vcpu->arch.apf.gfns[key] = gfn;
7880 }
7881
7882 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7883 {
7884         int i;
7885         u32 key = kvm_async_pf_hash_fn(gfn);
7886
7887         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7888                      (vcpu->arch.apf.gfns[key] != gfn &&
7889                       vcpu->arch.apf.gfns[key] != ~0); i++)
7890                 key = kvm_async_pf_next_probe(key);
7891
7892         return key;
7893 }
7894
7895 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7896 {
7897         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7898 }
7899
7900 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7901 {
7902         u32 i, j, k;
7903
7904         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7905         while (true) {
7906                 vcpu->arch.apf.gfns[i] = ~0;
7907                 do {
7908                         j = kvm_async_pf_next_probe(j);
7909                         if (vcpu->arch.apf.gfns[j] == ~0)
7910                                 return;
7911                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7912                         /*
7913                          * k lies cyclically in ]i,j]
7914                          * |    i.k.j |
7915                          * |....j i.k.| or  |.k..j i...|
7916                          */
7917                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7918                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7919                 i = j;
7920         }
7921 }
7922
7923 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7924 {
7925
7926         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7927                                       sizeof(val));
7928 }
7929
7930 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7931                                      struct kvm_async_pf *work)
7932 {
7933         struct x86_exception fault;
7934
7935         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7936         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7937
7938         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7939             (vcpu->arch.apf.send_user_only &&
7940              kvm_x86_ops->get_cpl(vcpu) == 0))
7941                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7942         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7943                 fault.vector = PF_VECTOR;
7944                 fault.error_code_valid = true;
7945                 fault.error_code = 0;
7946                 fault.nested_page_fault = false;
7947                 fault.address = work->arch.token;
7948                 kvm_inject_page_fault(vcpu, &fault);
7949         }
7950 }
7951
7952 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7953                                  struct kvm_async_pf *work)
7954 {
7955         struct x86_exception fault;
7956
7957         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7958         if (work->wakeup_all)
7959                 work->arch.token = ~0; /* broadcast wakeup */
7960         else
7961                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7962
7963         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7964             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7965                 fault.vector = PF_VECTOR;
7966                 fault.error_code_valid = true;
7967                 fault.error_code = 0;
7968                 fault.nested_page_fault = false;
7969                 fault.address = work->arch.token;
7970                 kvm_inject_page_fault(vcpu, &fault);
7971         }
7972         vcpu->arch.apf.halted = false;
7973         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7974 }
7975
7976 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7977 {
7978         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7979                 return true;
7980         else
7981                 return !kvm_event_needs_reinjection(vcpu) &&
7982                         kvm_x86_ops->interrupt_allowed(vcpu);
7983 }
7984
7985 void kvm_arch_start_assignment(struct kvm *kvm)
7986 {
7987         atomic_inc(&kvm->arch.assigned_device_count);
7988 }
7989 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7990
7991 void kvm_arch_end_assignment(struct kvm *kvm)
7992 {
7993         atomic_dec(&kvm->arch.assigned_device_count);
7994 }
7995 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
7996
7997 bool kvm_arch_has_assigned_device(struct kvm *kvm)
7998 {
7999         return atomic_read(&kvm->arch.assigned_device_count);
8000 }
8001 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8002
8003 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8004 {
8005         atomic_inc(&kvm->arch.noncoherent_dma_count);
8006 }
8007 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8008
8009 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8010 {
8011         atomic_dec(&kvm->arch.noncoherent_dma_count);
8012 }
8013 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8014
8015 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8016 {
8017         return atomic_read(&kvm->arch.noncoherent_dma_count);
8018 }
8019 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8020
8021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);