OSDN Git Service

30854ea218e799b19eba48f2b34c7d1f7807adca
[uclinux-h8/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
576
577         cr0 |= X86_CR0_ET;
578
579 #ifdef CONFIG_X86_64
580         if (cr0 & 0xffffffff00000000UL)
581                 return 1;
582 #endif
583
584         cr0 &= ~CR0_RESERVED_BITS;
585
586         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
587                 return 1;
588
589         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
590                 return 1;
591
592         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
593 #ifdef CONFIG_X86_64
594                 if ((vcpu->arch.efer & EFER_LME)) {
595                         int cs_db, cs_l;
596
597                         if (!is_pae(vcpu))
598                                 return 1;
599                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
600                         if (cs_l)
601                                 return 1;
602                 } else
603 #endif
604                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605                                                  kvm_read_cr3(vcpu)))
606                         return 1;
607         }
608
609         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
610                 return 1;
611
612         kvm_x86_ops->set_cr0(vcpu, cr0);
613
614         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
615                 kvm_clear_async_pf_completion_queue(vcpu);
616                 kvm_async_pf_hash_reset(vcpu);
617         }
618
619         if ((cr0 ^ old_cr0) & update_bits)
620                 kvm_mmu_reset_context(vcpu);
621         return 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_set_cr0);
624
625 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
626 {
627         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
628 }
629 EXPORT_SYMBOL_GPL(kvm_lmsw);
630
631 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
632 {
633         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
634                         !vcpu->guest_xcr0_loaded) {
635                 /* kvm_set_xcr() also depends on this */
636                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
637                 vcpu->guest_xcr0_loaded = 1;
638         }
639 }
640
641 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
642 {
643         if (vcpu->guest_xcr0_loaded) {
644                 if (vcpu->arch.xcr0 != host_xcr0)
645                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
646                 vcpu->guest_xcr0_loaded = 0;
647         }
648 }
649
650 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
651 {
652         u64 xcr0 = xcr;
653         u64 old_xcr0 = vcpu->arch.xcr0;
654         u64 valid_bits;
655
656         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
657         if (index != XCR_XFEATURE_ENABLED_MASK)
658                 return 1;
659         if (!(xcr0 & XSTATE_FP))
660                 return 1;
661         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
662                 return 1;
663
664         /*
665          * Do not allow the guest to set bits that we do not support
666          * saving.  However, xcr0 bit 0 is always set, even if the
667          * emulated CPU does not support XSAVE (see fx_init).
668          */
669         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
670         if (xcr0 & ~valid_bits)
671                 return 1;
672
673         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
674                 return 1;
675
676         if (xcr0 & XSTATE_AVX512) {
677                 if (!(xcr0 & XSTATE_YMM))
678                         return 1;
679                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
680                         return 1;
681         }
682         kvm_put_guest_xcr0(vcpu);
683         vcpu->arch.xcr0 = xcr0;
684
685         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
686                 kvm_update_cpuid(vcpu);
687         return 0;
688 }
689
690 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
693             __kvm_set_xcr(vcpu, index, xcr)) {
694                 kvm_inject_gp(vcpu, 0);
695                 return 1;
696         }
697         return 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_set_xcr);
700
701 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
702 {
703         unsigned long old_cr4 = kvm_read_cr4(vcpu);
704         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
705                                    X86_CR4_SMEP | X86_CR4_SMAP;
706
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
748                 kvm_update_cpuid(vcpu);
749
750         return 0;
751 }
752 EXPORT_SYMBOL_GPL(kvm_set_cr4);
753
754 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
755 {
756 #ifdef CONFIG_X86_64
757         cr3 &= ~CR3_PCID_INVD;
758 #endif
759
760         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
761                 kvm_mmu_sync_roots(vcpu);
762                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
763                 return 0;
764         }
765
766         if (is_long_mode(vcpu)) {
767                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
768                         return 1;
769         } else if (is_pae(vcpu) && is_paging(vcpu) &&
770                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
771                 return 1;
772
773         vcpu->arch.cr3 = cr3;
774         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
775         kvm_mmu_new_cr3(vcpu);
776         return 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_set_cr3);
779
780 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
781 {
782         if (cr8 & CR8_RESERVED_BITS)
783                 return 1;
784         if (irqchip_in_kernel(vcpu->kvm))
785                 kvm_lapic_set_tpr(vcpu, cr8);
786         else
787                 vcpu->arch.cr8 = cr8;
788         return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_set_cr8);
791
792 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
793 {
794         if (irqchip_in_kernel(vcpu->kvm))
795                 return kvm_lapic_get_cr8(vcpu);
796         else
797                 return vcpu->arch.cr8;
798 }
799 EXPORT_SYMBOL_GPL(kvm_get_cr8);
800
801 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
802 {
803         int i;
804
805         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
806                 for (i = 0; i < KVM_NR_DB_REGS; i++)
807                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
808                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
809         }
810 }
811
812 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
813 {
814         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
815                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
816 }
817
818 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
819 {
820         unsigned long dr7;
821
822         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
823                 dr7 = vcpu->arch.guest_debug_dr7;
824         else
825                 dr7 = vcpu->arch.dr7;
826         kvm_x86_ops->set_dr7(vcpu, dr7);
827         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
828         if (dr7 & DR7_BP_EN_MASK)
829                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
830 }
831
832 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
833 {
834         u64 fixed = DR6_FIXED_1;
835
836         if (!guest_cpuid_has_rtm(vcpu))
837                 fixed |= DR6_RTM;
838         return fixed;
839 }
840
841 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
842 {
843         switch (dr) {
844         case 0 ... 3:
845                 vcpu->arch.db[dr] = val;
846                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
847                         vcpu->arch.eff_db[dr] = val;
848                 break;
849         case 4:
850                 /* fall through */
851         case 6:
852                 if (val & 0xffffffff00000000ULL)
853                         return -1; /* #GP */
854                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
855                 kvm_update_dr6(vcpu);
856                 break;
857         case 5:
858                 /* fall through */
859         default: /* 7 */
860                 if (val & 0xffffffff00000000ULL)
861                         return -1; /* #GP */
862                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
863                 kvm_update_dr7(vcpu);
864                 break;
865         }
866
867         return 0;
868 }
869
870 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
871 {
872         if (__kvm_set_dr(vcpu, dr, val)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_dr);
879
880 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
881 {
882         switch (dr) {
883         case 0 ... 3:
884                 *val = vcpu->arch.db[dr];
885                 break;
886         case 4:
887                 /* fall through */
888         case 6:
889                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
890                         *val = vcpu->arch.dr6;
891                 else
892                         *val = kvm_x86_ops->get_dr6(vcpu);
893                 break;
894         case 5:
895                 /* fall through */
896         default: /* 7 */
897                 *val = vcpu->arch.dr7;
898                 break;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_get_dr);
903
904 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
905 {
906         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
907         u64 data;
908         int err;
909
910         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
911         if (err)
912                 return err;
913         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
914         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
915         return err;
916 }
917 EXPORT_SYMBOL_GPL(kvm_rdpmc);
918
919 /*
920  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
921  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
922  *
923  * This list is modified at module load time to reflect the
924  * capabilities of the host cpu. This capabilities test skips MSRs that are
925  * kvm-specific. Those are put in the beginning of the list.
926  */
927
928 #define KVM_SAVE_MSRS_BEGIN     12
929 static u32 msrs_to_save[] = {
930         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
931         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
932         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
933         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
934         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
935         MSR_KVM_PV_EOI_EN,
936         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937         MSR_STAR,
938 #ifdef CONFIG_X86_64
939         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
943 };
944
945 static unsigned num_msrs_to_save;
946
947 static const u32 emulated_msrs[] = {
948         MSR_IA32_TSC_ADJUST,
949         MSR_IA32_TSCDEADLINE,
950         MSR_IA32_MISC_ENABLE,
951         MSR_IA32_MCG_STATUS,
952         MSR_IA32_MCG_CTL,
953 };
954
955 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
956 {
957         if (efer & efer_reserved_bits)
958                 return false;
959
960         if (efer & EFER_FFXSR) {
961                 struct kvm_cpuid_entry2 *feat;
962
963                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
965                         return false;
966         }
967
968         if (efer & EFER_SVME) {
969                 struct kvm_cpuid_entry2 *feat;
970
971                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
972                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
973                         return false;
974         }
975
976         return true;
977 }
978 EXPORT_SYMBOL_GPL(kvm_valid_efer);
979
980 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
981 {
982         u64 old_efer = vcpu->arch.efer;
983
984         if (!kvm_valid_efer(vcpu, efer))
985                 return 1;
986
987         if (is_paging(vcpu)
988             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
989                 return 1;
990
991         efer &= ~EFER_LMA;
992         efer |= vcpu->arch.efer & EFER_LMA;
993
994         kvm_x86_ops->set_efer(vcpu, efer);
995
996         /* Update reserved bits */
997         if ((efer ^ old_efer) & EFER_NX)
998                 kvm_mmu_reset_context(vcpu);
999
1000         return 0;
1001 }
1002
1003 void kvm_enable_efer_bits(u64 mask)
1004 {
1005        efer_reserved_bits &= ~mask;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1008
1009 /*
1010  * Writes msr value into into the appropriate "register".
1011  * Returns 0 on success, non-0 otherwise.
1012  * Assumes vcpu_load() was already called.
1013  */
1014 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1015 {
1016         switch (msr->index) {
1017         case MSR_FS_BASE:
1018         case MSR_GS_BASE:
1019         case MSR_KERNEL_GS_BASE:
1020         case MSR_CSTAR:
1021         case MSR_LSTAR:
1022                 if (is_noncanonical_address(msr->data))
1023                         return 1;
1024                 break;
1025         case MSR_IA32_SYSENTER_EIP:
1026         case MSR_IA32_SYSENTER_ESP:
1027                 /*
1028                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1029                  * non-canonical address is written on Intel but not on
1030                  * AMD (which ignores the top 32-bits, because it does
1031                  * not implement 64-bit SYSENTER).
1032                  *
1033                  * 64-bit code should hence be able to write a non-canonical
1034                  * value on AMD.  Making the address canonical ensures that
1035                  * vmentry does not fail on Intel after writing a non-canonical
1036                  * value, and that something deterministic happens if the guest
1037                  * invokes 64-bit SYSENTER.
1038                  */
1039                 msr->data = get_canonical(msr->data);
1040         }
1041         return kvm_x86_ops->set_msr(vcpu, msr);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_set_msr);
1044
1045 /*
1046  * Adapt set_msr() to msr_io()'s calling convention
1047  */
1048 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1049 {
1050         struct msr_data msr;
1051
1052         msr.data = *data;
1053         msr.index = index;
1054         msr.host_initiated = true;
1055         return kvm_set_msr(vcpu, &msr);
1056 }
1057
1058 #ifdef CONFIG_X86_64
1059 struct pvclock_gtod_data {
1060         seqcount_t      seq;
1061
1062         struct { /* extract of a clocksource struct */
1063                 int vclock_mode;
1064                 cycle_t cycle_last;
1065                 cycle_t mask;
1066                 u32     mult;
1067                 u32     shift;
1068         } clock;
1069
1070         u64             boot_ns;
1071         u64             nsec_base;
1072 };
1073
1074 static struct pvclock_gtod_data pvclock_gtod_data;
1075
1076 static void update_pvclock_gtod(struct timekeeper *tk)
1077 {
1078         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1079         u64 boot_ns;
1080
1081         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1082
1083         write_seqcount_begin(&vdata->seq);
1084
1085         /* copy pvclock gtod data */
1086         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1087         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1088         vdata->clock.mask               = tk->tkr_mono.mask;
1089         vdata->clock.mult               = tk->tkr_mono.mult;
1090         vdata->clock.shift              = tk->tkr_mono.shift;
1091
1092         vdata->boot_ns                  = boot_ns;
1093         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1094
1095         write_seqcount_end(&vdata->seq);
1096 }
1097 #endif
1098
1099 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101         /*
1102          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1103          * vcpu_enter_guest.  This function is only called from
1104          * the physical CPU that is running vcpu.
1105          */
1106         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1107 }
1108
1109 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1110 {
1111         int version;
1112         int r;
1113         struct pvclock_wall_clock wc;
1114         struct timespec boot;
1115
1116         if (!wall_clock)
1117                 return;
1118
1119         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1120         if (r)
1121                 return;
1122
1123         if (version & 1)
1124                 ++version;  /* first time write, random junk */
1125
1126         ++version;
1127
1128         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1129
1130         /*
1131          * The guest calculates current wall clock time by adding
1132          * system time (updated by kvm_guest_time_update below) to the
1133          * wall clock specified here.  guest system time equals host
1134          * system time for us, thus we must fill in host boot time here.
1135          */
1136         getboottime(&boot);
1137
1138         if (kvm->arch.kvmclock_offset) {
1139                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1140                 boot = timespec_sub(boot, ts);
1141         }
1142         wc.sec = boot.tv_sec;
1143         wc.nsec = boot.tv_nsec;
1144         wc.version = version;
1145
1146         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1147
1148         version++;
1149         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1150 }
1151
1152 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1153 {
1154         uint32_t quotient, remainder;
1155
1156         /* Don't try to replace with do_div(), this one calculates
1157          * "(dividend << 32) / divisor" */
1158         __asm__ ( "divl %4"
1159                   : "=a" (quotient), "=d" (remainder)
1160                   : "0" (0), "1" (dividend), "r" (divisor) );
1161         return quotient;
1162 }
1163
1164 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1165                                s8 *pshift, u32 *pmultiplier)
1166 {
1167         uint64_t scaled64;
1168         int32_t  shift = 0;
1169         uint64_t tps64;
1170         uint32_t tps32;
1171
1172         tps64 = base_khz * 1000LL;
1173         scaled64 = scaled_khz * 1000LL;
1174         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1175                 tps64 >>= 1;
1176                 shift--;
1177         }
1178
1179         tps32 = (uint32_t)tps64;
1180         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1181                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1182                         scaled64 >>= 1;
1183                 else
1184                         tps32 <<= 1;
1185                 shift++;
1186         }
1187
1188         *pshift = shift;
1189         *pmultiplier = div_frac(scaled64, tps32);
1190
1191         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1192                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1193 }
1194
1195 static inline u64 get_kernel_ns(void)
1196 {
1197         return ktime_get_boot_ns();
1198 }
1199
1200 #ifdef CONFIG_X86_64
1201 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1202 #endif
1203
1204 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1205 static unsigned long max_tsc_khz;
1206
1207 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1208 {
1209         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1210                                    vcpu->arch.virtual_tsc_shift);
1211 }
1212
1213 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1214 {
1215         u64 v = (u64)khz * (1000000 + ppm);
1216         do_div(v, 1000000);
1217         return v;
1218 }
1219
1220 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1221 {
1222         u32 thresh_lo, thresh_hi;
1223         int use_scaling = 0;
1224
1225         /* tsc_khz can be zero if TSC calibration fails */
1226         if (this_tsc_khz == 0)
1227                 return;
1228
1229         /* Compute a scale to convert nanoseconds in TSC cycles */
1230         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1231                            &vcpu->arch.virtual_tsc_shift,
1232                            &vcpu->arch.virtual_tsc_mult);
1233         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1234
1235         /*
1236          * Compute the variation in TSC rate which is acceptable
1237          * within the range of tolerance and decide if the
1238          * rate being applied is within that bounds of the hardware
1239          * rate.  If so, no scaling or compensation need be done.
1240          */
1241         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1242         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1243         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1244                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1245                 use_scaling = 1;
1246         }
1247         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1248 }
1249
1250 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1251 {
1252         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1253                                       vcpu->arch.virtual_tsc_mult,
1254                                       vcpu->arch.virtual_tsc_shift);
1255         tsc += vcpu->arch.this_tsc_write;
1256         return tsc;
1257 }
1258
1259 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1260 {
1261 #ifdef CONFIG_X86_64
1262         bool vcpus_matched;
1263         struct kvm_arch *ka = &vcpu->kvm->arch;
1264         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1265
1266         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1267                          atomic_read(&vcpu->kvm->online_vcpus));
1268
1269         /*
1270          * Once the masterclock is enabled, always perform request in
1271          * order to update it.
1272          *
1273          * In order to enable masterclock, the host clocksource must be TSC
1274          * and the vcpus need to have matched TSCs.  When that happens,
1275          * perform request to enable masterclock.
1276          */
1277         if (ka->use_master_clock ||
1278             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1279                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1280
1281         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1282                             atomic_read(&vcpu->kvm->online_vcpus),
1283                             ka->use_master_clock, gtod->clock.vclock_mode);
1284 #endif
1285 }
1286
1287 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1288 {
1289         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1290         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1291 }
1292
1293 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1294 {
1295         struct kvm *kvm = vcpu->kvm;
1296         u64 offset, ns, elapsed;
1297         unsigned long flags;
1298         s64 usdiff;
1299         bool matched;
1300         bool already_matched;
1301         u64 data = msr->data;
1302
1303         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1304         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1305         ns = get_kernel_ns();
1306         elapsed = ns - kvm->arch.last_tsc_nsec;
1307
1308         if (vcpu->arch.virtual_tsc_khz) {
1309                 int faulted = 0;
1310
1311                 /* n.b - signed multiplication and division required */
1312                 usdiff = data - kvm->arch.last_tsc_write;
1313 #ifdef CONFIG_X86_64
1314                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1315 #else
1316                 /* do_div() only does unsigned */
1317                 asm("1: idivl %[divisor]\n"
1318                     "2: xor %%edx, %%edx\n"
1319                     "   movl $0, %[faulted]\n"
1320                     "3:\n"
1321                     ".section .fixup,\"ax\"\n"
1322                     "4: movl $1, %[faulted]\n"
1323                     "   jmp  3b\n"
1324                     ".previous\n"
1325
1326                 _ASM_EXTABLE(1b, 4b)
1327
1328                 : "=A"(usdiff), [faulted] "=r" (faulted)
1329                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1330
1331 #endif
1332                 do_div(elapsed, 1000);
1333                 usdiff -= elapsed;
1334                 if (usdiff < 0)
1335                         usdiff = -usdiff;
1336
1337                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1338                 if (faulted)
1339                         usdiff = USEC_PER_SEC;
1340         } else
1341                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1342
1343         /*
1344          * Special case: TSC write with a small delta (1 second) of virtual
1345          * cycle time against real time is interpreted as an attempt to
1346          * synchronize the CPU.
1347          *
1348          * For a reliable TSC, we can match TSC offsets, and for an unstable
1349          * TSC, we add elapsed time in this computation.  We could let the
1350          * compensation code attempt to catch up if we fall behind, but
1351          * it's better to try to match offsets from the beginning.
1352          */
1353         if (usdiff < USEC_PER_SEC &&
1354             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1355                 if (!check_tsc_unstable()) {
1356                         offset = kvm->arch.cur_tsc_offset;
1357                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1358                 } else {
1359                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1360                         data += delta;
1361                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1362                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1363                 }
1364                 matched = true;
1365                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1366         } else {
1367                 /*
1368                  * We split periods of matched TSC writes into generations.
1369                  * For each generation, we track the original measured
1370                  * nanosecond time, offset, and write, so if TSCs are in
1371                  * sync, we can match exact offset, and if not, we can match
1372                  * exact software computation in compute_guest_tsc()
1373                  *
1374                  * These values are tracked in kvm->arch.cur_xxx variables.
1375                  */
1376                 kvm->arch.cur_tsc_generation++;
1377                 kvm->arch.cur_tsc_nsec = ns;
1378                 kvm->arch.cur_tsc_write = data;
1379                 kvm->arch.cur_tsc_offset = offset;
1380                 matched = false;
1381                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1382                          kvm->arch.cur_tsc_generation, data);
1383         }
1384
1385         /*
1386          * We also track th most recent recorded KHZ, write and time to
1387          * allow the matching interval to be extended at each write.
1388          */
1389         kvm->arch.last_tsc_nsec = ns;
1390         kvm->arch.last_tsc_write = data;
1391         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1392
1393         vcpu->arch.last_guest_tsc = data;
1394
1395         /* Keep track of which generation this VCPU has synchronized to */
1396         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1397         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1398         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1399
1400         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1401                 update_ia32_tsc_adjust_msr(vcpu, offset);
1402         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1403         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1404
1405         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1406         if (!matched) {
1407                 kvm->arch.nr_vcpus_matched_tsc = 0;
1408         } else if (!already_matched) {
1409                 kvm->arch.nr_vcpus_matched_tsc++;
1410         }
1411
1412         kvm_track_tsc_matching(vcpu);
1413         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1414 }
1415
1416 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1417
1418 #ifdef CONFIG_X86_64
1419
1420 static cycle_t read_tsc(void)
1421 {
1422         cycle_t ret;
1423         u64 last;
1424
1425         /*
1426          * Empirically, a fence (of type that depends on the CPU)
1427          * before rdtsc is enough to ensure that rdtsc is ordered
1428          * with respect to loads.  The various CPU manuals are unclear
1429          * as to whether rdtsc can be reordered with later loads,
1430          * but no one has ever seen it happen.
1431          */
1432         rdtsc_barrier();
1433         ret = (cycle_t)vget_cycles();
1434
1435         last = pvclock_gtod_data.clock.cycle_last;
1436
1437         if (likely(ret >= last))
1438                 return ret;
1439
1440         /*
1441          * GCC likes to generate cmov here, but this branch is extremely
1442          * predictable (it's just a funciton of time and the likely is
1443          * very likely) and there's a data dependence, so force GCC
1444          * to generate a branch instead.  I don't barrier() because
1445          * we don't actually need a barrier, and if this function
1446          * ever gets inlined it will generate worse code.
1447          */
1448         asm volatile ("");
1449         return last;
1450 }
1451
1452 static inline u64 vgettsc(cycle_t *cycle_now)
1453 {
1454         long v;
1455         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1456
1457         *cycle_now = read_tsc();
1458
1459         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1460         return v * gtod->clock.mult;
1461 }
1462
1463 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1464 {
1465         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1466         unsigned long seq;
1467         int mode;
1468         u64 ns;
1469
1470         do {
1471                 seq = read_seqcount_begin(&gtod->seq);
1472                 mode = gtod->clock.vclock_mode;
1473                 ns = gtod->nsec_base;
1474                 ns += vgettsc(cycle_now);
1475                 ns >>= gtod->clock.shift;
1476                 ns += gtod->boot_ns;
1477         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1478         *t = ns;
1479
1480         return mode;
1481 }
1482
1483 /* returns true if host is using tsc clocksource */
1484 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1485 {
1486         /* checked again under seqlock below */
1487         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1488                 return false;
1489
1490         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1491 }
1492 #endif
1493
1494 /*
1495  *
1496  * Assuming a stable TSC across physical CPUS, and a stable TSC
1497  * across virtual CPUs, the following condition is possible.
1498  * Each numbered line represents an event visible to both
1499  * CPUs at the next numbered event.
1500  *
1501  * "timespecX" represents host monotonic time. "tscX" represents
1502  * RDTSC value.
1503  *
1504  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1505  *
1506  * 1.  read timespec0,tsc0
1507  * 2.                                   | timespec1 = timespec0 + N
1508  *                                      | tsc1 = tsc0 + M
1509  * 3. transition to guest               | transition to guest
1510  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1511  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1512  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1513  *
1514  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1515  *
1516  *      - ret0 < ret1
1517  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1518  *              ...
1519  *      - 0 < N - M => M < N
1520  *
1521  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1522  * always the case (the difference between two distinct xtime instances
1523  * might be smaller then the difference between corresponding TSC reads,
1524  * when updating guest vcpus pvclock areas).
1525  *
1526  * To avoid that problem, do not allow visibility of distinct
1527  * system_timestamp/tsc_timestamp values simultaneously: use a master
1528  * copy of host monotonic time values. Update that master copy
1529  * in lockstep.
1530  *
1531  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1532  *
1533  */
1534
1535 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1536 {
1537 #ifdef CONFIG_X86_64
1538         struct kvm_arch *ka = &kvm->arch;
1539         int vclock_mode;
1540         bool host_tsc_clocksource, vcpus_matched;
1541
1542         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1543                         atomic_read(&kvm->online_vcpus));
1544
1545         /*
1546          * If the host uses TSC clock, then passthrough TSC as stable
1547          * to the guest.
1548          */
1549         host_tsc_clocksource = kvm_get_time_and_clockread(
1550                                         &ka->master_kernel_ns,
1551                                         &ka->master_cycle_now);
1552
1553         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1554                                 && !backwards_tsc_observed
1555                                 && !ka->boot_vcpu_runs_old_kvmclock;
1556
1557         if (ka->use_master_clock)
1558                 atomic_set(&kvm_guest_has_master_clock, 1);
1559
1560         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1561         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1562                                         vcpus_matched);
1563 #endif
1564 }
1565
1566 static void kvm_gen_update_masterclock(struct kvm *kvm)
1567 {
1568 #ifdef CONFIG_X86_64
1569         int i;
1570         struct kvm_vcpu *vcpu;
1571         struct kvm_arch *ka = &kvm->arch;
1572
1573         spin_lock(&ka->pvclock_gtod_sync_lock);
1574         kvm_make_mclock_inprogress_request(kvm);
1575         /* no guest entries from this point */
1576         pvclock_update_vm_gtod_copy(kvm);
1577
1578         kvm_for_each_vcpu(i, vcpu, kvm)
1579                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1580
1581         /* guest entries allowed */
1582         kvm_for_each_vcpu(i, vcpu, kvm)
1583                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1584
1585         spin_unlock(&ka->pvclock_gtod_sync_lock);
1586 #endif
1587 }
1588
1589 static int kvm_guest_time_update(struct kvm_vcpu *v)
1590 {
1591         unsigned long flags, this_tsc_khz;
1592         struct kvm_vcpu_arch *vcpu = &v->arch;
1593         struct kvm_arch *ka = &v->kvm->arch;
1594         s64 kernel_ns;
1595         u64 tsc_timestamp, host_tsc;
1596         struct pvclock_vcpu_time_info guest_hv_clock;
1597         u8 pvclock_flags;
1598         bool use_master_clock;
1599
1600         kernel_ns = 0;
1601         host_tsc = 0;
1602
1603         /*
1604          * If the host uses TSC clock, then passthrough TSC as stable
1605          * to the guest.
1606          */
1607         spin_lock(&ka->pvclock_gtod_sync_lock);
1608         use_master_clock = ka->use_master_clock;
1609         if (use_master_clock) {
1610                 host_tsc = ka->master_cycle_now;
1611                 kernel_ns = ka->master_kernel_ns;
1612         }
1613         spin_unlock(&ka->pvclock_gtod_sync_lock);
1614
1615         /* Keep irq disabled to prevent changes to the clock */
1616         local_irq_save(flags);
1617         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1618         if (unlikely(this_tsc_khz == 0)) {
1619                 local_irq_restore(flags);
1620                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1621                 return 1;
1622         }
1623         if (!use_master_clock) {
1624                 host_tsc = native_read_tsc();
1625                 kernel_ns = get_kernel_ns();
1626         }
1627
1628         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1629
1630         /*
1631          * We may have to catch up the TSC to match elapsed wall clock
1632          * time for two reasons, even if kvmclock is used.
1633          *   1) CPU could have been running below the maximum TSC rate
1634          *   2) Broken TSC compensation resets the base at each VCPU
1635          *      entry to avoid unknown leaps of TSC even when running
1636          *      again on the same CPU.  This may cause apparent elapsed
1637          *      time to disappear, and the guest to stand still or run
1638          *      very slowly.
1639          */
1640         if (vcpu->tsc_catchup) {
1641                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1642                 if (tsc > tsc_timestamp) {
1643                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1644                         tsc_timestamp = tsc;
1645                 }
1646         }
1647
1648         local_irq_restore(flags);
1649
1650         if (!vcpu->pv_time_enabled)
1651                 return 0;
1652
1653         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1654                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1655                                    &vcpu->hv_clock.tsc_shift,
1656                                    &vcpu->hv_clock.tsc_to_system_mul);
1657                 vcpu->hw_tsc_khz = this_tsc_khz;
1658         }
1659
1660         /* With all the info we got, fill in the values */
1661         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1662         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1663         vcpu->last_guest_tsc = tsc_timestamp;
1664
1665         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1666                 &guest_hv_clock, sizeof(guest_hv_clock))))
1667                 return 0;
1668
1669         /* This VCPU is paused, but it's legal for a guest to read another
1670          * VCPU's kvmclock, so we really have to follow the specification where
1671          * it says that version is odd if data is being modified, and even after
1672          * it is consistent.
1673          *
1674          * Version field updates must be kept separate.  This is because
1675          * kvm_write_guest_cached might use a "rep movs" instruction, and
1676          * writes within a string instruction are weakly ordered.  So there
1677          * are three writes overall.
1678          *
1679          * As a small optimization, only write the version field in the first
1680          * and third write.  The vcpu->pv_time cache is still valid, because the
1681          * version field is the first in the struct.
1682          */
1683         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1684
1685         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1686         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1687                                 &vcpu->hv_clock,
1688                                 sizeof(vcpu->hv_clock.version));
1689
1690         smp_wmb();
1691
1692         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1693         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1694
1695         if (vcpu->pvclock_set_guest_stopped_request) {
1696                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1697                 vcpu->pvclock_set_guest_stopped_request = false;
1698         }
1699
1700         /* If the host uses TSC clocksource, then it is stable */
1701         if (use_master_clock)
1702                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1703
1704         vcpu->hv_clock.flags = pvclock_flags;
1705
1706         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1707
1708         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709                                 &vcpu->hv_clock,
1710                                 sizeof(vcpu->hv_clock));
1711
1712         smp_wmb();
1713
1714         vcpu->hv_clock.version++;
1715         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1716                                 &vcpu->hv_clock,
1717                                 sizeof(vcpu->hv_clock.version));
1718         return 0;
1719 }
1720
1721 /*
1722  * kvmclock updates which are isolated to a given vcpu, such as
1723  * vcpu->cpu migration, should not allow system_timestamp from
1724  * the rest of the vcpus to remain static. Otherwise ntp frequency
1725  * correction applies to one vcpu's system_timestamp but not
1726  * the others.
1727  *
1728  * So in those cases, request a kvmclock update for all vcpus.
1729  * We need to rate-limit these requests though, as they can
1730  * considerably slow guests that have a large number of vcpus.
1731  * The time for a remote vcpu to update its kvmclock is bound
1732  * by the delay we use to rate-limit the updates.
1733  */
1734
1735 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1736
1737 static void kvmclock_update_fn(struct work_struct *work)
1738 {
1739         int i;
1740         struct delayed_work *dwork = to_delayed_work(work);
1741         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1742                                            kvmclock_update_work);
1743         struct kvm *kvm = container_of(ka, struct kvm, arch);
1744         struct kvm_vcpu *vcpu;
1745
1746         kvm_for_each_vcpu(i, vcpu, kvm) {
1747                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1748                 kvm_vcpu_kick(vcpu);
1749         }
1750 }
1751
1752 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1753 {
1754         struct kvm *kvm = v->kvm;
1755
1756         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1757         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1758                                         KVMCLOCK_UPDATE_DELAY);
1759 }
1760
1761 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1762
1763 static void kvmclock_sync_fn(struct work_struct *work)
1764 {
1765         struct delayed_work *dwork = to_delayed_work(work);
1766         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1767                                            kvmclock_sync_work);
1768         struct kvm *kvm = container_of(ka, struct kvm, arch);
1769
1770         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1771         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1772                                         KVMCLOCK_SYNC_PERIOD);
1773 }
1774
1775 static bool msr_mtrr_valid(unsigned msr)
1776 {
1777         switch (msr) {
1778         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1779         case MSR_MTRRfix64K_00000:
1780         case MSR_MTRRfix16K_80000:
1781         case MSR_MTRRfix16K_A0000:
1782         case MSR_MTRRfix4K_C0000:
1783         case MSR_MTRRfix4K_C8000:
1784         case MSR_MTRRfix4K_D0000:
1785         case MSR_MTRRfix4K_D8000:
1786         case MSR_MTRRfix4K_E0000:
1787         case MSR_MTRRfix4K_E8000:
1788         case MSR_MTRRfix4K_F0000:
1789         case MSR_MTRRfix4K_F8000:
1790         case MSR_MTRRdefType:
1791         case MSR_IA32_CR_PAT:
1792                 return true;
1793         case 0x2f8:
1794                 return true;
1795         }
1796         return false;
1797 }
1798
1799 static bool valid_pat_type(unsigned t)
1800 {
1801         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1802 }
1803
1804 static bool valid_mtrr_type(unsigned t)
1805 {
1806         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1807 }
1808
1809 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1810 {
1811         int i;
1812         u64 mask;
1813
1814         if (!msr_mtrr_valid(msr))
1815                 return false;
1816
1817         if (msr == MSR_IA32_CR_PAT) {
1818                 for (i = 0; i < 8; i++)
1819                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1820                                 return false;
1821                 return true;
1822         } else if (msr == MSR_MTRRdefType) {
1823                 if (data & ~0xcff)
1824                         return false;
1825                 return valid_mtrr_type(data & 0xff);
1826         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1827                 for (i = 0; i < 8 ; i++)
1828                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1829                                 return false;
1830                 return true;
1831         }
1832
1833         /* variable MTRRs */
1834         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1835
1836         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1837         if ((msr & 1) == 0) {
1838                 /* MTRR base */
1839                 if (!valid_mtrr_type(data & 0xff))
1840                         return false;
1841                 mask |= 0xf00;
1842         } else
1843                 /* MTRR mask */
1844                 mask |= 0x7ff;
1845         if (data & mask) {
1846                 kvm_inject_gp(vcpu, 0);
1847                 return false;
1848         }
1849
1850         return true;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1853
1854 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
1855 {
1856         struct mtrr_state_type *mtrr_state = &vcpu->arch.mtrr_state;
1857         unsigned char mtrr_enabled = mtrr_state->enabled;
1858         gfn_t start, end, mask;
1859         int index;
1860         bool is_fixed = true;
1861
1862         if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
1863               !kvm_arch_has_noncoherent_dma(vcpu->kvm))
1864                 return;
1865
1866         if (!(mtrr_enabled & 0x2) && msr != MSR_MTRRdefType)
1867                 return;
1868
1869         switch (msr) {
1870         case MSR_MTRRfix64K_00000:
1871                 start = 0x0;
1872                 end = 0x80000;
1873                 break;
1874         case MSR_MTRRfix16K_80000:
1875                 start = 0x80000;
1876                 end = 0xa0000;
1877                 break;
1878         case MSR_MTRRfix16K_A0000:
1879                 start = 0xa0000;
1880                 end = 0xc0000;
1881                 break;
1882         case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
1883                 index = msr - MSR_MTRRfix4K_C0000;
1884                 start = 0xc0000 + index * (32 << 10);
1885                 end = start + (32 << 10);
1886                 break;
1887         case MSR_MTRRdefType:
1888                 is_fixed = false;
1889                 start = 0x0;
1890                 end = ~0ULL;
1891                 break;
1892         default:
1893                 /* variable range MTRRs. */
1894                 is_fixed = false;
1895                 index = (msr - 0x200) / 2;
1896                 start = (((u64)mtrr_state->var_ranges[index].base_hi) << 32) +
1897                        (mtrr_state->var_ranges[index].base_lo & PAGE_MASK);
1898                 mask = (((u64)mtrr_state->var_ranges[index].mask_hi) << 32) +
1899                        (mtrr_state->var_ranges[index].mask_lo & PAGE_MASK);
1900                 mask |= ~0ULL << cpuid_maxphyaddr(vcpu);
1901
1902                 end = ((start & mask) | ~mask) + 1;
1903         }
1904
1905         if (is_fixed && !(mtrr_enabled & 0x1))
1906                 return;
1907
1908         kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
1909 }
1910
1911 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1912 {
1913         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1914
1915         if (!kvm_mtrr_valid(vcpu, msr, data))
1916                 return 1;
1917
1918         if (msr == MSR_MTRRdefType) {
1919                 vcpu->arch.mtrr_state.def_type = data;
1920                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1921         } else if (msr == MSR_MTRRfix64K_00000)
1922                 p[0] = data;
1923         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1924                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1925         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1926                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1927         else if (msr == MSR_IA32_CR_PAT)
1928                 vcpu->arch.pat = data;
1929         else {  /* Variable MTRRs */
1930                 int idx, is_mtrr_mask;
1931                 u64 *pt;
1932
1933                 idx = (msr - 0x200) / 2;
1934                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1935                 if (!is_mtrr_mask)
1936                         pt =
1937                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1938                 else
1939                         pt =
1940                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1941                 *pt = data;
1942         }
1943
1944         update_mtrr(vcpu, msr);
1945         return 0;
1946 }
1947
1948 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1949 {
1950         u64 mcg_cap = vcpu->arch.mcg_cap;
1951         unsigned bank_num = mcg_cap & 0xff;
1952
1953         switch (msr) {
1954         case MSR_IA32_MCG_STATUS:
1955                 vcpu->arch.mcg_status = data;
1956                 break;
1957         case MSR_IA32_MCG_CTL:
1958                 if (!(mcg_cap & MCG_CTL_P))
1959                         return 1;
1960                 if (data != 0 && data != ~(u64)0)
1961                         return -1;
1962                 vcpu->arch.mcg_ctl = data;
1963                 break;
1964         default:
1965                 if (msr >= MSR_IA32_MC0_CTL &&
1966                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1967                         u32 offset = msr - MSR_IA32_MC0_CTL;
1968                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1969                          * some Linux kernels though clear bit 10 in bank 4 to
1970                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1971                          * this to avoid an uncatched #GP in the guest
1972                          */
1973                         if ((offset & 0x3) == 0 &&
1974                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1975                                 return -1;
1976                         vcpu->arch.mce_banks[offset] = data;
1977                         break;
1978                 }
1979                 return 1;
1980         }
1981         return 0;
1982 }
1983
1984 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1985 {
1986         struct kvm *kvm = vcpu->kvm;
1987         int lm = is_long_mode(vcpu);
1988         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1989                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1990         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1991                 : kvm->arch.xen_hvm_config.blob_size_32;
1992         u32 page_num = data & ~PAGE_MASK;
1993         u64 page_addr = data & PAGE_MASK;
1994         u8 *page;
1995         int r;
1996
1997         r = -E2BIG;
1998         if (page_num >= blob_size)
1999                 goto out;
2000         r = -ENOMEM;
2001         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2002         if (IS_ERR(page)) {
2003                 r = PTR_ERR(page);
2004                 goto out;
2005         }
2006         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
2007                 goto out_free;
2008         r = 0;
2009 out_free:
2010         kfree(page);
2011 out:
2012         return r;
2013 }
2014
2015 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
2016 {
2017         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
2018 }
2019
2020 static bool kvm_hv_msr_partition_wide(u32 msr)
2021 {
2022         bool r = false;
2023         switch (msr) {
2024         case HV_X64_MSR_GUEST_OS_ID:
2025         case HV_X64_MSR_HYPERCALL:
2026         case HV_X64_MSR_REFERENCE_TSC:
2027         case HV_X64_MSR_TIME_REF_COUNT:
2028                 r = true;
2029                 break;
2030         }
2031
2032         return r;
2033 }
2034
2035 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2036 {
2037         struct kvm *kvm = vcpu->kvm;
2038
2039         switch (msr) {
2040         case HV_X64_MSR_GUEST_OS_ID:
2041                 kvm->arch.hv_guest_os_id = data;
2042                 /* setting guest os id to zero disables hypercall page */
2043                 if (!kvm->arch.hv_guest_os_id)
2044                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
2045                 break;
2046         case HV_X64_MSR_HYPERCALL: {
2047                 u64 gfn;
2048                 unsigned long addr;
2049                 u8 instructions[4];
2050
2051                 /* if guest os id is not set hypercall should remain disabled */
2052                 if (!kvm->arch.hv_guest_os_id)
2053                         break;
2054                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2055                         kvm->arch.hv_hypercall = data;
2056                         break;
2057                 }
2058                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2059                 addr = gfn_to_hva(kvm, gfn);
2060                 if (kvm_is_error_hva(addr))
2061                         return 1;
2062                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2063                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2064                 if (__copy_to_user((void __user *)addr, instructions, 4))
2065                         return 1;
2066                 kvm->arch.hv_hypercall = data;
2067                 mark_page_dirty(kvm, gfn);
2068                 break;
2069         }
2070         case HV_X64_MSR_REFERENCE_TSC: {
2071                 u64 gfn;
2072                 HV_REFERENCE_TSC_PAGE tsc_ref;
2073                 memset(&tsc_ref, 0, sizeof(tsc_ref));
2074                 kvm->arch.hv_tsc_page = data;
2075                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2076                         break;
2077                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2078                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2079                         &tsc_ref, sizeof(tsc_ref)))
2080                         return 1;
2081                 mark_page_dirty(kvm, gfn);
2082                 break;
2083         }
2084         default:
2085                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2086                             "data 0x%llx\n", msr, data);
2087                 return 1;
2088         }
2089         return 0;
2090 }
2091
2092 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2093 {
2094         switch (msr) {
2095         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2096                 u64 gfn;
2097                 unsigned long addr;
2098
2099                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2100                         vcpu->arch.hv_vapic = data;
2101                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2102                                 return 1;
2103                         break;
2104                 }
2105                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2106                 addr = gfn_to_hva(vcpu->kvm, gfn);
2107                 if (kvm_is_error_hva(addr))
2108                         return 1;
2109                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2110                         return 1;
2111                 vcpu->arch.hv_vapic = data;
2112                 mark_page_dirty(vcpu->kvm, gfn);
2113                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2114                         return 1;
2115                 break;
2116         }
2117         case HV_X64_MSR_EOI:
2118                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2119         case HV_X64_MSR_ICR:
2120                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2121         case HV_X64_MSR_TPR:
2122                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2123         default:
2124                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2125                             "data 0x%llx\n", msr, data);
2126                 return 1;
2127         }
2128
2129         return 0;
2130 }
2131
2132 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2133 {
2134         gpa_t gpa = data & ~0x3f;
2135
2136         /* Bits 2:5 are reserved, Should be zero */
2137         if (data & 0x3c)
2138                 return 1;
2139
2140         vcpu->arch.apf.msr_val = data;
2141
2142         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2143                 kvm_clear_async_pf_completion_queue(vcpu);
2144                 kvm_async_pf_hash_reset(vcpu);
2145                 return 0;
2146         }
2147
2148         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2149                                         sizeof(u32)))
2150                 return 1;
2151
2152         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2153         kvm_async_pf_wakeup_all(vcpu);
2154         return 0;
2155 }
2156
2157 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2158 {
2159         vcpu->arch.pv_time_enabled = false;
2160 }
2161
2162 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2163 {
2164         u64 delta;
2165
2166         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2167                 return;
2168
2169         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2170         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2171         vcpu->arch.st.accum_steal = delta;
2172 }
2173
2174 static void record_steal_time(struct kvm_vcpu *vcpu)
2175 {
2176         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2177                 return;
2178
2179         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2180                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2181                 return;
2182
2183         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2184         vcpu->arch.st.steal.version += 2;
2185         vcpu->arch.st.accum_steal = 0;
2186
2187         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2188                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2189 }
2190
2191 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2192 {
2193         bool pr = false;
2194         u32 msr = msr_info->index;
2195         u64 data = msr_info->data;
2196
2197         switch (msr) {
2198         case MSR_AMD64_NB_CFG:
2199         case MSR_IA32_UCODE_REV:
2200         case MSR_IA32_UCODE_WRITE:
2201         case MSR_VM_HSAVE_PA:
2202         case MSR_AMD64_PATCH_LOADER:
2203         case MSR_AMD64_BU_CFG2:
2204                 break;
2205
2206         case MSR_EFER:
2207                 return set_efer(vcpu, data);
2208         case MSR_K7_HWCR:
2209                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2210                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2211                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2212                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2213                 if (data != 0) {
2214                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2215                                     data);
2216                         return 1;
2217                 }
2218                 break;
2219         case MSR_FAM10H_MMIO_CONF_BASE:
2220                 if (data != 0) {
2221                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2222                                     "0x%llx\n", data);
2223                         return 1;
2224                 }
2225                 break;
2226         case MSR_IA32_DEBUGCTLMSR:
2227                 if (!data) {
2228                         /* We support the non-activated case already */
2229                         break;
2230                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2231                         /* Values other than LBR and BTF are vendor-specific,
2232                            thus reserved and should throw a #GP */
2233                         return 1;
2234                 }
2235                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2236                             __func__, data);
2237                 break;
2238         case 0x200 ... 0x2ff:
2239                 return set_msr_mtrr(vcpu, msr, data);
2240         case MSR_IA32_APICBASE:
2241                 return kvm_set_apic_base(vcpu, msr_info);
2242         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2243                 return kvm_x2apic_msr_write(vcpu, msr, data);
2244         case MSR_IA32_TSCDEADLINE:
2245                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2246                 break;
2247         case MSR_IA32_TSC_ADJUST:
2248                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2249                         if (!msr_info->host_initiated) {
2250                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2251                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2252                         }
2253                         vcpu->arch.ia32_tsc_adjust_msr = data;
2254                 }
2255                 break;
2256         case MSR_IA32_MISC_ENABLE:
2257                 vcpu->arch.ia32_misc_enable_msr = data;
2258                 break;
2259         case MSR_KVM_WALL_CLOCK_NEW:
2260         case MSR_KVM_WALL_CLOCK:
2261                 vcpu->kvm->arch.wall_clock = data;
2262                 kvm_write_wall_clock(vcpu->kvm, data);
2263                 break;
2264         case MSR_KVM_SYSTEM_TIME_NEW:
2265         case MSR_KVM_SYSTEM_TIME: {
2266                 u64 gpa_offset;
2267                 struct kvm_arch *ka = &vcpu->kvm->arch;
2268
2269                 kvmclock_reset(vcpu);
2270
2271                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2272                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2273
2274                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2275                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2276                                         &vcpu->requests);
2277
2278                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2279                 }
2280
2281                 vcpu->arch.time = data;
2282                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2283
2284                 /* we verify if the enable bit is set... */
2285                 if (!(data & 1))
2286                         break;
2287
2288                 gpa_offset = data & ~(PAGE_MASK | 1);
2289
2290                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2291                      &vcpu->arch.pv_time, data & ~1ULL,
2292                      sizeof(struct pvclock_vcpu_time_info)))
2293                         vcpu->arch.pv_time_enabled = false;
2294                 else
2295                         vcpu->arch.pv_time_enabled = true;
2296
2297                 break;
2298         }
2299         case MSR_KVM_ASYNC_PF_EN:
2300                 if (kvm_pv_enable_async_pf(vcpu, data))
2301                         return 1;
2302                 break;
2303         case MSR_KVM_STEAL_TIME:
2304
2305                 if (unlikely(!sched_info_on()))
2306                         return 1;
2307
2308                 if (data & KVM_STEAL_RESERVED_MASK)
2309                         return 1;
2310
2311                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2312                                                 data & KVM_STEAL_VALID_BITS,
2313                                                 sizeof(struct kvm_steal_time)))
2314                         return 1;
2315
2316                 vcpu->arch.st.msr_val = data;
2317
2318                 if (!(data & KVM_MSR_ENABLED))
2319                         break;
2320
2321                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2322
2323                 preempt_disable();
2324                 accumulate_steal_time(vcpu);
2325                 preempt_enable();
2326
2327                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2328
2329                 break;
2330         case MSR_KVM_PV_EOI_EN:
2331                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2332                         return 1;
2333                 break;
2334
2335         case MSR_IA32_MCG_CTL:
2336         case MSR_IA32_MCG_STATUS:
2337         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2338                 return set_msr_mce(vcpu, msr, data);
2339
2340         /* Performance counters are not protected by a CPUID bit,
2341          * so we should check all of them in the generic path for the sake of
2342          * cross vendor migration.
2343          * Writing a zero into the event select MSRs disables them,
2344          * which we perfectly emulate ;-). Any other value should be at least
2345          * reported, some guests depend on them.
2346          */
2347         case MSR_K7_EVNTSEL0:
2348         case MSR_K7_EVNTSEL1:
2349         case MSR_K7_EVNTSEL2:
2350         case MSR_K7_EVNTSEL3:
2351                 if (data != 0)
2352                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2353                                     "0x%x data 0x%llx\n", msr, data);
2354                 break;
2355         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2356          * so we ignore writes to make it happy.
2357          */
2358         case MSR_K7_PERFCTR0:
2359         case MSR_K7_PERFCTR1:
2360         case MSR_K7_PERFCTR2:
2361         case MSR_K7_PERFCTR3:
2362                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2363                             "0x%x data 0x%llx\n", msr, data);
2364                 break;
2365         case MSR_P6_PERFCTR0:
2366         case MSR_P6_PERFCTR1:
2367                 pr = true;
2368         case MSR_P6_EVNTSEL0:
2369         case MSR_P6_EVNTSEL1:
2370                 if (kvm_pmu_msr(vcpu, msr))
2371                         return kvm_pmu_set_msr(vcpu, msr_info);
2372
2373                 if (pr || data != 0)
2374                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2375                                     "0x%x data 0x%llx\n", msr, data);
2376                 break;
2377         case MSR_K7_CLK_CTL:
2378                 /*
2379                  * Ignore all writes to this no longer documented MSR.
2380                  * Writes are only relevant for old K7 processors,
2381                  * all pre-dating SVM, but a recommended workaround from
2382                  * AMD for these chips. It is possible to specify the
2383                  * affected processor models on the command line, hence
2384                  * the need to ignore the workaround.
2385                  */
2386                 break;
2387         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2388                 if (kvm_hv_msr_partition_wide(msr)) {
2389                         int r;
2390                         mutex_lock(&vcpu->kvm->lock);
2391                         r = set_msr_hyperv_pw(vcpu, msr, data);
2392                         mutex_unlock(&vcpu->kvm->lock);
2393                         return r;
2394                 } else
2395                         return set_msr_hyperv(vcpu, msr, data);
2396                 break;
2397         case MSR_IA32_BBL_CR_CTL3:
2398                 /* Drop writes to this legacy MSR -- see rdmsr
2399                  * counterpart for further detail.
2400                  */
2401                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2402                 break;
2403         case MSR_AMD64_OSVW_ID_LENGTH:
2404                 if (!guest_cpuid_has_osvw(vcpu))
2405                         return 1;
2406                 vcpu->arch.osvw.length = data;
2407                 break;
2408         case MSR_AMD64_OSVW_STATUS:
2409                 if (!guest_cpuid_has_osvw(vcpu))
2410                         return 1;
2411                 vcpu->arch.osvw.status = data;
2412                 break;
2413         default:
2414                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2415                         return xen_hvm_config(vcpu, data);
2416                 if (kvm_pmu_msr(vcpu, msr))
2417                         return kvm_pmu_set_msr(vcpu, msr_info);
2418                 if (!ignore_msrs) {
2419                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2420                                     msr, data);
2421                         return 1;
2422                 } else {
2423                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2424                                     msr, data);
2425                         break;
2426                 }
2427         }
2428         return 0;
2429 }
2430 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2431
2432
2433 /*
2434  * Reads an msr value (of 'msr_index') into 'pdata'.
2435  * Returns 0 on success, non-0 otherwise.
2436  * Assumes vcpu_load() was already called.
2437  */
2438 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2439 {
2440         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2441 }
2442 EXPORT_SYMBOL_GPL(kvm_get_msr);
2443
2444 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2445 {
2446         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2447
2448         if (!msr_mtrr_valid(msr))
2449                 return 1;
2450
2451         if (msr == MSR_MTRRdefType)
2452                 *pdata = vcpu->arch.mtrr_state.def_type +
2453                          (vcpu->arch.mtrr_state.enabled << 10);
2454         else if (msr == MSR_MTRRfix64K_00000)
2455                 *pdata = p[0];
2456         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2457                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2458         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2459                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2460         else if (msr == MSR_IA32_CR_PAT)
2461                 *pdata = vcpu->arch.pat;
2462         else {  /* Variable MTRRs */
2463                 int idx, is_mtrr_mask;
2464                 u64 *pt;
2465
2466                 idx = (msr - 0x200) / 2;
2467                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2468                 if (!is_mtrr_mask)
2469                         pt =
2470                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2471                 else
2472                         pt =
2473                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2474                 *pdata = *pt;
2475         }
2476
2477         return 0;
2478 }
2479
2480 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2481 {
2482         u64 data;
2483         u64 mcg_cap = vcpu->arch.mcg_cap;
2484         unsigned bank_num = mcg_cap & 0xff;
2485
2486         switch (msr) {
2487         case MSR_IA32_P5_MC_ADDR:
2488         case MSR_IA32_P5_MC_TYPE:
2489                 data = 0;
2490                 break;
2491         case MSR_IA32_MCG_CAP:
2492                 data = vcpu->arch.mcg_cap;
2493                 break;
2494         case MSR_IA32_MCG_CTL:
2495                 if (!(mcg_cap & MCG_CTL_P))
2496                         return 1;
2497                 data = vcpu->arch.mcg_ctl;
2498                 break;
2499         case MSR_IA32_MCG_STATUS:
2500                 data = vcpu->arch.mcg_status;
2501                 break;
2502         default:
2503                 if (msr >= MSR_IA32_MC0_CTL &&
2504                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2505                         u32 offset = msr - MSR_IA32_MC0_CTL;
2506                         data = vcpu->arch.mce_banks[offset];
2507                         break;
2508                 }
2509                 return 1;
2510         }
2511         *pdata = data;
2512         return 0;
2513 }
2514
2515 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2516 {
2517         u64 data = 0;
2518         struct kvm *kvm = vcpu->kvm;
2519
2520         switch (msr) {
2521         case HV_X64_MSR_GUEST_OS_ID:
2522                 data = kvm->arch.hv_guest_os_id;
2523                 break;
2524         case HV_X64_MSR_HYPERCALL:
2525                 data = kvm->arch.hv_hypercall;
2526                 break;
2527         case HV_X64_MSR_TIME_REF_COUNT: {
2528                 data =
2529                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2530                 break;
2531         }
2532         case HV_X64_MSR_REFERENCE_TSC:
2533                 data = kvm->arch.hv_tsc_page;
2534                 break;
2535         default:
2536                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2537                 return 1;
2538         }
2539
2540         *pdata = data;
2541         return 0;
2542 }
2543
2544 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2545 {
2546         u64 data = 0;
2547
2548         switch (msr) {
2549         case HV_X64_MSR_VP_INDEX: {
2550                 int r;
2551                 struct kvm_vcpu *v;
2552                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2553                         if (v == vcpu) {
2554                                 data = r;
2555                                 break;
2556                         }
2557                 }
2558                 break;
2559         }
2560         case HV_X64_MSR_EOI:
2561                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2562         case HV_X64_MSR_ICR:
2563                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2564         case HV_X64_MSR_TPR:
2565                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2566         case HV_X64_MSR_APIC_ASSIST_PAGE:
2567                 data = vcpu->arch.hv_vapic;
2568                 break;
2569         default:
2570                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2571                 return 1;
2572         }
2573         *pdata = data;
2574         return 0;
2575 }
2576
2577 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2578 {
2579         u64 data;
2580
2581         switch (msr) {
2582         case MSR_IA32_PLATFORM_ID:
2583         case MSR_IA32_EBL_CR_POWERON:
2584         case MSR_IA32_DEBUGCTLMSR:
2585         case MSR_IA32_LASTBRANCHFROMIP:
2586         case MSR_IA32_LASTBRANCHTOIP:
2587         case MSR_IA32_LASTINTFROMIP:
2588         case MSR_IA32_LASTINTTOIP:
2589         case MSR_K8_SYSCFG:
2590         case MSR_K7_HWCR:
2591         case MSR_VM_HSAVE_PA:
2592         case MSR_K7_EVNTSEL0:
2593         case MSR_K7_EVNTSEL1:
2594         case MSR_K7_EVNTSEL2:
2595         case MSR_K7_EVNTSEL3:
2596         case MSR_K7_PERFCTR0:
2597         case MSR_K7_PERFCTR1:
2598         case MSR_K7_PERFCTR2:
2599         case MSR_K7_PERFCTR3:
2600         case MSR_K8_INT_PENDING_MSG:
2601         case MSR_AMD64_NB_CFG:
2602         case MSR_FAM10H_MMIO_CONF_BASE:
2603         case MSR_AMD64_BU_CFG2:
2604                 data = 0;
2605                 break;
2606         case MSR_P6_PERFCTR0:
2607         case MSR_P6_PERFCTR1:
2608         case MSR_P6_EVNTSEL0:
2609         case MSR_P6_EVNTSEL1:
2610                 if (kvm_pmu_msr(vcpu, msr))
2611                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2612                 data = 0;
2613                 break;
2614         case MSR_IA32_UCODE_REV:
2615                 data = 0x100000000ULL;
2616                 break;
2617         case MSR_MTRRcap:
2618                 data = 0x500 | KVM_NR_VAR_MTRR;
2619                 break;
2620         case 0x200 ... 0x2ff:
2621                 return get_msr_mtrr(vcpu, msr, pdata);
2622         case 0xcd: /* fsb frequency */
2623                 data = 3;
2624                 break;
2625                 /*
2626                  * MSR_EBC_FREQUENCY_ID
2627                  * Conservative value valid for even the basic CPU models.
2628                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2629                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2630                  * and 266MHz for model 3, or 4. Set Core Clock
2631                  * Frequency to System Bus Frequency Ratio to 1 (bits
2632                  * 31:24) even though these are only valid for CPU
2633                  * models > 2, however guests may end up dividing or
2634                  * multiplying by zero otherwise.
2635                  */
2636         case MSR_EBC_FREQUENCY_ID:
2637                 data = 1 << 24;
2638                 break;
2639         case MSR_IA32_APICBASE:
2640                 data = kvm_get_apic_base(vcpu);
2641                 break;
2642         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2643                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2644                 break;
2645         case MSR_IA32_TSCDEADLINE:
2646                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2647                 break;
2648         case MSR_IA32_TSC_ADJUST:
2649                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2650                 break;
2651         case MSR_IA32_MISC_ENABLE:
2652                 data = vcpu->arch.ia32_misc_enable_msr;
2653                 break;
2654         case MSR_IA32_PERF_STATUS:
2655                 /* TSC increment by tick */
2656                 data = 1000ULL;
2657                 /* CPU multiplier */
2658                 data |= (((uint64_t)4ULL) << 40);
2659                 break;
2660         case MSR_EFER:
2661                 data = vcpu->arch.efer;
2662                 break;
2663         case MSR_KVM_WALL_CLOCK:
2664         case MSR_KVM_WALL_CLOCK_NEW:
2665                 data = vcpu->kvm->arch.wall_clock;
2666                 break;
2667         case MSR_KVM_SYSTEM_TIME:
2668         case MSR_KVM_SYSTEM_TIME_NEW:
2669                 data = vcpu->arch.time;
2670                 break;
2671         case MSR_KVM_ASYNC_PF_EN:
2672                 data = vcpu->arch.apf.msr_val;
2673                 break;
2674         case MSR_KVM_STEAL_TIME:
2675                 data = vcpu->arch.st.msr_val;
2676                 break;
2677         case MSR_KVM_PV_EOI_EN:
2678                 data = vcpu->arch.pv_eoi.msr_val;
2679                 break;
2680         case MSR_IA32_P5_MC_ADDR:
2681         case MSR_IA32_P5_MC_TYPE:
2682         case MSR_IA32_MCG_CAP:
2683         case MSR_IA32_MCG_CTL:
2684         case MSR_IA32_MCG_STATUS:
2685         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2686                 return get_msr_mce(vcpu, msr, pdata);
2687         case MSR_K7_CLK_CTL:
2688                 /*
2689                  * Provide expected ramp-up count for K7. All other
2690                  * are set to zero, indicating minimum divisors for
2691                  * every field.
2692                  *
2693                  * This prevents guest kernels on AMD host with CPU
2694                  * type 6, model 8 and higher from exploding due to
2695                  * the rdmsr failing.
2696                  */
2697                 data = 0x20000000;
2698                 break;
2699         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2700                 if (kvm_hv_msr_partition_wide(msr)) {
2701                         int r;
2702                         mutex_lock(&vcpu->kvm->lock);
2703                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2704                         mutex_unlock(&vcpu->kvm->lock);
2705                         return r;
2706                 } else
2707                         return get_msr_hyperv(vcpu, msr, pdata);
2708                 break;
2709         case MSR_IA32_BBL_CR_CTL3:
2710                 /* This legacy MSR exists but isn't fully documented in current
2711                  * silicon.  It is however accessed by winxp in very narrow
2712                  * scenarios where it sets bit #19, itself documented as
2713                  * a "reserved" bit.  Best effort attempt to source coherent
2714                  * read data here should the balance of the register be
2715                  * interpreted by the guest:
2716                  *
2717                  * L2 cache control register 3: 64GB range, 256KB size,
2718                  * enabled, latency 0x1, configured
2719                  */
2720                 data = 0xbe702111;
2721                 break;
2722         case MSR_AMD64_OSVW_ID_LENGTH:
2723                 if (!guest_cpuid_has_osvw(vcpu))
2724                         return 1;
2725                 data = vcpu->arch.osvw.length;
2726                 break;
2727         case MSR_AMD64_OSVW_STATUS:
2728                 if (!guest_cpuid_has_osvw(vcpu))
2729                         return 1;
2730                 data = vcpu->arch.osvw.status;
2731                 break;
2732         default:
2733                 if (kvm_pmu_msr(vcpu, msr))
2734                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2735                 if (!ignore_msrs) {
2736                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2737                         return 1;
2738                 } else {
2739                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2740                         data = 0;
2741                 }
2742                 break;
2743         }
2744         *pdata = data;
2745         return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2748
2749 /*
2750  * Read or write a bunch of msrs. All parameters are kernel addresses.
2751  *
2752  * @return number of msrs set successfully.
2753  */
2754 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2755                     struct kvm_msr_entry *entries,
2756                     int (*do_msr)(struct kvm_vcpu *vcpu,
2757                                   unsigned index, u64 *data))
2758 {
2759         int i, idx;
2760
2761         idx = srcu_read_lock(&vcpu->kvm->srcu);
2762         for (i = 0; i < msrs->nmsrs; ++i)
2763                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2764                         break;
2765         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2766
2767         return i;
2768 }
2769
2770 /*
2771  * Read or write a bunch of msrs. Parameters are user addresses.
2772  *
2773  * @return number of msrs set successfully.
2774  */
2775 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2776                   int (*do_msr)(struct kvm_vcpu *vcpu,
2777                                 unsigned index, u64 *data),
2778                   int writeback)
2779 {
2780         struct kvm_msrs msrs;
2781         struct kvm_msr_entry *entries;
2782         int r, n;
2783         unsigned size;
2784
2785         r = -EFAULT;
2786         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2787                 goto out;
2788
2789         r = -E2BIG;
2790         if (msrs.nmsrs >= MAX_IO_MSRS)
2791                 goto out;
2792
2793         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2794         entries = memdup_user(user_msrs->entries, size);
2795         if (IS_ERR(entries)) {
2796                 r = PTR_ERR(entries);
2797                 goto out;
2798         }
2799
2800         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2801         if (r < 0)
2802                 goto out_free;
2803
2804         r = -EFAULT;
2805         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2806                 goto out_free;
2807
2808         r = n;
2809
2810 out_free:
2811         kfree(entries);
2812 out:
2813         return r;
2814 }
2815
2816 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2817 {
2818         int r;
2819
2820         switch (ext) {
2821         case KVM_CAP_IRQCHIP:
2822         case KVM_CAP_HLT:
2823         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2824         case KVM_CAP_SET_TSS_ADDR:
2825         case KVM_CAP_EXT_CPUID:
2826         case KVM_CAP_EXT_EMUL_CPUID:
2827         case KVM_CAP_CLOCKSOURCE:
2828         case KVM_CAP_PIT:
2829         case KVM_CAP_NOP_IO_DELAY:
2830         case KVM_CAP_MP_STATE:
2831         case KVM_CAP_SYNC_MMU:
2832         case KVM_CAP_USER_NMI:
2833         case KVM_CAP_REINJECT_CONTROL:
2834         case KVM_CAP_IRQ_INJECT_STATUS:
2835         case KVM_CAP_IOEVENTFD:
2836         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2837         case KVM_CAP_PIT2:
2838         case KVM_CAP_PIT_STATE2:
2839         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2840         case KVM_CAP_XEN_HVM:
2841         case KVM_CAP_ADJUST_CLOCK:
2842         case KVM_CAP_VCPU_EVENTS:
2843         case KVM_CAP_HYPERV:
2844         case KVM_CAP_HYPERV_VAPIC:
2845         case KVM_CAP_HYPERV_SPIN:
2846         case KVM_CAP_PCI_SEGMENT:
2847         case KVM_CAP_DEBUGREGS:
2848         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2849         case KVM_CAP_XSAVE:
2850         case KVM_CAP_ASYNC_PF:
2851         case KVM_CAP_GET_TSC_KHZ:
2852         case KVM_CAP_KVMCLOCK_CTRL:
2853         case KVM_CAP_READONLY_MEM:
2854         case KVM_CAP_HYPERV_TIME:
2855         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2856         case KVM_CAP_TSC_DEADLINE_TIMER:
2857         case KVM_CAP_ENABLE_CAP_VM:
2858         case KVM_CAP_DISABLE_QUIRKS:
2859 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2860         case KVM_CAP_ASSIGN_DEV_IRQ:
2861         case KVM_CAP_PCI_2_3:
2862 #endif
2863                 r = 1;
2864                 break;
2865         case KVM_CAP_COALESCED_MMIO:
2866                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2867                 break;
2868         case KVM_CAP_VAPIC:
2869                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2870                 break;
2871         case KVM_CAP_NR_VCPUS:
2872                 r = KVM_SOFT_MAX_VCPUS;
2873                 break;
2874         case KVM_CAP_MAX_VCPUS:
2875                 r = KVM_MAX_VCPUS;
2876                 break;
2877         case KVM_CAP_NR_MEMSLOTS:
2878                 r = KVM_USER_MEM_SLOTS;
2879                 break;
2880         case KVM_CAP_PV_MMU:    /* obsolete */
2881                 r = 0;
2882                 break;
2883 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2884         case KVM_CAP_IOMMU:
2885                 r = iommu_present(&pci_bus_type);
2886                 break;
2887 #endif
2888         case KVM_CAP_MCE:
2889                 r = KVM_MAX_MCE_BANKS;
2890                 break;
2891         case KVM_CAP_XCRS:
2892                 r = cpu_has_xsave;
2893                 break;
2894         case KVM_CAP_TSC_CONTROL:
2895                 r = kvm_has_tsc_control;
2896                 break;
2897         default:
2898                 r = 0;
2899                 break;
2900         }
2901         return r;
2902
2903 }
2904
2905 long kvm_arch_dev_ioctl(struct file *filp,
2906                         unsigned int ioctl, unsigned long arg)
2907 {
2908         void __user *argp = (void __user *)arg;
2909         long r;
2910
2911         switch (ioctl) {
2912         case KVM_GET_MSR_INDEX_LIST: {
2913                 struct kvm_msr_list __user *user_msr_list = argp;
2914                 struct kvm_msr_list msr_list;
2915                 unsigned n;
2916
2917                 r = -EFAULT;
2918                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2919                         goto out;
2920                 n = msr_list.nmsrs;
2921                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2922                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2923                         goto out;
2924                 r = -E2BIG;
2925                 if (n < msr_list.nmsrs)
2926                         goto out;
2927                 r = -EFAULT;
2928                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2929                                  num_msrs_to_save * sizeof(u32)))
2930                         goto out;
2931                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2932                                  &emulated_msrs,
2933                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2934                         goto out;
2935                 r = 0;
2936                 break;
2937         }
2938         case KVM_GET_SUPPORTED_CPUID:
2939         case KVM_GET_EMULATED_CPUID: {
2940                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2941                 struct kvm_cpuid2 cpuid;
2942
2943                 r = -EFAULT;
2944                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2945                         goto out;
2946
2947                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2948                                             ioctl);
2949                 if (r)
2950                         goto out;
2951
2952                 r = -EFAULT;
2953                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2954                         goto out;
2955                 r = 0;
2956                 break;
2957         }
2958         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2959                 u64 mce_cap;
2960
2961                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2962                 r = -EFAULT;
2963                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2964                         goto out;
2965                 r = 0;
2966                 break;
2967         }
2968         default:
2969                 r = -EINVAL;
2970         }
2971 out:
2972         return r;
2973 }
2974
2975 static void wbinvd_ipi(void *garbage)
2976 {
2977         wbinvd();
2978 }
2979
2980 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2981 {
2982         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2983 }
2984
2985 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2986 {
2987         /* Address WBINVD may be executed by guest */
2988         if (need_emulate_wbinvd(vcpu)) {
2989                 if (kvm_x86_ops->has_wbinvd_exit())
2990                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2991                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2992                         smp_call_function_single(vcpu->cpu,
2993                                         wbinvd_ipi, NULL, 1);
2994         }
2995
2996         kvm_x86_ops->vcpu_load(vcpu, cpu);
2997
2998         /* Apply any externally detected TSC adjustments (due to suspend) */
2999         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3000                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3001                 vcpu->arch.tsc_offset_adjustment = 0;
3002                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3003         }
3004
3005         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3006                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3007                                 native_read_tsc() - vcpu->arch.last_host_tsc;
3008                 if (tsc_delta < 0)
3009                         mark_tsc_unstable("KVM discovered backwards TSC");
3010                 if (check_tsc_unstable()) {
3011                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
3012                                                 vcpu->arch.last_guest_tsc);
3013                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
3014                         vcpu->arch.tsc_catchup = 1;
3015                 }
3016                 /*
3017                  * On a host with synchronized TSC, there is no need to update
3018                  * kvmclock on vcpu->cpu migration
3019                  */
3020                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3021                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3022                 if (vcpu->cpu != cpu)
3023                         kvm_migrate_timers(vcpu);
3024                 vcpu->cpu = cpu;
3025         }
3026
3027         accumulate_steal_time(vcpu);
3028         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3029 }
3030
3031 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3032 {
3033         kvm_x86_ops->vcpu_put(vcpu);
3034         kvm_put_guest_fpu(vcpu);
3035         vcpu->arch.last_host_tsc = native_read_tsc();
3036 }
3037
3038 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3039                                     struct kvm_lapic_state *s)
3040 {
3041         kvm_x86_ops->sync_pir_to_irr(vcpu);
3042         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
3043
3044         return 0;
3045 }
3046
3047 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3048                                     struct kvm_lapic_state *s)
3049 {
3050         kvm_apic_post_state_restore(vcpu, s);
3051         update_cr8_intercept(vcpu);
3052
3053         return 0;
3054 }
3055
3056 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3057                                     struct kvm_interrupt *irq)
3058 {
3059         if (irq->irq >= KVM_NR_INTERRUPTS)
3060                 return -EINVAL;
3061         if (irqchip_in_kernel(vcpu->kvm))
3062                 return -ENXIO;
3063
3064         kvm_queue_interrupt(vcpu, irq->irq, false);
3065         kvm_make_request(KVM_REQ_EVENT, vcpu);
3066
3067         return 0;
3068 }
3069
3070 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3071 {
3072         kvm_inject_nmi(vcpu);
3073
3074         return 0;
3075 }
3076
3077 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3078                                            struct kvm_tpr_access_ctl *tac)
3079 {
3080         if (tac->flags)
3081                 return -EINVAL;
3082         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3083         return 0;
3084 }
3085
3086 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3087                                         u64 mcg_cap)
3088 {
3089         int r;
3090         unsigned bank_num = mcg_cap & 0xff, bank;
3091
3092         r = -EINVAL;
3093         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3094                 goto out;
3095         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3096                 goto out;
3097         r = 0;
3098         vcpu->arch.mcg_cap = mcg_cap;
3099         /* Init IA32_MCG_CTL to all 1s */
3100         if (mcg_cap & MCG_CTL_P)
3101                 vcpu->arch.mcg_ctl = ~(u64)0;
3102         /* Init IA32_MCi_CTL to all 1s */
3103         for (bank = 0; bank < bank_num; bank++)
3104                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3105 out:
3106         return r;
3107 }
3108
3109 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3110                                       struct kvm_x86_mce *mce)
3111 {
3112         u64 mcg_cap = vcpu->arch.mcg_cap;
3113         unsigned bank_num = mcg_cap & 0xff;
3114         u64 *banks = vcpu->arch.mce_banks;
3115
3116         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3117                 return -EINVAL;
3118         /*
3119          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3120          * reporting is disabled
3121          */
3122         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3123             vcpu->arch.mcg_ctl != ~(u64)0)
3124                 return 0;
3125         banks += 4 * mce->bank;
3126         /*
3127          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3128          * reporting is disabled for the bank
3129          */
3130         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3131                 return 0;
3132         if (mce->status & MCI_STATUS_UC) {
3133                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3134                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3135                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3136                         return 0;
3137                 }
3138                 if (banks[1] & MCI_STATUS_VAL)
3139                         mce->status |= MCI_STATUS_OVER;
3140                 banks[2] = mce->addr;
3141                 banks[3] = mce->misc;
3142                 vcpu->arch.mcg_status = mce->mcg_status;
3143                 banks[1] = mce->status;
3144                 kvm_queue_exception(vcpu, MC_VECTOR);
3145         } else if (!(banks[1] & MCI_STATUS_VAL)
3146                    || !(banks[1] & MCI_STATUS_UC)) {
3147                 if (banks[1] & MCI_STATUS_VAL)
3148                         mce->status |= MCI_STATUS_OVER;
3149                 banks[2] = mce->addr;
3150                 banks[3] = mce->misc;
3151                 banks[1] = mce->status;
3152         } else
3153                 banks[1] |= MCI_STATUS_OVER;
3154         return 0;
3155 }
3156
3157 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3158                                                struct kvm_vcpu_events *events)
3159 {
3160         process_nmi(vcpu);
3161         events->exception.injected =
3162                 vcpu->arch.exception.pending &&
3163                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3164         events->exception.nr = vcpu->arch.exception.nr;
3165         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3166         events->exception.pad = 0;
3167         events->exception.error_code = vcpu->arch.exception.error_code;
3168
3169         events->interrupt.injected =
3170                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3171         events->interrupt.nr = vcpu->arch.interrupt.nr;
3172         events->interrupt.soft = 0;
3173         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3174
3175         events->nmi.injected = vcpu->arch.nmi_injected;
3176         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3177         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3178         events->nmi.pad = 0;
3179
3180         events->sipi_vector = 0; /* never valid when reporting to user space */
3181
3182         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3183                          | KVM_VCPUEVENT_VALID_SHADOW);
3184         memset(&events->reserved, 0, sizeof(events->reserved));
3185 }
3186
3187 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3188                                               struct kvm_vcpu_events *events)
3189 {
3190         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3191                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3192                               | KVM_VCPUEVENT_VALID_SHADOW))
3193                 return -EINVAL;
3194
3195         process_nmi(vcpu);
3196         vcpu->arch.exception.pending = events->exception.injected;
3197         vcpu->arch.exception.nr = events->exception.nr;
3198         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3199         vcpu->arch.exception.error_code = events->exception.error_code;
3200
3201         vcpu->arch.interrupt.pending = events->interrupt.injected;
3202         vcpu->arch.interrupt.nr = events->interrupt.nr;
3203         vcpu->arch.interrupt.soft = events->interrupt.soft;
3204         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3205                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3206                                                   events->interrupt.shadow);
3207
3208         vcpu->arch.nmi_injected = events->nmi.injected;
3209         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3210                 vcpu->arch.nmi_pending = events->nmi.pending;
3211         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3212
3213         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3214             kvm_vcpu_has_lapic(vcpu))
3215                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3216
3217         kvm_make_request(KVM_REQ_EVENT, vcpu);
3218
3219         return 0;
3220 }
3221
3222 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3223                                              struct kvm_debugregs *dbgregs)
3224 {
3225         unsigned long val;
3226
3227         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3228         kvm_get_dr(vcpu, 6, &val);
3229         dbgregs->dr6 = val;
3230         dbgregs->dr7 = vcpu->arch.dr7;
3231         dbgregs->flags = 0;
3232         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3233 }
3234
3235 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3236                                             struct kvm_debugregs *dbgregs)
3237 {
3238         if (dbgregs->flags)
3239                 return -EINVAL;
3240
3241         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3242         kvm_update_dr0123(vcpu);
3243         vcpu->arch.dr6 = dbgregs->dr6;
3244         kvm_update_dr6(vcpu);
3245         vcpu->arch.dr7 = dbgregs->dr7;
3246         kvm_update_dr7(vcpu);
3247
3248         return 0;
3249 }
3250
3251 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3252
3253 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3254 {
3255         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3256         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3257         u64 valid;
3258
3259         /*
3260          * Copy legacy XSAVE area, to avoid complications with CPUID
3261          * leaves 0 and 1 in the loop below.
3262          */
3263         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3264
3265         /* Set XSTATE_BV */
3266         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3267
3268         /*
3269          * Copy each region from the possibly compacted offset to the
3270          * non-compacted offset.
3271          */
3272         valid = xstate_bv & ~XSTATE_FPSSE;
3273         while (valid) {
3274                 u64 feature = valid & -valid;
3275                 int index = fls64(feature) - 1;
3276                 void *src = get_xsave_addr(xsave, feature);
3277
3278                 if (src) {
3279                         u32 size, offset, ecx, edx;
3280                         cpuid_count(XSTATE_CPUID, index,
3281                                     &size, &offset, &ecx, &edx);
3282                         memcpy(dest + offset, src, size);
3283                 }
3284
3285                 valid -= feature;
3286         }
3287 }
3288
3289 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3290 {
3291         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3292         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3293         u64 valid;
3294
3295         /*
3296          * Copy legacy XSAVE area, to avoid complications with CPUID
3297          * leaves 0 and 1 in the loop below.
3298          */
3299         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3300
3301         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3302         xsave->xsave_hdr.xstate_bv = xstate_bv;
3303         if (cpu_has_xsaves)
3304                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3305
3306         /*
3307          * Copy each region from the non-compacted offset to the
3308          * possibly compacted offset.
3309          */
3310         valid = xstate_bv & ~XSTATE_FPSSE;
3311         while (valid) {
3312                 u64 feature = valid & -valid;
3313                 int index = fls64(feature) - 1;
3314                 void *dest = get_xsave_addr(xsave, feature);
3315
3316                 if (dest) {
3317                         u32 size, offset, ecx, edx;
3318                         cpuid_count(XSTATE_CPUID, index,
3319                                     &size, &offset, &ecx, &edx);
3320                         memcpy(dest, src + offset, size);
3321                 } else
3322                         WARN_ON_ONCE(1);
3323
3324                 valid -= feature;
3325         }
3326 }
3327
3328 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3329                                          struct kvm_xsave *guest_xsave)
3330 {
3331         if (cpu_has_xsave) {
3332                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3333                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3334         } else {
3335                 memcpy(guest_xsave->region,
3336                         &vcpu->arch.guest_fpu.state->fxsave,
3337                         sizeof(struct i387_fxsave_struct));
3338                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3339                         XSTATE_FPSSE;
3340         }
3341 }
3342
3343 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3344                                         struct kvm_xsave *guest_xsave)
3345 {
3346         u64 xstate_bv =
3347                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3348
3349         if (cpu_has_xsave) {
3350                 /*
3351                  * Here we allow setting states that are not present in
3352                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3353                  * with old userspace.
3354                  */
3355                 if (xstate_bv & ~kvm_supported_xcr0())
3356                         return -EINVAL;
3357                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3358         } else {
3359                 if (xstate_bv & ~XSTATE_FPSSE)
3360                         return -EINVAL;
3361                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3362                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3363         }
3364         return 0;
3365 }
3366
3367 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3368                                         struct kvm_xcrs *guest_xcrs)
3369 {
3370         if (!cpu_has_xsave) {
3371                 guest_xcrs->nr_xcrs = 0;
3372                 return;
3373         }
3374
3375         guest_xcrs->nr_xcrs = 1;
3376         guest_xcrs->flags = 0;
3377         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3378         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3379 }
3380
3381 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3382                                        struct kvm_xcrs *guest_xcrs)
3383 {
3384         int i, r = 0;
3385
3386         if (!cpu_has_xsave)
3387                 return -EINVAL;
3388
3389         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3390                 return -EINVAL;
3391
3392         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3393                 /* Only support XCR0 currently */
3394                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3395                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3396                                 guest_xcrs->xcrs[i].value);
3397                         break;
3398                 }
3399         if (r)
3400                 r = -EINVAL;
3401         return r;
3402 }
3403
3404 /*
3405  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3406  * stopped by the hypervisor.  This function will be called from the host only.
3407  * EINVAL is returned when the host attempts to set the flag for a guest that
3408  * does not support pv clocks.
3409  */
3410 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3411 {
3412         if (!vcpu->arch.pv_time_enabled)
3413                 return -EINVAL;
3414         vcpu->arch.pvclock_set_guest_stopped_request = true;
3415         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3416         return 0;
3417 }
3418
3419 long kvm_arch_vcpu_ioctl(struct file *filp,
3420                          unsigned int ioctl, unsigned long arg)
3421 {
3422         struct kvm_vcpu *vcpu = filp->private_data;
3423         void __user *argp = (void __user *)arg;
3424         int r;
3425         union {
3426                 struct kvm_lapic_state *lapic;
3427                 struct kvm_xsave *xsave;
3428                 struct kvm_xcrs *xcrs;
3429                 void *buffer;
3430         } u;
3431
3432         u.buffer = NULL;
3433         switch (ioctl) {
3434         case KVM_GET_LAPIC: {
3435                 r = -EINVAL;
3436                 if (!vcpu->arch.apic)
3437                         goto out;
3438                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3439
3440                 r = -ENOMEM;
3441                 if (!u.lapic)
3442                         goto out;
3443                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3444                 if (r)
3445                         goto out;
3446                 r = -EFAULT;
3447                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3448                         goto out;
3449                 r = 0;
3450                 break;
3451         }
3452         case KVM_SET_LAPIC: {
3453                 r = -EINVAL;
3454                 if (!vcpu->arch.apic)
3455                         goto out;
3456                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3457                 if (IS_ERR(u.lapic))
3458                         return PTR_ERR(u.lapic);
3459
3460                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3461                 break;
3462         }
3463         case KVM_INTERRUPT: {
3464                 struct kvm_interrupt irq;
3465
3466                 r = -EFAULT;
3467                 if (copy_from_user(&irq, argp, sizeof irq))
3468                         goto out;
3469                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3470                 break;
3471         }
3472         case KVM_NMI: {
3473                 r = kvm_vcpu_ioctl_nmi(vcpu);
3474                 break;
3475         }
3476         case KVM_SET_CPUID: {
3477                 struct kvm_cpuid __user *cpuid_arg = argp;
3478                 struct kvm_cpuid cpuid;
3479
3480                 r = -EFAULT;
3481                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3482                         goto out;
3483                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3484                 break;
3485         }
3486         case KVM_SET_CPUID2: {
3487                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3488                 struct kvm_cpuid2 cpuid;
3489
3490                 r = -EFAULT;
3491                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3492                         goto out;
3493                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3494                                               cpuid_arg->entries);
3495                 break;
3496         }
3497         case KVM_GET_CPUID2: {
3498                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3499                 struct kvm_cpuid2 cpuid;
3500
3501                 r = -EFAULT;
3502                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3503                         goto out;
3504                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3505                                               cpuid_arg->entries);
3506                 if (r)
3507                         goto out;
3508                 r = -EFAULT;
3509                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3510                         goto out;
3511                 r = 0;
3512                 break;
3513         }
3514         case KVM_GET_MSRS:
3515                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3516                 break;
3517         case KVM_SET_MSRS:
3518                 r = msr_io(vcpu, argp, do_set_msr, 0);
3519                 break;
3520         case KVM_TPR_ACCESS_REPORTING: {
3521                 struct kvm_tpr_access_ctl tac;
3522
3523                 r = -EFAULT;
3524                 if (copy_from_user(&tac, argp, sizeof tac))
3525                         goto out;
3526                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3527                 if (r)
3528                         goto out;
3529                 r = -EFAULT;
3530                 if (copy_to_user(argp, &tac, sizeof tac))
3531                         goto out;
3532                 r = 0;
3533                 break;
3534         };
3535         case KVM_SET_VAPIC_ADDR: {
3536                 struct kvm_vapic_addr va;
3537
3538                 r = -EINVAL;
3539                 if (!irqchip_in_kernel(vcpu->kvm))
3540                         goto out;
3541                 r = -EFAULT;
3542                 if (copy_from_user(&va, argp, sizeof va))
3543                         goto out;
3544                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3545                 break;
3546         }
3547         case KVM_X86_SETUP_MCE: {
3548                 u64 mcg_cap;
3549
3550                 r = -EFAULT;
3551                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3552                         goto out;
3553                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3554                 break;
3555         }
3556         case KVM_X86_SET_MCE: {
3557                 struct kvm_x86_mce mce;
3558
3559                 r = -EFAULT;
3560                 if (copy_from_user(&mce, argp, sizeof mce))
3561                         goto out;
3562                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3563                 break;
3564         }
3565         case KVM_GET_VCPU_EVENTS: {
3566                 struct kvm_vcpu_events events;
3567
3568                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3569
3570                 r = -EFAULT;
3571                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3572                         break;
3573                 r = 0;
3574                 break;
3575         }
3576         case KVM_SET_VCPU_EVENTS: {
3577                 struct kvm_vcpu_events events;
3578
3579                 r = -EFAULT;
3580                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3581                         break;
3582
3583                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3584                 break;
3585         }
3586         case KVM_GET_DEBUGREGS: {
3587                 struct kvm_debugregs dbgregs;
3588
3589                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3590
3591                 r = -EFAULT;
3592                 if (copy_to_user(argp, &dbgregs,
3593                                  sizeof(struct kvm_debugregs)))
3594                         break;
3595                 r = 0;
3596                 break;
3597         }
3598         case KVM_SET_DEBUGREGS: {
3599                 struct kvm_debugregs dbgregs;
3600
3601                 r = -EFAULT;
3602                 if (copy_from_user(&dbgregs, argp,
3603                                    sizeof(struct kvm_debugregs)))
3604                         break;
3605
3606                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3607                 break;
3608         }
3609         case KVM_GET_XSAVE: {
3610                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3611                 r = -ENOMEM;
3612                 if (!u.xsave)
3613                         break;
3614
3615                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3616
3617                 r = -EFAULT;
3618                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3619                         break;
3620                 r = 0;
3621                 break;
3622         }
3623         case KVM_SET_XSAVE: {
3624                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3625                 if (IS_ERR(u.xsave))
3626                         return PTR_ERR(u.xsave);
3627
3628                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3629                 break;
3630         }
3631         case KVM_GET_XCRS: {
3632                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3633                 r = -ENOMEM;
3634                 if (!u.xcrs)
3635                         break;
3636
3637                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3638
3639                 r = -EFAULT;
3640                 if (copy_to_user(argp, u.xcrs,
3641                                  sizeof(struct kvm_xcrs)))
3642                         break;
3643                 r = 0;
3644                 break;
3645         }
3646         case KVM_SET_XCRS: {
3647                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3648                 if (IS_ERR(u.xcrs))
3649                         return PTR_ERR(u.xcrs);
3650
3651                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3652                 break;
3653         }
3654         case KVM_SET_TSC_KHZ: {
3655                 u32 user_tsc_khz;
3656
3657                 r = -EINVAL;
3658                 user_tsc_khz = (u32)arg;
3659
3660                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3661                         goto out;
3662
3663                 if (user_tsc_khz == 0)
3664                         user_tsc_khz = tsc_khz;
3665
3666                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3667
3668                 r = 0;
3669                 goto out;
3670         }
3671         case KVM_GET_TSC_KHZ: {
3672                 r = vcpu->arch.virtual_tsc_khz;
3673                 goto out;
3674         }
3675         case KVM_KVMCLOCK_CTRL: {
3676                 r = kvm_set_guest_paused(vcpu);
3677                 goto out;
3678         }
3679         default:
3680                 r = -EINVAL;
3681         }
3682 out:
3683         kfree(u.buffer);
3684         return r;
3685 }
3686
3687 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3688 {
3689         return VM_FAULT_SIGBUS;
3690 }
3691
3692 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3693 {
3694         int ret;
3695
3696         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3697                 return -EINVAL;
3698         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3699         return ret;
3700 }
3701
3702 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3703                                               u64 ident_addr)
3704 {
3705         kvm->arch.ept_identity_map_addr = ident_addr;
3706         return 0;
3707 }
3708
3709 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3710                                           u32 kvm_nr_mmu_pages)
3711 {
3712         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3713                 return -EINVAL;
3714
3715         mutex_lock(&kvm->slots_lock);
3716
3717         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3718         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3719
3720         mutex_unlock(&kvm->slots_lock);
3721         return 0;
3722 }
3723
3724 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3725 {
3726         return kvm->arch.n_max_mmu_pages;
3727 }
3728
3729 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3730 {
3731         int r;
3732
3733         r = 0;
3734         switch (chip->chip_id) {
3735         case KVM_IRQCHIP_PIC_MASTER:
3736                 memcpy(&chip->chip.pic,
3737                         &pic_irqchip(kvm)->pics[0],
3738                         sizeof(struct kvm_pic_state));
3739                 break;
3740         case KVM_IRQCHIP_PIC_SLAVE:
3741                 memcpy(&chip->chip.pic,
3742                         &pic_irqchip(kvm)->pics[1],
3743                         sizeof(struct kvm_pic_state));
3744                 break;
3745         case KVM_IRQCHIP_IOAPIC:
3746                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3747                 break;
3748         default:
3749                 r = -EINVAL;
3750                 break;
3751         }
3752         return r;
3753 }
3754
3755 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3756 {
3757         int r;
3758
3759         r = 0;
3760         switch (chip->chip_id) {
3761         case KVM_IRQCHIP_PIC_MASTER:
3762                 spin_lock(&pic_irqchip(kvm)->lock);
3763                 memcpy(&pic_irqchip(kvm)->pics[0],
3764                         &chip->chip.pic,
3765                         sizeof(struct kvm_pic_state));
3766                 spin_unlock(&pic_irqchip(kvm)->lock);
3767                 break;
3768         case KVM_IRQCHIP_PIC_SLAVE:
3769                 spin_lock(&pic_irqchip(kvm)->lock);
3770                 memcpy(&pic_irqchip(kvm)->pics[1],
3771                         &chip->chip.pic,
3772                         sizeof(struct kvm_pic_state));
3773                 spin_unlock(&pic_irqchip(kvm)->lock);
3774                 break;
3775         case KVM_IRQCHIP_IOAPIC:
3776                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3777                 break;
3778         default:
3779                 r = -EINVAL;
3780                 break;
3781         }
3782         kvm_pic_update_irq(pic_irqchip(kvm));
3783         return r;
3784 }
3785
3786 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3787 {
3788         int r = 0;
3789
3790         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3791         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3792         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3793         return r;
3794 }
3795
3796 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3797 {
3798         int r = 0;
3799
3800         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3801         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3802         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3803         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3804         return r;
3805 }
3806
3807 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3808 {
3809         int r = 0;
3810
3811         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3812         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3813                 sizeof(ps->channels));
3814         ps->flags = kvm->arch.vpit->pit_state.flags;
3815         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3816         memset(&ps->reserved, 0, sizeof(ps->reserved));
3817         return r;
3818 }
3819
3820 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3821 {
3822         int r = 0, start = 0;
3823         u32 prev_legacy, cur_legacy;
3824         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3825         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3826         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3827         if (!prev_legacy && cur_legacy)
3828                 start = 1;
3829         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3830                sizeof(kvm->arch.vpit->pit_state.channels));
3831         kvm->arch.vpit->pit_state.flags = ps->flags;
3832         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3833         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3834         return r;
3835 }
3836
3837 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3838                                  struct kvm_reinject_control *control)
3839 {
3840         if (!kvm->arch.vpit)
3841                 return -ENXIO;
3842         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3843         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3844         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3845         return 0;
3846 }
3847
3848 /**
3849  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3850  * @kvm: kvm instance
3851  * @log: slot id and address to which we copy the log
3852  *
3853  * Steps 1-4 below provide general overview of dirty page logging. See
3854  * kvm_get_dirty_log_protect() function description for additional details.
3855  *
3856  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3857  * always flush the TLB (step 4) even if previous step failed  and the dirty
3858  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3859  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3860  * writes will be marked dirty for next log read.
3861  *
3862  *   1. Take a snapshot of the bit and clear it if needed.
3863  *   2. Write protect the corresponding page.
3864  *   3. Copy the snapshot to the userspace.
3865  *   4. Flush TLB's if needed.
3866  */
3867 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3868 {
3869         bool is_dirty = false;
3870         int r;
3871
3872         mutex_lock(&kvm->slots_lock);
3873
3874         /*
3875          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3876          */
3877         if (kvm_x86_ops->flush_log_dirty)
3878                 kvm_x86_ops->flush_log_dirty(kvm);
3879
3880         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3881
3882         /*
3883          * All the TLBs can be flushed out of mmu lock, see the comments in
3884          * kvm_mmu_slot_remove_write_access().
3885          */
3886         lockdep_assert_held(&kvm->slots_lock);
3887         if (is_dirty)
3888                 kvm_flush_remote_tlbs(kvm);
3889
3890         mutex_unlock(&kvm->slots_lock);
3891         return r;
3892 }
3893
3894 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3895                         bool line_status)
3896 {
3897         if (!irqchip_in_kernel(kvm))
3898                 return -ENXIO;
3899
3900         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3901                                         irq_event->irq, irq_event->level,
3902                                         line_status);
3903         return 0;
3904 }
3905
3906 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3907                                    struct kvm_enable_cap *cap)
3908 {
3909         int r;
3910
3911         if (cap->flags)
3912                 return -EINVAL;
3913
3914         switch (cap->cap) {
3915         case KVM_CAP_DISABLE_QUIRKS:
3916                 kvm->arch.disabled_quirks = cap->args[0];
3917                 r = 0;
3918                 break;
3919         default:
3920                 r = -EINVAL;
3921                 break;
3922         }
3923         return r;
3924 }
3925
3926 long kvm_arch_vm_ioctl(struct file *filp,
3927                        unsigned int ioctl, unsigned long arg)
3928 {
3929         struct kvm *kvm = filp->private_data;
3930         void __user *argp = (void __user *)arg;
3931         int r = -ENOTTY;
3932         /*
3933          * This union makes it completely explicit to gcc-3.x
3934          * that these two variables' stack usage should be
3935          * combined, not added together.
3936          */
3937         union {
3938                 struct kvm_pit_state ps;
3939                 struct kvm_pit_state2 ps2;
3940                 struct kvm_pit_config pit_config;
3941         } u;
3942
3943         switch (ioctl) {
3944         case KVM_SET_TSS_ADDR:
3945                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3946                 break;
3947         case KVM_SET_IDENTITY_MAP_ADDR: {
3948                 u64 ident_addr;
3949
3950                 r = -EFAULT;
3951                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3952                         goto out;
3953                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3954                 break;
3955         }
3956         case KVM_SET_NR_MMU_PAGES:
3957                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3958                 break;
3959         case KVM_GET_NR_MMU_PAGES:
3960                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3961                 break;
3962         case KVM_CREATE_IRQCHIP: {
3963                 struct kvm_pic *vpic;
3964
3965                 mutex_lock(&kvm->lock);
3966                 r = -EEXIST;
3967                 if (kvm->arch.vpic)
3968                         goto create_irqchip_unlock;
3969                 r = -EINVAL;
3970                 if (atomic_read(&kvm->online_vcpus))
3971                         goto create_irqchip_unlock;
3972                 r = -ENOMEM;
3973                 vpic = kvm_create_pic(kvm);
3974                 if (vpic) {
3975                         r = kvm_ioapic_init(kvm);
3976                         if (r) {
3977                                 mutex_lock(&kvm->slots_lock);
3978                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3979                                                           &vpic->dev_master);
3980                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3981                                                           &vpic->dev_slave);
3982                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3983                                                           &vpic->dev_eclr);
3984                                 mutex_unlock(&kvm->slots_lock);
3985                                 kfree(vpic);
3986                                 goto create_irqchip_unlock;
3987                         }
3988                 } else
3989                         goto create_irqchip_unlock;
3990                 smp_wmb();
3991                 kvm->arch.vpic = vpic;
3992                 smp_wmb();
3993                 r = kvm_setup_default_irq_routing(kvm);
3994                 if (r) {
3995                         mutex_lock(&kvm->slots_lock);
3996                         mutex_lock(&kvm->irq_lock);
3997                         kvm_ioapic_destroy(kvm);
3998                         kvm_destroy_pic(kvm);
3999                         mutex_unlock(&kvm->irq_lock);
4000                         mutex_unlock(&kvm->slots_lock);
4001                 }
4002         create_irqchip_unlock:
4003                 mutex_unlock(&kvm->lock);
4004                 break;
4005         }
4006         case KVM_CREATE_PIT:
4007                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4008                 goto create_pit;
4009         case KVM_CREATE_PIT2:
4010                 r = -EFAULT;
4011                 if (copy_from_user(&u.pit_config, argp,
4012                                    sizeof(struct kvm_pit_config)))
4013                         goto out;
4014         create_pit:
4015                 mutex_lock(&kvm->slots_lock);
4016                 r = -EEXIST;
4017                 if (kvm->arch.vpit)
4018                         goto create_pit_unlock;
4019                 r = -ENOMEM;
4020                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4021                 if (kvm->arch.vpit)
4022                         r = 0;
4023         create_pit_unlock:
4024                 mutex_unlock(&kvm->slots_lock);
4025                 break;
4026         case KVM_GET_IRQCHIP: {
4027                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4028                 struct kvm_irqchip *chip;
4029
4030                 chip = memdup_user(argp, sizeof(*chip));
4031                 if (IS_ERR(chip)) {
4032                         r = PTR_ERR(chip);
4033                         goto out;
4034                 }
4035
4036                 r = -ENXIO;
4037                 if (!irqchip_in_kernel(kvm))
4038                         goto get_irqchip_out;
4039                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4040                 if (r)
4041                         goto get_irqchip_out;
4042                 r = -EFAULT;
4043                 if (copy_to_user(argp, chip, sizeof *chip))
4044                         goto get_irqchip_out;
4045                 r = 0;
4046         get_irqchip_out:
4047                 kfree(chip);
4048                 break;
4049         }
4050         case KVM_SET_IRQCHIP: {
4051                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4052                 struct kvm_irqchip *chip;
4053
4054                 chip = memdup_user(argp, sizeof(*chip));
4055                 if (IS_ERR(chip)) {
4056                         r = PTR_ERR(chip);
4057                         goto out;
4058                 }
4059
4060                 r = -ENXIO;
4061                 if (!irqchip_in_kernel(kvm))
4062                         goto set_irqchip_out;
4063                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4064                 if (r)
4065                         goto set_irqchip_out;
4066                 r = 0;
4067         set_irqchip_out:
4068                 kfree(chip);
4069                 break;
4070         }
4071         case KVM_GET_PIT: {
4072                 r = -EFAULT;
4073                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4074                         goto out;
4075                 r = -ENXIO;
4076                 if (!kvm->arch.vpit)
4077                         goto out;
4078                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4079                 if (r)
4080                         goto out;
4081                 r = -EFAULT;
4082                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4083                         goto out;
4084                 r = 0;
4085                 break;
4086         }
4087         case KVM_SET_PIT: {
4088                 r = -EFAULT;
4089                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4090                         goto out;
4091                 r = -ENXIO;
4092                 if (!kvm->arch.vpit)
4093                         goto out;
4094                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4095                 break;
4096         }
4097         case KVM_GET_PIT2: {
4098                 r = -ENXIO;
4099                 if (!kvm->arch.vpit)
4100                         goto out;
4101                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4102                 if (r)
4103                         goto out;
4104                 r = -EFAULT;
4105                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4106                         goto out;
4107                 r = 0;
4108                 break;
4109         }
4110         case KVM_SET_PIT2: {
4111                 r = -EFAULT;
4112                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4113                         goto out;
4114                 r = -ENXIO;
4115                 if (!kvm->arch.vpit)
4116                         goto out;
4117                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4118                 break;
4119         }
4120         case KVM_REINJECT_CONTROL: {
4121                 struct kvm_reinject_control control;
4122                 r =  -EFAULT;
4123                 if (copy_from_user(&control, argp, sizeof(control)))
4124                         goto out;
4125                 r = kvm_vm_ioctl_reinject(kvm, &control);
4126                 break;
4127         }
4128         case KVM_XEN_HVM_CONFIG: {
4129                 r = -EFAULT;
4130                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4131                                    sizeof(struct kvm_xen_hvm_config)))
4132                         goto out;
4133                 r = -EINVAL;
4134                 if (kvm->arch.xen_hvm_config.flags)
4135                         goto out;
4136                 r = 0;
4137                 break;
4138         }
4139         case KVM_SET_CLOCK: {
4140                 struct kvm_clock_data user_ns;
4141                 u64 now_ns;
4142                 s64 delta;
4143
4144                 r = -EFAULT;
4145                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4146                         goto out;
4147
4148                 r = -EINVAL;
4149                 if (user_ns.flags)
4150                         goto out;
4151
4152                 r = 0;
4153                 local_irq_disable();
4154                 now_ns = get_kernel_ns();
4155                 delta = user_ns.clock - now_ns;
4156                 local_irq_enable();
4157                 kvm->arch.kvmclock_offset = delta;
4158                 kvm_gen_update_masterclock(kvm);
4159                 break;
4160         }
4161         case KVM_GET_CLOCK: {
4162                 struct kvm_clock_data user_ns;
4163                 u64 now_ns;
4164
4165                 local_irq_disable();
4166                 now_ns = get_kernel_ns();
4167                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4168                 local_irq_enable();
4169                 user_ns.flags = 0;
4170                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4171
4172                 r = -EFAULT;
4173                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4174                         goto out;
4175                 r = 0;
4176                 break;
4177         }
4178         case KVM_ENABLE_CAP: {
4179                 struct kvm_enable_cap cap;
4180
4181                 r = -EFAULT;
4182                 if (copy_from_user(&cap, argp, sizeof(cap)))
4183                         goto out;
4184                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4185                 break;
4186         }
4187         default:
4188                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4189         }
4190 out:
4191         return r;
4192 }
4193
4194 static void kvm_init_msr_list(void)
4195 {
4196         u32 dummy[2];
4197         unsigned i, j;
4198
4199         /* skip the first msrs in the list. KVM-specific */
4200         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4201                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4202                         continue;
4203
4204                 /*
4205                  * Even MSRs that are valid in the host may not be exposed
4206                  * to the guests in some cases.  We could work around this
4207                  * in VMX with the generic MSR save/load machinery, but it
4208                  * is not really worthwhile since it will really only
4209                  * happen with nested virtualization.
4210                  */
4211                 switch (msrs_to_save[i]) {
4212                 case MSR_IA32_BNDCFGS:
4213                         if (!kvm_x86_ops->mpx_supported())
4214                                 continue;
4215                         break;
4216                 default:
4217                         break;
4218                 }
4219
4220                 if (j < i)
4221                         msrs_to_save[j] = msrs_to_save[i];
4222                 j++;
4223         }
4224         num_msrs_to_save = j;
4225 }
4226
4227 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4228                            const void *v)
4229 {
4230         int handled = 0;
4231         int n;
4232
4233         do {
4234                 n = min(len, 8);
4235                 if (!(vcpu->arch.apic &&
4236                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4237                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4238                         break;
4239                 handled += n;
4240                 addr += n;
4241                 len -= n;
4242                 v += n;
4243         } while (len);
4244
4245         return handled;
4246 }
4247
4248 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4249 {
4250         int handled = 0;
4251         int n;
4252
4253         do {
4254                 n = min(len, 8);
4255                 if (!(vcpu->arch.apic &&
4256                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4257                                          addr, n, v))
4258                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4259                         break;
4260                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4261                 handled += n;
4262                 addr += n;
4263                 len -= n;
4264                 v += n;
4265         } while (len);
4266
4267         return handled;
4268 }
4269
4270 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4271                         struct kvm_segment *var, int seg)
4272 {
4273         kvm_x86_ops->set_segment(vcpu, var, seg);
4274 }
4275
4276 void kvm_get_segment(struct kvm_vcpu *vcpu,
4277                      struct kvm_segment *var, int seg)
4278 {
4279         kvm_x86_ops->get_segment(vcpu, var, seg);
4280 }
4281
4282 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4283                            struct x86_exception *exception)
4284 {
4285         gpa_t t_gpa;
4286
4287         BUG_ON(!mmu_is_nested(vcpu));
4288
4289         /* NPT walks are always user-walks */
4290         access |= PFERR_USER_MASK;
4291         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4292
4293         return t_gpa;
4294 }
4295
4296 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4297                               struct x86_exception *exception)
4298 {
4299         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4300         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4301 }
4302
4303  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4304                                 struct x86_exception *exception)
4305 {
4306         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4307         access |= PFERR_FETCH_MASK;
4308         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4309 }
4310
4311 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4312                                struct x86_exception *exception)
4313 {
4314         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4315         access |= PFERR_WRITE_MASK;
4316         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4317 }
4318
4319 /* uses this to access any guest's mapped memory without checking CPL */
4320 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4321                                 struct x86_exception *exception)
4322 {
4323         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4324 }
4325
4326 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4327                                       struct kvm_vcpu *vcpu, u32 access,
4328                                       struct x86_exception *exception)
4329 {
4330         void *data = val;
4331         int r = X86EMUL_CONTINUE;
4332
4333         while (bytes) {
4334                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4335                                                             exception);
4336                 unsigned offset = addr & (PAGE_SIZE-1);
4337                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4338                 int ret;
4339
4340                 if (gpa == UNMAPPED_GVA)
4341                         return X86EMUL_PROPAGATE_FAULT;
4342                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4343                                           offset, toread);
4344                 if (ret < 0) {
4345                         r = X86EMUL_IO_NEEDED;
4346                         goto out;
4347                 }
4348
4349                 bytes -= toread;
4350                 data += toread;
4351                 addr += toread;
4352         }
4353 out:
4354         return r;
4355 }
4356
4357 /* used for instruction fetching */
4358 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4359                                 gva_t addr, void *val, unsigned int bytes,
4360                                 struct x86_exception *exception)
4361 {
4362         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4363         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364         unsigned offset;
4365         int ret;
4366
4367         /* Inline kvm_read_guest_virt_helper for speed.  */
4368         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4369                                                     exception);
4370         if (unlikely(gpa == UNMAPPED_GVA))
4371                 return X86EMUL_PROPAGATE_FAULT;
4372
4373         offset = addr & (PAGE_SIZE-1);
4374         if (WARN_ON(offset + bytes > PAGE_SIZE))
4375                 bytes = (unsigned)PAGE_SIZE - offset;
4376         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4377                                   offset, bytes);
4378         if (unlikely(ret < 0))
4379                 return X86EMUL_IO_NEEDED;
4380
4381         return X86EMUL_CONTINUE;
4382 }
4383
4384 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4385                                gva_t addr, void *val, unsigned int bytes,
4386                                struct x86_exception *exception)
4387 {
4388         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4389         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4390
4391         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4392                                           exception);
4393 }
4394 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4395
4396 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4397                                       gva_t addr, void *val, unsigned int bytes,
4398                                       struct x86_exception *exception)
4399 {
4400         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4401         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4402 }
4403
4404 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4405                                        gva_t addr, void *val,
4406                                        unsigned int bytes,
4407                                        struct x86_exception *exception)
4408 {
4409         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4410         void *data = val;
4411         int r = X86EMUL_CONTINUE;
4412
4413         while (bytes) {
4414                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4415                                                              PFERR_WRITE_MASK,
4416                                                              exception);
4417                 unsigned offset = addr & (PAGE_SIZE-1);
4418                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4419                 int ret;
4420
4421                 if (gpa == UNMAPPED_GVA)
4422                         return X86EMUL_PROPAGATE_FAULT;
4423                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4424                 if (ret < 0) {
4425                         r = X86EMUL_IO_NEEDED;
4426                         goto out;
4427                 }
4428
4429                 bytes -= towrite;
4430                 data += towrite;
4431                 addr += towrite;
4432         }
4433 out:
4434         return r;
4435 }
4436 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4437
4438 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4439                                 gpa_t *gpa, struct x86_exception *exception,
4440                                 bool write)
4441 {
4442         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4443                 | (write ? PFERR_WRITE_MASK : 0);
4444
4445         if (vcpu_match_mmio_gva(vcpu, gva)
4446             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4447                                  vcpu->arch.access, access)) {
4448                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4449                                         (gva & (PAGE_SIZE - 1));
4450                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4451                 return 1;
4452         }
4453
4454         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4455
4456         if (*gpa == UNMAPPED_GVA)
4457                 return -1;
4458
4459         /* For APIC access vmexit */
4460         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4461                 return 1;
4462
4463         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4464                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4465                 return 1;
4466         }
4467
4468         return 0;
4469 }
4470
4471 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4472                         const void *val, int bytes)
4473 {
4474         int ret;
4475
4476         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4477         if (ret < 0)
4478                 return 0;
4479         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4480         return 1;
4481 }
4482
4483 struct read_write_emulator_ops {
4484         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4485                                   int bytes);
4486         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4487                                   void *val, int bytes);
4488         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4489                                int bytes, void *val);
4490         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4491                                     void *val, int bytes);
4492         bool write;
4493 };
4494
4495 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4496 {
4497         if (vcpu->mmio_read_completed) {
4498                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4499                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4500                 vcpu->mmio_read_completed = 0;
4501                 return 1;
4502         }
4503
4504         return 0;
4505 }
4506
4507 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4508                         void *val, int bytes)
4509 {
4510         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4511 }
4512
4513 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4514                          void *val, int bytes)
4515 {
4516         return emulator_write_phys(vcpu, gpa, val, bytes);
4517 }
4518
4519 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4520 {
4521         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4522         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4523 }
4524
4525 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4526                           void *val, int bytes)
4527 {
4528         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4529         return X86EMUL_IO_NEEDED;
4530 }
4531
4532 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4533                            void *val, int bytes)
4534 {
4535         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4536
4537         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4538         return X86EMUL_CONTINUE;
4539 }
4540
4541 static const struct read_write_emulator_ops read_emultor = {
4542         .read_write_prepare = read_prepare,
4543         .read_write_emulate = read_emulate,
4544         .read_write_mmio = vcpu_mmio_read,
4545         .read_write_exit_mmio = read_exit_mmio,
4546 };
4547
4548 static const struct read_write_emulator_ops write_emultor = {
4549         .read_write_emulate = write_emulate,
4550         .read_write_mmio = write_mmio,
4551         .read_write_exit_mmio = write_exit_mmio,
4552         .write = true,
4553 };
4554
4555 static int emulator_read_write_onepage(unsigned long addr, void *val,
4556                                        unsigned int bytes,
4557                                        struct x86_exception *exception,
4558                                        struct kvm_vcpu *vcpu,
4559                                        const struct read_write_emulator_ops *ops)
4560 {
4561         gpa_t gpa;
4562         int handled, ret;
4563         bool write = ops->write;
4564         struct kvm_mmio_fragment *frag;
4565
4566         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4567
4568         if (ret < 0)
4569                 return X86EMUL_PROPAGATE_FAULT;
4570
4571         /* For APIC access vmexit */
4572         if (ret)
4573                 goto mmio;
4574
4575         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4576                 return X86EMUL_CONTINUE;
4577
4578 mmio:
4579         /*
4580          * Is this MMIO handled locally?
4581          */
4582         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4583         if (handled == bytes)
4584                 return X86EMUL_CONTINUE;
4585
4586         gpa += handled;
4587         bytes -= handled;
4588         val += handled;
4589
4590         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4591         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4592         frag->gpa = gpa;
4593         frag->data = val;
4594         frag->len = bytes;
4595         return X86EMUL_CONTINUE;
4596 }
4597
4598 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4599                         unsigned long addr,
4600                         void *val, unsigned int bytes,
4601                         struct x86_exception *exception,
4602                         const struct read_write_emulator_ops *ops)
4603 {
4604         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4605         gpa_t gpa;
4606         int rc;
4607
4608         if (ops->read_write_prepare &&
4609                   ops->read_write_prepare(vcpu, val, bytes))
4610                 return X86EMUL_CONTINUE;
4611
4612         vcpu->mmio_nr_fragments = 0;
4613
4614         /* Crossing a page boundary? */
4615         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4616                 int now;
4617
4618                 now = -addr & ~PAGE_MASK;
4619                 rc = emulator_read_write_onepage(addr, val, now, exception,
4620                                                  vcpu, ops);
4621
4622                 if (rc != X86EMUL_CONTINUE)
4623                         return rc;
4624                 addr += now;
4625                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4626                         addr = (u32)addr;
4627                 val += now;
4628                 bytes -= now;
4629         }
4630
4631         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4632                                          vcpu, ops);
4633         if (rc != X86EMUL_CONTINUE)
4634                 return rc;
4635
4636         if (!vcpu->mmio_nr_fragments)
4637                 return rc;
4638
4639         gpa = vcpu->mmio_fragments[0].gpa;
4640
4641         vcpu->mmio_needed = 1;
4642         vcpu->mmio_cur_fragment = 0;
4643
4644         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4645         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4646         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4647         vcpu->run->mmio.phys_addr = gpa;
4648
4649         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4650 }
4651
4652 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4653                                   unsigned long addr,
4654                                   void *val,
4655                                   unsigned int bytes,
4656                                   struct x86_exception *exception)
4657 {
4658         return emulator_read_write(ctxt, addr, val, bytes,
4659                                    exception, &read_emultor);
4660 }
4661
4662 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4663                             unsigned long addr,
4664                             const void *val,
4665                             unsigned int bytes,
4666                             struct x86_exception *exception)
4667 {
4668         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4669                                    exception, &write_emultor);
4670 }
4671
4672 #define CMPXCHG_TYPE(t, ptr, old, new) \
4673         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4674
4675 #ifdef CONFIG_X86_64
4676 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4677 #else
4678 #  define CMPXCHG64(ptr, old, new) \
4679         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4680 #endif
4681
4682 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4683                                      unsigned long addr,
4684                                      const void *old,
4685                                      const void *new,
4686                                      unsigned int bytes,
4687                                      struct x86_exception *exception)
4688 {
4689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690         gpa_t gpa;
4691         struct page *page;
4692         char *kaddr;
4693         bool exchanged;
4694
4695         /* guests cmpxchg8b have to be emulated atomically */
4696         if (bytes > 8 || (bytes & (bytes - 1)))
4697                 goto emul_write;
4698
4699         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4700
4701         if (gpa == UNMAPPED_GVA ||
4702             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4703                 goto emul_write;
4704
4705         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4706                 goto emul_write;
4707
4708         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4709         if (is_error_page(page))
4710                 goto emul_write;
4711
4712         kaddr = kmap_atomic(page);
4713         kaddr += offset_in_page(gpa);
4714         switch (bytes) {
4715         case 1:
4716                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4717                 break;
4718         case 2:
4719                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4720                 break;
4721         case 4:
4722                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4723                 break;
4724         case 8:
4725                 exchanged = CMPXCHG64(kaddr, old, new);
4726                 break;
4727         default:
4728                 BUG();
4729         }
4730         kunmap_atomic(kaddr);
4731         kvm_release_page_dirty(page);
4732
4733         if (!exchanged)
4734                 return X86EMUL_CMPXCHG_FAILED;
4735
4736         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4737         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4738
4739         return X86EMUL_CONTINUE;
4740
4741 emul_write:
4742         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4743
4744         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4745 }
4746
4747 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4748 {
4749         /* TODO: String I/O for in kernel device */
4750         int r;
4751
4752         if (vcpu->arch.pio.in)
4753                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4754                                     vcpu->arch.pio.size, pd);
4755         else
4756                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4757                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4758                                      pd);
4759         return r;
4760 }
4761
4762 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4763                                unsigned short port, void *val,
4764                                unsigned int count, bool in)
4765 {
4766         vcpu->arch.pio.port = port;
4767         vcpu->arch.pio.in = in;
4768         vcpu->arch.pio.count  = count;
4769         vcpu->arch.pio.size = size;
4770
4771         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4772                 vcpu->arch.pio.count = 0;
4773                 return 1;
4774         }
4775
4776         vcpu->run->exit_reason = KVM_EXIT_IO;
4777         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4778         vcpu->run->io.size = size;
4779         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4780         vcpu->run->io.count = count;
4781         vcpu->run->io.port = port;
4782
4783         return 0;
4784 }
4785
4786 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4787                                     int size, unsigned short port, void *val,
4788                                     unsigned int count)
4789 {
4790         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4791         int ret;
4792
4793         if (vcpu->arch.pio.count)
4794                 goto data_avail;
4795
4796         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4797         if (ret) {
4798 data_avail:
4799                 memcpy(val, vcpu->arch.pio_data, size * count);
4800                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4801                 vcpu->arch.pio.count = 0;
4802                 return 1;
4803         }
4804
4805         return 0;
4806 }
4807
4808 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4809                                      int size, unsigned short port,
4810                                      const void *val, unsigned int count)
4811 {
4812         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4813
4814         memcpy(vcpu->arch.pio_data, val, size * count);
4815         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4816         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4817 }
4818
4819 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4820 {
4821         return kvm_x86_ops->get_segment_base(vcpu, seg);
4822 }
4823
4824 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4825 {
4826         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4827 }
4828
4829 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4830 {
4831         if (!need_emulate_wbinvd(vcpu))
4832                 return X86EMUL_CONTINUE;
4833
4834         if (kvm_x86_ops->has_wbinvd_exit()) {
4835                 int cpu = get_cpu();
4836
4837                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4838                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4839                                 wbinvd_ipi, NULL, 1);
4840                 put_cpu();
4841                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4842         } else
4843                 wbinvd();
4844         return X86EMUL_CONTINUE;
4845 }
4846
4847 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4848 {
4849         kvm_x86_ops->skip_emulated_instruction(vcpu);
4850         return kvm_emulate_wbinvd_noskip(vcpu);
4851 }
4852 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4853
4854
4855
4856 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4857 {
4858         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4859 }
4860
4861 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4862                            unsigned long *dest)
4863 {
4864         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4865 }
4866
4867 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4868                            unsigned long value)
4869 {
4870
4871         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4872 }
4873
4874 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4875 {
4876         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4877 }
4878
4879 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4880 {
4881         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4882         unsigned long value;
4883
4884         switch (cr) {
4885         case 0:
4886                 value = kvm_read_cr0(vcpu);
4887                 break;
4888         case 2:
4889                 value = vcpu->arch.cr2;
4890                 break;
4891         case 3:
4892                 value = kvm_read_cr3(vcpu);
4893                 break;
4894         case 4:
4895                 value = kvm_read_cr4(vcpu);
4896                 break;
4897         case 8:
4898                 value = kvm_get_cr8(vcpu);
4899                 break;
4900         default:
4901                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4902                 return 0;
4903         }
4904
4905         return value;
4906 }
4907
4908 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4909 {
4910         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4911         int res = 0;
4912
4913         switch (cr) {
4914         case 0:
4915                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4916                 break;
4917         case 2:
4918                 vcpu->arch.cr2 = val;
4919                 break;
4920         case 3:
4921                 res = kvm_set_cr3(vcpu, val);
4922                 break;
4923         case 4:
4924                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4925                 break;
4926         case 8:
4927                 res = kvm_set_cr8(vcpu, val);
4928                 break;
4929         default:
4930                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4931                 res = -1;
4932         }
4933
4934         return res;
4935 }
4936
4937 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4938 {
4939         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4940 }
4941
4942 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4943 {
4944         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4945 }
4946
4947 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4948 {
4949         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4950 }
4951
4952 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4953 {
4954         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4955 }
4956
4957 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4958 {
4959         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4960 }
4961
4962 static unsigned long emulator_get_cached_segment_base(
4963         struct x86_emulate_ctxt *ctxt, int seg)
4964 {
4965         return get_segment_base(emul_to_vcpu(ctxt), seg);
4966 }
4967
4968 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4969                                  struct desc_struct *desc, u32 *base3,
4970                                  int seg)
4971 {
4972         struct kvm_segment var;
4973
4974         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4975         *selector = var.selector;
4976
4977         if (var.unusable) {
4978                 memset(desc, 0, sizeof(*desc));
4979                 return false;
4980         }
4981
4982         if (var.g)
4983                 var.limit >>= 12;
4984         set_desc_limit(desc, var.limit);
4985         set_desc_base(desc, (unsigned long)var.base);
4986 #ifdef CONFIG_X86_64
4987         if (base3)
4988                 *base3 = var.base >> 32;
4989 #endif
4990         desc->type = var.type;
4991         desc->s = var.s;
4992         desc->dpl = var.dpl;
4993         desc->p = var.present;
4994         desc->avl = var.avl;
4995         desc->l = var.l;
4996         desc->d = var.db;
4997         desc->g = var.g;
4998
4999         return true;
5000 }
5001
5002 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5003                                  struct desc_struct *desc, u32 base3,
5004                                  int seg)
5005 {
5006         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5007         struct kvm_segment var;
5008
5009         var.selector = selector;
5010         var.base = get_desc_base(desc);
5011 #ifdef CONFIG_X86_64
5012         var.base |= ((u64)base3) << 32;
5013 #endif
5014         var.limit = get_desc_limit(desc);
5015         if (desc->g)
5016                 var.limit = (var.limit << 12) | 0xfff;
5017         var.type = desc->type;
5018         var.dpl = desc->dpl;
5019         var.db = desc->d;
5020         var.s = desc->s;
5021         var.l = desc->l;
5022         var.g = desc->g;
5023         var.avl = desc->avl;
5024         var.present = desc->p;
5025         var.unusable = !var.present;
5026         var.padding = 0;
5027
5028         kvm_set_segment(vcpu, &var, seg);
5029         return;
5030 }
5031
5032 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5033                             u32 msr_index, u64 *pdata)
5034 {
5035         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
5036 }
5037
5038 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5039                             u32 msr_index, u64 data)
5040 {
5041         struct msr_data msr;
5042
5043         msr.data = data;
5044         msr.index = msr_index;
5045         msr.host_initiated = false;
5046         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5047 }
5048
5049 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5050                               u32 pmc)
5051 {
5052         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
5053 }
5054
5055 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5056                              u32 pmc, u64 *pdata)
5057 {
5058         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
5059 }
5060
5061 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5062 {
5063         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5064 }
5065
5066 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5067 {
5068         preempt_disable();
5069         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5070         /*
5071          * CR0.TS may reference the host fpu state, not the guest fpu state,
5072          * so it may be clear at this point.
5073          */
5074         clts();
5075 }
5076
5077 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5078 {
5079         preempt_enable();
5080 }
5081
5082 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5083                               struct x86_instruction_info *info,
5084                               enum x86_intercept_stage stage)
5085 {
5086         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5087 }
5088
5089 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5090                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5091 {
5092         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5093 }
5094
5095 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5096 {
5097         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5098 }
5099
5100 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5101 {
5102         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5103 }
5104
5105 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5106 {
5107         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5108 }
5109
5110 static const struct x86_emulate_ops emulate_ops = {
5111         .read_gpr            = emulator_read_gpr,
5112         .write_gpr           = emulator_write_gpr,
5113         .read_std            = kvm_read_guest_virt_system,
5114         .write_std           = kvm_write_guest_virt_system,
5115         .fetch               = kvm_fetch_guest_virt,
5116         .read_emulated       = emulator_read_emulated,
5117         .write_emulated      = emulator_write_emulated,
5118         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5119         .invlpg              = emulator_invlpg,
5120         .pio_in_emulated     = emulator_pio_in_emulated,
5121         .pio_out_emulated    = emulator_pio_out_emulated,
5122         .get_segment         = emulator_get_segment,
5123         .set_segment         = emulator_set_segment,
5124         .get_cached_segment_base = emulator_get_cached_segment_base,
5125         .get_gdt             = emulator_get_gdt,
5126         .get_idt             = emulator_get_idt,
5127         .set_gdt             = emulator_set_gdt,
5128         .set_idt             = emulator_set_idt,
5129         .get_cr              = emulator_get_cr,
5130         .set_cr              = emulator_set_cr,
5131         .cpl                 = emulator_get_cpl,
5132         .get_dr              = emulator_get_dr,
5133         .set_dr              = emulator_set_dr,
5134         .set_msr             = emulator_set_msr,
5135         .get_msr             = emulator_get_msr,
5136         .check_pmc           = emulator_check_pmc,
5137         .read_pmc            = emulator_read_pmc,
5138         .halt                = emulator_halt,
5139         .wbinvd              = emulator_wbinvd,
5140         .fix_hypercall       = emulator_fix_hypercall,
5141         .get_fpu             = emulator_get_fpu,
5142         .put_fpu             = emulator_put_fpu,
5143         .intercept           = emulator_intercept,
5144         .get_cpuid           = emulator_get_cpuid,
5145         .set_nmi_mask        = emulator_set_nmi_mask,
5146 };
5147
5148 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5149 {
5150         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5151         /*
5152          * an sti; sti; sequence only disable interrupts for the first
5153          * instruction. So, if the last instruction, be it emulated or
5154          * not, left the system with the INT_STI flag enabled, it
5155          * means that the last instruction is an sti. We should not
5156          * leave the flag on in this case. The same goes for mov ss
5157          */
5158         if (int_shadow & mask)
5159                 mask = 0;
5160         if (unlikely(int_shadow || mask)) {
5161                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5162                 if (!mask)
5163                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5164         }
5165 }
5166
5167 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5168 {
5169         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5170         if (ctxt->exception.vector == PF_VECTOR)
5171                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5172
5173         if (ctxt->exception.error_code_valid)
5174                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5175                                       ctxt->exception.error_code);
5176         else
5177                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5178         return false;
5179 }
5180
5181 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5182 {
5183         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5184         int cs_db, cs_l;
5185
5186         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5187
5188         ctxt->eflags = kvm_get_rflags(vcpu);
5189         ctxt->eip = kvm_rip_read(vcpu);
5190         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5191                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5192                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5193                      cs_db                              ? X86EMUL_MODE_PROT32 :
5194                                                           X86EMUL_MODE_PROT16;
5195         ctxt->guest_mode = is_guest_mode(vcpu);
5196
5197         init_decode_cache(ctxt);
5198         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5199 }
5200
5201 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5202 {
5203         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5204         int ret;
5205
5206         init_emulate_ctxt(vcpu);
5207
5208         ctxt->op_bytes = 2;
5209         ctxt->ad_bytes = 2;
5210         ctxt->_eip = ctxt->eip + inc_eip;
5211         ret = emulate_int_real(ctxt, irq);
5212
5213         if (ret != X86EMUL_CONTINUE)
5214                 return EMULATE_FAIL;
5215
5216         ctxt->eip = ctxt->_eip;
5217         kvm_rip_write(vcpu, ctxt->eip);
5218         kvm_set_rflags(vcpu, ctxt->eflags);
5219
5220         if (irq == NMI_VECTOR)
5221                 vcpu->arch.nmi_pending = 0;
5222         else
5223                 vcpu->arch.interrupt.pending = false;
5224
5225         return EMULATE_DONE;
5226 }
5227 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5228
5229 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5230 {
5231         int r = EMULATE_DONE;
5232
5233         ++vcpu->stat.insn_emulation_fail;
5234         trace_kvm_emulate_insn_failed(vcpu);
5235         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5236                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5237                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5238                 vcpu->run->internal.ndata = 0;
5239                 r = EMULATE_FAIL;
5240         }
5241         kvm_queue_exception(vcpu, UD_VECTOR);
5242
5243         return r;
5244 }
5245
5246 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5247                                   bool write_fault_to_shadow_pgtable,
5248                                   int emulation_type)
5249 {
5250         gpa_t gpa = cr2;
5251         pfn_t pfn;
5252
5253         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5254                 return false;
5255
5256         if (!vcpu->arch.mmu.direct_map) {
5257                 /*
5258                  * Write permission should be allowed since only
5259                  * write access need to be emulated.
5260                  */
5261                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5262
5263                 /*
5264                  * If the mapping is invalid in guest, let cpu retry
5265                  * it to generate fault.
5266                  */
5267                 if (gpa == UNMAPPED_GVA)
5268                         return true;
5269         }
5270
5271         /*
5272          * Do not retry the unhandleable instruction if it faults on the
5273          * readonly host memory, otherwise it will goto a infinite loop:
5274          * retry instruction -> write #PF -> emulation fail -> retry
5275          * instruction -> ...
5276          */
5277         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5278
5279         /*
5280          * If the instruction failed on the error pfn, it can not be fixed,
5281          * report the error to userspace.
5282          */
5283         if (is_error_noslot_pfn(pfn))
5284                 return false;
5285
5286         kvm_release_pfn_clean(pfn);
5287
5288         /* The instructions are well-emulated on direct mmu. */
5289         if (vcpu->arch.mmu.direct_map) {
5290                 unsigned int indirect_shadow_pages;
5291
5292                 spin_lock(&vcpu->kvm->mmu_lock);
5293                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5294                 spin_unlock(&vcpu->kvm->mmu_lock);
5295
5296                 if (indirect_shadow_pages)
5297                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5298
5299                 return true;
5300         }
5301
5302         /*
5303          * if emulation was due to access to shadowed page table
5304          * and it failed try to unshadow page and re-enter the
5305          * guest to let CPU execute the instruction.
5306          */
5307         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5308
5309         /*
5310          * If the access faults on its page table, it can not
5311          * be fixed by unprotecting shadow page and it should
5312          * be reported to userspace.
5313          */
5314         return !write_fault_to_shadow_pgtable;
5315 }
5316
5317 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5318                               unsigned long cr2,  int emulation_type)
5319 {
5320         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5321         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5322
5323         last_retry_eip = vcpu->arch.last_retry_eip;
5324         last_retry_addr = vcpu->arch.last_retry_addr;
5325
5326         /*
5327          * If the emulation is caused by #PF and it is non-page_table
5328          * writing instruction, it means the VM-EXIT is caused by shadow
5329          * page protected, we can zap the shadow page and retry this
5330          * instruction directly.
5331          *
5332          * Note: if the guest uses a non-page-table modifying instruction
5333          * on the PDE that points to the instruction, then we will unmap
5334          * the instruction and go to an infinite loop. So, we cache the
5335          * last retried eip and the last fault address, if we meet the eip
5336          * and the address again, we can break out of the potential infinite
5337          * loop.
5338          */
5339         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5340
5341         if (!(emulation_type & EMULTYPE_RETRY))
5342                 return false;
5343
5344         if (x86_page_table_writing_insn(ctxt))
5345                 return false;
5346
5347         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5348                 return false;
5349
5350         vcpu->arch.last_retry_eip = ctxt->eip;
5351         vcpu->arch.last_retry_addr = cr2;
5352
5353         if (!vcpu->arch.mmu.direct_map)
5354                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5355
5356         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5357
5358         return true;
5359 }
5360
5361 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5362 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5363
5364 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5365                                 unsigned long *db)
5366 {
5367         u32 dr6 = 0;
5368         int i;
5369         u32 enable, rwlen;
5370
5371         enable = dr7;
5372         rwlen = dr7 >> 16;
5373         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5374                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5375                         dr6 |= (1 << i);
5376         return dr6;
5377 }
5378
5379 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5380 {
5381         struct kvm_run *kvm_run = vcpu->run;
5382
5383         /*
5384          * rflags is the old, "raw" value of the flags.  The new value has
5385          * not been saved yet.
5386          *
5387          * This is correct even for TF set by the guest, because "the
5388          * processor will not generate this exception after the instruction
5389          * that sets the TF flag".
5390          */
5391         if (unlikely(rflags & X86_EFLAGS_TF)) {
5392                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5393                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5394                                                   DR6_RTM;
5395                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5396                         kvm_run->debug.arch.exception = DB_VECTOR;
5397                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5398                         *r = EMULATE_USER_EXIT;
5399                 } else {
5400                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5401                         /*
5402                          * "Certain debug exceptions may clear bit 0-3.  The
5403                          * remaining contents of the DR6 register are never
5404                          * cleared by the processor".
5405                          */
5406                         vcpu->arch.dr6 &= ~15;
5407                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5408                         kvm_queue_exception(vcpu, DB_VECTOR);
5409                 }
5410         }
5411 }
5412
5413 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5414 {
5415         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5416             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5417                 struct kvm_run *kvm_run = vcpu->run;
5418                 unsigned long eip = kvm_get_linear_rip(vcpu);
5419                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5420                                            vcpu->arch.guest_debug_dr7,
5421                                            vcpu->arch.eff_db);
5422
5423                 if (dr6 != 0) {
5424                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5425                         kvm_run->debug.arch.pc = eip;
5426                         kvm_run->debug.arch.exception = DB_VECTOR;
5427                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5428                         *r = EMULATE_USER_EXIT;
5429                         return true;
5430                 }
5431         }
5432
5433         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5434             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5435                 unsigned long eip = kvm_get_linear_rip(vcpu);
5436                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5437                                            vcpu->arch.dr7,
5438                                            vcpu->arch.db);
5439
5440                 if (dr6 != 0) {
5441                         vcpu->arch.dr6 &= ~15;
5442                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5443                         kvm_queue_exception(vcpu, DB_VECTOR);
5444                         *r = EMULATE_DONE;
5445                         return true;
5446                 }
5447         }
5448
5449         return false;
5450 }
5451
5452 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5453                             unsigned long cr2,
5454                             int emulation_type,
5455                             void *insn,
5456                             int insn_len)
5457 {
5458         int r;
5459         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5460         bool writeback = true;
5461         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5462
5463         /*
5464          * Clear write_fault_to_shadow_pgtable here to ensure it is
5465          * never reused.
5466          */
5467         vcpu->arch.write_fault_to_shadow_pgtable = false;
5468         kvm_clear_exception_queue(vcpu);
5469
5470         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5471                 init_emulate_ctxt(vcpu);
5472
5473                 /*
5474                  * We will reenter on the same instruction since
5475                  * we do not set complete_userspace_io.  This does not
5476                  * handle watchpoints yet, those would be handled in
5477                  * the emulate_ops.
5478                  */
5479                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5480                         return r;
5481
5482                 ctxt->interruptibility = 0;
5483                 ctxt->have_exception = false;
5484                 ctxt->exception.vector = -1;
5485                 ctxt->perm_ok = false;
5486
5487                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5488
5489                 r = x86_decode_insn(ctxt, insn, insn_len);
5490
5491                 trace_kvm_emulate_insn_start(vcpu);
5492                 ++vcpu->stat.insn_emulation;
5493                 if (r != EMULATION_OK)  {
5494                         if (emulation_type & EMULTYPE_TRAP_UD)
5495                                 return EMULATE_FAIL;
5496                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5497                                                 emulation_type))
5498                                 return EMULATE_DONE;
5499                         if (emulation_type & EMULTYPE_SKIP)
5500                                 return EMULATE_FAIL;
5501                         return handle_emulation_failure(vcpu);
5502                 }
5503         }
5504
5505         if (emulation_type & EMULTYPE_SKIP) {
5506                 kvm_rip_write(vcpu, ctxt->_eip);
5507                 if (ctxt->eflags & X86_EFLAGS_RF)
5508                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5509                 return EMULATE_DONE;
5510         }
5511
5512         if (retry_instruction(ctxt, cr2, emulation_type))
5513                 return EMULATE_DONE;
5514
5515         /* this is needed for vmware backdoor interface to work since it
5516            changes registers values  during IO operation */
5517         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5518                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5519                 emulator_invalidate_register_cache(ctxt);
5520         }
5521
5522 restart:
5523         r = x86_emulate_insn(ctxt);
5524
5525         if (r == EMULATION_INTERCEPTED)
5526                 return EMULATE_DONE;
5527
5528         if (r == EMULATION_FAILED) {
5529                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5530                                         emulation_type))
5531                         return EMULATE_DONE;
5532
5533                 return handle_emulation_failure(vcpu);
5534         }
5535
5536         if (ctxt->have_exception) {
5537                 r = EMULATE_DONE;
5538                 if (inject_emulated_exception(vcpu))
5539                         return r;
5540         } else if (vcpu->arch.pio.count) {
5541                 if (!vcpu->arch.pio.in) {
5542                         /* FIXME: return into emulator if single-stepping.  */
5543                         vcpu->arch.pio.count = 0;
5544                 } else {
5545                         writeback = false;
5546                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5547                 }
5548                 r = EMULATE_USER_EXIT;
5549         } else if (vcpu->mmio_needed) {
5550                 if (!vcpu->mmio_is_write)
5551                         writeback = false;
5552                 r = EMULATE_USER_EXIT;
5553                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5554         } else if (r == EMULATION_RESTART)
5555                 goto restart;
5556         else
5557                 r = EMULATE_DONE;
5558
5559         if (writeback) {
5560                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5561                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5562                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5563                 kvm_rip_write(vcpu, ctxt->eip);
5564                 if (r == EMULATE_DONE)
5565                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5566                 if (!ctxt->have_exception ||
5567                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5568                         __kvm_set_rflags(vcpu, ctxt->eflags);
5569
5570                 /*
5571                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5572                  * do nothing, and it will be requested again as soon as
5573                  * the shadow expires.  But we still need to check here,
5574                  * because POPF has no interrupt shadow.
5575                  */
5576                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5577                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5578         } else
5579                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5580
5581         return r;
5582 }
5583 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5584
5585 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5586 {
5587         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5588         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5589                                             size, port, &val, 1);
5590         /* do not return to emulator after return from userspace */
5591         vcpu->arch.pio.count = 0;
5592         return ret;
5593 }
5594 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5595
5596 static void tsc_bad(void *info)
5597 {
5598         __this_cpu_write(cpu_tsc_khz, 0);
5599 }
5600
5601 static void tsc_khz_changed(void *data)
5602 {
5603         struct cpufreq_freqs *freq = data;
5604         unsigned long khz = 0;
5605
5606         if (data)
5607                 khz = freq->new;
5608         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5609                 khz = cpufreq_quick_get(raw_smp_processor_id());
5610         if (!khz)
5611                 khz = tsc_khz;
5612         __this_cpu_write(cpu_tsc_khz, khz);
5613 }
5614
5615 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5616                                      void *data)
5617 {
5618         struct cpufreq_freqs *freq = data;
5619         struct kvm *kvm;
5620         struct kvm_vcpu *vcpu;
5621         int i, send_ipi = 0;
5622
5623         /*
5624          * We allow guests to temporarily run on slowing clocks,
5625          * provided we notify them after, or to run on accelerating
5626          * clocks, provided we notify them before.  Thus time never
5627          * goes backwards.
5628          *
5629          * However, we have a problem.  We can't atomically update
5630          * the frequency of a given CPU from this function; it is
5631          * merely a notifier, which can be called from any CPU.
5632          * Changing the TSC frequency at arbitrary points in time
5633          * requires a recomputation of local variables related to
5634          * the TSC for each VCPU.  We must flag these local variables
5635          * to be updated and be sure the update takes place with the
5636          * new frequency before any guests proceed.
5637          *
5638          * Unfortunately, the combination of hotplug CPU and frequency
5639          * change creates an intractable locking scenario; the order
5640          * of when these callouts happen is undefined with respect to
5641          * CPU hotplug, and they can race with each other.  As such,
5642          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5643          * undefined; you can actually have a CPU frequency change take
5644          * place in between the computation of X and the setting of the
5645          * variable.  To protect against this problem, all updates of
5646          * the per_cpu tsc_khz variable are done in an interrupt
5647          * protected IPI, and all callers wishing to update the value
5648          * must wait for a synchronous IPI to complete (which is trivial
5649          * if the caller is on the CPU already).  This establishes the
5650          * necessary total order on variable updates.
5651          *
5652          * Note that because a guest time update may take place
5653          * anytime after the setting of the VCPU's request bit, the
5654          * correct TSC value must be set before the request.  However,
5655          * to ensure the update actually makes it to any guest which
5656          * starts running in hardware virtualization between the set
5657          * and the acquisition of the spinlock, we must also ping the
5658          * CPU after setting the request bit.
5659          *
5660          */
5661
5662         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5663                 return 0;
5664         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5665                 return 0;
5666
5667         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5668
5669         spin_lock(&kvm_lock);
5670         list_for_each_entry(kvm, &vm_list, vm_list) {
5671                 kvm_for_each_vcpu(i, vcpu, kvm) {
5672                         if (vcpu->cpu != freq->cpu)
5673                                 continue;
5674                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5675                         if (vcpu->cpu != smp_processor_id())
5676                                 send_ipi = 1;
5677                 }
5678         }
5679         spin_unlock(&kvm_lock);
5680
5681         if (freq->old < freq->new && send_ipi) {
5682                 /*
5683                  * We upscale the frequency.  Must make the guest
5684                  * doesn't see old kvmclock values while running with
5685                  * the new frequency, otherwise we risk the guest sees
5686                  * time go backwards.
5687                  *
5688                  * In case we update the frequency for another cpu
5689                  * (which might be in guest context) send an interrupt
5690                  * to kick the cpu out of guest context.  Next time
5691                  * guest context is entered kvmclock will be updated,
5692                  * so the guest will not see stale values.
5693                  */
5694                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5695         }
5696         return 0;
5697 }
5698
5699 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5700         .notifier_call  = kvmclock_cpufreq_notifier
5701 };
5702
5703 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5704                                         unsigned long action, void *hcpu)
5705 {
5706         unsigned int cpu = (unsigned long)hcpu;
5707
5708         switch (action) {
5709                 case CPU_ONLINE:
5710                 case CPU_DOWN_FAILED:
5711                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5712                         break;
5713                 case CPU_DOWN_PREPARE:
5714                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5715                         break;
5716         }
5717         return NOTIFY_OK;
5718 }
5719
5720 static struct notifier_block kvmclock_cpu_notifier_block = {
5721         .notifier_call  = kvmclock_cpu_notifier,
5722         .priority = -INT_MAX
5723 };
5724
5725 static void kvm_timer_init(void)
5726 {
5727         int cpu;
5728
5729         max_tsc_khz = tsc_khz;
5730
5731         cpu_notifier_register_begin();
5732         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5733 #ifdef CONFIG_CPU_FREQ
5734                 struct cpufreq_policy policy;
5735                 memset(&policy, 0, sizeof(policy));
5736                 cpu = get_cpu();
5737                 cpufreq_get_policy(&policy, cpu);
5738                 if (policy.cpuinfo.max_freq)
5739                         max_tsc_khz = policy.cpuinfo.max_freq;
5740                 put_cpu();
5741 #endif
5742                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5743                                           CPUFREQ_TRANSITION_NOTIFIER);
5744         }
5745         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5746         for_each_online_cpu(cpu)
5747                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5748
5749         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5750         cpu_notifier_register_done();
5751
5752 }
5753
5754 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5755
5756 int kvm_is_in_guest(void)
5757 {
5758         return __this_cpu_read(current_vcpu) != NULL;
5759 }
5760
5761 static int kvm_is_user_mode(void)
5762 {
5763         int user_mode = 3;
5764
5765         if (__this_cpu_read(current_vcpu))
5766                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5767
5768         return user_mode != 0;
5769 }
5770
5771 static unsigned long kvm_get_guest_ip(void)
5772 {
5773         unsigned long ip = 0;
5774
5775         if (__this_cpu_read(current_vcpu))
5776                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5777
5778         return ip;
5779 }
5780
5781 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5782         .is_in_guest            = kvm_is_in_guest,
5783         .is_user_mode           = kvm_is_user_mode,
5784         .get_guest_ip           = kvm_get_guest_ip,
5785 };
5786
5787 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5788 {
5789         __this_cpu_write(current_vcpu, vcpu);
5790 }
5791 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5792
5793 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5794 {
5795         __this_cpu_write(current_vcpu, NULL);
5796 }
5797 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5798
5799 static void kvm_set_mmio_spte_mask(void)
5800 {
5801         u64 mask;
5802         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5803
5804         /*
5805          * Set the reserved bits and the present bit of an paging-structure
5806          * entry to generate page fault with PFER.RSV = 1.
5807          */
5808          /* Mask the reserved physical address bits. */
5809         mask = rsvd_bits(maxphyaddr, 51);
5810
5811         /* Bit 62 is always reserved for 32bit host. */
5812         mask |= 0x3ull << 62;
5813
5814         /* Set the present bit. */
5815         mask |= 1ull;
5816
5817 #ifdef CONFIG_X86_64
5818         /*
5819          * If reserved bit is not supported, clear the present bit to disable
5820          * mmio page fault.
5821          */
5822         if (maxphyaddr == 52)
5823                 mask &= ~1ull;
5824 #endif
5825
5826         kvm_mmu_set_mmio_spte_mask(mask);
5827 }
5828
5829 #ifdef CONFIG_X86_64
5830 static void pvclock_gtod_update_fn(struct work_struct *work)
5831 {
5832         struct kvm *kvm;
5833
5834         struct kvm_vcpu *vcpu;
5835         int i;
5836
5837         spin_lock(&kvm_lock);
5838         list_for_each_entry(kvm, &vm_list, vm_list)
5839                 kvm_for_each_vcpu(i, vcpu, kvm)
5840                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5841         atomic_set(&kvm_guest_has_master_clock, 0);
5842         spin_unlock(&kvm_lock);
5843 }
5844
5845 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5846
5847 /*
5848  * Notification about pvclock gtod data update.
5849  */
5850 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5851                                void *priv)
5852 {
5853         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5854         struct timekeeper *tk = priv;
5855
5856         update_pvclock_gtod(tk);
5857
5858         /* disable master clock if host does not trust, or does not
5859          * use, TSC clocksource
5860          */
5861         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5862             atomic_read(&kvm_guest_has_master_clock) != 0)
5863                 queue_work(system_long_wq, &pvclock_gtod_work);
5864
5865         return 0;
5866 }
5867
5868 static struct notifier_block pvclock_gtod_notifier = {
5869         .notifier_call = pvclock_gtod_notify,
5870 };
5871 #endif
5872
5873 int kvm_arch_init(void *opaque)
5874 {
5875         int r;
5876         struct kvm_x86_ops *ops = opaque;
5877
5878         if (kvm_x86_ops) {
5879                 printk(KERN_ERR "kvm: already loaded the other module\n");
5880                 r = -EEXIST;
5881                 goto out;
5882         }
5883
5884         if (!ops->cpu_has_kvm_support()) {
5885                 printk(KERN_ERR "kvm: no hardware support\n");
5886                 r = -EOPNOTSUPP;
5887                 goto out;
5888         }
5889         if (ops->disabled_by_bios()) {
5890                 printk(KERN_ERR "kvm: disabled by bios\n");
5891                 r = -EOPNOTSUPP;
5892                 goto out;
5893         }
5894
5895         r = -ENOMEM;
5896         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5897         if (!shared_msrs) {
5898                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5899                 goto out;
5900         }
5901
5902         r = kvm_mmu_module_init();
5903         if (r)
5904                 goto out_free_percpu;
5905
5906         kvm_set_mmio_spte_mask();
5907
5908         kvm_x86_ops = ops;
5909
5910         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5911                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5912
5913         kvm_timer_init();
5914
5915         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5916
5917         if (cpu_has_xsave)
5918                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5919
5920         kvm_lapic_init();
5921 #ifdef CONFIG_X86_64
5922         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5923 #endif
5924
5925         return 0;
5926
5927 out_free_percpu:
5928         free_percpu(shared_msrs);
5929 out:
5930         return r;
5931 }
5932
5933 void kvm_arch_exit(void)
5934 {
5935         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5936
5937         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5938                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5939                                             CPUFREQ_TRANSITION_NOTIFIER);
5940         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5941 #ifdef CONFIG_X86_64
5942         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5943 #endif
5944         kvm_x86_ops = NULL;
5945         kvm_mmu_module_exit();
5946         free_percpu(shared_msrs);
5947 }
5948
5949 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5950 {
5951         ++vcpu->stat.halt_exits;
5952         if (irqchip_in_kernel(vcpu->kvm)) {
5953                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5954                 return 1;
5955         } else {
5956                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5957                 return 0;
5958         }
5959 }
5960 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5961
5962 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5963 {
5964         kvm_x86_ops->skip_emulated_instruction(vcpu);
5965         return kvm_vcpu_halt(vcpu);
5966 }
5967 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5968
5969 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5970 {
5971         u64 param, ingpa, outgpa, ret;
5972         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5973         bool fast, longmode;
5974
5975         /*
5976          * hypercall generates UD from non zero cpl and real mode
5977          * per HYPER-V spec
5978          */
5979         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5980                 kvm_queue_exception(vcpu, UD_VECTOR);
5981                 return 0;
5982         }
5983
5984         longmode = is_64_bit_mode(vcpu);
5985
5986         if (!longmode) {
5987                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5988                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5989                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5990                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5991                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5992                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5993         }
5994 #ifdef CONFIG_X86_64
5995         else {
5996                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5997                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5998                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5999         }
6000 #endif
6001
6002         code = param & 0xffff;
6003         fast = (param >> 16) & 0x1;
6004         rep_cnt = (param >> 32) & 0xfff;
6005         rep_idx = (param >> 48) & 0xfff;
6006
6007         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
6008
6009         switch (code) {
6010         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
6011                 kvm_vcpu_on_spin(vcpu);
6012                 break;
6013         default:
6014                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
6015                 break;
6016         }
6017
6018         ret = res | (((u64)rep_done & 0xfff) << 32);
6019         if (longmode) {
6020                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6021         } else {
6022                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
6023                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
6024         }
6025
6026         return 1;
6027 }
6028
6029 /*
6030  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6031  *
6032  * @apicid - apicid of vcpu to be kicked.
6033  */
6034 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6035 {
6036         struct kvm_lapic_irq lapic_irq;
6037
6038         lapic_irq.shorthand = 0;
6039         lapic_irq.dest_mode = 0;
6040         lapic_irq.dest_id = apicid;
6041         lapic_irq.msi_redir_hint = false;
6042
6043         lapic_irq.delivery_mode = APIC_DM_REMRD;
6044         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6045 }
6046
6047 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6048 {
6049         unsigned long nr, a0, a1, a2, a3, ret;
6050         int op_64_bit, r = 1;
6051
6052         kvm_x86_ops->skip_emulated_instruction(vcpu);
6053
6054         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6055                 return kvm_hv_hypercall(vcpu);
6056
6057         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6058         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6059         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6060         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6061         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6062
6063         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6064
6065         op_64_bit = is_64_bit_mode(vcpu);
6066         if (!op_64_bit) {
6067                 nr &= 0xFFFFFFFF;
6068                 a0 &= 0xFFFFFFFF;
6069                 a1 &= 0xFFFFFFFF;
6070                 a2 &= 0xFFFFFFFF;
6071                 a3 &= 0xFFFFFFFF;
6072         }
6073
6074         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6075                 ret = -KVM_EPERM;
6076                 goto out;
6077         }
6078
6079         switch (nr) {
6080         case KVM_HC_VAPIC_POLL_IRQ:
6081                 ret = 0;
6082                 break;
6083         case KVM_HC_KICK_CPU:
6084                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6085                 ret = 0;
6086                 break;
6087         default:
6088                 ret = -KVM_ENOSYS;
6089                 break;
6090         }
6091 out:
6092         if (!op_64_bit)
6093                 ret = (u32)ret;
6094         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6095         ++vcpu->stat.hypercalls;
6096         return r;
6097 }
6098 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6099
6100 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6101 {
6102         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6103         char instruction[3];
6104         unsigned long rip = kvm_rip_read(vcpu);
6105
6106         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6107
6108         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6109 }
6110
6111 /*
6112  * Check if userspace requested an interrupt window, and that the
6113  * interrupt window is open.
6114  *
6115  * No need to exit to userspace if we already have an interrupt queued.
6116  */
6117 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6118 {
6119         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6120                 vcpu->run->request_interrupt_window &&
6121                 kvm_arch_interrupt_allowed(vcpu));
6122 }
6123
6124 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6125 {
6126         struct kvm_run *kvm_run = vcpu->run;
6127
6128         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6129         kvm_run->cr8 = kvm_get_cr8(vcpu);
6130         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6131         if (irqchip_in_kernel(vcpu->kvm))
6132                 kvm_run->ready_for_interrupt_injection = 1;
6133         else
6134                 kvm_run->ready_for_interrupt_injection =
6135                         kvm_arch_interrupt_allowed(vcpu) &&
6136                         !kvm_cpu_has_interrupt(vcpu) &&
6137                         !kvm_event_needs_reinjection(vcpu);
6138 }
6139
6140 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6141 {
6142         int max_irr, tpr;
6143
6144         if (!kvm_x86_ops->update_cr8_intercept)
6145                 return;
6146
6147         if (!vcpu->arch.apic)
6148                 return;
6149
6150         if (!vcpu->arch.apic->vapic_addr)
6151                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6152         else
6153                 max_irr = -1;
6154
6155         if (max_irr != -1)
6156                 max_irr >>= 4;
6157
6158         tpr = kvm_lapic_get_cr8(vcpu);
6159
6160         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6161 }
6162
6163 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6164 {
6165         int r;
6166
6167         /* try to reinject previous events if any */
6168         if (vcpu->arch.exception.pending) {
6169                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6170                                         vcpu->arch.exception.has_error_code,
6171                                         vcpu->arch.exception.error_code);
6172
6173                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6174                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6175                                              X86_EFLAGS_RF);
6176
6177                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6178                     (vcpu->arch.dr7 & DR7_GD)) {
6179                         vcpu->arch.dr7 &= ~DR7_GD;
6180                         kvm_update_dr7(vcpu);
6181                 }
6182
6183                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6184                                           vcpu->arch.exception.has_error_code,
6185                                           vcpu->arch.exception.error_code,
6186                                           vcpu->arch.exception.reinject);
6187                 return 0;
6188         }
6189
6190         if (vcpu->arch.nmi_injected) {
6191                 kvm_x86_ops->set_nmi(vcpu);
6192                 return 0;
6193         }
6194
6195         if (vcpu->arch.interrupt.pending) {
6196                 kvm_x86_ops->set_irq(vcpu);
6197                 return 0;
6198         }
6199
6200         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6201                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6202                 if (r != 0)
6203                         return r;
6204         }
6205
6206         /* try to inject new event if pending */
6207         if (vcpu->arch.nmi_pending) {
6208                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6209                         --vcpu->arch.nmi_pending;
6210                         vcpu->arch.nmi_injected = true;
6211                         kvm_x86_ops->set_nmi(vcpu);
6212                 }
6213         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6214                 /*
6215                  * Because interrupts can be injected asynchronously, we are
6216                  * calling check_nested_events again here to avoid a race condition.
6217                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6218                  * proposal and current concerns.  Perhaps we should be setting
6219                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6220                  */
6221                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6222                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6223                         if (r != 0)
6224                                 return r;
6225                 }
6226                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6227                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6228                                             false);
6229                         kvm_x86_ops->set_irq(vcpu);
6230                 }
6231         }
6232         return 0;
6233 }
6234
6235 static void process_nmi(struct kvm_vcpu *vcpu)
6236 {
6237         unsigned limit = 2;
6238
6239         /*
6240          * x86 is limited to one NMI running, and one NMI pending after it.
6241          * If an NMI is already in progress, limit further NMIs to just one.
6242          * Otherwise, allow two (and we'll inject the first one immediately).
6243          */
6244         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6245                 limit = 1;
6246
6247         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6248         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6249         kvm_make_request(KVM_REQ_EVENT, vcpu);
6250 }
6251
6252 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6253 {
6254         u64 eoi_exit_bitmap[4];
6255         u32 tmr[8];
6256
6257         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6258                 return;
6259
6260         memset(eoi_exit_bitmap, 0, 32);
6261         memset(tmr, 0, 32);
6262
6263         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6264         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6265         kvm_apic_update_tmr(vcpu, tmr);
6266 }
6267
6268 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6269 {
6270         ++vcpu->stat.tlb_flush;
6271         kvm_x86_ops->tlb_flush(vcpu);
6272 }
6273
6274 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6275 {
6276         struct page *page = NULL;
6277
6278         if (!irqchip_in_kernel(vcpu->kvm))
6279                 return;
6280
6281         if (!kvm_x86_ops->set_apic_access_page_addr)
6282                 return;
6283
6284         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6285         if (is_error_page(page))
6286                 return;
6287         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6288
6289         /*
6290          * Do not pin apic access page in memory, the MMU notifier
6291          * will call us again if it is migrated or swapped out.
6292          */
6293         put_page(page);
6294 }
6295 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6296
6297 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6298                                            unsigned long address)
6299 {
6300         /*
6301          * The physical address of apic access page is stored in the VMCS.
6302          * Update it when it becomes invalid.
6303          */
6304         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6305                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6306 }
6307
6308 /*
6309  * Returns 1 to let vcpu_run() continue the guest execution loop without
6310  * exiting to the userspace.  Otherwise, the value will be returned to the
6311  * userspace.
6312  */
6313 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6314 {
6315         int r;
6316         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6317                 vcpu->run->request_interrupt_window;
6318         bool req_immediate_exit = false;
6319
6320         if (vcpu->requests) {
6321                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6322                         kvm_mmu_unload(vcpu);
6323                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6324                         __kvm_migrate_timers(vcpu);
6325                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6326                         kvm_gen_update_masterclock(vcpu->kvm);
6327                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6328                         kvm_gen_kvmclock_update(vcpu);
6329                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6330                         r = kvm_guest_time_update(vcpu);
6331                         if (unlikely(r))
6332                                 goto out;
6333                 }
6334                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6335                         kvm_mmu_sync_roots(vcpu);
6336                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6337                         kvm_vcpu_flush_tlb(vcpu);
6338                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6339                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6340                         r = 0;
6341                         goto out;
6342                 }
6343                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6344                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6345                         r = 0;
6346                         goto out;
6347                 }
6348                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6349                         vcpu->fpu_active = 0;
6350                         kvm_x86_ops->fpu_deactivate(vcpu);
6351                 }
6352                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6353                         /* Page is swapped out. Do synthetic halt */
6354                         vcpu->arch.apf.halted = true;
6355                         r = 1;
6356                         goto out;
6357                 }
6358                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6359                         record_steal_time(vcpu);
6360                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6361                         process_nmi(vcpu);
6362                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6363                         kvm_handle_pmu_event(vcpu);
6364                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6365                         kvm_deliver_pmi(vcpu);
6366                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6367                         vcpu_scan_ioapic(vcpu);
6368                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6369                         kvm_vcpu_reload_apic_access_page(vcpu);
6370         }
6371
6372         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6373                 kvm_apic_accept_events(vcpu);
6374                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6375                         r = 1;
6376                         goto out;
6377                 }
6378
6379                 if (inject_pending_event(vcpu, req_int_win) != 0)
6380                         req_immediate_exit = true;
6381                 /* enable NMI/IRQ window open exits if needed */
6382                 else if (vcpu->arch.nmi_pending)
6383                         kvm_x86_ops->enable_nmi_window(vcpu);
6384                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6385                         kvm_x86_ops->enable_irq_window(vcpu);
6386
6387                 if (kvm_lapic_enabled(vcpu)) {
6388                         /*
6389                          * Update architecture specific hints for APIC
6390                          * virtual interrupt delivery.
6391                          */
6392                         if (kvm_x86_ops->hwapic_irr_update)
6393                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6394                                         kvm_lapic_find_highest_irr(vcpu));
6395                         update_cr8_intercept(vcpu);
6396                         kvm_lapic_sync_to_vapic(vcpu);
6397                 }
6398         }
6399
6400         r = kvm_mmu_reload(vcpu);
6401         if (unlikely(r)) {
6402                 goto cancel_injection;
6403         }
6404
6405         preempt_disable();
6406
6407         kvm_x86_ops->prepare_guest_switch(vcpu);
6408         if (vcpu->fpu_active)
6409                 kvm_load_guest_fpu(vcpu);
6410         kvm_load_guest_xcr0(vcpu);
6411
6412         vcpu->mode = IN_GUEST_MODE;
6413
6414         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6415
6416         /* We should set ->mode before check ->requests,
6417          * see the comment in make_all_cpus_request.
6418          */
6419         smp_mb__after_srcu_read_unlock();
6420
6421         local_irq_disable();
6422
6423         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6424             || need_resched() || signal_pending(current)) {
6425                 vcpu->mode = OUTSIDE_GUEST_MODE;
6426                 smp_wmb();
6427                 local_irq_enable();
6428                 preempt_enable();
6429                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6430                 r = 1;
6431                 goto cancel_injection;
6432         }
6433
6434         if (req_immediate_exit)
6435                 smp_send_reschedule(vcpu->cpu);
6436
6437         __kvm_guest_enter();
6438
6439         if (unlikely(vcpu->arch.switch_db_regs)) {
6440                 set_debugreg(0, 7);
6441                 set_debugreg(vcpu->arch.eff_db[0], 0);
6442                 set_debugreg(vcpu->arch.eff_db[1], 1);
6443                 set_debugreg(vcpu->arch.eff_db[2], 2);
6444                 set_debugreg(vcpu->arch.eff_db[3], 3);
6445                 set_debugreg(vcpu->arch.dr6, 6);
6446                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6447         }
6448
6449         trace_kvm_entry(vcpu->vcpu_id);
6450         wait_lapic_expire(vcpu);
6451         kvm_x86_ops->run(vcpu);
6452
6453         /*
6454          * Do this here before restoring debug registers on the host.  And
6455          * since we do this before handling the vmexit, a DR access vmexit
6456          * can (a) read the correct value of the debug registers, (b) set
6457          * KVM_DEBUGREG_WONT_EXIT again.
6458          */
6459         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6460                 int i;
6461
6462                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6463                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6464                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6465                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6466         }
6467
6468         /*
6469          * If the guest has used debug registers, at least dr7
6470          * will be disabled while returning to the host.
6471          * If we don't have active breakpoints in the host, we don't
6472          * care about the messed up debug address registers. But if
6473          * we have some of them active, restore the old state.
6474          */
6475         if (hw_breakpoint_active())
6476                 hw_breakpoint_restore();
6477
6478         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6479                                                            native_read_tsc());
6480
6481         vcpu->mode = OUTSIDE_GUEST_MODE;
6482         smp_wmb();
6483
6484         /* Interrupt is enabled by handle_external_intr() */
6485         kvm_x86_ops->handle_external_intr(vcpu);
6486
6487         ++vcpu->stat.exits;
6488
6489         /*
6490          * We must have an instruction between local_irq_enable() and
6491          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6492          * the interrupt shadow.  The stat.exits increment will do nicely.
6493          * But we need to prevent reordering, hence this barrier():
6494          */
6495         barrier();
6496
6497         kvm_guest_exit();
6498
6499         preempt_enable();
6500
6501         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6502
6503         /*
6504          * Profile KVM exit RIPs:
6505          */
6506         if (unlikely(prof_on == KVM_PROFILING)) {
6507                 unsigned long rip = kvm_rip_read(vcpu);
6508                 profile_hit(KVM_PROFILING, (void *)rip);
6509         }
6510
6511         if (unlikely(vcpu->arch.tsc_always_catchup))
6512                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6513
6514         if (vcpu->arch.apic_attention)
6515                 kvm_lapic_sync_from_vapic(vcpu);
6516
6517         r = kvm_x86_ops->handle_exit(vcpu);
6518         return r;
6519
6520 cancel_injection:
6521         kvm_x86_ops->cancel_injection(vcpu);
6522         if (unlikely(vcpu->arch.apic_attention))
6523                 kvm_lapic_sync_from_vapic(vcpu);
6524 out:
6525         return r;
6526 }
6527
6528 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6529 {
6530         if (!kvm_arch_vcpu_runnable(vcpu)) {
6531                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6532                 kvm_vcpu_block(vcpu);
6533                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6534                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6535                         return 1;
6536         }
6537
6538         kvm_apic_accept_events(vcpu);
6539         switch(vcpu->arch.mp_state) {
6540         case KVM_MP_STATE_HALTED:
6541                 vcpu->arch.pv.pv_unhalted = false;
6542                 vcpu->arch.mp_state =
6543                         KVM_MP_STATE_RUNNABLE;
6544         case KVM_MP_STATE_RUNNABLE:
6545                 vcpu->arch.apf.halted = false;
6546                 break;
6547         case KVM_MP_STATE_INIT_RECEIVED:
6548                 break;
6549         default:
6550                 return -EINTR;
6551                 break;
6552         }
6553         return 1;
6554 }
6555
6556 static int vcpu_run(struct kvm_vcpu *vcpu)
6557 {
6558         int r;
6559         struct kvm *kvm = vcpu->kvm;
6560
6561         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6562
6563         for (;;) {
6564                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6565                     !vcpu->arch.apf.halted)
6566                         r = vcpu_enter_guest(vcpu);
6567                 else
6568                         r = vcpu_block(kvm, vcpu);
6569                 if (r <= 0)
6570                         break;
6571
6572                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6573                 if (kvm_cpu_has_pending_timer(vcpu))
6574                         kvm_inject_pending_timer_irqs(vcpu);
6575
6576                 if (dm_request_for_irq_injection(vcpu)) {
6577                         r = -EINTR;
6578                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6579                         ++vcpu->stat.request_irq_exits;
6580                         break;
6581                 }
6582
6583                 kvm_check_async_pf_completion(vcpu);
6584
6585                 if (signal_pending(current)) {
6586                         r = -EINTR;
6587                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6588                         ++vcpu->stat.signal_exits;
6589                         break;
6590                 }
6591                 if (need_resched()) {
6592                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6593                         cond_resched();
6594                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6595                 }
6596         }
6597
6598         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6599
6600         return r;
6601 }
6602
6603 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6604 {
6605         int r;
6606         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6607         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6608         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6609         if (r != EMULATE_DONE)
6610                 return 0;
6611         return 1;
6612 }
6613
6614 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6615 {
6616         BUG_ON(!vcpu->arch.pio.count);
6617
6618         return complete_emulated_io(vcpu);
6619 }
6620
6621 /*
6622  * Implements the following, as a state machine:
6623  *
6624  * read:
6625  *   for each fragment
6626  *     for each mmio piece in the fragment
6627  *       write gpa, len
6628  *       exit
6629  *       copy data
6630  *   execute insn
6631  *
6632  * write:
6633  *   for each fragment
6634  *     for each mmio piece in the fragment
6635  *       write gpa, len
6636  *       copy data
6637  *       exit
6638  */
6639 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6640 {
6641         struct kvm_run *run = vcpu->run;
6642         struct kvm_mmio_fragment *frag;
6643         unsigned len;
6644
6645         BUG_ON(!vcpu->mmio_needed);
6646
6647         /* Complete previous fragment */
6648         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6649         len = min(8u, frag->len);
6650         if (!vcpu->mmio_is_write)
6651                 memcpy(frag->data, run->mmio.data, len);
6652
6653         if (frag->len <= 8) {
6654                 /* Switch to the next fragment. */
6655                 frag++;
6656                 vcpu->mmio_cur_fragment++;
6657         } else {
6658                 /* Go forward to the next mmio piece. */
6659                 frag->data += len;
6660                 frag->gpa += len;
6661                 frag->len -= len;
6662         }
6663
6664         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6665                 vcpu->mmio_needed = 0;
6666
6667                 /* FIXME: return into emulator if single-stepping.  */
6668                 if (vcpu->mmio_is_write)
6669                         return 1;
6670                 vcpu->mmio_read_completed = 1;
6671                 return complete_emulated_io(vcpu);
6672         }
6673
6674         run->exit_reason = KVM_EXIT_MMIO;
6675         run->mmio.phys_addr = frag->gpa;
6676         if (vcpu->mmio_is_write)
6677                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6678         run->mmio.len = min(8u, frag->len);
6679         run->mmio.is_write = vcpu->mmio_is_write;
6680         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6681         return 0;
6682 }
6683
6684
6685 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6686 {
6687         int r;
6688         sigset_t sigsaved;
6689
6690         if (!tsk_used_math(current) && init_fpu(current))
6691                 return -ENOMEM;
6692
6693         if (vcpu->sigset_active)
6694                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6695
6696         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6697                 kvm_vcpu_block(vcpu);
6698                 kvm_apic_accept_events(vcpu);
6699                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6700                 r = -EAGAIN;
6701                 goto out;
6702         }
6703
6704         /* re-sync apic's tpr */
6705         if (!irqchip_in_kernel(vcpu->kvm)) {
6706                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6707                         r = -EINVAL;
6708                         goto out;
6709                 }
6710         }
6711
6712         if (unlikely(vcpu->arch.complete_userspace_io)) {
6713                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6714                 vcpu->arch.complete_userspace_io = NULL;
6715                 r = cui(vcpu);
6716                 if (r <= 0)
6717                         goto out;
6718         } else
6719                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6720
6721         r = vcpu_run(vcpu);
6722
6723 out:
6724         post_kvm_run_save(vcpu);
6725         if (vcpu->sigset_active)
6726                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6727
6728         return r;
6729 }
6730
6731 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6732 {
6733         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6734                 /*
6735                  * We are here if userspace calls get_regs() in the middle of
6736                  * instruction emulation. Registers state needs to be copied
6737                  * back from emulation context to vcpu. Userspace shouldn't do
6738                  * that usually, but some bad designed PV devices (vmware
6739                  * backdoor interface) need this to work
6740                  */
6741                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6742                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6743         }
6744         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6745         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6746         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6747         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6748         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6749         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6750         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6751         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6752 #ifdef CONFIG_X86_64
6753         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6754         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6755         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6756         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6757         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6758         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6759         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6760         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6761 #endif
6762
6763         regs->rip = kvm_rip_read(vcpu);
6764         regs->rflags = kvm_get_rflags(vcpu);
6765
6766         return 0;
6767 }
6768
6769 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6770 {
6771         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6772         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6773
6774         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6775         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6776         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6777         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6778         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6779         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6780         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6781         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6782 #ifdef CONFIG_X86_64
6783         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6784         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6785         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6786         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6787         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6788         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6789         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6790         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6791 #endif
6792
6793         kvm_rip_write(vcpu, regs->rip);
6794         kvm_set_rflags(vcpu, regs->rflags);
6795
6796         vcpu->arch.exception.pending = false;
6797
6798         kvm_make_request(KVM_REQ_EVENT, vcpu);
6799
6800         return 0;
6801 }
6802
6803 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6804 {
6805         struct kvm_segment cs;
6806
6807         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6808         *db = cs.db;
6809         *l = cs.l;
6810 }
6811 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6812
6813 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6814                                   struct kvm_sregs *sregs)
6815 {
6816         struct desc_ptr dt;
6817
6818         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6819         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6820         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6821         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6822         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6823         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6824
6825         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6826         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6827
6828         kvm_x86_ops->get_idt(vcpu, &dt);
6829         sregs->idt.limit = dt.size;
6830         sregs->idt.base = dt.address;
6831         kvm_x86_ops->get_gdt(vcpu, &dt);
6832         sregs->gdt.limit = dt.size;
6833         sregs->gdt.base = dt.address;
6834
6835         sregs->cr0 = kvm_read_cr0(vcpu);
6836         sregs->cr2 = vcpu->arch.cr2;
6837         sregs->cr3 = kvm_read_cr3(vcpu);
6838         sregs->cr4 = kvm_read_cr4(vcpu);
6839         sregs->cr8 = kvm_get_cr8(vcpu);
6840         sregs->efer = vcpu->arch.efer;
6841         sregs->apic_base = kvm_get_apic_base(vcpu);
6842
6843         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6844
6845         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6846                 set_bit(vcpu->arch.interrupt.nr,
6847                         (unsigned long *)sregs->interrupt_bitmap);
6848
6849         return 0;
6850 }
6851
6852 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6853                                     struct kvm_mp_state *mp_state)
6854 {
6855         kvm_apic_accept_events(vcpu);
6856         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6857                                         vcpu->arch.pv.pv_unhalted)
6858                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6859         else
6860                 mp_state->mp_state = vcpu->arch.mp_state;
6861
6862         return 0;
6863 }
6864
6865 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6866                                     struct kvm_mp_state *mp_state)
6867 {
6868         if (!kvm_vcpu_has_lapic(vcpu) &&
6869             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6870                 return -EINVAL;
6871
6872         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6873                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6874                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6875         } else
6876                 vcpu->arch.mp_state = mp_state->mp_state;
6877         kvm_make_request(KVM_REQ_EVENT, vcpu);
6878         return 0;
6879 }
6880
6881 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6882                     int reason, bool has_error_code, u32 error_code)
6883 {
6884         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6885         int ret;
6886
6887         init_emulate_ctxt(vcpu);
6888
6889         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6890                                    has_error_code, error_code);
6891
6892         if (ret)
6893                 return EMULATE_FAIL;
6894
6895         kvm_rip_write(vcpu, ctxt->eip);
6896         kvm_set_rflags(vcpu, ctxt->eflags);
6897         kvm_make_request(KVM_REQ_EVENT, vcpu);
6898         return EMULATE_DONE;
6899 }
6900 EXPORT_SYMBOL_GPL(kvm_task_switch);
6901
6902 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6903                                   struct kvm_sregs *sregs)
6904 {
6905         struct msr_data apic_base_msr;
6906         int mmu_reset_needed = 0;
6907         int pending_vec, max_bits, idx;
6908         struct desc_ptr dt;
6909
6910         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6911                 return -EINVAL;
6912
6913         dt.size = sregs->idt.limit;
6914         dt.address = sregs->idt.base;
6915         kvm_x86_ops->set_idt(vcpu, &dt);
6916         dt.size = sregs->gdt.limit;
6917         dt.address = sregs->gdt.base;
6918         kvm_x86_ops->set_gdt(vcpu, &dt);
6919
6920         vcpu->arch.cr2 = sregs->cr2;
6921         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6922         vcpu->arch.cr3 = sregs->cr3;
6923         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6924
6925         kvm_set_cr8(vcpu, sregs->cr8);
6926
6927         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6928         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6929         apic_base_msr.data = sregs->apic_base;
6930         apic_base_msr.host_initiated = true;
6931         kvm_set_apic_base(vcpu, &apic_base_msr);
6932
6933         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6934         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6935         vcpu->arch.cr0 = sregs->cr0;
6936
6937         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6938         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6939         if (sregs->cr4 & X86_CR4_OSXSAVE)
6940                 kvm_update_cpuid(vcpu);
6941
6942         idx = srcu_read_lock(&vcpu->kvm->srcu);
6943         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6944                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6945                 mmu_reset_needed = 1;
6946         }
6947         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6948
6949         if (mmu_reset_needed)
6950                 kvm_mmu_reset_context(vcpu);
6951
6952         max_bits = KVM_NR_INTERRUPTS;
6953         pending_vec = find_first_bit(
6954                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6955         if (pending_vec < max_bits) {
6956                 kvm_queue_interrupt(vcpu, pending_vec, false);
6957                 pr_debug("Set back pending irq %d\n", pending_vec);
6958         }
6959
6960         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6961         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6962         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6963         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6964         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6965         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6966
6967         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6968         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6969
6970         update_cr8_intercept(vcpu);
6971
6972         /* Older userspace won't unhalt the vcpu on reset. */
6973         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6974             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6975             !is_protmode(vcpu))
6976                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6977
6978         kvm_make_request(KVM_REQ_EVENT, vcpu);
6979
6980         return 0;
6981 }
6982
6983 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6984                                         struct kvm_guest_debug *dbg)
6985 {
6986         unsigned long rflags;
6987         int i, r;
6988
6989         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6990                 r = -EBUSY;
6991                 if (vcpu->arch.exception.pending)
6992                         goto out;
6993                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6994                         kvm_queue_exception(vcpu, DB_VECTOR);
6995                 else
6996                         kvm_queue_exception(vcpu, BP_VECTOR);
6997         }
6998
6999         /*
7000          * Read rflags as long as potentially injected trace flags are still
7001          * filtered out.
7002          */
7003         rflags = kvm_get_rflags(vcpu);
7004
7005         vcpu->guest_debug = dbg->control;
7006         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7007                 vcpu->guest_debug = 0;
7008
7009         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7010                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7011                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7012                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7013         } else {
7014                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7015                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7016         }
7017         kvm_update_dr7(vcpu);
7018
7019         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7020                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7021                         get_segment_base(vcpu, VCPU_SREG_CS);
7022
7023         /*
7024          * Trigger an rflags update that will inject or remove the trace
7025          * flags.
7026          */
7027         kvm_set_rflags(vcpu, rflags);
7028
7029         kvm_x86_ops->update_db_bp_intercept(vcpu);
7030
7031         r = 0;
7032
7033 out:
7034
7035         return r;
7036 }
7037
7038 /*
7039  * Translate a guest virtual address to a guest physical address.
7040  */
7041 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7042                                     struct kvm_translation *tr)
7043 {
7044         unsigned long vaddr = tr->linear_address;
7045         gpa_t gpa;
7046         int idx;
7047
7048         idx = srcu_read_lock(&vcpu->kvm->srcu);
7049         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7050         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7051         tr->physical_address = gpa;
7052         tr->valid = gpa != UNMAPPED_GVA;
7053         tr->writeable = 1;
7054         tr->usermode = 0;
7055
7056         return 0;
7057 }
7058
7059 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7060 {
7061         struct i387_fxsave_struct *fxsave =
7062                         &vcpu->arch.guest_fpu.state->fxsave;
7063
7064         memcpy(fpu->fpr, fxsave->st_space, 128);
7065         fpu->fcw = fxsave->cwd;
7066         fpu->fsw = fxsave->swd;
7067         fpu->ftwx = fxsave->twd;
7068         fpu->last_opcode = fxsave->fop;
7069         fpu->last_ip = fxsave->rip;
7070         fpu->last_dp = fxsave->rdp;
7071         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7072
7073         return 0;
7074 }
7075
7076 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7077 {
7078         struct i387_fxsave_struct *fxsave =
7079                         &vcpu->arch.guest_fpu.state->fxsave;
7080
7081         memcpy(fxsave->st_space, fpu->fpr, 128);
7082         fxsave->cwd = fpu->fcw;
7083         fxsave->swd = fpu->fsw;
7084         fxsave->twd = fpu->ftwx;
7085         fxsave->fop = fpu->last_opcode;
7086         fxsave->rip = fpu->last_ip;
7087         fxsave->rdp = fpu->last_dp;
7088         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7089
7090         return 0;
7091 }
7092
7093 int fx_init(struct kvm_vcpu *vcpu, bool init_event)
7094 {
7095         int err;
7096
7097         err = fpu_alloc(&vcpu->arch.guest_fpu);
7098         if (err)
7099                 return err;
7100
7101         if (!init_event)
7102                 fpu_finit(&vcpu->arch.guest_fpu);
7103
7104         if (cpu_has_xsaves)
7105                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7106                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7107
7108         /*
7109          * Ensure guest xcr0 is valid for loading
7110          */
7111         vcpu->arch.xcr0 = XSTATE_FP;
7112
7113         vcpu->arch.cr0 |= X86_CR0_ET;
7114
7115         return 0;
7116 }
7117 EXPORT_SYMBOL_GPL(fx_init);
7118
7119 static void fx_free(struct kvm_vcpu *vcpu)
7120 {
7121         fpu_free(&vcpu->arch.guest_fpu);
7122 }
7123
7124 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7125 {
7126         if (vcpu->guest_fpu_loaded)
7127                 return;
7128
7129         /*
7130          * Restore all possible states in the guest,
7131          * and assume host would use all available bits.
7132          * Guest xcr0 would be loaded later.
7133          */
7134         kvm_put_guest_xcr0(vcpu);
7135         vcpu->guest_fpu_loaded = 1;
7136         __kernel_fpu_begin();
7137         fpu_restore_checking(&vcpu->arch.guest_fpu);
7138         trace_kvm_fpu(1);
7139 }
7140
7141 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7142 {
7143         kvm_put_guest_xcr0(vcpu);
7144
7145         if (!vcpu->guest_fpu_loaded) {
7146                 vcpu->fpu_counter = 0;
7147                 return;
7148         }
7149
7150         vcpu->guest_fpu_loaded = 0;
7151         fpu_save_init(&vcpu->arch.guest_fpu);
7152         __kernel_fpu_end();
7153         ++vcpu->stat.fpu_reload;
7154         /*
7155          * If using eager FPU mode, or if the guest is a frequent user
7156          * of the FPU, just leave the FPU active for next time.
7157          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7158          * the FPU in bursts will revert to loading it on demand.
7159          */
7160         if (!vcpu->arch.eager_fpu) {
7161                 if (++vcpu->fpu_counter < 5)
7162                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7163         }
7164         trace_kvm_fpu(0);
7165 }
7166
7167 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7168 {
7169         kvmclock_reset(vcpu);
7170
7171         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7172         fx_free(vcpu);
7173         kvm_x86_ops->vcpu_free(vcpu);
7174 }
7175
7176 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7177                                                 unsigned int id)
7178 {
7179         struct kvm_vcpu *vcpu;
7180
7181         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7182                 printk_once(KERN_WARNING
7183                 "kvm: SMP vm created on host with unstable TSC; "
7184                 "guest TSC will not be reliable\n");
7185
7186         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7187
7188         /*
7189          * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7190          * deactivated soon if it doesn't.
7191          */
7192         kvm_x86_ops->fpu_activate(vcpu);
7193         return vcpu;
7194 }
7195
7196 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7197 {
7198         int r;
7199
7200         vcpu->arch.mtrr_state.have_fixed = 1;
7201         r = vcpu_load(vcpu);
7202         if (r)
7203                 return r;
7204         kvm_vcpu_reset(vcpu, false);
7205         kvm_mmu_setup(vcpu);
7206         vcpu_put(vcpu);
7207
7208         return r;
7209 }
7210
7211 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7212 {
7213         struct msr_data msr;
7214         struct kvm *kvm = vcpu->kvm;
7215
7216         if (vcpu_load(vcpu))
7217                 return;
7218         msr.data = 0x0;
7219         msr.index = MSR_IA32_TSC;
7220         msr.host_initiated = true;
7221         kvm_write_tsc(vcpu, &msr);
7222         vcpu_put(vcpu);
7223
7224         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7225                                         KVMCLOCK_SYNC_PERIOD);
7226 }
7227
7228 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7229 {
7230         int r;
7231         vcpu->arch.apf.msr_val = 0;
7232
7233         r = vcpu_load(vcpu);
7234         BUG_ON(r);
7235         kvm_mmu_unload(vcpu);
7236         vcpu_put(vcpu);
7237
7238         fx_free(vcpu);
7239         kvm_x86_ops->vcpu_free(vcpu);
7240 }
7241
7242 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7243 {
7244         atomic_set(&vcpu->arch.nmi_queued, 0);
7245         vcpu->arch.nmi_pending = 0;
7246         vcpu->arch.nmi_injected = false;
7247         kvm_clear_interrupt_queue(vcpu);
7248         kvm_clear_exception_queue(vcpu);
7249
7250         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7251         kvm_update_dr0123(vcpu);
7252         vcpu->arch.dr6 = DR6_INIT;
7253         kvm_update_dr6(vcpu);
7254         vcpu->arch.dr7 = DR7_FIXED_1;
7255         kvm_update_dr7(vcpu);
7256
7257         vcpu->arch.cr2 = 0;
7258
7259         kvm_make_request(KVM_REQ_EVENT, vcpu);
7260         vcpu->arch.apf.msr_val = 0;
7261         vcpu->arch.st.msr_val = 0;
7262
7263         kvmclock_reset(vcpu);
7264
7265         kvm_clear_async_pf_completion_queue(vcpu);
7266         kvm_async_pf_hash_reset(vcpu);
7267         vcpu->arch.apf.halted = false;
7268
7269         if (!init_event)
7270                 kvm_pmu_reset(vcpu);
7271
7272         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7273         vcpu->arch.regs_avail = ~0;
7274         vcpu->arch.regs_dirty = ~0;
7275
7276         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7277 }
7278
7279 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7280 {
7281         struct kvm_segment cs;
7282
7283         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7284         cs.selector = vector << 8;
7285         cs.base = vector << 12;
7286         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7287         kvm_rip_write(vcpu, 0);
7288 }
7289
7290 int kvm_arch_hardware_enable(void)
7291 {
7292         struct kvm *kvm;
7293         struct kvm_vcpu *vcpu;
7294         int i;
7295         int ret;
7296         u64 local_tsc;
7297         u64 max_tsc = 0;
7298         bool stable, backwards_tsc = false;
7299
7300         kvm_shared_msr_cpu_online();
7301         ret = kvm_x86_ops->hardware_enable();
7302         if (ret != 0)
7303                 return ret;
7304
7305         local_tsc = native_read_tsc();
7306         stable = !check_tsc_unstable();
7307         list_for_each_entry(kvm, &vm_list, vm_list) {
7308                 kvm_for_each_vcpu(i, vcpu, kvm) {
7309                         if (!stable && vcpu->cpu == smp_processor_id())
7310                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7311                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7312                                 backwards_tsc = true;
7313                                 if (vcpu->arch.last_host_tsc > max_tsc)
7314                                         max_tsc = vcpu->arch.last_host_tsc;
7315                         }
7316                 }
7317         }
7318
7319         /*
7320          * Sometimes, even reliable TSCs go backwards.  This happens on
7321          * platforms that reset TSC during suspend or hibernate actions, but
7322          * maintain synchronization.  We must compensate.  Fortunately, we can
7323          * detect that condition here, which happens early in CPU bringup,
7324          * before any KVM threads can be running.  Unfortunately, we can't
7325          * bring the TSCs fully up to date with real time, as we aren't yet far
7326          * enough into CPU bringup that we know how much real time has actually
7327          * elapsed; our helper function, get_kernel_ns() will be using boot
7328          * variables that haven't been updated yet.
7329          *
7330          * So we simply find the maximum observed TSC above, then record the
7331          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7332          * the adjustment will be applied.  Note that we accumulate
7333          * adjustments, in case multiple suspend cycles happen before some VCPU
7334          * gets a chance to run again.  In the event that no KVM threads get a
7335          * chance to run, we will miss the entire elapsed period, as we'll have
7336          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7337          * loose cycle time.  This isn't too big a deal, since the loss will be
7338          * uniform across all VCPUs (not to mention the scenario is extremely
7339          * unlikely). It is possible that a second hibernate recovery happens
7340          * much faster than a first, causing the observed TSC here to be
7341          * smaller; this would require additional padding adjustment, which is
7342          * why we set last_host_tsc to the local tsc observed here.
7343          *
7344          * N.B. - this code below runs only on platforms with reliable TSC,
7345          * as that is the only way backwards_tsc is set above.  Also note
7346          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7347          * have the same delta_cyc adjustment applied if backwards_tsc
7348          * is detected.  Note further, this adjustment is only done once,
7349          * as we reset last_host_tsc on all VCPUs to stop this from being
7350          * called multiple times (one for each physical CPU bringup).
7351          *
7352          * Platforms with unreliable TSCs don't have to deal with this, they
7353          * will be compensated by the logic in vcpu_load, which sets the TSC to
7354          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7355          * guarantee that they stay in perfect synchronization.
7356          */
7357         if (backwards_tsc) {
7358                 u64 delta_cyc = max_tsc - local_tsc;
7359                 backwards_tsc_observed = true;
7360                 list_for_each_entry(kvm, &vm_list, vm_list) {
7361                         kvm_for_each_vcpu(i, vcpu, kvm) {
7362                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7363                                 vcpu->arch.last_host_tsc = local_tsc;
7364                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7365                         }
7366
7367                         /*
7368                          * We have to disable TSC offset matching.. if you were
7369                          * booting a VM while issuing an S4 host suspend....
7370                          * you may have some problem.  Solving this issue is
7371                          * left as an exercise to the reader.
7372                          */
7373                         kvm->arch.last_tsc_nsec = 0;
7374                         kvm->arch.last_tsc_write = 0;
7375                 }
7376
7377         }
7378         return 0;
7379 }
7380
7381 void kvm_arch_hardware_disable(void)
7382 {
7383         kvm_x86_ops->hardware_disable();
7384         drop_user_return_notifiers();
7385 }
7386
7387 int kvm_arch_hardware_setup(void)
7388 {
7389         int r;
7390
7391         r = kvm_x86_ops->hardware_setup();
7392         if (r != 0)
7393                 return r;
7394
7395         kvm_init_msr_list();
7396         return 0;
7397 }
7398
7399 void kvm_arch_hardware_unsetup(void)
7400 {
7401         kvm_x86_ops->hardware_unsetup();
7402 }
7403
7404 void kvm_arch_check_processor_compat(void *rtn)
7405 {
7406         kvm_x86_ops->check_processor_compatibility(rtn);
7407 }
7408
7409 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7410 {
7411         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7412 }
7413
7414 struct static_key kvm_no_apic_vcpu __read_mostly;
7415
7416 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7417 {
7418         struct page *page;
7419         struct kvm *kvm;
7420         int r;
7421
7422         BUG_ON(vcpu->kvm == NULL);
7423         kvm = vcpu->kvm;
7424
7425         vcpu->arch.pv.pv_unhalted = false;
7426         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7427         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7428                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7429         else
7430                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7431
7432         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7433         if (!page) {
7434                 r = -ENOMEM;
7435                 goto fail;
7436         }
7437         vcpu->arch.pio_data = page_address(page);
7438
7439         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7440
7441         r = kvm_mmu_create(vcpu);
7442         if (r < 0)
7443                 goto fail_free_pio_data;
7444
7445         if (irqchip_in_kernel(kvm)) {
7446                 r = kvm_create_lapic(vcpu);
7447                 if (r < 0)
7448                         goto fail_mmu_destroy;
7449         } else
7450                 static_key_slow_inc(&kvm_no_apic_vcpu);
7451
7452         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7453                                        GFP_KERNEL);
7454         if (!vcpu->arch.mce_banks) {
7455                 r = -ENOMEM;
7456                 goto fail_free_lapic;
7457         }
7458         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7459
7460         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7461                 r = -ENOMEM;
7462                 goto fail_free_mce_banks;
7463         }
7464
7465         r = fx_init(vcpu, false);
7466         if (r)
7467                 goto fail_free_wbinvd_dirty_mask;
7468
7469         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7470         vcpu->arch.pv_time_enabled = false;
7471
7472         vcpu->arch.guest_supported_xcr0 = 0;
7473         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7474
7475         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7476
7477         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7478
7479         kvm_async_pf_hash_reset(vcpu);
7480         kvm_pmu_init(vcpu);
7481
7482         return 0;
7483 fail_free_wbinvd_dirty_mask:
7484         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7485 fail_free_mce_banks:
7486         kfree(vcpu->arch.mce_banks);
7487 fail_free_lapic:
7488         kvm_free_lapic(vcpu);
7489 fail_mmu_destroy:
7490         kvm_mmu_destroy(vcpu);
7491 fail_free_pio_data:
7492         free_page((unsigned long)vcpu->arch.pio_data);
7493 fail:
7494         return r;
7495 }
7496
7497 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7498 {
7499         int idx;
7500
7501         kvm_pmu_destroy(vcpu);
7502         kfree(vcpu->arch.mce_banks);
7503         kvm_free_lapic(vcpu);
7504         idx = srcu_read_lock(&vcpu->kvm->srcu);
7505         kvm_mmu_destroy(vcpu);
7506         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7507         free_page((unsigned long)vcpu->arch.pio_data);
7508         if (!irqchip_in_kernel(vcpu->kvm))
7509                 static_key_slow_dec(&kvm_no_apic_vcpu);
7510 }
7511
7512 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7513 {
7514         kvm_x86_ops->sched_in(vcpu, cpu);
7515 }
7516
7517 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7518 {
7519         if (type)
7520                 return -EINVAL;
7521
7522         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7523         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7524         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7525         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7526         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7527
7528         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7529         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7530         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7531         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7532                 &kvm->arch.irq_sources_bitmap);
7533
7534         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7535         mutex_init(&kvm->arch.apic_map_lock);
7536         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7537
7538         pvclock_update_vm_gtod_copy(kvm);
7539
7540         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7541         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7542
7543         return 0;
7544 }
7545
7546 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7547 {
7548         int r;
7549         r = vcpu_load(vcpu);
7550         BUG_ON(r);
7551         kvm_mmu_unload(vcpu);
7552         vcpu_put(vcpu);
7553 }
7554
7555 static void kvm_free_vcpus(struct kvm *kvm)
7556 {
7557         unsigned int i;
7558         struct kvm_vcpu *vcpu;
7559
7560         /*
7561          * Unpin any mmu pages first.
7562          */
7563         kvm_for_each_vcpu(i, vcpu, kvm) {
7564                 kvm_clear_async_pf_completion_queue(vcpu);
7565                 kvm_unload_vcpu_mmu(vcpu);
7566         }
7567         kvm_for_each_vcpu(i, vcpu, kvm)
7568                 kvm_arch_vcpu_free(vcpu);
7569
7570         mutex_lock(&kvm->lock);
7571         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7572                 kvm->vcpus[i] = NULL;
7573
7574         atomic_set(&kvm->online_vcpus, 0);
7575         mutex_unlock(&kvm->lock);
7576 }
7577
7578 void kvm_arch_sync_events(struct kvm *kvm)
7579 {
7580         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7581         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7582         kvm_free_all_assigned_devices(kvm);
7583         kvm_free_pit(kvm);
7584 }
7585
7586 void kvm_arch_destroy_vm(struct kvm *kvm)
7587 {
7588         if (current->mm == kvm->mm) {
7589                 /*
7590                  * Free memory regions allocated on behalf of userspace,
7591                  * unless the the memory map has changed due to process exit
7592                  * or fd copying.
7593                  */
7594                 struct kvm_userspace_memory_region mem;
7595                 memset(&mem, 0, sizeof(mem));
7596                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7597                 kvm_set_memory_region(kvm, &mem);
7598
7599                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7600                 kvm_set_memory_region(kvm, &mem);
7601
7602                 mem.slot = TSS_PRIVATE_MEMSLOT;
7603                 kvm_set_memory_region(kvm, &mem);
7604         }
7605         kvm_iommu_unmap_guest(kvm);
7606         kfree(kvm->arch.vpic);
7607         kfree(kvm->arch.vioapic);
7608         kvm_free_vcpus(kvm);
7609         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7610 }
7611
7612 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7613                            struct kvm_memory_slot *dont)
7614 {
7615         int i;
7616
7617         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7618                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7619                         kvfree(free->arch.rmap[i]);
7620                         free->arch.rmap[i] = NULL;
7621                 }
7622                 if (i == 0)
7623                         continue;
7624
7625                 if (!dont || free->arch.lpage_info[i - 1] !=
7626                              dont->arch.lpage_info[i - 1]) {
7627                         kvfree(free->arch.lpage_info[i - 1]);
7628                         free->arch.lpage_info[i - 1] = NULL;
7629                 }
7630         }
7631 }
7632
7633 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7634                             unsigned long npages)
7635 {
7636         int i;
7637
7638         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7639                 unsigned long ugfn;
7640                 int lpages;
7641                 int level = i + 1;
7642
7643                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7644                                       slot->base_gfn, level) + 1;
7645
7646                 slot->arch.rmap[i] =
7647                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7648                 if (!slot->arch.rmap[i])
7649                         goto out_free;
7650                 if (i == 0)
7651                         continue;
7652
7653                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7654                                         sizeof(*slot->arch.lpage_info[i - 1]));
7655                 if (!slot->arch.lpage_info[i - 1])
7656                         goto out_free;
7657
7658                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7659                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7660                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7661                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7662                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7663                 /*
7664                  * If the gfn and userspace address are not aligned wrt each
7665                  * other, or if explicitly asked to, disable large page
7666                  * support for this slot
7667                  */
7668                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7669                     !kvm_largepages_enabled()) {
7670                         unsigned long j;
7671
7672                         for (j = 0; j < lpages; ++j)
7673                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7674                 }
7675         }
7676
7677         return 0;
7678
7679 out_free:
7680         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7681                 kvfree(slot->arch.rmap[i]);
7682                 slot->arch.rmap[i] = NULL;
7683                 if (i == 0)
7684                         continue;
7685
7686                 kvfree(slot->arch.lpage_info[i - 1]);
7687                 slot->arch.lpage_info[i - 1] = NULL;
7688         }
7689         return -ENOMEM;
7690 }
7691
7692 void kvm_arch_memslots_updated(struct kvm *kvm)
7693 {
7694         /*
7695          * memslots->generation has been incremented.
7696          * mmio generation may have reached its maximum value.
7697          */
7698         kvm_mmu_invalidate_mmio_sptes(kvm);
7699 }
7700
7701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7702                                 struct kvm_memory_slot *memslot,
7703                                 const struct kvm_userspace_memory_region *mem,
7704                                 enum kvm_mr_change change)
7705 {
7706         /*
7707          * Only private memory slots need to be mapped here since
7708          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7709          */
7710         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7711                 unsigned long userspace_addr;
7712
7713                 /*
7714                  * MAP_SHARED to prevent internal slot pages from being moved
7715                  * by fork()/COW.
7716                  */
7717                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7718                                          PROT_READ | PROT_WRITE,
7719                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7720
7721                 if (IS_ERR((void *)userspace_addr))
7722                         return PTR_ERR((void *)userspace_addr);
7723
7724                 memslot->userspace_addr = userspace_addr;
7725         }
7726
7727         return 0;
7728 }
7729
7730 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7731                                      struct kvm_memory_slot *new)
7732 {
7733         /* Still write protect RO slot */
7734         if (new->flags & KVM_MEM_READONLY) {
7735                 kvm_mmu_slot_remove_write_access(kvm, new);
7736                 return;
7737         }
7738
7739         /*
7740          * Call kvm_x86_ops dirty logging hooks when they are valid.
7741          *
7742          * kvm_x86_ops->slot_disable_log_dirty is called when:
7743          *
7744          *  - KVM_MR_CREATE with dirty logging is disabled
7745          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7746          *
7747          * The reason is, in case of PML, we need to set D-bit for any slots
7748          * with dirty logging disabled in order to eliminate unnecessary GPA
7749          * logging in PML buffer (and potential PML buffer full VMEXT). This
7750          * guarantees leaving PML enabled during guest's lifetime won't have
7751          * any additonal overhead from PML when guest is running with dirty
7752          * logging disabled for memory slots.
7753          *
7754          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7755          * to dirty logging mode.
7756          *
7757          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7758          *
7759          * In case of write protect:
7760          *
7761          * Write protect all pages for dirty logging.
7762          *
7763          * All the sptes including the large sptes which point to this
7764          * slot are set to readonly. We can not create any new large
7765          * spte on this slot until the end of the logging.
7766          *
7767          * See the comments in fast_page_fault().
7768          */
7769         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7770                 if (kvm_x86_ops->slot_enable_log_dirty)
7771                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7772                 else
7773                         kvm_mmu_slot_remove_write_access(kvm, new);
7774         } else {
7775                 if (kvm_x86_ops->slot_disable_log_dirty)
7776                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7777         }
7778 }
7779
7780 void kvm_arch_commit_memory_region(struct kvm *kvm,
7781                                 const struct kvm_userspace_memory_region *mem,
7782                                 const struct kvm_memory_slot *old,
7783                                 enum kvm_mr_change change)
7784 {
7785         struct kvm_memslots *slots;
7786         struct kvm_memory_slot *new;
7787         int nr_mmu_pages = 0;
7788
7789         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7790                 int ret;
7791
7792                 ret = vm_munmap(old->userspace_addr,
7793                                 old->npages * PAGE_SIZE);
7794                 if (ret < 0)
7795                         printk(KERN_WARNING
7796                                "kvm_vm_ioctl_set_memory_region: "
7797                                "failed to munmap memory\n");
7798         }
7799
7800         if (!kvm->arch.n_requested_mmu_pages)
7801                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7802
7803         if (nr_mmu_pages)
7804                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7805
7806         /* It's OK to get 'new' slot here as it has already been installed */
7807         slots = kvm_memslots(kvm);
7808         new = id_to_memslot(slots, mem->slot);
7809
7810         /*
7811          * Dirty logging tracks sptes in 4k granularity, meaning that large
7812          * sptes have to be split.  If live migration is successful, the guest
7813          * in the source machine will be destroyed and large sptes will be
7814          * created in the destination. However, if the guest continues to run
7815          * in the source machine (for example if live migration fails), small
7816          * sptes will remain around and cause bad performance.
7817          *
7818          * Scan sptes if dirty logging has been stopped, dropping those
7819          * which can be collapsed into a single large-page spte.  Later
7820          * page faults will create the large-page sptes.
7821          */
7822         if ((change != KVM_MR_DELETE) &&
7823                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7824                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7825                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7826
7827         /*
7828          * Set up write protection and/or dirty logging for the new slot.
7829          *
7830          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7831          * been zapped so no dirty logging staff is needed for old slot. For
7832          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7833          * new and it's also covered when dealing with the new slot.
7834          */
7835         if (change != KVM_MR_DELETE)
7836                 kvm_mmu_slot_apply_flags(kvm, new);
7837 }
7838
7839 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7840 {
7841         kvm_mmu_invalidate_zap_all_pages(kvm);
7842 }
7843
7844 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7845                                    struct kvm_memory_slot *slot)
7846 {
7847         kvm_mmu_invalidate_zap_all_pages(kvm);
7848 }
7849
7850 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7851 {
7852         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7853                 kvm_x86_ops->check_nested_events(vcpu, false);
7854
7855         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7856                 !vcpu->arch.apf.halted)
7857                 || !list_empty_careful(&vcpu->async_pf.done)
7858                 || kvm_apic_has_events(vcpu)
7859                 || vcpu->arch.pv.pv_unhalted
7860                 || atomic_read(&vcpu->arch.nmi_queued) ||
7861                 (kvm_arch_interrupt_allowed(vcpu) &&
7862                  kvm_cpu_has_interrupt(vcpu));
7863 }
7864
7865 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7866 {
7867         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7868 }
7869
7870 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7871 {
7872         return kvm_x86_ops->interrupt_allowed(vcpu);
7873 }
7874
7875 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7876 {
7877         if (is_64_bit_mode(vcpu))
7878                 return kvm_rip_read(vcpu);
7879         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7880                      kvm_rip_read(vcpu));
7881 }
7882 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7883
7884 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7885 {
7886         return kvm_get_linear_rip(vcpu) == linear_rip;
7887 }
7888 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7889
7890 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7891 {
7892         unsigned long rflags;
7893
7894         rflags = kvm_x86_ops->get_rflags(vcpu);
7895         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7896                 rflags &= ~X86_EFLAGS_TF;
7897         return rflags;
7898 }
7899 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7900
7901 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7902 {
7903         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7904             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7905                 rflags |= X86_EFLAGS_TF;
7906         kvm_x86_ops->set_rflags(vcpu, rflags);
7907 }
7908
7909 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7910 {
7911         __kvm_set_rflags(vcpu, rflags);
7912         kvm_make_request(KVM_REQ_EVENT, vcpu);
7913 }
7914 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7915
7916 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7917 {
7918         int r;
7919
7920         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7921               work->wakeup_all)
7922                 return;
7923
7924         r = kvm_mmu_reload(vcpu);
7925         if (unlikely(r))
7926                 return;
7927
7928         if (!vcpu->arch.mmu.direct_map &&
7929               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7930                 return;
7931
7932         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7933 }
7934
7935 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7936 {
7937         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7938 }
7939
7940 static inline u32 kvm_async_pf_next_probe(u32 key)
7941 {
7942         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7943 }
7944
7945 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7946 {
7947         u32 key = kvm_async_pf_hash_fn(gfn);
7948
7949         while (vcpu->arch.apf.gfns[key] != ~0)
7950                 key = kvm_async_pf_next_probe(key);
7951
7952         vcpu->arch.apf.gfns[key] = gfn;
7953 }
7954
7955 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7956 {
7957         int i;
7958         u32 key = kvm_async_pf_hash_fn(gfn);
7959
7960         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7961                      (vcpu->arch.apf.gfns[key] != gfn &&
7962                       vcpu->arch.apf.gfns[key] != ~0); i++)
7963                 key = kvm_async_pf_next_probe(key);
7964
7965         return key;
7966 }
7967
7968 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7969 {
7970         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7971 }
7972
7973 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7974 {
7975         u32 i, j, k;
7976
7977         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7978         while (true) {
7979                 vcpu->arch.apf.gfns[i] = ~0;
7980                 do {
7981                         j = kvm_async_pf_next_probe(j);
7982                         if (vcpu->arch.apf.gfns[j] == ~0)
7983                                 return;
7984                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7985                         /*
7986                          * k lies cyclically in ]i,j]
7987                          * |    i.k.j |
7988                          * |....j i.k.| or  |.k..j i...|
7989                          */
7990                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7991                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7992                 i = j;
7993         }
7994 }
7995
7996 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7997 {
7998
7999         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8000                                       sizeof(val));
8001 }
8002
8003 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8004                                      struct kvm_async_pf *work)
8005 {
8006         struct x86_exception fault;
8007
8008         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8009         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8010
8011         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8012             (vcpu->arch.apf.send_user_only &&
8013              kvm_x86_ops->get_cpl(vcpu) == 0))
8014                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8015         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8016                 fault.vector = PF_VECTOR;
8017                 fault.error_code_valid = true;
8018                 fault.error_code = 0;
8019                 fault.nested_page_fault = false;
8020                 fault.address = work->arch.token;
8021                 kvm_inject_page_fault(vcpu, &fault);
8022         }
8023 }
8024
8025 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8026                                  struct kvm_async_pf *work)
8027 {
8028         struct x86_exception fault;
8029
8030         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8031         if (work->wakeup_all)
8032                 work->arch.token = ~0; /* broadcast wakeup */
8033         else
8034                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8035
8036         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8037             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8038                 fault.vector = PF_VECTOR;
8039                 fault.error_code_valid = true;
8040                 fault.error_code = 0;
8041                 fault.nested_page_fault = false;
8042                 fault.address = work->arch.token;
8043                 kvm_inject_page_fault(vcpu, &fault);
8044         }
8045         vcpu->arch.apf.halted = false;
8046         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8047 }
8048
8049 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8050 {
8051         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8052                 return true;
8053         else
8054                 return !kvm_event_needs_reinjection(vcpu) &&
8055                         kvm_x86_ops->interrupt_allowed(vcpu);
8056 }
8057
8058 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8059 {
8060         atomic_inc(&kvm->arch.noncoherent_dma_count);
8061 }
8062 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8063
8064 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8065 {
8066         atomic_dec(&kvm->arch.noncoherent_dma_count);
8067 }
8068 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8069
8070 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8071 {
8072         return atomic_read(&kvm->arch.noncoherent_dma_count);
8073 }
8074 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8075
8076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);