OSDN Git Service

8aa6b5a75e7a53de7192aee4f29c52f1d30f1b77
[tomoyo/tomoyo-test1.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157
158 #define KVM_NR_SHARED_MSRS 16
159
160 struct kvm_shared_msrs_global {
161         int nr;
162         u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164
165 struct kvm_shared_msrs {
166         struct user_return_notifier urn;
167         bool registered;
168         struct kvm_shared_msr_values {
169                 u64 host;
170                 u64 curr;
171         } values[KVM_NR_SHARED_MSRS];
172 };
173
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178         { "pf_fixed", VCPU_STAT(pf_fixed) },
179         { "pf_guest", VCPU_STAT(pf_guest) },
180         { "tlb_flush", VCPU_STAT(tlb_flush) },
181         { "invlpg", VCPU_STAT(invlpg) },
182         { "exits", VCPU_STAT(exits) },
183         { "io_exits", VCPU_STAT(io_exits) },
184         { "mmio_exits", VCPU_STAT(mmio_exits) },
185         { "signal_exits", VCPU_STAT(signal_exits) },
186         { "irq_window", VCPU_STAT(irq_window_exits) },
187         { "nmi_window", VCPU_STAT(nmi_window_exits) },
188         { "halt_exits", VCPU_STAT(halt_exits) },
189         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
193         { "hypercalls", VCPU_STAT(hypercalls) },
194         { "request_irq", VCPU_STAT(request_irq_exits) },
195         { "irq_exits", VCPU_STAT(irq_exits) },
196         { "host_state_reload", VCPU_STAT(host_state_reload) },
197         { "fpu_reload", VCPU_STAT(fpu_reload) },
198         { "insn_emulation", VCPU_STAT(insn_emulation) },
199         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200         { "irq_injections", VCPU_STAT(irq_injections) },
201         { "nmi_injections", VCPU_STAT(nmi_injections) },
202         { "req_event", VCPU_STAT(req_event) },
203         { "l1d_flush", VCPU_STAT(l1d_flush) },
204         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
206         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208         { "mmu_flooded", VM_STAT(mmu_flooded) },
209         { "mmu_recycled", VM_STAT(mmu_recycled) },
210         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211         { "mmu_unsync", VM_STAT(mmu_unsync) },
212         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213         { "largepages", VM_STAT(lpages) },
214         { "max_mmu_page_hash_collisions",
215                 VM_STAT(max_mmu_page_hash_collisions) },
216         { NULL }
217 };
218
219 u64 __read_mostly host_xcr0;
220
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228         int i;
229         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230                 vcpu->arch.apf.gfns[i] = ~0;
231 }
232
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235         unsigned slot;
236         struct kvm_shared_msrs *locals
237                 = container_of(urn, struct kvm_shared_msrs, urn);
238         struct kvm_shared_msr_values *values;
239         unsigned long flags;
240
241         /*
242          * Disabling irqs at this point since the following code could be
243          * interrupted and executed through kvm_arch_hardware_disable()
244          */
245         local_irq_save(flags);
246         if (locals->registered) {
247                 locals->registered = false;
248                 user_return_notifier_unregister(urn);
249         }
250         local_irq_restore(flags);
251         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252                 values = &locals->values[slot];
253                 if (values->host != values->curr) {
254                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
255                         values->curr = values->host;
256                 }
257         }
258 }
259
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262         u64 value;
263         unsigned int cpu = smp_processor_id();
264         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266         /* only read, and nobody should modify it at this time,
267          * so don't need lock */
268         if (slot >= shared_msrs_global.nr) {
269                 printk(KERN_ERR "kvm: invalid MSR slot!");
270                 return;
271         }
272         rdmsrl_safe(msr, &value);
273         smsr->values[slot].host = value;
274         smsr->values[slot].curr = value;
275 }
276
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280         shared_msrs_global.msrs[slot] = msr;
281         if (slot >= shared_msrs_global.nr)
282                 shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285
286 static void kvm_shared_msr_cpu_online(void)
287 {
288         unsigned i;
289
290         for (i = 0; i < shared_msrs_global.nr; ++i)
291                 shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298         int err;
299
300         if (((value ^ smsr->values[slot].curr) & mask) == 0)
301                 return 0;
302         smsr->values[slot].curr = value;
303         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304         if (err)
305                 return 1;
306
307         if (!smsr->registered) {
308                 smsr->urn.on_user_return = kvm_on_user_return;
309                 user_return_notifier_register(&smsr->urn);
310                 smsr->registered = true;
311         }
312         return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315
316 static void drop_user_return_notifiers(void)
317 {
318         unsigned int cpu = smp_processor_id();
319         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320
321         if (smsr->registered)
322                 kvm_on_user_return(&smsr->urn);
323 }
324
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327         return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333         return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343
344         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345                 return 1;
346         if (!msr_info->host_initiated) {
347                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348                         return 1;
349                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350                         return 1;
351         }
352
353         kvm_lapic_set_base(vcpu, msr_info->data);
354         return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360         /* Fault while not rebooting.  We want the trace. */
361         BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364
365 #define EXCPT_BENIGN            0
366 #define EXCPT_CONTRIBUTORY      1
367 #define EXCPT_PF                2
368
369 static int exception_class(int vector)
370 {
371         switch (vector) {
372         case PF_VECTOR:
373                 return EXCPT_PF;
374         case DE_VECTOR:
375         case TS_VECTOR:
376         case NP_VECTOR:
377         case SS_VECTOR:
378         case GP_VECTOR:
379                 return EXCPT_CONTRIBUTORY;
380         default:
381                 break;
382         }
383         return EXCPT_BENIGN;
384 }
385
386 #define EXCPT_FAULT             0
387 #define EXCPT_TRAP              1
388 #define EXCPT_ABORT             2
389 #define EXCPT_INTERRUPT         3
390
391 static int exception_type(int vector)
392 {
393         unsigned int mask;
394
395         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396                 return EXCPT_INTERRUPT;
397
398         mask = 1 << vector;
399
400         /* #DB is trap, as instruction watchpoints are handled elsewhere */
401         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402                 return EXCPT_TRAP;
403
404         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405                 return EXCPT_ABORT;
406
407         /* Reserved exceptions will result in fault */
408         return EXCPT_FAULT;
409 }
410
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413         unsigned nr = vcpu->arch.exception.nr;
414         bool has_payload = vcpu->arch.exception.has_payload;
415         unsigned long payload = vcpu->arch.exception.payload;
416
417         if (!has_payload)
418                 return;
419
420         switch (nr) {
421         case DB_VECTOR:
422                 /*
423                  * "Certain debug exceptions may clear bit 0-3.  The
424                  * remaining contents of the DR6 register are never
425                  * cleared by the processor".
426                  */
427                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428                 /*
429                  * DR6.RTM is set by all #DB exceptions that don't clear it.
430                  */
431                 vcpu->arch.dr6 |= DR6_RTM;
432                 vcpu->arch.dr6 |= payload;
433                 /*
434                  * Bit 16 should be set in the payload whenever the #DB
435                  * exception should clear DR6.RTM. This makes the payload
436                  * compatible with the pending debug exceptions under VMX.
437                  * Though not currently documented in the SDM, this also
438                  * makes the payload compatible with the exit qualification
439                  * for #DB exceptions under VMX.
440                  */
441                 vcpu->arch.dr6 ^= payload & DR6_RTM;
442                 break;
443         case PF_VECTOR:
444                 vcpu->arch.cr2 = payload;
445                 break;
446         }
447
448         vcpu->arch.exception.has_payload = false;
449         vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454                 unsigned nr, bool has_error, u32 error_code,
455                 bool has_payload, unsigned long payload, bool reinject)
456 {
457         u32 prev_nr;
458         int class1, class2;
459
460         kvm_make_request(KVM_REQ_EVENT, vcpu);
461
462         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463         queue:
464                 if (has_error && !is_protmode(vcpu))
465                         has_error = false;
466                 if (reinject) {
467                         /*
468                          * On vmentry, vcpu->arch.exception.pending is only
469                          * true if an event injection was blocked by
470                          * nested_run_pending.  In that case, however,
471                          * vcpu_enter_guest requests an immediate exit,
472                          * and the guest shouldn't proceed far enough to
473                          * need reinjection.
474                          */
475                         WARN_ON_ONCE(vcpu->arch.exception.pending);
476                         vcpu->arch.exception.injected = true;
477                         if (WARN_ON_ONCE(has_payload)) {
478                                 /*
479                                  * A reinjected event has already
480                                  * delivered its payload.
481                                  */
482                                 has_payload = false;
483                                 payload = 0;
484                         }
485                 } else {
486                         vcpu->arch.exception.pending = true;
487                         vcpu->arch.exception.injected = false;
488                 }
489                 vcpu->arch.exception.has_error_code = has_error;
490                 vcpu->arch.exception.nr = nr;
491                 vcpu->arch.exception.error_code = error_code;
492                 vcpu->arch.exception.has_payload = has_payload;
493                 vcpu->arch.exception.payload = payload;
494                 /*
495                  * In guest mode, payload delivery should be deferred,
496                  * so that the L1 hypervisor can intercept #PF before
497                  * CR2 is modified (or intercept #DB before DR6 is
498                  * modified under nVMX).  However, for ABI
499                  * compatibility with KVM_GET_VCPU_EVENTS and
500                  * KVM_SET_VCPU_EVENTS, we can't delay payload
501                  * delivery unless userspace has enabled this
502                  * functionality via the per-VM capability,
503                  * KVM_CAP_EXCEPTION_PAYLOAD.
504                  */
505                 if (!vcpu->kvm->arch.exception_payload_enabled ||
506                     !is_guest_mode(vcpu))
507                         kvm_deliver_exception_payload(vcpu);
508                 return;
509         }
510
511         /* to check exception */
512         prev_nr = vcpu->arch.exception.nr;
513         if (prev_nr == DF_VECTOR) {
514                 /* triple fault -> shutdown */
515                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516                 return;
517         }
518         class1 = exception_class(prev_nr);
519         class2 = exception_class(nr);
520         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522                 /*
523                  * Generate double fault per SDM Table 5-5.  Set
524                  * exception.pending = true so that the double fault
525                  * can trigger a nested vmexit.
526                  */
527                 vcpu->arch.exception.pending = true;
528                 vcpu->arch.exception.injected = false;
529                 vcpu->arch.exception.has_error_code = true;
530                 vcpu->arch.exception.nr = DF_VECTOR;
531                 vcpu->arch.exception.error_code = 0;
532                 vcpu->arch.exception.has_payload = false;
533                 vcpu->arch.exception.payload = 0;
534         } else
535                 /* replace previous exception with a new one in a hope
536                    that instruction re-execution will regenerate lost
537                    exception */
538                 goto queue;
539 }
540
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554                                   unsigned long payload)
555 {
556         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560                                     u32 error_code, unsigned long payload)
561 {
562         kvm_multiple_exception(vcpu, nr, true, error_code,
563                                true, payload, false);
564 }
565
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568         if (err)
569                 kvm_inject_gp(vcpu, 0);
570         else
571                 return kvm_skip_emulated_instruction(vcpu);
572
573         return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579         ++vcpu->stat.pf_guest;
580         vcpu->arch.exception.nested_apf =
581                 is_guest_mode(vcpu) && fault->async_page_fault;
582         if (vcpu->arch.exception.nested_apf) {
583                 vcpu->arch.apf.nested_apf_token = fault->address;
584                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585         } else {
586                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587                                         fault->address);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596         else
597                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598
599         return fault->nested_page_fault;
600 }
601
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604         atomic_inc(&vcpu->arch.nmi_queued);
605         kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628                 return true;
629         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630         return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637                 return true;
638
639         kvm_queue_exception(vcpu, UD_VECTOR);
640         return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650                             gfn_t ngfn, void *data, int offset, int len,
651                             u32 access)
652 {
653         struct x86_exception exception;
654         gfn_t real_gfn;
655         gpa_t ngpa;
656
657         ngpa     = gfn_to_gpa(ngfn);
658         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659         if (real_gfn == UNMAPPED_GVA)
660                 return -EFAULT;
661
662         real_gfn = gpa_to_gfn(real_gfn);
663
664         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669                                void *data, int offset, int len, u32 access)
670 {
671         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672                                        data, offset, len, access);
673 }
674
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682         int i;
683         int ret;
684         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685
686         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687                                       offset * sizeof(u64), sizeof(pdpte),
688                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
689         if (ret < 0) {
690                 ret = 0;
691                 goto out;
692         }
693         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694                 if ((pdpte[i] & PT_PRESENT_MASK) &&
695                     (pdpte[i] &
696                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697                         ret = 0;
698                         goto out;
699                 }
700         }
701         ret = 1;
702
703         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704         __set_bit(VCPU_EXREG_PDPTR,
705                   (unsigned long *)&vcpu->arch.regs_avail);
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717         bool changed = true;
718         int offset;
719         gfn_t gfn;
720         int r;
721
722         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723                 return false;
724
725         if (!test_bit(VCPU_EXREG_PDPTR,
726                       (unsigned long *)&vcpu->arch.regs_avail))
727                 return true;
728
729         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
733         if (r < 0)
734                 goto out;
735         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737
738         return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744         unsigned long old_cr0 = kvm_read_cr0(vcpu);
745         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746
747         cr0 |= X86_CR0_ET;
748
749 #ifdef CONFIG_X86_64
750         if (cr0 & 0xffffffff00000000UL)
751                 return 1;
752 #endif
753
754         cr0 &= ~CR0_RESERVED_BITS;
755
756         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757                 return 1;
758
759         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760                 return 1;
761
762         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764                 if ((vcpu->arch.efer & EFER_LME)) {
765                         int cs_db, cs_l;
766
767                         if (!is_pae(vcpu))
768                                 return 1;
769                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770                         if (cs_l)
771                                 return 1;
772                 } else
773 #endif
774                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                                  kvm_read_cr3(vcpu)))
776                         return 1;
777         }
778
779         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780                 return 1;
781
782         kvm_x86_ops->set_cr0(vcpu, cr0);
783
784         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785                 kvm_clear_async_pf_completion_queue(vcpu);
786                 kvm_async_pf_hash_reset(vcpu);
787         }
788
789         if ((cr0 ^ old_cr0) & update_bits)
790                 kvm_mmu_reset_context(vcpu);
791
792         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810                         !vcpu->guest_xcr0_loaded) {
811                 /* kvm_set_xcr() also depends on this */
812                 if (vcpu->arch.xcr0 != host_xcr0)
813                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814                 vcpu->guest_xcr0_loaded = 1;
815         }
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821         if (vcpu->guest_xcr0_loaded) {
822                 if (vcpu->arch.xcr0 != host_xcr0)
823                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824                 vcpu->guest_xcr0_loaded = 0;
825         }
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831         u64 xcr0 = xcr;
832         u64 old_xcr0 = vcpu->arch.xcr0;
833         u64 valid_bits;
834
835         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836         if (index != XCR_XFEATURE_ENABLED_MASK)
837                 return 1;
838         if (!(xcr0 & XFEATURE_MASK_FP))
839                 return 1;
840         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841                 return 1;
842
843         /*
844          * Do not allow the guest to set bits that we do not support
845          * saving.  However, xcr0 bit 0 is always set, even if the
846          * emulated CPU does not support XSAVE (see fx_init).
847          */
848         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849         if (xcr0 & ~valid_bits)
850                 return 1;
851
852         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854                 return 1;
855
856         if (xcr0 & XFEATURE_MASK_AVX512) {
857                 if (!(xcr0 & XFEATURE_MASK_YMM))
858                         return 1;
859                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860                         return 1;
861         }
862         vcpu->arch.xcr0 = xcr0;
863
864         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865                 kvm_update_cpuid(vcpu);
866         return 0;
867 }
868
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872             __kvm_set_xcr(vcpu, index, xcr)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882         unsigned long old_cr4 = kvm_read_cr4(vcpu);
883         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885
886         if (cr4 & CR4_RESERVED_BITS)
887                 return 1;
888
889         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890                 return 1;
891
892         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893                 return 1;
894
895         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896                 return 1;
897
898         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899                 return 1;
900
901         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902                 return 1;
903
904         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905                 return 1;
906
907         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908                 return 1;
909
910         if (is_long_mode(vcpu)) {
911                 if (!(cr4 & X86_CR4_PAE))
912                         return 1;
913         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914                    && ((cr4 ^ old_cr4) & pdptr_bits)
915                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916                                    kvm_read_cr3(vcpu)))
917                 return 1;
918
919         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921                         return 1;
922
923                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925                         return 1;
926         }
927
928         if (kvm_x86_ops->set_cr4(vcpu, cr4))
929                 return 1;
930
931         if (((cr4 ^ old_cr4) & pdptr_bits) ||
932             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933                 kvm_mmu_reset_context(vcpu);
934
935         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936                 kvm_update_cpuid(vcpu);
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944         bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947
948         if (pcid_enabled) {
949                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
951         }
952 #endif
953
954         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955                 if (!skip_tlb_flush) {
956                         kvm_mmu_sync_roots(vcpu);
957                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958                 }
959                 return 0;
960         }
961
962         if (is_long_mode(vcpu) &&
963             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964                 return 1;
965         else if (is_pae(vcpu) && is_paging(vcpu) &&
966                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967                 return 1;
968
969         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970         vcpu->arch.cr3 = cr3;
971         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979         if (cr8 & CR8_RESERVED_BITS)
980                 return 1;
981         if (lapic_in_kernel(vcpu))
982                 kvm_lapic_set_tpr(vcpu, cr8);
983         else
984                 vcpu->arch.cr8 = cr8;
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991         if (lapic_in_kernel(vcpu))
992                 return kvm_lapic_get_cr8(vcpu);
993         else
994                 return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000         int i;
1001
1002         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1004                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006         }
1007 }
1008
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017         unsigned long dr7;
1018
1019         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020                 dr7 = vcpu->arch.guest_debug_dr7;
1021         else
1022                 dr7 = vcpu->arch.dr7;
1023         kvm_x86_ops->set_dr7(vcpu, dr7);
1024         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025         if (dr7 & DR7_BP_EN_MASK)
1026                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031         u64 fixed = DR6_FIXED_1;
1032
1033         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034                 fixed |= DR6_RTM;
1035         return fixed;
1036 }
1037
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040         switch (dr) {
1041         case 0 ... 3:
1042                 vcpu->arch.db[dr] = val;
1043                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044                         vcpu->arch.eff_db[dr] = val;
1045                 break;
1046         case 4:
1047                 /* fall through */
1048         case 6:
1049                 if (val & 0xffffffff00000000ULL)
1050                         return -1; /* #GP */
1051                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052                 kvm_update_dr6(vcpu);
1053                 break;
1054         case 5:
1055                 /* fall through */
1056         default: /* 7 */
1057                 if (val & 0xffffffff00000000ULL)
1058                         return -1; /* #GP */
1059                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060                 kvm_update_dr7(vcpu);
1061                 break;
1062         }
1063
1064         return 0;
1065 }
1066
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069         if (__kvm_set_dr(vcpu, dr, val)) {
1070                 kvm_inject_gp(vcpu, 0);
1071                 return 1;
1072         }
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079         switch (dr) {
1080         case 0 ... 3:
1081                 *val = vcpu->arch.db[dr];
1082                 break;
1083         case 4:
1084                 /* fall through */
1085         case 6:
1086                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087                         *val = vcpu->arch.dr6;
1088                 else
1089                         *val = kvm_x86_ops->get_dr6(vcpu);
1090                 break;
1091         case 5:
1092                 /* fall through */
1093         default: /* 7 */
1094                 *val = vcpu->arch.dr7;
1095                 break;
1096         }
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103         u32 ecx = kvm_rcx_read(vcpu);
1104         u64 data;
1105         int err;
1106
1107         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108         if (err)
1109                 return err;
1110         kvm_rax_write(vcpu, (u32)data);
1111         kvm_rdx_write(vcpu, data >> 32);
1112         return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125
1126 static u32 msrs_to_save[] = {
1127         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128         MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134         MSR_IA32_SPEC_CTRL,
1135         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142
1143 static unsigned num_msrs_to_save;
1144
1145 static u32 emulated_msrs[] = {
1146         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153         HV_X64_MSR_RESET,
1154         HV_X64_MSR_VP_INDEX,
1155         HV_X64_MSR_VP_RUNTIME,
1156         HV_X64_MSR_SCONTROL,
1157         HV_X64_MSR_STIMER0_CONFIG,
1158         HV_X64_MSR_VP_ASSIST_PAGE,
1159         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160         HV_X64_MSR_TSC_EMULATION_STATUS,
1161
1162         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163         MSR_KVM_PV_EOI_EN,
1164
1165         MSR_IA32_TSC_ADJUST,
1166         MSR_IA32_TSCDEADLINE,
1167         MSR_IA32_ARCH_CAPABILITIES,
1168         MSR_IA32_MISC_ENABLE,
1169         MSR_IA32_MCG_STATUS,
1170         MSR_IA32_MCG_CTL,
1171         MSR_IA32_MCG_EXT_CTL,
1172         MSR_IA32_SMBASE,
1173         MSR_SMI_COUNT,
1174         MSR_PLATFORM_INFO,
1175         MSR_MISC_FEATURES_ENABLES,
1176         MSR_AMD64_VIRT_SPEC_CTRL,
1177         MSR_IA32_POWER_CTL,
1178
1179         MSR_K7_HWCR,
1180 };
1181
1182 static unsigned num_emulated_msrs;
1183
1184 /*
1185  * List of msr numbers which are used to expose MSR-based features that
1186  * can be used by a hypervisor to validate requested CPU features.
1187  */
1188 static u32 msr_based_features[] = {
1189         MSR_IA32_VMX_BASIC,
1190         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1191         MSR_IA32_VMX_PINBASED_CTLS,
1192         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1193         MSR_IA32_VMX_PROCBASED_CTLS,
1194         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1195         MSR_IA32_VMX_EXIT_CTLS,
1196         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1197         MSR_IA32_VMX_ENTRY_CTLS,
1198         MSR_IA32_VMX_MISC,
1199         MSR_IA32_VMX_CR0_FIXED0,
1200         MSR_IA32_VMX_CR0_FIXED1,
1201         MSR_IA32_VMX_CR4_FIXED0,
1202         MSR_IA32_VMX_CR4_FIXED1,
1203         MSR_IA32_VMX_VMCS_ENUM,
1204         MSR_IA32_VMX_PROCBASED_CTLS2,
1205         MSR_IA32_VMX_EPT_VPID_CAP,
1206         MSR_IA32_VMX_VMFUNC,
1207
1208         MSR_F10H_DECFG,
1209         MSR_IA32_UCODE_REV,
1210         MSR_IA32_ARCH_CAPABILITIES,
1211 };
1212
1213 static unsigned int num_msr_based_features;
1214
1215 static u64 kvm_get_arch_capabilities(void)
1216 {
1217         u64 data = 0;
1218
1219         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1221
1222         /*
1223          * If we're doing cache flushes (either "always" or "cond")
1224          * we will do one whenever the guest does a vmlaunch/vmresume.
1225          * If an outer hypervisor is doing the cache flush for us
1226          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1227          * capability to the guest too, and if EPT is disabled we're not
1228          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1229          * require a nested hypervisor to do a flush of its own.
1230          */
1231         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1232                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1233
1234         return data;
1235 }
1236
1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1238 {
1239         switch (msr->index) {
1240         case MSR_IA32_ARCH_CAPABILITIES:
1241                 msr->data = kvm_get_arch_capabilities();
1242                 break;
1243         case MSR_IA32_UCODE_REV:
1244                 rdmsrl_safe(msr->index, &msr->data);
1245                 break;
1246         default:
1247                 if (kvm_x86_ops->get_msr_feature(msr))
1248                         return 1;
1249         }
1250         return 0;
1251 }
1252
1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1254 {
1255         struct kvm_msr_entry msr;
1256         int r;
1257
1258         msr.index = index;
1259         r = kvm_get_msr_feature(&msr);
1260         if (r)
1261                 return r;
1262
1263         *data = msr.data;
1264
1265         return 0;
1266 }
1267
1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1269 {
1270         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271                 return false;
1272
1273         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274                 return false;
1275
1276         if (efer & (EFER_LME | EFER_LMA) &&
1277             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1278                 return false;
1279
1280         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1281                 return false;
1282
1283         return true;
1284
1285 }
1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1287 {
1288         if (efer & efer_reserved_bits)
1289                 return false;
1290
1291         return __kvm_valid_efer(vcpu, efer);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1294
1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1296 {
1297         u64 old_efer = vcpu->arch.efer;
1298         u64 efer = msr_info->data;
1299
1300         if (efer & efer_reserved_bits)
1301                 return 1;
1302
1303         if (!msr_info->host_initiated) {
1304                 if (!__kvm_valid_efer(vcpu, efer))
1305                         return 1;
1306
1307                 if (is_paging(vcpu) &&
1308                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1309                         return 1;
1310         }
1311
1312         efer &= ~EFER_LMA;
1313         efer |= vcpu->arch.efer & EFER_LMA;
1314
1315         kvm_x86_ops->set_efer(vcpu, efer);
1316
1317         /* Update reserved bits */
1318         if ((efer ^ old_efer) & EFER_NX)
1319                 kvm_mmu_reset_context(vcpu);
1320
1321         return 0;
1322 }
1323
1324 void kvm_enable_efer_bits(u64 mask)
1325 {
1326        efer_reserved_bits &= ~mask;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1329
1330 /*
1331  * Writes msr value into into the appropriate "register".
1332  * Returns 0 on success, non-0 otherwise.
1333  * Assumes vcpu_load() was already called.
1334  */
1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1336 {
1337         switch (msr->index) {
1338         case MSR_FS_BASE:
1339         case MSR_GS_BASE:
1340         case MSR_KERNEL_GS_BASE:
1341         case MSR_CSTAR:
1342         case MSR_LSTAR:
1343                 if (is_noncanonical_address(msr->data, vcpu))
1344                         return 1;
1345                 break;
1346         case MSR_IA32_SYSENTER_EIP:
1347         case MSR_IA32_SYSENTER_ESP:
1348                 /*
1349                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1350                  * non-canonical address is written on Intel but not on
1351                  * AMD (which ignores the top 32-bits, because it does
1352                  * not implement 64-bit SYSENTER).
1353                  *
1354                  * 64-bit code should hence be able to write a non-canonical
1355                  * value on AMD.  Making the address canonical ensures that
1356                  * vmentry does not fail on Intel after writing a non-canonical
1357                  * value, and that something deterministic happens if the guest
1358                  * invokes 64-bit SYSENTER.
1359                  */
1360                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1361         }
1362         return kvm_x86_ops->set_msr(vcpu, msr);
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_msr);
1365
1366 /*
1367  * Adapt set_msr() to msr_io()'s calling convention
1368  */
1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1370 {
1371         struct msr_data msr;
1372         int r;
1373
1374         msr.index = index;
1375         msr.host_initiated = true;
1376         r = kvm_get_msr(vcpu, &msr);
1377         if (r)
1378                 return r;
1379
1380         *data = msr.data;
1381         return 0;
1382 }
1383
1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1385 {
1386         struct msr_data msr;
1387
1388         msr.data = *data;
1389         msr.index = index;
1390         msr.host_initiated = true;
1391         return kvm_set_msr(vcpu, &msr);
1392 }
1393
1394 #ifdef CONFIG_X86_64
1395 struct pvclock_gtod_data {
1396         seqcount_t      seq;
1397
1398         struct { /* extract of a clocksource struct */
1399                 int vclock_mode;
1400                 u64     cycle_last;
1401                 u64     mask;
1402                 u32     mult;
1403                 u32     shift;
1404         } clock;
1405
1406         u64             boot_ns;
1407         u64             nsec_base;
1408         u64             wall_time_sec;
1409 };
1410
1411 static struct pvclock_gtod_data pvclock_gtod_data;
1412
1413 static void update_pvclock_gtod(struct timekeeper *tk)
1414 {
1415         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1416         u64 boot_ns;
1417
1418         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1419
1420         write_seqcount_begin(&vdata->seq);
1421
1422         /* copy pvclock gtod data */
1423         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1424         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1425         vdata->clock.mask               = tk->tkr_mono.mask;
1426         vdata->clock.mult               = tk->tkr_mono.mult;
1427         vdata->clock.shift              = tk->tkr_mono.shift;
1428
1429         vdata->boot_ns                  = boot_ns;
1430         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1431
1432         vdata->wall_time_sec            = tk->xtime_sec;
1433
1434         write_seqcount_end(&vdata->seq);
1435 }
1436 #endif
1437
1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1439 {
1440         /*
1441          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1442          * vcpu_enter_guest.  This function is only called from
1443          * the physical CPU that is running vcpu.
1444          */
1445         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1446 }
1447
1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1449 {
1450         int version;
1451         int r;
1452         struct pvclock_wall_clock wc;
1453         struct timespec64 boot;
1454
1455         if (!wall_clock)
1456                 return;
1457
1458         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1459         if (r)
1460                 return;
1461
1462         if (version & 1)
1463                 ++version;  /* first time write, random junk */
1464
1465         ++version;
1466
1467         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1468                 return;
1469
1470         /*
1471          * The guest calculates current wall clock time by adding
1472          * system time (updated by kvm_guest_time_update below) to the
1473          * wall clock specified here.  guest system time equals host
1474          * system time for us, thus we must fill in host boot time here.
1475          */
1476         getboottime64(&boot);
1477
1478         if (kvm->arch.kvmclock_offset) {
1479                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1480                 boot = timespec64_sub(boot, ts);
1481         }
1482         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1483         wc.nsec = boot.tv_nsec;
1484         wc.version = version;
1485
1486         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1487
1488         version++;
1489         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1490 }
1491
1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1493 {
1494         do_shl32_div32(dividend, divisor);
1495         return dividend;
1496 }
1497
1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1499                                s8 *pshift, u32 *pmultiplier)
1500 {
1501         uint64_t scaled64;
1502         int32_t  shift = 0;
1503         uint64_t tps64;
1504         uint32_t tps32;
1505
1506         tps64 = base_hz;
1507         scaled64 = scaled_hz;
1508         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1509                 tps64 >>= 1;
1510                 shift--;
1511         }
1512
1513         tps32 = (uint32_t)tps64;
1514         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1515                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1516                         scaled64 >>= 1;
1517                 else
1518                         tps32 <<= 1;
1519                 shift++;
1520         }
1521
1522         *pshift = shift;
1523         *pmultiplier = div_frac(scaled64, tps32);
1524
1525         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1526                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1527 }
1528
1529 #ifdef CONFIG_X86_64
1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1531 #endif
1532
1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1534 static unsigned long max_tsc_khz;
1535
1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1537 {
1538         u64 v = (u64)khz * (1000000 + ppm);
1539         do_div(v, 1000000);
1540         return v;
1541 }
1542
1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1544 {
1545         u64 ratio;
1546
1547         /* Guest TSC same frequency as host TSC? */
1548         if (!scale) {
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return 0;
1551         }
1552
1553         /* TSC scaling supported? */
1554         if (!kvm_has_tsc_control) {
1555                 if (user_tsc_khz > tsc_khz) {
1556                         vcpu->arch.tsc_catchup = 1;
1557                         vcpu->arch.tsc_always_catchup = 1;
1558                         return 0;
1559                 } else {
1560                         WARN(1, "user requested TSC rate below hardware speed\n");
1561                         return -1;
1562                 }
1563         }
1564
1565         /* TSC scaling required  - calculate ratio */
1566         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1567                                 user_tsc_khz, tsc_khz);
1568
1569         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1570                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1571                           user_tsc_khz);
1572                 return -1;
1573         }
1574
1575         vcpu->arch.tsc_scaling_ratio = ratio;
1576         return 0;
1577 }
1578
1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1580 {
1581         u32 thresh_lo, thresh_hi;
1582         int use_scaling = 0;
1583
1584         /* tsc_khz can be zero if TSC calibration fails */
1585         if (user_tsc_khz == 0) {
1586                 /* set tsc_scaling_ratio to a safe value */
1587                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1588                 return -1;
1589         }
1590
1591         /* Compute a scale to convert nanoseconds in TSC cycles */
1592         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1593                            &vcpu->arch.virtual_tsc_shift,
1594                            &vcpu->arch.virtual_tsc_mult);
1595         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1596
1597         /*
1598          * Compute the variation in TSC rate which is acceptable
1599          * within the range of tolerance and decide if the
1600          * rate being applied is within that bounds of the hardware
1601          * rate.  If so, no scaling or compensation need be done.
1602          */
1603         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1604         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1605         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1606                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1607                 use_scaling = 1;
1608         }
1609         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1610 }
1611
1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1613 {
1614         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1615                                       vcpu->arch.virtual_tsc_mult,
1616                                       vcpu->arch.virtual_tsc_shift);
1617         tsc += vcpu->arch.this_tsc_write;
1618         return tsc;
1619 }
1620
1621 static inline int gtod_is_based_on_tsc(int mode)
1622 {
1623         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1624 }
1625
1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1627 {
1628 #ifdef CONFIG_X86_64
1629         bool vcpus_matched;
1630         struct kvm_arch *ka = &vcpu->kvm->arch;
1631         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1632
1633         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1634                          atomic_read(&vcpu->kvm->online_vcpus));
1635
1636         /*
1637          * Once the masterclock is enabled, always perform request in
1638          * order to update it.
1639          *
1640          * In order to enable masterclock, the host clocksource must be TSC
1641          * and the vcpus need to have matched TSCs.  When that happens,
1642          * perform request to enable masterclock.
1643          */
1644         if (ka->use_master_clock ||
1645             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1646                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1647
1648         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1649                             atomic_read(&vcpu->kvm->online_vcpus),
1650                             ka->use_master_clock, gtod->clock.vclock_mode);
1651 #endif
1652 }
1653
1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1655 {
1656         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1657         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1658 }
1659
1660 /*
1661  * Multiply tsc by a fixed point number represented by ratio.
1662  *
1663  * The most significant 64-N bits (mult) of ratio represent the
1664  * integral part of the fixed point number; the remaining N bits
1665  * (frac) represent the fractional part, ie. ratio represents a fixed
1666  * point number (mult + frac * 2^(-N)).
1667  *
1668  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1669  */
1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1671 {
1672         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1673 }
1674
1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1676 {
1677         u64 _tsc = tsc;
1678         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1679
1680         if (ratio != kvm_default_tsc_scaling_ratio)
1681                 _tsc = __scale_tsc(ratio, tsc);
1682
1683         return _tsc;
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1686
1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1688 {
1689         u64 tsc;
1690
1691         tsc = kvm_scale_tsc(vcpu, rdtsc());
1692
1693         return target_tsc - tsc;
1694 }
1695
1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1697 {
1698         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1699
1700         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1703
1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1705 {
1706         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1707 }
1708
1709 static inline bool kvm_check_tsc_unstable(void)
1710 {
1711 #ifdef CONFIG_X86_64
1712         /*
1713          * TSC is marked unstable when we're running on Hyper-V,
1714          * 'TSC page' clocksource is good.
1715          */
1716         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1717                 return false;
1718 #endif
1719         return check_tsc_unstable();
1720 }
1721
1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1723 {
1724         struct kvm *kvm = vcpu->kvm;
1725         u64 offset, ns, elapsed;
1726         unsigned long flags;
1727         bool matched;
1728         bool already_matched;
1729         u64 data = msr->data;
1730         bool synchronizing = false;
1731
1732         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1733         offset = kvm_compute_tsc_offset(vcpu, data);
1734         ns = ktime_get_boot_ns();
1735         elapsed = ns - kvm->arch.last_tsc_nsec;
1736
1737         if (vcpu->arch.virtual_tsc_khz) {
1738                 if (data == 0 && msr->host_initiated) {
1739                         /*
1740                          * detection of vcpu initialization -- need to sync
1741                          * with other vCPUs. This particularly helps to keep
1742                          * kvm_clock stable after CPU hotplug
1743                          */
1744                         synchronizing = true;
1745                 } else {
1746                         u64 tsc_exp = kvm->arch.last_tsc_write +
1747                                                 nsec_to_cycles(vcpu, elapsed);
1748                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1749                         /*
1750                          * Special case: TSC write with a small delta (1 second)
1751                          * of virtual cycle time against real time is
1752                          * interpreted as an attempt to synchronize the CPU.
1753                          */
1754                         synchronizing = data < tsc_exp + tsc_hz &&
1755                                         data + tsc_hz > tsc_exp;
1756                 }
1757         }
1758
1759         /*
1760          * For a reliable TSC, we can match TSC offsets, and for an unstable
1761          * TSC, we add elapsed time in this computation.  We could let the
1762          * compensation code attempt to catch up if we fall behind, but
1763          * it's better to try to match offsets from the beginning.
1764          */
1765         if (synchronizing &&
1766             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1767                 if (!kvm_check_tsc_unstable()) {
1768                         offset = kvm->arch.cur_tsc_offset;
1769                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1770                 } else {
1771                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1772                         data += delta;
1773                         offset = kvm_compute_tsc_offset(vcpu, data);
1774                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1775                 }
1776                 matched = true;
1777                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1778         } else {
1779                 /*
1780                  * We split periods of matched TSC writes into generations.
1781                  * For each generation, we track the original measured
1782                  * nanosecond time, offset, and write, so if TSCs are in
1783                  * sync, we can match exact offset, and if not, we can match
1784                  * exact software computation in compute_guest_tsc()
1785                  *
1786                  * These values are tracked in kvm->arch.cur_xxx variables.
1787                  */
1788                 kvm->arch.cur_tsc_generation++;
1789                 kvm->arch.cur_tsc_nsec = ns;
1790                 kvm->arch.cur_tsc_write = data;
1791                 kvm->arch.cur_tsc_offset = offset;
1792                 matched = false;
1793                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1794                          kvm->arch.cur_tsc_generation, data);
1795         }
1796
1797         /*
1798          * We also track th most recent recorded KHZ, write and time to
1799          * allow the matching interval to be extended at each write.
1800          */
1801         kvm->arch.last_tsc_nsec = ns;
1802         kvm->arch.last_tsc_write = data;
1803         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1804
1805         vcpu->arch.last_guest_tsc = data;
1806
1807         /* Keep track of which generation this VCPU has synchronized to */
1808         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1809         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1810         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1811
1812         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1813                 update_ia32_tsc_adjust_msr(vcpu, offset);
1814
1815         kvm_vcpu_write_tsc_offset(vcpu, offset);
1816         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1817
1818         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1819         if (!matched) {
1820                 kvm->arch.nr_vcpus_matched_tsc = 0;
1821         } else if (!already_matched) {
1822                 kvm->arch.nr_vcpus_matched_tsc++;
1823         }
1824
1825         kvm_track_tsc_matching(vcpu);
1826         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1827 }
1828
1829 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1830
1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1832                                            s64 adjustment)
1833 {
1834         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1835         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1836 }
1837
1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1839 {
1840         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1841                 WARN_ON(adjustment < 0);
1842         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1843         adjust_tsc_offset_guest(vcpu, adjustment);
1844 }
1845
1846 #ifdef CONFIG_X86_64
1847
1848 static u64 read_tsc(void)
1849 {
1850         u64 ret = (u64)rdtsc_ordered();
1851         u64 last = pvclock_gtod_data.clock.cycle_last;
1852
1853         if (likely(ret >= last))
1854                 return ret;
1855
1856         /*
1857          * GCC likes to generate cmov here, but this branch is extremely
1858          * predictable (it's just a function of time and the likely is
1859          * very likely) and there's a data dependence, so force GCC
1860          * to generate a branch instead.  I don't barrier() because
1861          * we don't actually need a barrier, and if this function
1862          * ever gets inlined it will generate worse code.
1863          */
1864         asm volatile ("");
1865         return last;
1866 }
1867
1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1869 {
1870         long v;
1871         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1872         u64 tsc_pg_val;
1873
1874         switch (gtod->clock.vclock_mode) {
1875         case VCLOCK_HVCLOCK:
1876                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1877                                                   tsc_timestamp);
1878                 if (tsc_pg_val != U64_MAX) {
1879                         /* TSC page valid */
1880                         *mode = VCLOCK_HVCLOCK;
1881                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1882                                 gtod->clock.mask;
1883                 } else {
1884                         /* TSC page invalid */
1885                         *mode = VCLOCK_NONE;
1886                 }
1887                 break;
1888         case VCLOCK_TSC:
1889                 *mode = VCLOCK_TSC;
1890                 *tsc_timestamp = read_tsc();
1891                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1892                         gtod->clock.mask;
1893                 break;
1894         default:
1895                 *mode = VCLOCK_NONE;
1896         }
1897
1898         if (*mode == VCLOCK_NONE)
1899                 *tsc_timestamp = v = 0;
1900
1901         return v * gtod->clock.mult;
1902 }
1903
1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1905 {
1906         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1907         unsigned long seq;
1908         int mode;
1909         u64 ns;
1910
1911         do {
1912                 seq = read_seqcount_begin(&gtod->seq);
1913                 ns = gtod->nsec_base;
1914                 ns += vgettsc(tsc_timestamp, &mode);
1915                 ns >>= gtod->clock.shift;
1916                 ns += gtod->boot_ns;
1917         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1918         *t = ns;
1919
1920         return mode;
1921 }
1922
1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1924 {
1925         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926         unsigned long seq;
1927         int mode;
1928         u64 ns;
1929
1930         do {
1931                 seq = read_seqcount_begin(&gtod->seq);
1932                 ts->tv_sec = gtod->wall_time_sec;
1933                 ns = gtod->nsec_base;
1934                 ns += vgettsc(tsc_timestamp, &mode);
1935                 ns >>= gtod->clock.shift;
1936         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937
1938         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1939         ts->tv_nsec = ns;
1940
1941         return mode;
1942 }
1943
1944 /* returns true if host is using TSC based clocksource */
1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1946 {
1947         /* checked again under seqlock below */
1948         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1949                 return false;
1950
1951         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1952                                                       tsc_timestamp));
1953 }
1954
1955 /* returns true if host is using TSC based clocksource */
1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1957                                            u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1964 }
1965 #endif
1966
1967 /*
1968  *
1969  * Assuming a stable TSC across physical CPUS, and a stable TSC
1970  * across virtual CPUs, the following condition is possible.
1971  * Each numbered line represents an event visible to both
1972  * CPUs at the next numbered event.
1973  *
1974  * "timespecX" represents host monotonic time. "tscX" represents
1975  * RDTSC value.
1976  *
1977  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1978  *
1979  * 1.  read timespec0,tsc0
1980  * 2.                                   | timespec1 = timespec0 + N
1981  *                                      | tsc1 = tsc0 + M
1982  * 3. transition to guest               | transition to guest
1983  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1984  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1985  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1986  *
1987  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1988  *
1989  *      - ret0 < ret1
1990  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1991  *              ...
1992  *      - 0 < N - M => M < N
1993  *
1994  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1995  * always the case (the difference between two distinct xtime instances
1996  * might be smaller then the difference between corresponding TSC reads,
1997  * when updating guest vcpus pvclock areas).
1998  *
1999  * To avoid that problem, do not allow visibility of distinct
2000  * system_timestamp/tsc_timestamp values simultaneously: use a master
2001  * copy of host monotonic time values. Update that master copy
2002  * in lockstep.
2003  *
2004  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2005  *
2006  */
2007
2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2009 {
2010 #ifdef CONFIG_X86_64
2011         struct kvm_arch *ka = &kvm->arch;
2012         int vclock_mode;
2013         bool host_tsc_clocksource, vcpus_matched;
2014
2015         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2016                         atomic_read(&kvm->online_vcpus));
2017
2018         /*
2019          * If the host uses TSC clock, then passthrough TSC as stable
2020          * to the guest.
2021          */
2022         host_tsc_clocksource = kvm_get_time_and_clockread(
2023                                         &ka->master_kernel_ns,
2024                                         &ka->master_cycle_now);
2025
2026         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2027                                 && !ka->backwards_tsc_observed
2028                                 && !ka->boot_vcpu_runs_old_kvmclock;
2029
2030         if (ka->use_master_clock)
2031                 atomic_set(&kvm_guest_has_master_clock, 1);
2032
2033         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2034         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2035                                         vcpus_matched);
2036 #endif
2037 }
2038
2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2040 {
2041         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2042 }
2043
2044 static void kvm_gen_update_masterclock(struct kvm *kvm)
2045 {
2046 #ifdef CONFIG_X86_64
2047         int i;
2048         struct kvm_vcpu *vcpu;
2049         struct kvm_arch *ka = &kvm->arch;
2050
2051         spin_lock(&ka->pvclock_gtod_sync_lock);
2052         kvm_make_mclock_inprogress_request(kvm);
2053         /* no guest entries from this point */
2054         pvclock_update_vm_gtod_copy(kvm);
2055
2056         kvm_for_each_vcpu(i, vcpu, kvm)
2057                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2058
2059         /* guest entries allowed */
2060         kvm_for_each_vcpu(i, vcpu, kvm)
2061                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2062
2063         spin_unlock(&ka->pvclock_gtod_sync_lock);
2064 #endif
2065 }
2066
2067 u64 get_kvmclock_ns(struct kvm *kvm)
2068 {
2069         struct kvm_arch *ka = &kvm->arch;
2070         struct pvclock_vcpu_time_info hv_clock;
2071         u64 ret;
2072
2073         spin_lock(&ka->pvclock_gtod_sync_lock);
2074         if (!ka->use_master_clock) {
2075                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2076                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2077         }
2078
2079         hv_clock.tsc_timestamp = ka->master_cycle_now;
2080         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2081         spin_unlock(&ka->pvclock_gtod_sync_lock);
2082
2083         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2084         get_cpu();
2085
2086         if (__this_cpu_read(cpu_tsc_khz)) {
2087                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2088                                    &hv_clock.tsc_shift,
2089                                    &hv_clock.tsc_to_system_mul);
2090                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2091         } else
2092                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2093
2094         put_cpu();
2095
2096         return ret;
2097 }
2098
2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2100 {
2101         struct kvm_vcpu_arch *vcpu = &v->arch;
2102         struct pvclock_vcpu_time_info guest_hv_clock;
2103
2104         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2105                 &guest_hv_clock, sizeof(guest_hv_clock))))
2106                 return;
2107
2108         /* This VCPU is paused, but it's legal for a guest to read another
2109          * VCPU's kvmclock, so we really have to follow the specification where
2110          * it says that version is odd if data is being modified, and even after
2111          * it is consistent.
2112          *
2113          * Version field updates must be kept separate.  This is because
2114          * kvm_write_guest_cached might use a "rep movs" instruction, and
2115          * writes within a string instruction are weakly ordered.  So there
2116          * are three writes overall.
2117          *
2118          * As a small optimization, only write the version field in the first
2119          * and third write.  The vcpu->pv_time cache is still valid, because the
2120          * version field is the first in the struct.
2121          */
2122         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2123
2124         if (guest_hv_clock.version & 1)
2125                 ++guest_hv_clock.version;  /* first time write, random junk */
2126
2127         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2128         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2129                                 &vcpu->hv_clock,
2130                                 sizeof(vcpu->hv_clock.version));
2131
2132         smp_wmb();
2133
2134         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2135         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2136
2137         if (vcpu->pvclock_set_guest_stopped_request) {
2138                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2139                 vcpu->pvclock_set_guest_stopped_request = false;
2140         }
2141
2142         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2143
2144         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2145                                 &vcpu->hv_clock,
2146                                 sizeof(vcpu->hv_clock));
2147
2148         smp_wmb();
2149
2150         vcpu->hv_clock.version++;
2151         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2152                                 &vcpu->hv_clock,
2153                                 sizeof(vcpu->hv_clock.version));
2154 }
2155
2156 static int kvm_guest_time_update(struct kvm_vcpu *v)
2157 {
2158         unsigned long flags, tgt_tsc_khz;
2159         struct kvm_vcpu_arch *vcpu = &v->arch;
2160         struct kvm_arch *ka = &v->kvm->arch;
2161         s64 kernel_ns;
2162         u64 tsc_timestamp, host_tsc;
2163         u8 pvclock_flags;
2164         bool use_master_clock;
2165
2166         kernel_ns = 0;
2167         host_tsc = 0;
2168
2169         /*
2170          * If the host uses TSC clock, then passthrough TSC as stable
2171          * to the guest.
2172          */
2173         spin_lock(&ka->pvclock_gtod_sync_lock);
2174         use_master_clock = ka->use_master_clock;
2175         if (use_master_clock) {
2176                 host_tsc = ka->master_cycle_now;
2177                 kernel_ns = ka->master_kernel_ns;
2178         }
2179         spin_unlock(&ka->pvclock_gtod_sync_lock);
2180
2181         /* Keep irq disabled to prevent changes to the clock */
2182         local_irq_save(flags);
2183         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2184         if (unlikely(tgt_tsc_khz == 0)) {
2185                 local_irq_restore(flags);
2186                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2187                 return 1;
2188         }
2189         if (!use_master_clock) {
2190                 host_tsc = rdtsc();
2191                 kernel_ns = ktime_get_boot_ns();
2192         }
2193
2194         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2195
2196         /*
2197          * We may have to catch up the TSC to match elapsed wall clock
2198          * time for two reasons, even if kvmclock is used.
2199          *   1) CPU could have been running below the maximum TSC rate
2200          *   2) Broken TSC compensation resets the base at each VCPU
2201          *      entry to avoid unknown leaps of TSC even when running
2202          *      again on the same CPU.  This may cause apparent elapsed
2203          *      time to disappear, and the guest to stand still or run
2204          *      very slowly.
2205          */
2206         if (vcpu->tsc_catchup) {
2207                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2208                 if (tsc > tsc_timestamp) {
2209                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2210                         tsc_timestamp = tsc;
2211                 }
2212         }
2213
2214         local_irq_restore(flags);
2215
2216         /* With all the info we got, fill in the values */
2217
2218         if (kvm_has_tsc_control)
2219                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2220
2221         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2222                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2223                                    &vcpu->hv_clock.tsc_shift,
2224                                    &vcpu->hv_clock.tsc_to_system_mul);
2225                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2226         }
2227
2228         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2229         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2230         vcpu->last_guest_tsc = tsc_timestamp;
2231
2232         /* If the host uses TSC clocksource, then it is stable */
2233         pvclock_flags = 0;
2234         if (use_master_clock)
2235                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2236
2237         vcpu->hv_clock.flags = pvclock_flags;
2238
2239         if (vcpu->pv_time_enabled)
2240                 kvm_setup_pvclock_page(v);
2241         if (v == kvm_get_vcpu(v->kvm, 0))
2242                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2243         return 0;
2244 }
2245
2246 /*
2247  * kvmclock updates which are isolated to a given vcpu, such as
2248  * vcpu->cpu migration, should not allow system_timestamp from
2249  * the rest of the vcpus to remain static. Otherwise ntp frequency
2250  * correction applies to one vcpu's system_timestamp but not
2251  * the others.
2252  *
2253  * So in those cases, request a kvmclock update for all vcpus.
2254  * We need to rate-limit these requests though, as they can
2255  * considerably slow guests that have a large number of vcpus.
2256  * The time for a remote vcpu to update its kvmclock is bound
2257  * by the delay we use to rate-limit the updates.
2258  */
2259
2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2261
2262 static void kvmclock_update_fn(struct work_struct *work)
2263 {
2264         int i;
2265         struct delayed_work *dwork = to_delayed_work(work);
2266         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267                                            kvmclock_update_work);
2268         struct kvm *kvm = container_of(ka, struct kvm, arch);
2269         struct kvm_vcpu *vcpu;
2270
2271         kvm_for_each_vcpu(i, vcpu, kvm) {
2272                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273                 kvm_vcpu_kick(vcpu);
2274         }
2275 }
2276
2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2278 {
2279         struct kvm *kvm = v->kvm;
2280
2281         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2282         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2283                                         KVMCLOCK_UPDATE_DELAY);
2284 }
2285
2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2287
2288 static void kvmclock_sync_fn(struct work_struct *work)
2289 {
2290         struct delayed_work *dwork = to_delayed_work(work);
2291         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2292                                            kvmclock_sync_work);
2293         struct kvm *kvm = container_of(ka, struct kvm, arch);
2294
2295         if (!kvmclock_periodic_sync)
2296                 return;
2297
2298         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2299         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2300                                         KVMCLOCK_SYNC_PERIOD);
2301 }
2302
2303 /*
2304  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2305  */
2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2307 {
2308         /* McStatusWrEn enabled? */
2309         if (guest_cpuid_is_amd(vcpu))
2310                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2311
2312         return false;
2313 }
2314
2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2316 {
2317         u64 mcg_cap = vcpu->arch.mcg_cap;
2318         unsigned bank_num = mcg_cap & 0xff;
2319         u32 msr = msr_info->index;
2320         u64 data = msr_info->data;
2321
2322         switch (msr) {
2323         case MSR_IA32_MCG_STATUS:
2324                 vcpu->arch.mcg_status = data;
2325                 break;
2326         case MSR_IA32_MCG_CTL:
2327                 if (!(mcg_cap & MCG_CTL_P) &&
2328                     (data || !msr_info->host_initiated))
2329                         return 1;
2330                 if (data != 0 && data != ~(u64)0)
2331                         return 1;
2332                 vcpu->arch.mcg_ctl = data;
2333                 break;
2334         default:
2335                 if (msr >= MSR_IA32_MC0_CTL &&
2336                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2337                         u32 offset = msr - MSR_IA32_MC0_CTL;
2338                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2339                          * some Linux kernels though clear bit 10 in bank 4 to
2340                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2341                          * this to avoid an uncatched #GP in the guest
2342                          */
2343                         if ((offset & 0x3) == 0 &&
2344                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2345                                 return -1;
2346
2347                         /* MCi_STATUS */
2348                         if (!msr_info->host_initiated &&
2349                             (offset & 0x3) == 1 && data != 0) {
2350                                 if (!can_set_mci_status(vcpu))
2351                                         return -1;
2352                         }
2353
2354                         vcpu->arch.mce_banks[offset] = data;
2355                         break;
2356                 }
2357                 return 1;
2358         }
2359         return 0;
2360 }
2361
2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2363 {
2364         struct kvm *kvm = vcpu->kvm;
2365         int lm = is_long_mode(vcpu);
2366         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2367                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2368         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2369                 : kvm->arch.xen_hvm_config.blob_size_32;
2370         u32 page_num = data & ~PAGE_MASK;
2371         u64 page_addr = data & PAGE_MASK;
2372         u8 *page;
2373         int r;
2374
2375         r = -E2BIG;
2376         if (page_num >= blob_size)
2377                 goto out;
2378         r = -ENOMEM;
2379         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2380         if (IS_ERR(page)) {
2381                 r = PTR_ERR(page);
2382                 goto out;
2383         }
2384         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2385                 goto out_free;
2386         r = 0;
2387 out_free:
2388         kfree(page);
2389 out:
2390         return r;
2391 }
2392
2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2394 {
2395         gpa_t gpa = data & ~0x3f;
2396
2397         /* Bits 3:5 are reserved, Should be zero */
2398         if (data & 0x38)
2399                 return 1;
2400
2401         vcpu->arch.apf.msr_val = data;
2402
2403         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2404                 kvm_clear_async_pf_completion_queue(vcpu);
2405                 kvm_async_pf_hash_reset(vcpu);
2406                 return 0;
2407         }
2408
2409         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2410                                         sizeof(u32)))
2411                 return 1;
2412
2413         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2414         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2415         kvm_async_pf_wakeup_all(vcpu);
2416         return 0;
2417 }
2418
2419 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2420 {
2421         vcpu->arch.pv_time_enabled = false;
2422 }
2423
2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2425 {
2426         ++vcpu->stat.tlb_flush;
2427         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2428 }
2429
2430 static void record_steal_time(struct kvm_vcpu *vcpu)
2431 {
2432         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2433                 return;
2434
2435         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2436                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2437                 return;
2438
2439         /*
2440          * Doing a TLB flush here, on the guest's behalf, can avoid
2441          * expensive IPIs.
2442          */
2443         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2444                 kvm_vcpu_flush_tlb(vcpu, false);
2445
2446         if (vcpu->arch.st.steal.version & 1)
2447                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2448
2449         vcpu->arch.st.steal.version += 1;
2450
2451         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2452                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2453
2454         smp_wmb();
2455
2456         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2457                 vcpu->arch.st.last_steal;
2458         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2459
2460         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2461                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2462
2463         smp_wmb();
2464
2465         vcpu->arch.st.steal.version += 1;
2466
2467         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2468                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2469 }
2470
2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2472 {
2473         bool pr = false;
2474         u32 msr = msr_info->index;
2475         u64 data = msr_info->data;
2476
2477         switch (msr) {
2478         case MSR_AMD64_NB_CFG:
2479         case MSR_IA32_UCODE_WRITE:
2480         case MSR_VM_HSAVE_PA:
2481         case MSR_AMD64_PATCH_LOADER:
2482         case MSR_AMD64_BU_CFG2:
2483         case MSR_AMD64_DC_CFG:
2484         case MSR_F15H_EX_CFG:
2485                 break;
2486
2487         case MSR_IA32_UCODE_REV:
2488                 if (msr_info->host_initiated)
2489                         vcpu->arch.microcode_version = data;
2490                 break;
2491         case MSR_IA32_ARCH_CAPABILITIES:
2492                 if (!msr_info->host_initiated)
2493                         return 1;
2494                 vcpu->arch.arch_capabilities = data;
2495                 break;
2496         case MSR_EFER:
2497                 return set_efer(vcpu, msr_info);
2498         case MSR_K7_HWCR:
2499                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2500                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2501                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2502
2503                 /* Handle McStatusWrEn */
2504                 if (data == BIT_ULL(18)) {
2505                         vcpu->arch.msr_hwcr = data;
2506                 } else if (data != 0) {
2507                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2508                                     data);
2509                         return 1;
2510                 }
2511                 break;
2512         case MSR_FAM10H_MMIO_CONF_BASE:
2513                 if (data != 0) {
2514                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2515                                     "0x%llx\n", data);
2516                         return 1;
2517                 }
2518                 break;
2519         case MSR_IA32_DEBUGCTLMSR:
2520                 if (!data) {
2521                         /* We support the non-activated case already */
2522                         break;
2523                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2524                         /* Values other than LBR and BTF are vendor-specific,
2525                            thus reserved and should throw a #GP */
2526                         return 1;
2527                 }
2528                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2529                             __func__, data);
2530                 break;
2531         case 0x200 ... 0x2ff:
2532                 return kvm_mtrr_set_msr(vcpu, msr, data);
2533         case MSR_IA32_APICBASE:
2534                 return kvm_set_apic_base(vcpu, msr_info);
2535         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2536                 return kvm_x2apic_msr_write(vcpu, msr, data);
2537         case MSR_IA32_TSCDEADLINE:
2538                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2539                 break;
2540         case MSR_IA32_TSC_ADJUST:
2541                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2542                         if (!msr_info->host_initiated) {
2543                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2544                                 adjust_tsc_offset_guest(vcpu, adj);
2545                         }
2546                         vcpu->arch.ia32_tsc_adjust_msr = data;
2547                 }
2548                 break;
2549         case MSR_IA32_MISC_ENABLE:
2550                 vcpu->arch.ia32_misc_enable_msr = data;
2551                 break;
2552         case MSR_IA32_SMBASE:
2553                 if (!msr_info->host_initiated)
2554                         return 1;
2555                 vcpu->arch.smbase = data;
2556                 break;
2557         case MSR_IA32_TSC:
2558                 kvm_write_tsc(vcpu, msr_info);
2559                 break;
2560         case MSR_SMI_COUNT:
2561                 if (!msr_info->host_initiated)
2562                         return 1;
2563                 vcpu->arch.smi_count = data;
2564                 break;
2565         case MSR_KVM_WALL_CLOCK_NEW:
2566         case MSR_KVM_WALL_CLOCK:
2567                 vcpu->kvm->arch.wall_clock = data;
2568                 kvm_write_wall_clock(vcpu->kvm, data);
2569                 break;
2570         case MSR_KVM_SYSTEM_TIME_NEW:
2571         case MSR_KVM_SYSTEM_TIME: {
2572                 struct kvm_arch *ka = &vcpu->kvm->arch;
2573
2574                 kvmclock_reset(vcpu);
2575
2576                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2577                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2578
2579                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2580                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2581
2582                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2583                 }
2584
2585                 vcpu->arch.time = data;
2586                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2587
2588                 /* we verify if the enable bit is set... */
2589                 if (!(data & 1))
2590                         break;
2591
2592                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2593                      &vcpu->arch.pv_time, data & ~1ULL,
2594                      sizeof(struct pvclock_vcpu_time_info)))
2595                         vcpu->arch.pv_time_enabled = false;
2596                 else
2597                         vcpu->arch.pv_time_enabled = true;
2598
2599                 break;
2600         }
2601         case MSR_KVM_ASYNC_PF_EN:
2602                 if (kvm_pv_enable_async_pf(vcpu, data))
2603                         return 1;
2604                 break;
2605         case MSR_KVM_STEAL_TIME:
2606
2607                 if (unlikely(!sched_info_on()))
2608                         return 1;
2609
2610                 if (data & KVM_STEAL_RESERVED_MASK)
2611                         return 1;
2612
2613                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2614                                                 data & KVM_STEAL_VALID_BITS,
2615                                                 sizeof(struct kvm_steal_time)))
2616                         return 1;
2617
2618                 vcpu->arch.st.msr_val = data;
2619
2620                 if (!(data & KVM_MSR_ENABLED))
2621                         break;
2622
2623                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2624
2625                 break;
2626         case MSR_KVM_PV_EOI_EN:
2627                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2628                         return 1;
2629                 break;
2630
2631         case MSR_IA32_MCG_CTL:
2632         case MSR_IA32_MCG_STATUS:
2633         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2634                 return set_msr_mce(vcpu, msr_info);
2635
2636         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2637         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2638                 pr = true; /* fall through */
2639         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2640         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2641                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2642                         return kvm_pmu_set_msr(vcpu, msr_info);
2643
2644                 if (pr || data != 0)
2645                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2646                                     "0x%x data 0x%llx\n", msr, data);
2647                 break;
2648         case MSR_K7_CLK_CTL:
2649                 /*
2650                  * Ignore all writes to this no longer documented MSR.
2651                  * Writes are only relevant for old K7 processors,
2652                  * all pre-dating SVM, but a recommended workaround from
2653                  * AMD for these chips. It is possible to specify the
2654                  * affected processor models on the command line, hence
2655                  * the need to ignore the workaround.
2656                  */
2657                 break;
2658         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2659         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2660         case HV_X64_MSR_CRASH_CTL:
2661         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2662         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2663         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2664         case HV_X64_MSR_TSC_EMULATION_STATUS:
2665                 return kvm_hv_set_msr_common(vcpu, msr, data,
2666                                              msr_info->host_initiated);
2667         case MSR_IA32_BBL_CR_CTL3:
2668                 /* Drop writes to this legacy MSR -- see rdmsr
2669                  * counterpart for further detail.
2670                  */
2671                 if (report_ignored_msrs)
2672                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2673                                 msr, data);
2674                 break;
2675         case MSR_AMD64_OSVW_ID_LENGTH:
2676                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2677                         return 1;
2678                 vcpu->arch.osvw.length = data;
2679                 break;
2680         case MSR_AMD64_OSVW_STATUS:
2681                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2682                         return 1;
2683                 vcpu->arch.osvw.status = data;
2684                 break;
2685         case MSR_PLATFORM_INFO:
2686                 if (!msr_info->host_initiated ||
2687                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2688                      cpuid_fault_enabled(vcpu)))
2689                         return 1;
2690                 vcpu->arch.msr_platform_info = data;
2691                 break;
2692         case MSR_MISC_FEATURES_ENABLES:
2693                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2694                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2695                      !supports_cpuid_fault(vcpu)))
2696                         return 1;
2697                 vcpu->arch.msr_misc_features_enables = data;
2698                 break;
2699         default:
2700                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2701                         return xen_hvm_config(vcpu, data);
2702                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2703                         return kvm_pmu_set_msr(vcpu, msr_info);
2704                 if (!ignore_msrs) {
2705                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2706                                     msr, data);
2707                         return 1;
2708                 } else {
2709                         if (report_ignored_msrs)
2710                                 vcpu_unimpl(vcpu,
2711                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2712                                         msr, data);
2713                         break;
2714                 }
2715         }
2716         return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2719
2720
2721 /*
2722  * Reads an msr value (of 'msr_index') into 'pdata'.
2723  * Returns 0 on success, non-0 otherwise.
2724  * Assumes vcpu_load() was already called.
2725  */
2726 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2727 {
2728         return kvm_x86_ops->get_msr(vcpu, msr);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_get_msr);
2731
2732 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2733 {
2734         u64 data;
2735         u64 mcg_cap = vcpu->arch.mcg_cap;
2736         unsigned bank_num = mcg_cap & 0xff;
2737
2738         switch (msr) {
2739         case MSR_IA32_P5_MC_ADDR:
2740         case MSR_IA32_P5_MC_TYPE:
2741                 data = 0;
2742                 break;
2743         case MSR_IA32_MCG_CAP:
2744                 data = vcpu->arch.mcg_cap;
2745                 break;
2746         case MSR_IA32_MCG_CTL:
2747                 if (!(mcg_cap & MCG_CTL_P) && !host)
2748                         return 1;
2749                 data = vcpu->arch.mcg_ctl;
2750                 break;
2751         case MSR_IA32_MCG_STATUS:
2752                 data = vcpu->arch.mcg_status;
2753                 break;
2754         default:
2755                 if (msr >= MSR_IA32_MC0_CTL &&
2756                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2757                         u32 offset = msr - MSR_IA32_MC0_CTL;
2758                         data = vcpu->arch.mce_banks[offset];
2759                         break;
2760                 }
2761                 return 1;
2762         }
2763         *pdata = data;
2764         return 0;
2765 }
2766
2767 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2768 {
2769         switch (msr_info->index) {
2770         case MSR_IA32_PLATFORM_ID:
2771         case MSR_IA32_EBL_CR_POWERON:
2772         case MSR_IA32_DEBUGCTLMSR:
2773         case MSR_IA32_LASTBRANCHFROMIP:
2774         case MSR_IA32_LASTBRANCHTOIP:
2775         case MSR_IA32_LASTINTFROMIP:
2776         case MSR_IA32_LASTINTTOIP:
2777         case MSR_K8_SYSCFG:
2778         case MSR_K8_TSEG_ADDR:
2779         case MSR_K8_TSEG_MASK:
2780         case MSR_VM_HSAVE_PA:
2781         case MSR_K8_INT_PENDING_MSG:
2782         case MSR_AMD64_NB_CFG:
2783         case MSR_FAM10H_MMIO_CONF_BASE:
2784         case MSR_AMD64_BU_CFG2:
2785         case MSR_IA32_PERF_CTL:
2786         case MSR_AMD64_DC_CFG:
2787         case MSR_F15H_EX_CFG:
2788                 msr_info->data = 0;
2789                 break;
2790         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2791         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2792         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2793         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2794         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2795                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2796                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2797                 msr_info->data = 0;
2798                 break;
2799         case MSR_IA32_UCODE_REV:
2800                 msr_info->data = vcpu->arch.microcode_version;
2801                 break;
2802         case MSR_IA32_ARCH_CAPABILITIES:
2803                 if (!msr_info->host_initiated &&
2804                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2805                         return 1;
2806                 msr_info->data = vcpu->arch.arch_capabilities;
2807                 break;
2808         case MSR_IA32_TSC:
2809                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2810                 break;
2811         case MSR_MTRRcap:
2812         case 0x200 ... 0x2ff:
2813                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2814         case 0xcd: /* fsb frequency */
2815                 msr_info->data = 3;
2816                 break;
2817                 /*
2818                  * MSR_EBC_FREQUENCY_ID
2819                  * Conservative value valid for even the basic CPU models.
2820                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2821                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2822                  * and 266MHz for model 3, or 4. Set Core Clock
2823                  * Frequency to System Bus Frequency Ratio to 1 (bits
2824                  * 31:24) even though these are only valid for CPU
2825                  * models > 2, however guests may end up dividing or
2826                  * multiplying by zero otherwise.
2827                  */
2828         case MSR_EBC_FREQUENCY_ID:
2829                 msr_info->data = 1 << 24;
2830                 break;
2831         case MSR_IA32_APICBASE:
2832                 msr_info->data = kvm_get_apic_base(vcpu);
2833                 break;
2834         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2835                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2836                 break;
2837         case MSR_IA32_TSCDEADLINE:
2838                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2839                 break;
2840         case MSR_IA32_TSC_ADJUST:
2841                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2842                 break;
2843         case MSR_IA32_MISC_ENABLE:
2844                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2845                 break;
2846         case MSR_IA32_SMBASE:
2847                 if (!msr_info->host_initiated)
2848                         return 1;
2849                 msr_info->data = vcpu->arch.smbase;
2850                 break;
2851         case MSR_SMI_COUNT:
2852                 msr_info->data = vcpu->arch.smi_count;
2853                 break;
2854         case MSR_IA32_PERF_STATUS:
2855                 /* TSC increment by tick */
2856                 msr_info->data = 1000ULL;
2857                 /* CPU multiplier */
2858                 msr_info->data |= (((uint64_t)4ULL) << 40);
2859                 break;
2860         case MSR_EFER:
2861                 msr_info->data = vcpu->arch.efer;
2862                 break;
2863         case MSR_KVM_WALL_CLOCK:
2864         case MSR_KVM_WALL_CLOCK_NEW:
2865                 msr_info->data = vcpu->kvm->arch.wall_clock;
2866                 break;
2867         case MSR_KVM_SYSTEM_TIME:
2868         case MSR_KVM_SYSTEM_TIME_NEW:
2869                 msr_info->data = vcpu->arch.time;
2870                 break;
2871         case MSR_KVM_ASYNC_PF_EN:
2872                 msr_info->data = vcpu->arch.apf.msr_val;
2873                 break;
2874         case MSR_KVM_STEAL_TIME:
2875                 msr_info->data = vcpu->arch.st.msr_val;
2876                 break;
2877         case MSR_KVM_PV_EOI_EN:
2878                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2879                 break;
2880         case MSR_IA32_P5_MC_ADDR:
2881         case MSR_IA32_P5_MC_TYPE:
2882         case MSR_IA32_MCG_CAP:
2883         case MSR_IA32_MCG_CTL:
2884         case MSR_IA32_MCG_STATUS:
2885         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2886                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2887                                    msr_info->host_initiated);
2888         case MSR_K7_CLK_CTL:
2889                 /*
2890                  * Provide expected ramp-up count for K7. All other
2891                  * are set to zero, indicating minimum divisors for
2892                  * every field.
2893                  *
2894                  * This prevents guest kernels on AMD host with CPU
2895                  * type 6, model 8 and higher from exploding due to
2896                  * the rdmsr failing.
2897                  */
2898                 msr_info->data = 0x20000000;
2899                 break;
2900         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2901         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2902         case HV_X64_MSR_CRASH_CTL:
2903         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2904         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2905         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2906         case HV_X64_MSR_TSC_EMULATION_STATUS:
2907                 return kvm_hv_get_msr_common(vcpu,
2908                                              msr_info->index, &msr_info->data,
2909                                              msr_info->host_initiated);
2910                 break;
2911         case MSR_IA32_BBL_CR_CTL3:
2912                 /* This legacy MSR exists but isn't fully documented in current
2913                  * silicon.  It is however accessed by winxp in very narrow
2914                  * scenarios where it sets bit #19, itself documented as
2915                  * a "reserved" bit.  Best effort attempt to source coherent
2916                  * read data here should the balance of the register be
2917                  * interpreted by the guest:
2918                  *
2919                  * L2 cache control register 3: 64GB range, 256KB size,
2920                  * enabled, latency 0x1, configured
2921                  */
2922                 msr_info->data = 0xbe702111;
2923                 break;
2924         case MSR_AMD64_OSVW_ID_LENGTH:
2925                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2926                         return 1;
2927                 msr_info->data = vcpu->arch.osvw.length;
2928                 break;
2929         case MSR_AMD64_OSVW_STATUS:
2930                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2931                         return 1;
2932                 msr_info->data = vcpu->arch.osvw.status;
2933                 break;
2934         case MSR_PLATFORM_INFO:
2935                 if (!msr_info->host_initiated &&
2936                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2937                         return 1;
2938                 msr_info->data = vcpu->arch.msr_platform_info;
2939                 break;
2940         case MSR_MISC_FEATURES_ENABLES:
2941                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2942                 break;
2943         case MSR_K7_HWCR:
2944                 msr_info->data = vcpu->arch.msr_hwcr;
2945                 break;
2946         default:
2947                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2948                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2949                 if (!ignore_msrs) {
2950                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2951                                                msr_info->index);
2952                         return 1;
2953                 } else {
2954                         if (report_ignored_msrs)
2955                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2956                                         msr_info->index);
2957                         msr_info->data = 0;
2958                 }
2959                 break;
2960         }
2961         return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2964
2965 /*
2966  * Read or write a bunch of msrs. All parameters are kernel addresses.
2967  *
2968  * @return number of msrs set successfully.
2969  */
2970 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2971                     struct kvm_msr_entry *entries,
2972                     int (*do_msr)(struct kvm_vcpu *vcpu,
2973                                   unsigned index, u64 *data))
2974 {
2975         int i;
2976
2977         for (i = 0; i < msrs->nmsrs; ++i)
2978                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2979                         break;
2980
2981         return i;
2982 }
2983
2984 /*
2985  * Read or write a bunch of msrs. Parameters are user addresses.
2986  *
2987  * @return number of msrs set successfully.
2988  */
2989 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2990                   int (*do_msr)(struct kvm_vcpu *vcpu,
2991                                 unsigned index, u64 *data),
2992                   int writeback)
2993 {
2994         struct kvm_msrs msrs;
2995         struct kvm_msr_entry *entries;
2996         int r, n;
2997         unsigned size;
2998
2999         r = -EFAULT;
3000         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3001                 goto out;
3002
3003         r = -E2BIG;
3004         if (msrs.nmsrs >= MAX_IO_MSRS)
3005                 goto out;
3006
3007         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3008         entries = memdup_user(user_msrs->entries, size);
3009         if (IS_ERR(entries)) {
3010                 r = PTR_ERR(entries);
3011                 goto out;
3012         }
3013
3014         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3015         if (r < 0)
3016                 goto out_free;
3017
3018         r = -EFAULT;
3019         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3020                 goto out_free;
3021
3022         r = n;
3023
3024 out_free:
3025         kfree(entries);
3026 out:
3027         return r;
3028 }
3029
3030 static inline bool kvm_can_mwait_in_guest(void)
3031 {
3032         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3033                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3034                 boot_cpu_has(X86_FEATURE_ARAT);
3035 }
3036
3037 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3038 {
3039         int r = 0;
3040
3041         switch (ext) {
3042         case KVM_CAP_IRQCHIP:
3043         case KVM_CAP_HLT:
3044         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3045         case KVM_CAP_SET_TSS_ADDR:
3046         case KVM_CAP_EXT_CPUID:
3047         case KVM_CAP_EXT_EMUL_CPUID:
3048         case KVM_CAP_CLOCKSOURCE:
3049         case KVM_CAP_PIT:
3050         case KVM_CAP_NOP_IO_DELAY:
3051         case KVM_CAP_MP_STATE:
3052         case KVM_CAP_SYNC_MMU:
3053         case KVM_CAP_USER_NMI:
3054         case KVM_CAP_REINJECT_CONTROL:
3055         case KVM_CAP_IRQ_INJECT_STATUS:
3056         case KVM_CAP_IOEVENTFD:
3057         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3058         case KVM_CAP_PIT2:
3059         case KVM_CAP_PIT_STATE2:
3060         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3061         case KVM_CAP_XEN_HVM:
3062         case KVM_CAP_VCPU_EVENTS:
3063         case KVM_CAP_HYPERV:
3064         case KVM_CAP_HYPERV_VAPIC:
3065         case KVM_CAP_HYPERV_SPIN:
3066         case KVM_CAP_HYPERV_SYNIC:
3067         case KVM_CAP_HYPERV_SYNIC2:
3068         case KVM_CAP_HYPERV_VP_INDEX:
3069         case KVM_CAP_HYPERV_EVENTFD:
3070         case KVM_CAP_HYPERV_TLBFLUSH:
3071         case KVM_CAP_HYPERV_SEND_IPI:
3072         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3073         case KVM_CAP_HYPERV_CPUID:
3074         case KVM_CAP_PCI_SEGMENT:
3075         case KVM_CAP_DEBUGREGS:
3076         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3077         case KVM_CAP_XSAVE:
3078         case KVM_CAP_ASYNC_PF:
3079         case KVM_CAP_GET_TSC_KHZ:
3080         case KVM_CAP_KVMCLOCK_CTRL:
3081         case KVM_CAP_READONLY_MEM:
3082         case KVM_CAP_HYPERV_TIME:
3083         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3084         case KVM_CAP_TSC_DEADLINE_TIMER:
3085         case KVM_CAP_DISABLE_QUIRKS:
3086         case KVM_CAP_SET_BOOT_CPU_ID:
3087         case KVM_CAP_SPLIT_IRQCHIP:
3088         case KVM_CAP_IMMEDIATE_EXIT:
3089         case KVM_CAP_GET_MSR_FEATURES:
3090         case KVM_CAP_MSR_PLATFORM_INFO:
3091         case KVM_CAP_EXCEPTION_PAYLOAD:
3092                 r = 1;
3093                 break;
3094         case KVM_CAP_SYNC_REGS:
3095                 r = KVM_SYNC_X86_VALID_FIELDS;
3096                 break;
3097         case KVM_CAP_ADJUST_CLOCK:
3098                 r = KVM_CLOCK_TSC_STABLE;
3099                 break;
3100         case KVM_CAP_X86_DISABLE_EXITS:
3101                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3102                 if(kvm_can_mwait_in_guest())
3103                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3104                 break;
3105         case KVM_CAP_X86_SMM:
3106                 /* SMBASE is usually relocated above 1M on modern chipsets,
3107                  * and SMM handlers might indeed rely on 4G segment limits,
3108                  * so do not report SMM to be available if real mode is
3109                  * emulated via vm86 mode.  Still, do not go to great lengths
3110                  * to avoid userspace's usage of the feature, because it is a
3111                  * fringe case that is not enabled except via specific settings
3112                  * of the module parameters.
3113                  */
3114                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3115                 break;
3116         case KVM_CAP_VAPIC:
3117                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3118                 break;
3119         case KVM_CAP_NR_VCPUS:
3120                 r = KVM_SOFT_MAX_VCPUS;
3121                 break;
3122         case KVM_CAP_MAX_VCPUS:
3123                 r = KVM_MAX_VCPUS;
3124                 break;
3125         case KVM_CAP_MAX_VCPU_ID:
3126                 r = KVM_MAX_VCPU_ID;
3127                 break;
3128         case KVM_CAP_PV_MMU:    /* obsolete */
3129                 r = 0;
3130                 break;
3131         case KVM_CAP_MCE:
3132                 r = KVM_MAX_MCE_BANKS;
3133                 break;
3134         case KVM_CAP_XCRS:
3135                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3136                 break;
3137         case KVM_CAP_TSC_CONTROL:
3138                 r = kvm_has_tsc_control;
3139                 break;
3140         case KVM_CAP_X2APIC_API:
3141                 r = KVM_X2APIC_API_VALID_FLAGS;
3142                 break;
3143         case KVM_CAP_NESTED_STATE:
3144                 r = kvm_x86_ops->get_nested_state ?
3145                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3146                 break;
3147         default:
3148                 break;
3149         }
3150         return r;
3151
3152 }
3153
3154 long kvm_arch_dev_ioctl(struct file *filp,
3155                         unsigned int ioctl, unsigned long arg)
3156 {
3157         void __user *argp = (void __user *)arg;
3158         long r;
3159
3160         switch (ioctl) {
3161         case KVM_GET_MSR_INDEX_LIST: {
3162                 struct kvm_msr_list __user *user_msr_list = argp;
3163                 struct kvm_msr_list msr_list;
3164                 unsigned n;
3165
3166                 r = -EFAULT;
3167                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3168                         goto out;
3169                 n = msr_list.nmsrs;
3170                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3171                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3172                         goto out;
3173                 r = -E2BIG;
3174                 if (n < msr_list.nmsrs)
3175                         goto out;
3176                 r = -EFAULT;
3177                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3178                                  num_msrs_to_save * sizeof(u32)))
3179                         goto out;
3180                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3181                                  &emulated_msrs,
3182                                  num_emulated_msrs * sizeof(u32)))
3183                         goto out;
3184                 r = 0;
3185                 break;
3186         }
3187         case KVM_GET_SUPPORTED_CPUID:
3188         case KVM_GET_EMULATED_CPUID: {
3189                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3190                 struct kvm_cpuid2 cpuid;
3191
3192                 r = -EFAULT;
3193                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3194                         goto out;
3195
3196                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3197                                             ioctl);
3198                 if (r)
3199                         goto out;
3200
3201                 r = -EFAULT;
3202                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3203                         goto out;
3204                 r = 0;
3205                 break;
3206         }
3207         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3208                 r = -EFAULT;
3209                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3210                                  sizeof(kvm_mce_cap_supported)))
3211                         goto out;
3212                 r = 0;
3213                 break;
3214         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3215                 struct kvm_msr_list __user *user_msr_list = argp;
3216                 struct kvm_msr_list msr_list;
3217                 unsigned int n;
3218
3219                 r = -EFAULT;
3220                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3221                         goto out;
3222                 n = msr_list.nmsrs;
3223                 msr_list.nmsrs = num_msr_based_features;
3224                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3225                         goto out;
3226                 r = -E2BIG;
3227                 if (n < msr_list.nmsrs)
3228                         goto out;
3229                 r = -EFAULT;
3230                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3231                                  num_msr_based_features * sizeof(u32)))
3232                         goto out;
3233                 r = 0;
3234                 break;
3235         }
3236         case KVM_GET_MSRS:
3237                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3238                 break;
3239         }
3240         default:
3241                 r = -EINVAL;
3242         }
3243 out:
3244         return r;
3245 }
3246
3247 static void wbinvd_ipi(void *garbage)
3248 {
3249         wbinvd();
3250 }
3251
3252 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3253 {
3254         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3255 }
3256
3257 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3258 {
3259         /* Address WBINVD may be executed by guest */
3260         if (need_emulate_wbinvd(vcpu)) {
3261                 if (kvm_x86_ops->has_wbinvd_exit())
3262                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3263                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3264                         smp_call_function_single(vcpu->cpu,
3265                                         wbinvd_ipi, NULL, 1);
3266         }
3267
3268         kvm_x86_ops->vcpu_load(vcpu, cpu);
3269
3270         /* Apply any externally detected TSC adjustments (due to suspend) */
3271         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3272                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3273                 vcpu->arch.tsc_offset_adjustment = 0;
3274                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3275         }
3276
3277         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3278                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3279                                 rdtsc() - vcpu->arch.last_host_tsc;
3280                 if (tsc_delta < 0)
3281                         mark_tsc_unstable("KVM discovered backwards TSC");
3282
3283                 if (kvm_check_tsc_unstable()) {
3284                         u64 offset = kvm_compute_tsc_offset(vcpu,
3285                                                 vcpu->arch.last_guest_tsc);
3286                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3287                         vcpu->arch.tsc_catchup = 1;
3288                 }
3289
3290                 if (kvm_lapic_hv_timer_in_use(vcpu))
3291                         kvm_lapic_restart_hv_timer(vcpu);
3292
3293                 /*
3294                  * On a host with synchronized TSC, there is no need to update
3295                  * kvmclock on vcpu->cpu migration
3296                  */
3297                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3298                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3299                 if (vcpu->cpu != cpu)
3300                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3301                 vcpu->cpu = cpu;
3302         }
3303
3304         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3305 }
3306
3307 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3308 {
3309         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3310                 return;
3311
3312         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3313
3314         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3315                         &vcpu->arch.st.steal.preempted,
3316                         offsetof(struct kvm_steal_time, preempted),
3317                         sizeof(vcpu->arch.st.steal.preempted));
3318 }
3319
3320 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3321 {
3322         int idx;
3323
3324         if (vcpu->preempted)
3325                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3326
3327         /*
3328          * Disable page faults because we're in atomic context here.
3329          * kvm_write_guest_offset_cached() would call might_fault()
3330          * that relies on pagefault_disable() to tell if there's a
3331          * bug. NOTE: the write to guest memory may not go through if
3332          * during postcopy live migration or if there's heavy guest
3333          * paging.
3334          */
3335         pagefault_disable();
3336         /*
3337          * kvm_memslots() will be called by
3338          * kvm_write_guest_offset_cached() so take the srcu lock.
3339          */
3340         idx = srcu_read_lock(&vcpu->kvm->srcu);
3341         kvm_steal_time_set_preempted(vcpu);
3342         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3343         pagefault_enable();
3344         kvm_x86_ops->vcpu_put(vcpu);
3345         vcpu->arch.last_host_tsc = rdtsc();
3346         /*
3347          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3348          * on every vmexit, but if not, we might have a stale dr6 from the
3349          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3350          */
3351         set_debugreg(0, 6);
3352 }
3353
3354 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3355                                     struct kvm_lapic_state *s)
3356 {
3357         if (vcpu->arch.apicv_active)
3358                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3359
3360         return kvm_apic_get_state(vcpu, s);
3361 }
3362
3363 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3364                                     struct kvm_lapic_state *s)
3365 {
3366         int r;
3367
3368         r = kvm_apic_set_state(vcpu, s);
3369         if (r)
3370                 return r;
3371         update_cr8_intercept(vcpu);
3372
3373         return 0;
3374 }
3375
3376 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3377 {
3378         return (!lapic_in_kernel(vcpu) ||
3379                 kvm_apic_accept_pic_intr(vcpu));
3380 }
3381
3382 /*
3383  * if userspace requested an interrupt window, check that the
3384  * interrupt window is open.
3385  *
3386  * No need to exit to userspace if we already have an interrupt queued.
3387  */
3388 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3389 {
3390         return kvm_arch_interrupt_allowed(vcpu) &&
3391                 !kvm_cpu_has_interrupt(vcpu) &&
3392                 !kvm_event_needs_reinjection(vcpu) &&
3393                 kvm_cpu_accept_dm_intr(vcpu);
3394 }
3395
3396 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3397                                     struct kvm_interrupt *irq)
3398 {
3399         if (irq->irq >= KVM_NR_INTERRUPTS)
3400                 return -EINVAL;
3401
3402         if (!irqchip_in_kernel(vcpu->kvm)) {
3403                 kvm_queue_interrupt(vcpu, irq->irq, false);
3404                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3405                 return 0;
3406         }
3407
3408         /*
3409          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3410          * fail for in-kernel 8259.
3411          */
3412         if (pic_in_kernel(vcpu->kvm))
3413                 return -ENXIO;
3414
3415         if (vcpu->arch.pending_external_vector != -1)
3416                 return -EEXIST;
3417
3418         vcpu->arch.pending_external_vector = irq->irq;
3419         kvm_make_request(KVM_REQ_EVENT, vcpu);
3420         return 0;
3421 }
3422
3423 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3424 {
3425         kvm_inject_nmi(vcpu);
3426
3427         return 0;
3428 }
3429
3430 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3431 {
3432         kvm_make_request(KVM_REQ_SMI, vcpu);
3433
3434         return 0;
3435 }
3436
3437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3438                                            struct kvm_tpr_access_ctl *tac)
3439 {
3440         if (tac->flags)
3441                 return -EINVAL;
3442         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3443         return 0;
3444 }
3445
3446 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3447                                         u64 mcg_cap)
3448 {
3449         int r;
3450         unsigned bank_num = mcg_cap & 0xff, bank;
3451
3452         r = -EINVAL;
3453         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3454                 goto out;
3455         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3456                 goto out;
3457         r = 0;
3458         vcpu->arch.mcg_cap = mcg_cap;
3459         /* Init IA32_MCG_CTL to all 1s */
3460         if (mcg_cap & MCG_CTL_P)
3461                 vcpu->arch.mcg_ctl = ~(u64)0;
3462         /* Init IA32_MCi_CTL to all 1s */
3463         for (bank = 0; bank < bank_num; bank++)
3464                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3465
3466         if (kvm_x86_ops->setup_mce)
3467                 kvm_x86_ops->setup_mce(vcpu);
3468 out:
3469         return r;
3470 }
3471
3472 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3473                                       struct kvm_x86_mce *mce)
3474 {
3475         u64 mcg_cap = vcpu->arch.mcg_cap;
3476         unsigned bank_num = mcg_cap & 0xff;
3477         u64 *banks = vcpu->arch.mce_banks;
3478
3479         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3480                 return -EINVAL;
3481         /*
3482          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3483          * reporting is disabled
3484          */
3485         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3486             vcpu->arch.mcg_ctl != ~(u64)0)
3487                 return 0;
3488         banks += 4 * mce->bank;
3489         /*
3490          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3491          * reporting is disabled for the bank
3492          */
3493         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3494                 return 0;
3495         if (mce->status & MCI_STATUS_UC) {
3496                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3497                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3498                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3499                         return 0;
3500                 }
3501                 if (banks[1] & MCI_STATUS_VAL)
3502                         mce->status |= MCI_STATUS_OVER;
3503                 banks[2] = mce->addr;
3504                 banks[3] = mce->misc;
3505                 vcpu->arch.mcg_status = mce->mcg_status;
3506                 banks[1] = mce->status;
3507                 kvm_queue_exception(vcpu, MC_VECTOR);
3508         } else if (!(banks[1] & MCI_STATUS_VAL)
3509                    || !(banks[1] & MCI_STATUS_UC)) {
3510                 if (banks[1] & MCI_STATUS_VAL)
3511                         mce->status |= MCI_STATUS_OVER;
3512                 banks[2] = mce->addr;
3513                 banks[3] = mce->misc;
3514                 banks[1] = mce->status;
3515         } else
3516                 banks[1] |= MCI_STATUS_OVER;
3517         return 0;
3518 }
3519
3520 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3521                                                struct kvm_vcpu_events *events)
3522 {
3523         process_nmi(vcpu);
3524
3525         /*
3526          * The API doesn't provide the instruction length for software
3527          * exceptions, so don't report them. As long as the guest RIP
3528          * isn't advanced, we should expect to encounter the exception
3529          * again.
3530          */
3531         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3532                 events->exception.injected = 0;
3533                 events->exception.pending = 0;
3534         } else {
3535                 events->exception.injected = vcpu->arch.exception.injected;
3536                 events->exception.pending = vcpu->arch.exception.pending;
3537                 /*
3538                  * For ABI compatibility, deliberately conflate
3539                  * pending and injected exceptions when
3540                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3541                  */
3542                 if (!vcpu->kvm->arch.exception_payload_enabled)
3543                         events->exception.injected |=
3544                                 vcpu->arch.exception.pending;
3545         }
3546         events->exception.nr = vcpu->arch.exception.nr;
3547         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3548         events->exception.error_code = vcpu->arch.exception.error_code;
3549         events->exception_has_payload = vcpu->arch.exception.has_payload;
3550         events->exception_payload = vcpu->arch.exception.payload;
3551
3552         events->interrupt.injected =
3553                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3554         events->interrupt.nr = vcpu->arch.interrupt.nr;
3555         events->interrupt.soft = 0;
3556         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3557
3558         events->nmi.injected = vcpu->arch.nmi_injected;
3559         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3560         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3561         events->nmi.pad = 0;
3562
3563         events->sipi_vector = 0; /* never valid when reporting to user space */
3564
3565         events->smi.smm = is_smm(vcpu);
3566         events->smi.pending = vcpu->arch.smi_pending;
3567         events->smi.smm_inside_nmi =
3568                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3569         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3570
3571         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3572                          | KVM_VCPUEVENT_VALID_SHADOW
3573                          | KVM_VCPUEVENT_VALID_SMM);
3574         if (vcpu->kvm->arch.exception_payload_enabled)
3575                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3576
3577         memset(&events->reserved, 0, sizeof(events->reserved));
3578 }
3579
3580 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3581
3582 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3583                                               struct kvm_vcpu_events *events)
3584 {
3585         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3586                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3587                               | KVM_VCPUEVENT_VALID_SHADOW
3588                               | KVM_VCPUEVENT_VALID_SMM
3589                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3590                 return -EINVAL;
3591
3592         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3593                 if (!vcpu->kvm->arch.exception_payload_enabled)
3594                         return -EINVAL;
3595                 if (events->exception.pending)
3596                         events->exception.injected = 0;
3597                 else
3598                         events->exception_has_payload = 0;
3599         } else {
3600                 events->exception.pending = 0;
3601                 events->exception_has_payload = 0;
3602         }
3603
3604         if ((events->exception.injected || events->exception.pending) &&
3605             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3606                 return -EINVAL;
3607
3608         /* INITs are latched while in SMM */
3609         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3610             (events->smi.smm || events->smi.pending) &&
3611             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3612                 return -EINVAL;
3613
3614         process_nmi(vcpu);
3615         vcpu->arch.exception.injected = events->exception.injected;
3616         vcpu->arch.exception.pending = events->exception.pending;
3617         vcpu->arch.exception.nr = events->exception.nr;
3618         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3619         vcpu->arch.exception.error_code = events->exception.error_code;
3620         vcpu->arch.exception.has_payload = events->exception_has_payload;
3621         vcpu->arch.exception.payload = events->exception_payload;
3622
3623         vcpu->arch.interrupt.injected = events->interrupt.injected;
3624         vcpu->arch.interrupt.nr = events->interrupt.nr;
3625         vcpu->arch.interrupt.soft = events->interrupt.soft;
3626         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3627                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3628                                                   events->interrupt.shadow);
3629
3630         vcpu->arch.nmi_injected = events->nmi.injected;
3631         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3632                 vcpu->arch.nmi_pending = events->nmi.pending;
3633         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3634
3635         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3636             lapic_in_kernel(vcpu))
3637                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3638
3639         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3640                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3641                         if (events->smi.smm)
3642                                 vcpu->arch.hflags |= HF_SMM_MASK;
3643                         else
3644                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3645                         kvm_smm_changed(vcpu);
3646                 }
3647
3648                 vcpu->arch.smi_pending = events->smi.pending;
3649
3650                 if (events->smi.smm) {
3651                         if (events->smi.smm_inside_nmi)
3652                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3653                         else
3654                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3655                         if (lapic_in_kernel(vcpu)) {
3656                                 if (events->smi.latched_init)
3657                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3658                                 else
3659                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3660                         }
3661                 }
3662         }
3663
3664         kvm_make_request(KVM_REQ_EVENT, vcpu);
3665
3666         return 0;
3667 }
3668
3669 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3670                                              struct kvm_debugregs *dbgregs)
3671 {
3672         unsigned long val;
3673
3674         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3675         kvm_get_dr(vcpu, 6, &val);
3676         dbgregs->dr6 = val;
3677         dbgregs->dr7 = vcpu->arch.dr7;
3678         dbgregs->flags = 0;
3679         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3680 }
3681
3682 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3683                                             struct kvm_debugregs *dbgregs)
3684 {
3685         if (dbgregs->flags)
3686                 return -EINVAL;
3687
3688         if (dbgregs->dr6 & ~0xffffffffull)
3689                 return -EINVAL;
3690         if (dbgregs->dr7 & ~0xffffffffull)
3691                 return -EINVAL;
3692
3693         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3694         kvm_update_dr0123(vcpu);
3695         vcpu->arch.dr6 = dbgregs->dr6;
3696         kvm_update_dr6(vcpu);
3697         vcpu->arch.dr7 = dbgregs->dr7;
3698         kvm_update_dr7(vcpu);
3699
3700         return 0;
3701 }
3702
3703 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3704
3705 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3706 {
3707         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3708         u64 xstate_bv = xsave->header.xfeatures;
3709         u64 valid;
3710
3711         /*
3712          * Copy legacy XSAVE area, to avoid complications with CPUID
3713          * leaves 0 and 1 in the loop below.
3714          */
3715         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3716
3717         /* Set XSTATE_BV */
3718         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3719         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3720
3721         /*
3722          * Copy each region from the possibly compacted offset to the
3723          * non-compacted offset.
3724          */
3725         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3726         while (valid) {
3727                 u64 xfeature_mask = valid & -valid;
3728                 int xfeature_nr = fls64(xfeature_mask) - 1;
3729                 void *src = get_xsave_addr(xsave, xfeature_nr);
3730
3731                 if (src) {
3732                         u32 size, offset, ecx, edx;
3733                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3734                                     &size, &offset, &ecx, &edx);
3735                         if (xfeature_nr == XFEATURE_PKRU)
3736                                 memcpy(dest + offset, &vcpu->arch.pkru,
3737                                        sizeof(vcpu->arch.pkru));
3738                         else
3739                                 memcpy(dest + offset, src, size);
3740
3741                 }
3742
3743                 valid -= xfeature_mask;
3744         }
3745 }
3746
3747 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3748 {
3749         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3750         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3751         u64 valid;
3752
3753         /*
3754          * Copy legacy XSAVE area, to avoid complications with CPUID
3755          * leaves 0 and 1 in the loop below.
3756          */
3757         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3758
3759         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3760         xsave->header.xfeatures = xstate_bv;
3761         if (boot_cpu_has(X86_FEATURE_XSAVES))
3762                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3763
3764         /*
3765          * Copy each region from the non-compacted offset to the
3766          * possibly compacted offset.
3767          */
3768         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3769         while (valid) {
3770                 u64 xfeature_mask = valid & -valid;
3771                 int xfeature_nr = fls64(xfeature_mask) - 1;
3772                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3773
3774                 if (dest) {
3775                         u32 size, offset, ecx, edx;
3776                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3777                                     &size, &offset, &ecx, &edx);
3778                         if (xfeature_nr == XFEATURE_PKRU)
3779                                 memcpy(&vcpu->arch.pkru, src + offset,
3780                                        sizeof(vcpu->arch.pkru));
3781                         else
3782                                 memcpy(dest, src + offset, size);
3783                 }
3784
3785                 valid -= xfeature_mask;
3786         }
3787 }
3788
3789 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3790                                          struct kvm_xsave *guest_xsave)
3791 {
3792         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3793                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3794                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3795         } else {
3796                 memcpy(guest_xsave->region,
3797                         &vcpu->arch.guest_fpu->state.fxsave,
3798                         sizeof(struct fxregs_state));
3799                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3800                         XFEATURE_MASK_FPSSE;
3801         }
3802 }
3803
3804 #define XSAVE_MXCSR_OFFSET 24
3805
3806 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3807                                         struct kvm_xsave *guest_xsave)
3808 {
3809         u64 xstate_bv =
3810                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3811         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3812
3813         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3814                 /*
3815                  * Here we allow setting states that are not present in
3816                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3817                  * with old userspace.
3818                  */
3819                 if (xstate_bv & ~kvm_supported_xcr0() ||
3820                         mxcsr & ~mxcsr_feature_mask)
3821                         return -EINVAL;
3822                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3823         } else {
3824                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3825                         mxcsr & ~mxcsr_feature_mask)
3826                         return -EINVAL;
3827                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3828                         guest_xsave->region, sizeof(struct fxregs_state));
3829         }
3830         return 0;
3831 }
3832
3833 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3834                                         struct kvm_xcrs *guest_xcrs)
3835 {
3836         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3837                 guest_xcrs->nr_xcrs = 0;
3838                 return;
3839         }
3840
3841         guest_xcrs->nr_xcrs = 1;
3842         guest_xcrs->flags = 0;
3843         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3844         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3845 }
3846
3847 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3848                                        struct kvm_xcrs *guest_xcrs)
3849 {
3850         int i, r = 0;
3851
3852         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3853                 return -EINVAL;
3854
3855         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3856                 return -EINVAL;
3857
3858         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3859                 /* Only support XCR0 currently */
3860                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3861                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3862                                 guest_xcrs->xcrs[i].value);
3863                         break;
3864                 }
3865         if (r)
3866                 r = -EINVAL;
3867         return r;
3868 }
3869
3870 /*
3871  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3872  * stopped by the hypervisor.  This function will be called from the host only.
3873  * EINVAL is returned when the host attempts to set the flag for a guest that
3874  * does not support pv clocks.
3875  */
3876 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3877 {
3878         if (!vcpu->arch.pv_time_enabled)
3879                 return -EINVAL;
3880         vcpu->arch.pvclock_set_guest_stopped_request = true;
3881         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3882         return 0;
3883 }
3884
3885 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3886                                      struct kvm_enable_cap *cap)
3887 {
3888         int r;
3889         uint16_t vmcs_version;
3890         void __user *user_ptr;
3891
3892         if (cap->flags)
3893                 return -EINVAL;
3894
3895         switch (cap->cap) {
3896         case KVM_CAP_HYPERV_SYNIC2:
3897                 if (cap->args[0])
3898                         return -EINVAL;
3899                 /* fall through */
3900
3901         case KVM_CAP_HYPERV_SYNIC:
3902                 if (!irqchip_in_kernel(vcpu->kvm))
3903                         return -EINVAL;
3904                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3905                                              KVM_CAP_HYPERV_SYNIC2);
3906         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3907                 if (!kvm_x86_ops->nested_enable_evmcs)
3908                         return -ENOTTY;
3909                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3910                 if (!r) {
3911                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3912                         if (copy_to_user(user_ptr, &vmcs_version,
3913                                          sizeof(vmcs_version)))
3914                                 r = -EFAULT;
3915                 }
3916                 return r;
3917
3918         default:
3919                 return -EINVAL;
3920         }
3921 }
3922
3923 long kvm_arch_vcpu_ioctl(struct file *filp,
3924                          unsigned int ioctl, unsigned long arg)
3925 {
3926         struct kvm_vcpu *vcpu = filp->private_data;
3927         void __user *argp = (void __user *)arg;
3928         int r;
3929         union {
3930                 struct kvm_lapic_state *lapic;
3931                 struct kvm_xsave *xsave;
3932                 struct kvm_xcrs *xcrs;
3933                 void *buffer;
3934         } u;
3935
3936         vcpu_load(vcpu);
3937
3938         u.buffer = NULL;
3939         switch (ioctl) {
3940         case KVM_GET_LAPIC: {
3941                 r = -EINVAL;
3942                 if (!lapic_in_kernel(vcpu))
3943                         goto out;
3944                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3945                                 GFP_KERNEL_ACCOUNT);
3946
3947                 r = -ENOMEM;
3948                 if (!u.lapic)
3949                         goto out;
3950                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3951                 if (r)
3952                         goto out;
3953                 r = -EFAULT;
3954                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3955                         goto out;
3956                 r = 0;
3957                 break;
3958         }
3959         case KVM_SET_LAPIC: {
3960                 r = -EINVAL;
3961                 if (!lapic_in_kernel(vcpu))
3962                         goto out;
3963                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3964                 if (IS_ERR(u.lapic)) {
3965                         r = PTR_ERR(u.lapic);
3966                         goto out_nofree;
3967                 }
3968
3969                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3970                 break;
3971         }
3972         case KVM_INTERRUPT: {
3973                 struct kvm_interrupt irq;
3974
3975                 r = -EFAULT;
3976                 if (copy_from_user(&irq, argp, sizeof(irq)))
3977                         goto out;
3978                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3979                 break;
3980         }
3981         case KVM_NMI: {
3982                 r = kvm_vcpu_ioctl_nmi(vcpu);
3983                 break;
3984         }
3985         case KVM_SMI: {
3986                 r = kvm_vcpu_ioctl_smi(vcpu);
3987                 break;
3988         }
3989         case KVM_SET_CPUID: {
3990                 struct kvm_cpuid __user *cpuid_arg = argp;
3991                 struct kvm_cpuid cpuid;
3992
3993                 r = -EFAULT;
3994                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3995                         goto out;
3996                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3997                 break;
3998         }
3999         case KVM_SET_CPUID2: {
4000                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4001                 struct kvm_cpuid2 cpuid;
4002
4003                 r = -EFAULT;
4004                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4005                         goto out;
4006                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4007                                               cpuid_arg->entries);
4008                 break;
4009         }
4010         case KVM_GET_CPUID2: {
4011                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4012                 struct kvm_cpuid2 cpuid;
4013
4014                 r = -EFAULT;
4015                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4016                         goto out;
4017                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4018                                               cpuid_arg->entries);
4019                 if (r)
4020                         goto out;
4021                 r = -EFAULT;
4022                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4023                         goto out;
4024                 r = 0;
4025                 break;
4026         }
4027         case KVM_GET_MSRS: {
4028                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4029                 r = msr_io(vcpu, argp, do_get_msr, 1);
4030                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4031                 break;
4032         }
4033         case KVM_SET_MSRS: {
4034                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4035                 r = msr_io(vcpu, argp, do_set_msr, 0);
4036                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4037                 break;
4038         }
4039         case KVM_TPR_ACCESS_REPORTING: {
4040                 struct kvm_tpr_access_ctl tac;
4041
4042                 r = -EFAULT;
4043                 if (copy_from_user(&tac, argp, sizeof(tac)))
4044                         goto out;
4045                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4046                 if (r)
4047                         goto out;
4048                 r = -EFAULT;
4049                 if (copy_to_user(argp, &tac, sizeof(tac)))
4050                         goto out;
4051                 r = 0;
4052                 break;
4053         };
4054         case KVM_SET_VAPIC_ADDR: {
4055                 struct kvm_vapic_addr va;
4056                 int idx;
4057
4058                 r = -EINVAL;
4059                 if (!lapic_in_kernel(vcpu))
4060                         goto out;
4061                 r = -EFAULT;
4062                 if (copy_from_user(&va, argp, sizeof(va)))
4063                         goto out;
4064                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4065                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4066                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4067                 break;
4068         }
4069         case KVM_X86_SETUP_MCE: {
4070                 u64 mcg_cap;
4071
4072                 r = -EFAULT;
4073                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4074                         goto out;
4075                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4076                 break;
4077         }
4078         case KVM_X86_SET_MCE: {
4079                 struct kvm_x86_mce mce;
4080
4081                 r = -EFAULT;
4082                 if (copy_from_user(&mce, argp, sizeof(mce)))
4083                         goto out;
4084                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4085                 break;
4086         }
4087         case KVM_GET_VCPU_EVENTS: {
4088                 struct kvm_vcpu_events events;
4089
4090                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4091
4092                 r = -EFAULT;
4093                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4094                         break;
4095                 r = 0;
4096                 break;
4097         }
4098         case KVM_SET_VCPU_EVENTS: {
4099                 struct kvm_vcpu_events events;
4100
4101                 r = -EFAULT;
4102                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4103                         break;
4104
4105                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4106                 break;
4107         }
4108         case KVM_GET_DEBUGREGS: {
4109                 struct kvm_debugregs dbgregs;
4110
4111                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4112
4113                 r = -EFAULT;
4114                 if (copy_to_user(argp, &dbgregs,
4115                                  sizeof(struct kvm_debugregs)))
4116                         break;
4117                 r = 0;
4118                 break;
4119         }
4120         case KVM_SET_DEBUGREGS: {
4121                 struct kvm_debugregs dbgregs;
4122
4123                 r = -EFAULT;
4124                 if (copy_from_user(&dbgregs, argp,
4125                                    sizeof(struct kvm_debugregs)))
4126                         break;
4127
4128                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4129                 break;
4130         }
4131         case KVM_GET_XSAVE: {
4132                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4133                 r = -ENOMEM;
4134                 if (!u.xsave)
4135                         break;
4136
4137                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4138
4139                 r = -EFAULT;
4140                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4141                         break;
4142                 r = 0;
4143                 break;
4144         }
4145         case KVM_SET_XSAVE: {
4146                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4147                 if (IS_ERR(u.xsave)) {
4148                         r = PTR_ERR(u.xsave);
4149                         goto out_nofree;
4150                 }
4151
4152                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4153                 break;
4154         }
4155         case KVM_GET_XCRS: {
4156                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4157                 r = -ENOMEM;
4158                 if (!u.xcrs)
4159                         break;
4160
4161                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4162
4163                 r = -EFAULT;
4164                 if (copy_to_user(argp, u.xcrs,
4165                                  sizeof(struct kvm_xcrs)))
4166                         break;
4167                 r = 0;
4168                 break;
4169         }
4170         case KVM_SET_XCRS: {
4171                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4172                 if (IS_ERR(u.xcrs)) {
4173                         r = PTR_ERR(u.xcrs);
4174                         goto out_nofree;
4175                 }
4176
4177                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4178                 break;
4179         }
4180         case KVM_SET_TSC_KHZ: {
4181                 u32 user_tsc_khz;
4182
4183                 r = -EINVAL;
4184                 user_tsc_khz = (u32)arg;
4185
4186                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4187                         goto out;
4188
4189                 if (user_tsc_khz == 0)
4190                         user_tsc_khz = tsc_khz;
4191
4192                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4193                         r = 0;
4194
4195                 goto out;
4196         }
4197         case KVM_GET_TSC_KHZ: {
4198                 r = vcpu->arch.virtual_tsc_khz;
4199                 goto out;
4200         }
4201         case KVM_KVMCLOCK_CTRL: {
4202                 r = kvm_set_guest_paused(vcpu);
4203                 goto out;
4204         }
4205         case KVM_ENABLE_CAP: {
4206                 struct kvm_enable_cap cap;
4207
4208                 r = -EFAULT;
4209                 if (copy_from_user(&cap, argp, sizeof(cap)))
4210                         goto out;
4211                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4212                 break;
4213         }
4214         case KVM_GET_NESTED_STATE: {
4215                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4216                 u32 user_data_size;
4217
4218                 r = -EINVAL;
4219                 if (!kvm_x86_ops->get_nested_state)
4220                         break;
4221
4222                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4223                 r = -EFAULT;
4224                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4225                         break;
4226
4227                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4228                                                   user_data_size);
4229                 if (r < 0)
4230                         break;
4231
4232                 if (r > user_data_size) {
4233                         if (put_user(r, &user_kvm_nested_state->size))
4234                                 r = -EFAULT;
4235                         else
4236                                 r = -E2BIG;
4237                         break;
4238                 }
4239
4240                 r = 0;
4241                 break;
4242         }
4243         case KVM_SET_NESTED_STATE: {
4244                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4245                 struct kvm_nested_state kvm_state;
4246
4247                 r = -EINVAL;
4248                 if (!kvm_x86_ops->set_nested_state)
4249                         break;
4250
4251                 r = -EFAULT;
4252                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4253                         break;
4254
4255                 r = -EINVAL;
4256                 if (kvm_state.size < sizeof(kvm_state))
4257                         break;
4258
4259                 if (kvm_state.flags &
4260                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4261                       | KVM_STATE_NESTED_EVMCS))
4262                         break;
4263
4264                 /* nested_run_pending implies guest_mode.  */
4265                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4266                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4267                         break;
4268
4269                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4270                 break;
4271         }
4272         case KVM_GET_SUPPORTED_HV_CPUID: {
4273                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4274                 struct kvm_cpuid2 cpuid;
4275
4276                 r = -EFAULT;
4277                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4278                         goto out;
4279
4280                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4281                                                 cpuid_arg->entries);
4282                 if (r)
4283                         goto out;
4284
4285                 r = -EFAULT;
4286                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4287                         goto out;
4288                 r = 0;
4289                 break;
4290         }
4291         default:
4292                 r = -EINVAL;
4293         }
4294 out:
4295         kfree(u.buffer);
4296 out_nofree:
4297         vcpu_put(vcpu);
4298         return r;
4299 }
4300
4301 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4302 {
4303         return VM_FAULT_SIGBUS;
4304 }
4305
4306 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4307 {
4308         int ret;
4309
4310         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4311                 return -EINVAL;
4312         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4313         return ret;
4314 }
4315
4316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4317                                               u64 ident_addr)
4318 {
4319         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4320 }
4321
4322 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4323                                          unsigned long kvm_nr_mmu_pages)
4324 {
4325         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4326                 return -EINVAL;
4327
4328         mutex_lock(&kvm->slots_lock);
4329
4330         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4331         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4332
4333         mutex_unlock(&kvm->slots_lock);
4334         return 0;
4335 }
4336
4337 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4338 {
4339         return kvm->arch.n_max_mmu_pages;
4340 }
4341
4342 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4343 {
4344         struct kvm_pic *pic = kvm->arch.vpic;
4345         int r;
4346
4347         r = 0;
4348         switch (chip->chip_id) {
4349         case KVM_IRQCHIP_PIC_MASTER:
4350                 memcpy(&chip->chip.pic, &pic->pics[0],
4351                         sizeof(struct kvm_pic_state));
4352                 break;
4353         case KVM_IRQCHIP_PIC_SLAVE:
4354                 memcpy(&chip->chip.pic, &pic->pics[1],
4355                         sizeof(struct kvm_pic_state));
4356                 break;
4357         case KVM_IRQCHIP_IOAPIC:
4358                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4359                 break;
4360         default:
4361                 r = -EINVAL;
4362                 break;
4363         }
4364         return r;
4365 }
4366
4367 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4368 {
4369         struct kvm_pic *pic = kvm->arch.vpic;
4370         int r;
4371
4372         r = 0;
4373         switch (chip->chip_id) {
4374         case KVM_IRQCHIP_PIC_MASTER:
4375                 spin_lock(&pic->lock);
4376                 memcpy(&pic->pics[0], &chip->chip.pic,
4377                         sizeof(struct kvm_pic_state));
4378                 spin_unlock(&pic->lock);
4379                 break;
4380         case KVM_IRQCHIP_PIC_SLAVE:
4381                 spin_lock(&pic->lock);
4382                 memcpy(&pic->pics[1], &chip->chip.pic,
4383                         sizeof(struct kvm_pic_state));
4384                 spin_unlock(&pic->lock);
4385                 break;
4386         case KVM_IRQCHIP_IOAPIC:
4387                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4388                 break;
4389         default:
4390                 r = -EINVAL;
4391                 break;
4392         }
4393         kvm_pic_update_irq(pic);
4394         return r;
4395 }
4396
4397 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4398 {
4399         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4400
4401         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4402
4403         mutex_lock(&kps->lock);
4404         memcpy(ps, &kps->channels, sizeof(*ps));
4405         mutex_unlock(&kps->lock);
4406         return 0;
4407 }
4408
4409 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4410 {
4411         int i;
4412         struct kvm_pit *pit = kvm->arch.vpit;
4413
4414         mutex_lock(&pit->pit_state.lock);
4415         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4416         for (i = 0; i < 3; i++)
4417                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4418         mutex_unlock(&pit->pit_state.lock);
4419         return 0;
4420 }
4421
4422 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4423 {
4424         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4425         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4426                 sizeof(ps->channels));
4427         ps->flags = kvm->arch.vpit->pit_state.flags;
4428         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4429         memset(&ps->reserved, 0, sizeof(ps->reserved));
4430         return 0;
4431 }
4432
4433 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4434 {
4435         int start = 0;
4436         int i;
4437         u32 prev_legacy, cur_legacy;
4438         struct kvm_pit *pit = kvm->arch.vpit;
4439
4440         mutex_lock(&pit->pit_state.lock);
4441         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4442         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4443         if (!prev_legacy && cur_legacy)
4444                 start = 1;
4445         memcpy(&pit->pit_state.channels, &ps->channels,
4446                sizeof(pit->pit_state.channels));
4447         pit->pit_state.flags = ps->flags;
4448         for (i = 0; i < 3; i++)
4449                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4450                                    start && i == 0);
4451         mutex_unlock(&pit->pit_state.lock);
4452         return 0;
4453 }
4454
4455 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4456                                  struct kvm_reinject_control *control)
4457 {
4458         struct kvm_pit *pit = kvm->arch.vpit;
4459
4460         if (!pit)
4461                 return -ENXIO;
4462
4463         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4464          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4465          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4466          */
4467         mutex_lock(&pit->pit_state.lock);
4468         kvm_pit_set_reinject(pit, control->pit_reinject);
4469         mutex_unlock(&pit->pit_state.lock);
4470
4471         return 0;
4472 }
4473
4474 /**
4475  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4476  * @kvm: kvm instance
4477  * @log: slot id and address to which we copy the log
4478  *
4479  * Steps 1-4 below provide general overview of dirty page logging. See
4480  * kvm_get_dirty_log_protect() function description for additional details.
4481  *
4482  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4483  * always flush the TLB (step 4) even if previous step failed  and the dirty
4484  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4485  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4486  * writes will be marked dirty for next log read.
4487  *
4488  *   1. Take a snapshot of the bit and clear it if needed.
4489  *   2. Write protect the corresponding page.
4490  *   3. Copy the snapshot to the userspace.
4491  *   4. Flush TLB's if needed.
4492  */
4493 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4494 {
4495         bool flush = false;
4496         int r;
4497
4498         mutex_lock(&kvm->slots_lock);
4499
4500         /*
4501          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4502          */
4503         if (kvm_x86_ops->flush_log_dirty)
4504                 kvm_x86_ops->flush_log_dirty(kvm);
4505
4506         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4507
4508         /*
4509          * All the TLBs can be flushed out of mmu lock, see the comments in
4510          * kvm_mmu_slot_remove_write_access().
4511          */
4512         lockdep_assert_held(&kvm->slots_lock);
4513         if (flush)
4514                 kvm_flush_remote_tlbs(kvm);
4515
4516         mutex_unlock(&kvm->slots_lock);
4517         return r;
4518 }
4519
4520 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4521 {
4522         bool flush = false;
4523         int r;
4524
4525         mutex_lock(&kvm->slots_lock);
4526
4527         /*
4528          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4529          */
4530         if (kvm_x86_ops->flush_log_dirty)
4531                 kvm_x86_ops->flush_log_dirty(kvm);
4532
4533         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4534
4535         /*
4536          * All the TLBs can be flushed out of mmu lock, see the comments in
4537          * kvm_mmu_slot_remove_write_access().
4538          */
4539         lockdep_assert_held(&kvm->slots_lock);
4540         if (flush)
4541                 kvm_flush_remote_tlbs(kvm);
4542
4543         mutex_unlock(&kvm->slots_lock);
4544         return r;
4545 }
4546
4547 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4548                         bool line_status)
4549 {
4550         if (!irqchip_in_kernel(kvm))
4551                 return -ENXIO;
4552
4553         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4554                                         irq_event->irq, irq_event->level,
4555                                         line_status);
4556         return 0;
4557 }
4558
4559 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4560                             struct kvm_enable_cap *cap)
4561 {
4562         int r;
4563
4564         if (cap->flags)
4565                 return -EINVAL;
4566
4567         switch (cap->cap) {
4568         case KVM_CAP_DISABLE_QUIRKS:
4569                 kvm->arch.disabled_quirks = cap->args[0];
4570                 r = 0;
4571                 break;
4572         case KVM_CAP_SPLIT_IRQCHIP: {
4573                 mutex_lock(&kvm->lock);
4574                 r = -EINVAL;
4575                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4576                         goto split_irqchip_unlock;
4577                 r = -EEXIST;
4578                 if (irqchip_in_kernel(kvm))
4579                         goto split_irqchip_unlock;
4580                 if (kvm->created_vcpus)
4581                         goto split_irqchip_unlock;
4582                 r = kvm_setup_empty_irq_routing(kvm);
4583                 if (r)
4584                         goto split_irqchip_unlock;
4585                 /* Pairs with irqchip_in_kernel. */
4586                 smp_wmb();
4587                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4588                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4589                 r = 0;
4590 split_irqchip_unlock:
4591                 mutex_unlock(&kvm->lock);
4592                 break;
4593         }
4594         case KVM_CAP_X2APIC_API:
4595                 r = -EINVAL;
4596                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4597                         break;
4598
4599                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4600                         kvm->arch.x2apic_format = true;
4601                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4602                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4603
4604                 r = 0;
4605                 break;
4606         case KVM_CAP_X86_DISABLE_EXITS:
4607                 r = -EINVAL;
4608                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4609                         break;
4610
4611                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4612                         kvm_can_mwait_in_guest())
4613                         kvm->arch.mwait_in_guest = true;
4614                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4615                         kvm->arch.hlt_in_guest = true;
4616                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4617                         kvm->arch.pause_in_guest = true;
4618                 r = 0;
4619                 break;
4620         case KVM_CAP_MSR_PLATFORM_INFO:
4621                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4622                 r = 0;
4623                 break;
4624         case KVM_CAP_EXCEPTION_PAYLOAD:
4625                 kvm->arch.exception_payload_enabled = cap->args[0];
4626                 r = 0;
4627                 break;
4628         default:
4629                 r = -EINVAL;
4630                 break;
4631         }
4632         return r;
4633 }
4634
4635 long kvm_arch_vm_ioctl(struct file *filp,
4636                        unsigned int ioctl, unsigned long arg)
4637 {
4638         struct kvm *kvm = filp->private_data;
4639         void __user *argp = (void __user *)arg;
4640         int r = -ENOTTY;
4641         /*
4642          * This union makes it completely explicit to gcc-3.x
4643          * that these two variables' stack usage should be
4644          * combined, not added together.
4645          */
4646         union {
4647                 struct kvm_pit_state ps;
4648                 struct kvm_pit_state2 ps2;
4649                 struct kvm_pit_config pit_config;
4650         } u;
4651
4652         switch (ioctl) {
4653         case KVM_SET_TSS_ADDR:
4654                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4655                 break;
4656         case KVM_SET_IDENTITY_MAP_ADDR: {
4657                 u64 ident_addr;
4658
4659                 mutex_lock(&kvm->lock);
4660                 r = -EINVAL;
4661                 if (kvm->created_vcpus)
4662                         goto set_identity_unlock;
4663                 r = -EFAULT;
4664                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4665                         goto set_identity_unlock;
4666                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4667 set_identity_unlock:
4668                 mutex_unlock(&kvm->lock);
4669                 break;
4670         }
4671         case KVM_SET_NR_MMU_PAGES:
4672                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4673                 break;
4674         case KVM_GET_NR_MMU_PAGES:
4675                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4676                 break;
4677         case KVM_CREATE_IRQCHIP: {
4678                 mutex_lock(&kvm->lock);
4679
4680                 r = -EEXIST;
4681                 if (irqchip_in_kernel(kvm))
4682                         goto create_irqchip_unlock;
4683
4684                 r = -EINVAL;
4685                 if (kvm->created_vcpus)
4686                         goto create_irqchip_unlock;
4687
4688                 r = kvm_pic_init(kvm);
4689                 if (r)
4690                         goto create_irqchip_unlock;
4691
4692                 r = kvm_ioapic_init(kvm);
4693                 if (r) {
4694                         kvm_pic_destroy(kvm);
4695                         goto create_irqchip_unlock;
4696                 }
4697
4698                 r = kvm_setup_default_irq_routing(kvm);
4699                 if (r) {
4700                         kvm_ioapic_destroy(kvm);
4701                         kvm_pic_destroy(kvm);
4702                         goto create_irqchip_unlock;
4703                 }
4704                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4705                 smp_wmb();
4706                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4707         create_irqchip_unlock:
4708                 mutex_unlock(&kvm->lock);
4709                 break;
4710         }
4711         case KVM_CREATE_PIT:
4712                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4713                 goto create_pit;
4714         case KVM_CREATE_PIT2:
4715                 r = -EFAULT;
4716                 if (copy_from_user(&u.pit_config, argp,
4717                                    sizeof(struct kvm_pit_config)))
4718                         goto out;
4719         create_pit:
4720                 mutex_lock(&kvm->lock);
4721                 r = -EEXIST;
4722                 if (kvm->arch.vpit)
4723                         goto create_pit_unlock;
4724                 r = -ENOMEM;
4725                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4726                 if (kvm->arch.vpit)
4727                         r = 0;
4728         create_pit_unlock:
4729                 mutex_unlock(&kvm->lock);
4730                 break;
4731         case KVM_GET_IRQCHIP: {
4732                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4733                 struct kvm_irqchip *chip;
4734
4735                 chip = memdup_user(argp, sizeof(*chip));
4736                 if (IS_ERR(chip)) {
4737                         r = PTR_ERR(chip);
4738                         goto out;
4739                 }
4740
4741                 r = -ENXIO;
4742                 if (!irqchip_kernel(kvm))
4743                         goto get_irqchip_out;
4744                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4745                 if (r)
4746                         goto get_irqchip_out;
4747                 r = -EFAULT;
4748                 if (copy_to_user(argp, chip, sizeof(*chip)))
4749                         goto get_irqchip_out;
4750                 r = 0;
4751         get_irqchip_out:
4752                 kfree(chip);
4753                 break;
4754         }
4755         case KVM_SET_IRQCHIP: {
4756                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4757                 struct kvm_irqchip *chip;
4758
4759                 chip = memdup_user(argp, sizeof(*chip));
4760                 if (IS_ERR(chip)) {
4761                         r = PTR_ERR(chip);
4762                         goto out;
4763                 }
4764
4765                 r = -ENXIO;
4766                 if (!irqchip_kernel(kvm))
4767                         goto set_irqchip_out;
4768                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4769                 if (r)
4770                         goto set_irqchip_out;
4771                 r = 0;
4772         set_irqchip_out:
4773                 kfree(chip);
4774                 break;
4775         }
4776         case KVM_GET_PIT: {
4777                 r = -EFAULT;
4778                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4779                         goto out;
4780                 r = -ENXIO;
4781                 if (!kvm->arch.vpit)
4782                         goto out;
4783                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4784                 if (r)
4785                         goto out;
4786                 r = -EFAULT;
4787                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4788                         goto out;
4789                 r = 0;
4790                 break;
4791         }
4792         case KVM_SET_PIT: {
4793                 r = -EFAULT;
4794                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4795                         goto out;
4796                 r = -ENXIO;
4797                 if (!kvm->arch.vpit)
4798                         goto out;
4799                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4800                 break;
4801         }
4802         case KVM_GET_PIT2: {
4803                 r = -ENXIO;
4804                 if (!kvm->arch.vpit)
4805                         goto out;
4806                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4807                 if (r)
4808                         goto out;
4809                 r = -EFAULT;
4810                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4811                         goto out;
4812                 r = 0;
4813                 break;
4814         }
4815         case KVM_SET_PIT2: {
4816                 r = -EFAULT;
4817                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4818                         goto out;
4819                 r = -ENXIO;
4820                 if (!kvm->arch.vpit)
4821                         goto out;
4822                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4823                 break;
4824         }
4825         case KVM_REINJECT_CONTROL: {
4826                 struct kvm_reinject_control control;
4827                 r =  -EFAULT;
4828                 if (copy_from_user(&control, argp, sizeof(control)))
4829                         goto out;
4830                 r = kvm_vm_ioctl_reinject(kvm, &control);
4831                 break;
4832         }
4833         case KVM_SET_BOOT_CPU_ID:
4834                 r = 0;
4835                 mutex_lock(&kvm->lock);
4836                 if (kvm->created_vcpus)
4837                         r = -EBUSY;
4838                 else
4839                         kvm->arch.bsp_vcpu_id = arg;
4840                 mutex_unlock(&kvm->lock);
4841                 break;
4842         case KVM_XEN_HVM_CONFIG: {
4843                 struct kvm_xen_hvm_config xhc;
4844                 r = -EFAULT;
4845                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4846                         goto out;
4847                 r = -EINVAL;
4848                 if (xhc.flags)
4849                         goto out;
4850                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4851                 r = 0;
4852                 break;
4853         }
4854         case KVM_SET_CLOCK: {
4855                 struct kvm_clock_data user_ns;
4856                 u64 now_ns;
4857
4858                 r = -EFAULT;
4859                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4860                         goto out;
4861
4862                 r = -EINVAL;
4863                 if (user_ns.flags)
4864                         goto out;
4865
4866                 r = 0;
4867                 /*
4868                  * TODO: userspace has to take care of races with VCPU_RUN, so
4869                  * kvm_gen_update_masterclock() can be cut down to locked
4870                  * pvclock_update_vm_gtod_copy().
4871                  */
4872                 kvm_gen_update_masterclock(kvm);
4873                 now_ns = get_kvmclock_ns(kvm);
4874                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4875                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4876                 break;
4877         }
4878         case KVM_GET_CLOCK: {
4879                 struct kvm_clock_data user_ns;
4880                 u64 now_ns;
4881
4882                 now_ns = get_kvmclock_ns(kvm);
4883                 user_ns.clock = now_ns;
4884                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4885                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4886
4887                 r = -EFAULT;
4888                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4889                         goto out;
4890                 r = 0;
4891                 break;
4892         }
4893         case KVM_MEMORY_ENCRYPT_OP: {
4894                 r = -ENOTTY;
4895                 if (kvm_x86_ops->mem_enc_op)
4896                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4897                 break;
4898         }
4899         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4900                 struct kvm_enc_region region;
4901
4902                 r = -EFAULT;
4903                 if (copy_from_user(&region, argp, sizeof(region)))
4904                         goto out;
4905
4906                 r = -ENOTTY;
4907                 if (kvm_x86_ops->mem_enc_reg_region)
4908                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4909                 break;
4910         }
4911         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4912                 struct kvm_enc_region region;
4913
4914                 r = -EFAULT;
4915                 if (copy_from_user(&region, argp, sizeof(region)))
4916                         goto out;
4917
4918                 r = -ENOTTY;
4919                 if (kvm_x86_ops->mem_enc_unreg_region)
4920                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4921                 break;
4922         }
4923         case KVM_HYPERV_EVENTFD: {
4924                 struct kvm_hyperv_eventfd hvevfd;
4925
4926                 r = -EFAULT;
4927                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4928                         goto out;
4929                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4930                 break;
4931         }
4932         default:
4933                 r = -ENOTTY;
4934         }
4935 out:
4936         return r;
4937 }
4938
4939 static void kvm_init_msr_list(void)
4940 {
4941         u32 dummy[2];
4942         unsigned i, j;
4943
4944         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4945                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4946                         continue;
4947
4948                 /*
4949                  * Even MSRs that are valid in the host may not be exposed
4950                  * to the guests in some cases.
4951                  */
4952                 switch (msrs_to_save[i]) {
4953                 case MSR_IA32_BNDCFGS:
4954                         if (!kvm_mpx_supported())
4955                                 continue;
4956                         break;
4957                 case MSR_TSC_AUX:
4958                         if (!kvm_x86_ops->rdtscp_supported())
4959                                 continue;
4960                         break;
4961                 case MSR_IA32_RTIT_CTL:
4962                 case MSR_IA32_RTIT_STATUS:
4963                         if (!kvm_x86_ops->pt_supported())
4964                                 continue;
4965                         break;
4966                 case MSR_IA32_RTIT_CR3_MATCH:
4967                         if (!kvm_x86_ops->pt_supported() ||
4968                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4969                                 continue;
4970                         break;
4971                 case MSR_IA32_RTIT_OUTPUT_BASE:
4972                 case MSR_IA32_RTIT_OUTPUT_MASK:
4973                         if (!kvm_x86_ops->pt_supported() ||
4974                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4975                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4976                                 continue;
4977                         break;
4978                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4979                         if (!kvm_x86_ops->pt_supported() ||
4980                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4981                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4982                                 continue;
4983                         break;
4984                 }
4985                 default:
4986                         break;
4987                 }
4988
4989                 if (j < i)
4990                         msrs_to_save[j] = msrs_to_save[i];
4991                 j++;
4992         }
4993         num_msrs_to_save = j;
4994
4995         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4996                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4997                         continue;
4998
4999                 if (j < i)
5000                         emulated_msrs[j] = emulated_msrs[i];
5001                 j++;
5002         }
5003         num_emulated_msrs = j;
5004
5005         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5006                 struct kvm_msr_entry msr;
5007
5008                 msr.index = msr_based_features[i];
5009                 if (kvm_get_msr_feature(&msr))
5010                         continue;
5011
5012                 if (j < i)
5013                         msr_based_features[j] = msr_based_features[i];
5014                 j++;
5015         }
5016         num_msr_based_features = j;
5017 }
5018
5019 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5020                            const void *v)
5021 {
5022         int handled = 0;
5023         int n;
5024
5025         do {
5026                 n = min(len, 8);
5027                 if (!(lapic_in_kernel(vcpu) &&
5028                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5029                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5030                         break;
5031                 handled += n;
5032                 addr += n;
5033                 len -= n;
5034                 v += n;
5035         } while (len);
5036
5037         return handled;
5038 }
5039
5040 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5041 {
5042         int handled = 0;
5043         int n;
5044
5045         do {
5046                 n = min(len, 8);
5047                 if (!(lapic_in_kernel(vcpu) &&
5048                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5049                                          addr, n, v))
5050                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5051                         break;
5052                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5053                 handled += n;
5054                 addr += n;
5055                 len -= n;
5056                 v += n;
5057         } while (len);
5058
5059         return handled;
5060 }
5061
5062 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5063                         struct kvm_segment *var, int seg)
5064 {
5065         kvm_x86_ops->set_segment(vcpu, var, seg);
5066 }
5067
5068 void kvm_get_segment(struct kvm_vcpu *vcpu,
5069                      struct kvm_segment *var, int seg)
5070 {
5071         kvm_x86_ops->get_segment(vcpu, var, seg);
5072 }
5073
5074 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5075                            struct x86_exception *exception)
5076 {
5077         gpa_t t_gpa;
5078
5079         BUG_ON(!mmu_is_nested(vcpu));
5080
5081         /* NPT walks are always user-walks */
5082         access |= PFERR_USER_MASK;
5083         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5084
5085         return t_gpa;
5086 }
5087
5088 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5089                               struct x86_exception *exception)
5090 {
5091         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5092         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5093 }
5094
5095  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5096                                 struct x86_exception *exception)
5097 {
5098         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5099         access |= PFERR_FETCH_MASK;
5100         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5101 }
5102
5103 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5104                                struct x86_exception *exception)
5105 {
5106         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5107         access |= PFERR_WRITE_MASK;
5108         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5109 }
5110
5111 /* uses this to access any guest's mapped memory without checking CPL */
5112 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5113                                 struct x86_exception *exception)
5114 {
5115         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5116 }
5117
5118 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5119                                       struct kvm_vcpu *vcpu, u32 access,
5120                                       struct x86_exception *exception)
5121 {
5122         void *data = val;
5123         int r = X86EMUL_CONTINUE;
5124
5125         while (bytes) {
5126                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5127                                                             exception);
5128                 unsigned offset = addr & (PAGE_SIZE-1);
5129                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5130                 int ret;
5131
5132                 if (gpa == UNMAPPED_GVA)
5133                         return X86EMUL_PROPAGATE_FAULT;
5134                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5135                                                offset, toread);
5136                 if (ret < 0) {
5137                         r = X86EMUL_IO_NEEDED;
5138                         goto out;
5139                 }
5140
5141                 bytes -= toread;
5142                 data += toread;
5143                 addr += toread;
5144         }
5145 out:
5146         return r;
5147 }
5148
5149 /* used for instruction fetching */
5150 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5151                                 gva_t addr, void *val, unsigned int bytes,
5152                                 struct x86_exception *exception)
5153 {
5154         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5155         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5156         unsigned offset;
5157         int ret;
5158
5159         /* Inline kvm_read_guest_virt_helper for speed.  */
5160         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5161                                                     exception);
5162         if (unlikely(gpa == UNMAPPED_GVA))
5163                 return X86EMUL_PROPAGATE_FAULT;
5164
5165         offset = addr & (PAGE_SIZE-1);
5166         if (WARN_ON(offset + bytes > PAGE_SIZE))
5167                 bytes = (unsigned)PAGE_SIZE - offset;
5168         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5169                                        offset, bytes);
5170         if (unlikely(ret < 0))
5171                 return X86EMUL_IO_NEEDED;
5172
5173         return X86EMUL_CONTINUE;
5174 }
5175
5176 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5177                                gva_t addr, void *val, unsigned int bytes,
5178                                struct x86_exception *exception)
5179 {
5180         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5181
5182         /*
5183          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5184          * is returned, but our callers are not ready for that and they blindly
5185          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5186          * uninitialized kernel stack memory into cr2 and error code.
5187          */
5188         memset(exception, 0, sizeof(*exception));
5189         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5190                                           exception);
5191 }
5192 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5193
5194 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5195                              gva_t addr, void *val, unsigned int bytes,
5196                              struct x86_exception *exception, bool system)
5197 {
5198         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199         u32 access = 0;
5200
5201         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5202                 access |= PFERR_USER_MASK;
5203
5204         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5205 }
5206
5207 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5208                 unsigned long addr, void *val, unsigned int bytes)
5209 {
5210         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5211         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5212
5213         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5214 }
5215
5216 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5217                                       struct kvm_vcpu *vcpu, u32 access,
5218                                       struct x86_exception *exception)
5219 {
5220         void *data = val;
5221         int r = X86EMUL_CONTINUE;
5222
5223         while (bytes) {
5224                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5225                                                              access,
5226                                                              exception);
5227                 unsigned offset = addr & (PAGE_SIZE-1);
5228                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5229                 int ret;
5230
5231                 if (gpa == UNMAPPED_GVA)
5232                         return X86EMUL_PROPAGATE_FAULT;
5233                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5234                 if (ret < 0) {
5235                         r = X86EMUL_IO_NEEDED;
5236                         goto out;
5237                 }
5238
5239                 bytes -= towrite;
5240                 data += towrite;
5241                 addr += towrite;
5242         }
5243 out:
5244         return r;
5245 }
5246
5247 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5248                               unsigned int bytes, struct x86_exception *exception,
5249                               bool system)
5250 {
5251         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5252         u32 access = PFERR_WRITE_MASK;
5253
5254         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5255                 access |= PFERR_USER_MASK;
5256
5257         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5258                                            access, exception);
5259 }
5260
5261 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5262                                 unsigned int bytes, struct x86_exception *exception)
5263 {
5264         /* kvm_write_guest_virt_system can pull in tons of pages. */
5265         vcpu->arch.l1tf_flush_l1d = true;
5266
5267         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5268                                            PFERR_WRITE_MASK, exception);
5269 }
5270 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5271
5272 int handle_ud(struct kvm_vcpu *vcpu)
5273 {
5274         int emul_type = EMULTYPE_TRAP_UD;
5275         enum emulation_result er;
5276         char sig[5]; /* ud2; .ascii "kvm" */
5277         struct x86_exception e;
5278
5279         if (force_emulation_prefix &&
5280             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5281                                 sig, sizeof(sig), &e) == 0 &&
5282             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5283                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5284                 emul_type = 0;
5285         }
5286
5287         er = kvm_emulate_instruction(vcpu, emul_type);
5288         if (er == EMULATE_USER_EXIT)
5289                 return 0;
5290         if (er != EMULATE_DONE)
5291                 kvm_queue_exception(vcpu, UD_VECTOR);
5292         return 1;
5293 }
5294 EXPORT_SYMBOL_GPL(handle_ud);
5295
5296 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5297                             gpa_t gpa, bool write)
5298 {
5299         /* For APIC access vmexit */
5300         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5301                 return 1;
5302
5303         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5304                 trace_vcpu_match_mmio(gva, gpa, write, true);
5305                 return 1;
5306         }
5307
5308         return 0;
5309 }
5310
5311 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5312                                 gpa_t *gpa, struct x86_exception *exception,
5313                                 bool write)
5314 {
5315         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5316                 | (write ? PFERR_WRITE_MASK : 0);
5317
5318         /*
5319          * currently PKRU is only applied to ept enabled guest so
5320          * there is no pkey in EPT page table for L1 guest or EPT
5321          * shadow page table for L2 guest.
5322          */
5323         if (vcpu_match_mmio_gva(vcpu, gva)
5324             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5325                                  vcpu->arch.access, 0, access)) {
5326                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5327                                         (gva & (PAGE_SIZE - 1));
5328                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5329                 return 1;
5330         }
5331
5332         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5333
5334         if (*gpa == UNMAPPED_GVA)
5335                 return -1;
5336
5337         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5338 }
5339
5340 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5341                         const void *val, int bytes)
5342 {
5343         int ret;
5344
5345         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5346         if (ret < 0)
5347                 return 0;
5348         kvm_page_track_write(vcpu, gpa, val, bytes);
5349         return 1;
5350 }
5351
5352 struct read_write_emulator_ops {
5353         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5354                                   int bytes);
5355         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5356                                   void *val, int bytes);
5357         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5358                                int bytes, void *val);
5359         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5360                                     void *val, int bytes);
5361         bool write;
5362 };
5363
5364 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5365 {
5366         if (vcpu->mmio_read_completed) {
5367                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5368                                vcpu->mmio_fragments[0].gpa, val);
5369                 vcpu->mmio_read_completed = 0;
5370                 return 1;
5371         }
5372
5373         return 0;
5374 }
5375
5376 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5377                         void *val, int bytes)
5378 {
5379         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5380 }
5381
5382 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5383                          void *val, int bytes)
5384 {
5385         return emulator_write_phys(vcpu, gpa, val, bytes);
5386 }
5387
5388 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5389 {
5390         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5391         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5392 }
5393
5394 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5395                           void *val, int bytes)
5396 {
5397         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5398         return X86EMUL_IO_NEEDED;
5399 }
5400
5401 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5402                            void *val, int bytes)
5403 {
5404         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5405
5406         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5407         return X86EMUL_CONTINUE;
5408 }
5409
5410 static const struct read_write_emulator_ops read_emultor = {
5411         .read_write_prepare = read_prepare,
5412         .read_write_emulate = read_emulate,
5413         .read_write_mmio = vcpu_mmio_read,
5414         .read_write_exit_mmio = read_exit_mmio,
5415 };
5416
5417 static const struct read_write_emulator_ops write_emultor = {
5418         .read_write_emulate = write_emulate,
5419         .read_write_mmio = write_mmio,
5420         .read_write_exit_mmio = write_exit_mmio,
5421         .write = true,
5422 };
5423
5424 static int emulator_read_write_onepage(unsigned long addr, void *val,
5425                                        unsigned int bytes,
5426                                        struct x86_exception *exception,
5427                                        struct kvm_vcpu *vcpu,
5428                                        const struct read_write_emulator_ops *ops)
5429 {
5430         gpa_t gpa;
5431         int handled, ret;
5432         bool write = ops->write;
5433         struct kvm_mmio_fragment *frag;
5434         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5435
5436         /*
5437          * If the exit was due to a NPF we may already have a GPA.
5438          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5439          * Note, this cannot be used on string operations since string
5440          * operation using rep will only have the initial GPA from the NPF
5441          * occurred.
5442          */
5443         if (vcpu->arch.gpa_available &&
5444             emulator_can_use_gpa(ctxt) &&
5445             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5446                 gpa = vcpu->arch.gpa_val;
5447                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5448         } else {
5449                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5450                 if (ret < 0)
5451                         return X86EMUL_PROPAGATE_FAULT;
5452         }
5453
5454         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5455                 return X86EMUL_CONTINUE;
5456
5457         /*
5458          * Is this MMIO handled locally?
5459          */
5460         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5461         if (handled == bytes)
5462                 return X86EMUL_CONTINUE;
5463
5464         gpa += handled;
5465         bytes -= handled;
5466         val += handled;
5467
5468         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5469         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5470         frag->gpa = gpa;
5471         frag->data = val;
5472         frag->len = bytes;
5473         return X86EMUL_CONTINUE;
5474 }
5475
5476 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5477                         unsigned long addr,
5478                         void *val, unsigned int bytes,
5479                         struct x86_exception *exception,
5480                         const struct read_write_emulator_ops *ops)
5481 {
5482         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5483         gpa_t gpa;
5484         int rc;
5485
5486         if (ops->read_write_prepare &&
5487                   ops->read_write_prepare(vcpu, val, bytes))
5488                 return X86EMUL_CONTINUE;
5489
5490         vcpu->mmio_nr_fragments = 0;
5491
5492         /* Crossing a page boundary? */
5493         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5494                 int now;
5495
5496                 now = -addr & ~PAGE_MASK;
5497                 rc = emulator_read_write_onepage(addr, val, now, exception,
5498                                                  vcpu, ops);
5499
5500                 if (rc != X86EMUL_CONTINUE)
5501                         return rc;
5502                 addr += now;
5503                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5504                         addr = (u32)addr;
5505                 val += now;
5506                 bytes -= now;
5507         }
5508
5509         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5510                                          vcpu, ops);
5511         if (rc != X86EMUL_CONTINUE)
5512                 return rc;
5513
5514         if (!vcpu->mmio_nr_fragments)
5515                 return rc;
5516
5517         gpa = vcpu->mmio_fragments[0].gpa;
5518
5519         vcpu->mmio_needed = 1;
5520         vcpu->mmio_cur_fragment = 0;
5521
5522         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5523         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5524         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5525         vcpu->run->mmio.phys_addr = gpa;
5526
5527         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5528 }
5529
5530 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5531                                   unsigned long addr,
5532                                   void *val,
5533                                   unsigned int bytes,
5534                                   struct x86_exception *exception)
5535 {
5536         return emulator_read_write(ctxt, addr, val, bytes,
5537                                    exception, &read_emultor);
5538 }
5539
5540 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5541                             unsigned long addr,
5542                             const void *val,
5543                             unsigned int bytes,
5544                             struct x86_exception *exception)
5545 {
5546         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5547                                    exception, &write_emultor);
5548 }
5549
5550 #define CMPXCHG_TYPE(t, ptr, old, new) \
5551         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5552
5553 #ifdef CONFIG_X86_64
5554 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5555 #else
5556 #  define CMPXCHG64(ptr, old, new) \
5557         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5558 #endif
5559
5560 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5561                                      unsigned long addr,
5562                                      const void *old,
5563                                      const void *new,
5564                                      unsigned int bytes,
5565                                      struct x86_exception *exception)
5566 {
5567         struct kvm_host_map map;
5568         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5569         gpa_t gpa;
5570         char *kaddr;
5571         bool exchanged;
5572
5573         /* guests cmpxchg8b have to be emulated atomically */
5574         if (bytes > 8 || (bytes & (bytes - 1)))
5575                 goto emul_write;
5576
5577         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5578
5579         if (gpa == UNMAPPED_GVA ||
5580             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5581                 goto emul_write;
5582
5583         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5584                 goto emul_write;
5585
5586         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5587                 goto emul_write;
5588
5589         kaddr = map.hva + offset_in_page(gpa);
5590
5591         switch (bytes) {
5592         case 1:
5593                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5594                 break;
5595         case 2:
5596                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5597                 break;
5598         case 4:
5599                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5600                 break;
5601         case 8:
5602                 exchanged = CMPXCHG64(kaddr, old, new);
5603                 break;
5604         default:
5605                 BUG();
5606         }
5607
5608         kvm_vcpu_unmap(vcpu, &map, true);
5609
5610         if (!exchanged)
5611                 return X86EMUL_CMPXCHG_FAILED;
5612
5613         kvm_page_track_write(vcpu, gpa, new, bytes);
5614
5615         return X86EMUL_CONTINUE;
5616
5617 emul_write:
5618         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5619
5620         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5621 }
5622
5623 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5624 {
5625         int r = 0, i;
5626
5627         for (i = 0; i < vcpu->arch.pio.count; i++) {
5628                 if (vcpu->arch.pio.in)
5629                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5630                                             vcpu->arch.pio.size, pd);
5631                 else
5632                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5633                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5634                                              pd);
5635                 if (r)
5636                         break;
5637                 pd += vcpu->arch.pio.size;
5638         }
5639         return r;
5640 }
5641
5642 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5643                                unsigned short port, void *val,
5644                                unsigned int count, bool in)
5645 {
5646         vcpu->arch.pio.port = port;
5647         vcpu->arch.pio.in = in;
5648         vcpu->arch.pio.count  = count;
5649         vcpu->arch.pio.size = size;
5650
5651         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5652                 vcpu->arch.pio.count = 0;
5653                 return 1;
5654         }
5655
5656         vcpu->run->exit_reason = KVM_EXIT_IO;
5657         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5658         vcpu->run->io.size = size;
5659         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5660         vcpu->run->io.count = count;
5661         vcpu->run->io.port = port;
5662
5663         return 0;
5664 }
5665
5666 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5667                                     int size, unsigned short port, void *val,
5668                                     unsigned int count)
5669 {
5670         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5671         int ret;
5672
5673         if (vcpu->arch.pio.count)
5674                 goto data_avail;
5675
5676         memset(vcpu->arch.pio_data, 0, size * count);
5677
5678         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5679         if (ret) {
5680 data_avail:
5681                 memcpy(val, vcpu->arch.pio_data, size * count);
5682                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5683                 vcpu->arch.pio.count = 0;
5684                 return 1;
5685         }
5686
5687         return 0;
5688 }
5689
5690 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5691                                      int size, unsigned short port,
5692                                      const void *val, unsigned int count)
5693 {
5694         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5695
5696         memcpy(vcpu->arch.pio_data, val, size * count);
5697         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5698         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5699 }
5700
5701 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5702 {
5703         return kvm_x86_ops->get_segment_base(vcpu, seg);
5704 }
5705
5706 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5707 {
5708         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5709 }
5710
5711 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5712 {
5713         if (!need_emulate_wbinvd(vcpu))
5714                 return X86EMUL_CONTINUE;
5715
5716         if (kvm_x86_ops->has_wbinvd_exit()) {
5717                 int cpu = get_cpu();
5718
5719                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5720                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5721                                 wbinvd_ipi, NULL, 1);
5722                 put_cpu();
5723                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5724         } else
5725                 wbinvd();
5726         return X86EMUL_CONTINUE;
5727 }
5728
5729 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5730 {
5731         kvm_emulate_wbinvd_noskip(vcpu);
5732         return kvm_skip_emulated_instruction(vcpu);
5733 }
5734 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5735
5736
5737
5738 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5739 {
5740         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5741 }
5742
5743 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5744                            unsigned long *dest)
5745 {
5746         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5747 }
5748
5749 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5750                            unsigned long value)
5751 {
5752
5753         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5754 }
5755
5756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5757 {
5758         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5759 }
5760
5761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5762 {
5763         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5764         unsigned long value;
5765
5766         switch (cr) {
5767         case 0:
5768                 value = kvm_read_cr0(vcpu);
5769                 break;
5770         case 2:
5771                 value = vcpu->arch.cr2;
5772                 break;
5773         case 3:
5774                 value = kvm_read_cr3(vcpu);
5775                 break;
5776         case 4:
5777                 value = kvm_read_cr4(vcpu);
5778                 break;
5779         case 8:
5780                 value = kvm_get_cr8(vcpu);
5781                 break;
5782         default:
5783                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5784                 return 0;
5785         }
5786
5787         return value;
5788 }
5789
5790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5791 {
5792         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5793         int res = 0;
5794
5795         switch (cr) {
5796         case 0:
5797                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5798                 break;
5799         case 2:
5800                 vcpu->arch.cr2 = val;
5801                 break;
5802         case 3:
5803                 res = kvm_set_cr3(vcpu, val);
5804                 break;
5805         case 4:
5806                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5807                 break;
5808         case 8:
5809                 res = kvm_set_cr8(vcpu, val);
5810                 break;
5811         default:
5812                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5813                 res = -1;
5814         }
5815
5816         return res;
5817 }
5818
5819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5820 {
5821         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5822 }
5823
5824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5825 {
5826         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5827 }
5828
5829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5830 {
5831         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5832 }
5833
5834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5835 {
5836         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5837 }
5838
5839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5840 {
5841         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5842 }
5843
5844 static unsigned long emulator_get_cached_segment_base(
5845         struct x86_emulate_ctxt *ctxt, int seg)
5846 {
5847         return get_segment_base(emul_to_vcpu(ctxt), seg);
5848 }
5849
5850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5851                                  struct desc_struct *desc, u32 *base3,
5852                                  int seg)
5853 {
5854         struct kvm_segment var;
5855
5856         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5857         *selector = var.selector;
5858
5859         if (var.unusable) {
5860                 memset(desc, 0, sizeof(*desc));
5861                 if (base3)
5862                         *base3 = 0;
5863                 return false;
5864         }
5865
5866         if (var.g)
5867                 var.limit >>= 12;
5868         set_desc_limit(desc, var.limit);
5869         set_desc_base(desc, (unsigned long)var.base);
5870 #ifdef CONFIG_X86_64
5871         if (base3)
5872                 *base3 = var.base >> 32;
5873 #endif
5874         desc->type = var.type;
5875         desc->s = var.s;
5876         desc->dpl = var.dpl;
5877         desc->p = var.present;
5878         desc->avl = var.avl;
5879         desc->l = var.l;
5880         desc->d = var.db;
5881         desc->g = var.g;
5882
5883         return true;
5884 }
5885
5886 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5887                                  struct desc_struct *desc, u32 base3,
5888                                  int seg)
5889 {
5890         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5891         struct kvm_segment var;
5892
5893         var.selector = selector;
5894         var.base = get_desc_base(desc);
5895 #ifdef CONFIG_X86_64
5896         var.base |= ((u64)base3) << 32;
5897 #endif
5898         var.limit = get_desc_limit(desc);
5899         if (desc->g)
5900                 var.limit = (var.limit << 12) | 0xfff;
5901         var.type = desc->type;
5902         var.dpl = desc->dpl;
5903         var.db = desc->d;
5904         var.s = desc->s;
5905         var.l = desc->l;
5906         var.g = desc->g;
5907         var.avl = desc->avl;
5908         var.present = desc->p;
5909         var.unusable = !var.present;
5910         var.padding = 0;
5911
5912         kvm_set_segment(vcpu, &var, seg);
5913         return;
5914 }
5915
5916 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5917                             u32 msr_index, u64 *pdata)
5918 {
5919         struct msr_data msr;
5920         int r;
5921
5922         msr.index = msr_index;
5923         msr.host_initiated = false;
5924         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5925         if (r)
5926                 return r;
5927
5928         *pdata = msr.data;
5929         return 0;
5930 }
5931
5932 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5933                             u32 msr_index, u64 data)
5934 {
5935         struct msr_data msr;
5936
5937         msr.data = data;
5938         msr.index = msr_index;
5939         msr.host_initiated = false;
5940         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5941 }
5942
5943 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5944 {
5945         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946
5947         return vcpu->arch.smbase;
5948 }
5949
5950 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5951 {
5952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5953
5954         vcpu->arch.smbase = smbase;
5955 }
5956
5957 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5958                               u32 pmc)
5959 {
5960         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5961 }
5962
5963 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5964                              u32 pmc, u64 *pdata)
5965 {
5966         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5967 }
5968
5969 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5970 {
5971         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5972 }
5973
5974 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5975                               struct x86_instruction_info *info,
5976                               enum x86_intercept_stage stage)
5977 {
5978         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5979 }
5980
5981 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5982                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5983 {
5984         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5985 }
5986
5987 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5988 {
5989         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5990 }
5991
5992 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5993 {
5994         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5995 }
5996
5997 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5998 {
5999         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6000 }
6001
6002 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6003 {
6004         return emul_to_vcpu(ctxt)->arch.hflags;
6005 }
6006
6007 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6008 {
6009         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6010 }
6011
6012 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6013                                   const char *smstate)
6014 {
6015         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6016 }
6017
6018 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6019 {
6020         kvm_smm_changed(emul_to_vcpu(ctxt));
6021 }
6022
6023 static const struct x86_emulate_ops emulate_ops = {
6024         .read_gpr            = emulator_read_gpr,
6025         .write_gpr           = emulator_write_gpr,
6026         .read_std            = emulator_read_std,
6027         .write_std           = emulator_write_std,
6028         .read_phys           = kvm_read_guest_phys_system,
6029         .fetch               = kvm_fetch_guest_virt,
6030         .read_emulated       = emulator_read_emulated,
6031         .write_emulated      = emulator_write_emulated,
6032         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6033         .invlpg              = emulator_invlpg,
6034         .pio_in_emulated     = emulator_pio_in_emulated,
6035         .pio_out_emulated    = emulator_pio_out_emulated,
6036         .get_segment         = emulator_get_segment,
6037         .set_segment         = emulator_set_segment,
6038         .get_cached_segment_base = emulator_get_cached_segment_base,
6039         .get_gdt             = emulator_get_gdt,
6040         .get_idt             = emulator_get_idt,
6041         .set_gdt             = emulator_set_gdt,
6042         .set_idt             = emulator_set_idt,
6043         .get_cr              = emulator_get_cr,
6044         .set_cr              = emulator_set_cr,
6045         .cpl                 = emulator_get_cpl,
6046         .get_dr              = emulator_get_dr,
6047         .set_dr              = emulator_set_dr,
6048         .get_smbase          = emulator_get_smbase,
6049         .set_smbase          = emulator_set_smbase,
6050         .set_msr             = emulator_set_msr,
6051         .get_msr             = emulator_get_msr,
6052         .check_pmc           = emulator_check_pmc,
6053         .read_pmc            = emulator_read_pmc,
6054         .halt                = emulator_halt,
6055         .wbinvd              = emulator_wbinvd,
6056         .fix_hypercall       = emulator_fix_hypercall,
6057         .intercept           = emulator_intercept,
6058         .get_cpuid           = emulator_get_cpuid,
6059         .set_nmi_mask        = emulator_set_nmi_mask,
6060         .get_hflags          = emulator_get_hflags,
6061         .set_hflags          = emulator_set_hflags,
6062         .pre_leave_smm       = emulator_pre_leave_smm,
6063         .post_leave_smm      = emulator_post_leave_smm,
6064 };
6065
6066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6067 {
6068         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6069         /*
6070          * an sti; sti; sequence only disable interrupts for the first
6071          * instruction. So, if the last instruction, be it emulated or
6072          * not, left the system with the INT_STI flag enabled, it
6073          * means that the last instruction is an sti. We should not
6074          * leave the flag on in this case. The same goes for mov ss
6075          */
6076         if (int_shadow & mask)
6077                 mask = 0;
6078         if (unlikely(int_shadow || mask)) {
6079                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6080                 if (!mask)
6081                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6082         }
6083 }
6084
6085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6086 {
6087         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6088         if (ctxt->exception.vector == PF_VECTOR)
6089                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6090
6091         if (ctxt->exception.error_code_valid)
6092                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6093                                       ctxt->exception.error_code);
6094         else
6095                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6096         return false;
6097 }
6098
6099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6100 {
6101         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6102         int cs_db, cs_l;
6103
6104         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6105
6106         ctxt->eflags = kvm_get_rflags(vcpu);
6107         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6108
6109         ctxt->eip = kvm_rip_read(vcpu);
6110         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6111                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6112                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6113                      cs_db                              ? X86EMUL_MODE_PROT32 :
6114                                                           X86EMUL_MODE_PROT16;
6115         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6116         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6117         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6118
6119         init_decode_cache(ctxt);
6120         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6121 }
6122
6123 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6124 {
6125         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6126         int ret;
6127
6128         init_emulate_ctxt(vcpu);
6129
6130         ctxt->op_bytes = 2;
6131         ctxt->ad_bytes = 2;
6132         ctxt->_eip = ctxt->eip + inc_eip;
6133         ret = emulate_int_real(ctxt, irq);
6134
6135         if (ret != X86EMUL_CONTINUE)
6136                 return EMULATE_FAIL;
6137
6138         ctxt->eip = ctxt->_eip;
6139         kvm_rip_write(vcpu, ctxt->eip);
6140         kvm_set_rflags(vcpu, ctxt->eflags);
6141
6142         return EMULATE_DONE;
6143 }
6144 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6145
6146 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6147 {
6148         int r = EMULATE_DONE;
6149
6150         ++vcpu->stat.insn_emulation_fail;
6151         trace_kvm_emulate_insn_failed(vcpu);
6152
6153         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6154                 return EMULATE_FAIL;
6155
6156         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6157                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6158                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6159                 vcpu->run->internal.ndata = 0;
6160                 r = EMULATE_USER_EXIT;
6161         }
6162
6163         kvm_queue_exception(vcpu, UD_VECTOR);
6164
6165         return r;
6166 }
6167
6168 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6169                                   bool write_fault_to_shadow_pgtable,
6170                                   int emulation_type)
6171 {
6172         gpa_t gpa = cr2;
6173         kvm_pfn_t pfn;
6174
6175         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6176                 return false;
6177
6178         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6179                 return false;
6180
6181         if (!vcpu->arch.mmu->direct_map) {
6182                 /*
6183                  * Write permission should be allowed since only
6184                  * write access need to be emulated.
6185                  */
6186                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6187
6188                 /*
6189                  * If the mapping is invalid in guest, let cpu retry
6190                  * it to generate fault.
6191                  */
6192                 if (gpa == UNMAPPED_GVA)
6193                         return true;
6194         }
6195
6196         /*
6197          * Do not retry the unhandleable instruction if it faults on the
6198          * readonly host memory, otherwise it will goto a infinite loop:
6199          * retry instruction -> write #PF -> emulation fail -> retry
6200          * instruction -> ...
6201          */
6202         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6203
6204         /*
6205          * If the instruction failed on the error pfn, it can not be fixed,
6206          * report the error to userspace.
6207          */
6208         if (is_error_noslot_pfn(pfn))
6209                 return false;
6210
6211         kvm_release_pfn_clean(pfn);
6212
6213         /* The instructions are well-emulated on direct mmu. */
6214         if (vcpu->arch.mmu->direct_map) {
6215                 unsigned int indirect_shadow_pages;
6216
6217                 spin_lock(&vcpu->kvm->mmu_lock);
6218                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6219                 spin_unlock(&vcpu->kvm->mmu_lock);
6220
6221                 if (indirect_shadow_pages)
6222                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6223
6224                 return true;
6225         }
6226
6227         /*
6228          * if emulation was due to access to shadowed page table
6229          * and it failed try to unshadow page and re-enter the
6230          * guest to let CPU execute the instruction.
6231          */
6232         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6233
6234         /*
6235          * If the access faults on its page table, it can not
6236          * be fixed by unprotecting shadow page and it should
6237          * be reported to userspace.
6238          */
6239         return !write_fault_to_shadow_pgtable;
6240 }
6241
6242 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6243                               unsigned long cr2,  int emulation_type)
6244 {
6245         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6246         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6247
6248         last_retry_eip = vcpu->arch.last_retry_eip;
6249         last_retry_addr = vcpu->arch.last_retry_addr;
6250
6251         /*
6252          * If the emulation is caused by #PF and it is non-page_table
6253          * writing instruction, it means the VM-EXIT is caused by shadow
6254          * page protected, we can zap the shadow page and retry this
6255          * instruction directly.
6256          *
6257          * Note: if the guest uses a non-page-table modifying instruction
6258          * on the PDE that points to the instruction, then we will unmap
6259          * the instruction and go to an infinite loop. So, we cache the
6260          * last retried eip and the last fault address, if we meet the eip
6261          * and the address again, we can break out of the potential infinite
6262          * loop.
6263          */
6264         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6265
6266         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6267                 return false;
6268
6269         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6270                 return false;
6271
6272         if (x86_page_table_writing_insn(ctxt))
6273                 return false;
6274
6275         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6276                 return false;
6277
6278         vcpu->arch.last_retry_eip = ctxt->eip;
6279         vcpu->arch.last_retry_addr = cr2;
6280
6281         if (!vcpu->arch.mmu->direct_map)
6282                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6283
6284         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6285
6286         return true;
6287 }
6288
6289 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6290 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6291
6292 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6293 {
6294         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6295                 /* This is a good place to trace that we are exiting SMM.  */
6296                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6297
6298                 /* Process a latched INIT or SMI, if any.  */
6299                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6300         }
6301
6302         kvm_mmu_reset_context(vcpu);
6303 }
6304
6305 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6306                                 unsigned long *db)
6307 {
6308         u32 dr6 = 0;
6309         int i;
6310         u32 enable, rwlen;
6311
6312         enable = dr7;
6313         rwlen = dr7 >> 16;
6314         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6315                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6316                         dr6 |= (1 << i);
6317         return dr6;
6318 }
6319
6320 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6321 {
6322         struct kvm_run *kvm_run = vcpu->run;
6323
6324         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6325                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6326                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6327                 kvm_run->debug.arch.exception = DB_VECTOR;
6328                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6329                 *r = EMULATE_USER_EXIT;
6330         } else {
6331                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6332         }
6333 }
6334
6335 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6336 {
6337         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6338         int r = EMULATE_DONE;
6339
6340         kvm_x86_ops->skip_emulated_instruction(vcpu);
6341
6342         /*
6343          * rflags is the old, "raw" value of the flags.  The new value has
6344          * not been saved yet.
6345          *
6346          * This is correct even for TF set by the guest, because "the
6347          * processor will not generate this exception after the instruction
6348          * that sets the TF flag".
6349          */
6350         if (unlikely(rflags & X86_EFLAGS_TF))
6351                 kvm_vcpu_do_singlestep(vcpu, &r);
6352         return r == EMULATE_DONE;
6353 }
6354 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6355
6356 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6357 {
6358         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6359             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6360                 struct kvm_run *kvm_run = vcpu->run;
6361                 unsigned long eip = kvm_get_linear_rip(vcpu);
6362                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6363                                            vcpu->arch.guest_debug_dr7,
6364                                            vcpu->arch.eff_db);
6365
6366                 if (dr6 != 0) {
6367                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6368                         kvm_run->debug.arch.pc = eip;
6369                         kvm_run->debug.arch.exception = DB_VECTOR;
6370                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6371                         *r = EMULATE_USER_EXIT;
6372                         return true;
6373                 }
6374         }
6375
6376         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6377             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6378                 unsigned long eip = kvm_get_linear_rip(vcpu);
6379                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6380                                            vcpu->arch.dr7,
6381                                            vcpu->arch.db);
6382
6383                 if (dr6 != 0) {
6384                         vcpu->arch.dr6 &= ~15;
6385                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6386                         kvm_queue_exception(vcpu, DB_VECTOR);
6387                         *r = EMULATE_DONE;
6388                         return true;
6389                 }
6390         }
6391
6392         return false;
6393 }
6394
6395 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6396 {
6397         switch (ctxt->opcode_len) {
6398         case 1:
6399                 switch (ctxt->b) {
6400                 case 0xe4:      /* IN */
6401                 case 0xe5:
6402                 case 0xec:
6403                 case 0xed:
6404                 case 0xe6:      /* OUT */
6405                 case 0xe7:
6406                 case 0xee:
6407                 case 0xef:
6408                 case 0x6c:      /* INS */
6409                 case 0x6d:
6410                 case 0x6e:      /* OUTS */
6411                 case 0x6f:
6412                         return true;
6413                 }
6414                 break;
6415         case 2:
6416                 switch (ctxt->b) {
6417                 case 0x33:      /* RDPMC */
6418                         return true;
6419                 }
6420                 break;
6421         }
6422
6423         return false;
6424 }
6425
6426 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6427                             unsigned long cr2,
6428                             int emulation_type,
6429                             void *insn,
6430                             int insn_len)
6431 {
6432         int r;
6433         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6434         bool writeback = true;
6435         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6436
6437         vcpu->arch.l1tf_flush_l1d = true;
6438
6439         /*
6440          * Clear write_fault_to_shadow_pgtable here to ensure it is
6441          * never reused.
6442          */
6443         vcpu->arch.write_fault_to_shadow_pgtable = false;
6444         kvm_clear_exception_queue(vcpu);
6445
6446         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6447                 init_emulate_ctxt(vcpu);
6448
6449                 /*
6450                  * We will reenter on the same instruction since
6451                  * we do not set complete_userspace_io.  This does not
6452                  * handle watchpoints yet, those would be handled in
6453                  * the emulate_ops.
6454                  */
6455                 if (!(emulation_type & EMULTYPE_SKIP) &&
6456                     kvm_vcpu_check_breakpoint(vcpu, &r))
6457                         return r;
6458
6459                 ctxt->interruptibility = 0;
6460                 ctxt->have_exception = false;
6461                 ctxt->exception.vector = -1;
6462                 ctxt->perm_ok = false;
6463
6464                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6465
6466                 r = x86_decode_insn(ctxt, insn, insn_len);
6467
6468                 trace_kvm_emulate_insn_start(vcpu);
6469                 ++vcpu->stat.insn_emulation;
6470                 if (r != EMULATION_OK)  {
6471                         if (emulation_type & EMULTYPE_TRAP_UD)
6472                                 return EMULATE_FAIL;
6473                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6474                                                 emulation_type))
6475                                 return EMULATE_DONE;
6476                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6477                                 return EMULATE_DONE;
6478                         if (emulation_type & EMULTYPE_SKIP)
6479                                 return EMULATE_FAIL;
6480                         return handle_emulation_failure(vcpu, emulation_type);
6481                 }
6482         }
6483
6484         if ((emulation_type & EMULTYPE_VMWARE) &&
6485             !is_vmware_backdoor_opcode(ctxt))
6486                 return EMULATE_FAIL;
6487
6488         if (emulation_type & EMULTYPE_SKIP) {
6489                 kvm_rip_write(vcpu, ctxt->_eip);
6490                 if (ctxt->eflags & X86_EFLAGS_RF)
6491                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6492                 return EMULATE_DONE;
6493         }
6494
6495         if (retry_instruction(ctxt, cr2, emulation_type))
6496                 return EMULATE_DONE;
6497
6498         /* this is needed for vmware backdoor interface to work since it
6499            changes registers values  during IO operation */
6500         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6501                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6502                 emulator_invalidate_register_cache(ctxt);
6503         }
6504
6505 restart:
6506         /* Save the faulting GPA (cr2) in the address field */
6507         ctxt->exception.address = cr2;
6508
6509         r = x86_emulate_insn(ctxt);
6510
6511         if (r == EMULATION_INTERCEPTED)
6512                 return EMULATE_DONE;
6513
6514         if (r == EMULATION_FAILED) {
6515                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6516                                         emulation_type))
6517                         return EMULATE_DONE;
6518
6519                 return handle_emulation_failure(vcpu, emulation_type);
6520         }
6521
6522         if (ctxt->have_exception) {
6523                 r = EMULATE_DONE;
6524                 if (inject_emulated_exception(vcpu))
6525                         return r;
6526         } else if (vcpu->arch.pio.count) {
6527                 if (!vcpu->arch.pio.in) {
6528                         /* FIXME: return into emulator if single-stepping.  */
6529                         vcpu->arch.pio.count = 0;
6530                 } else {
6531                         writeback = false;
6532                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6533                 }
6534                 r = EMULATE_USER_EXIT;
6535         } else if (vcpu->mmio_needed) {
6536                 if (!vcpu->mmio_is_write)
6537                         writeback = false;
6538                 r = EMULATE_USER_EXIT;
6539                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6540         } else if (r == EMULATION_RESTART)
6541                 goto restart;
6542         else
6543                 r = EMULATE_DONE;
6544
6545         if (writeback) {
6546                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6547                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6548                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6549                 kvm_rip_write(vcpu, ctxt->eip);
6550                 if (r == EMULATE_DONE && ctxt->tf)
6551                         kvm_vcpu_do_singlestep(vcpu, &r);
6552                 if (!ctxt->have_exception ||
6553                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6554                         __kvm_set_rflags(vcpu, ctxt->eflags);
6555
6556                 /*
6557                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6558                  * do nothing, and it will be requested again as soon as
6559                  * the shadow expires.  But we still need to check here,
6560                  * because POPF has no interrupt shadow.
6561                  */
6562                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6563                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6564         } else
6565                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6566
6567         return r;
6568 }
6569
6570 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6571 {
6572         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6573 }
6574 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6575
6576 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6577                                         void *insn, int insn_len)
6578 {
6579         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6580 }
6581 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6582
6583 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6584 {
6585         vcpu->arch.pio.count = 0;
6586         return 1;
6587 }
6588
6589 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6590 {
6591         vcpu->arch.pio.count = 0;
6592
6593         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6594                 return 1;
6595
6596         return kvm_skip_emulated_instruction(vcpu);
6597 }
6598
6599 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6600                             unsigned short port)
6601 {
6602         unsigned long val = kvm_rax_read(vcpu);
6603         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6604                                             size, port, &val, 1);
6605         if (ret)
6606                 return ret;
6607
6608         /*
6609          * Workaround userspace that relies on old KVM behavior of %rip being
6610          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6611          */
6612         if (port == 0x7e &&
6613             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6614                 vcpu->arch.complete_userspace_io =
6615                         complete_fast_pio_out_port_0x7e;
6616                 kvm_skip_emulated_instruction(vcpu);
6617         } else {
6618                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6619                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6620         }
6621         return 0;
6622 }
6623
6624 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6625 {
6626         unsigned long val;
6627
6628         /* We should only ever be called with arch.pio.count equal to 1 */
6629         BUG_ON(vcpu->arch.pio.count != 1);
6630
6631         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6632                 vcpu->arch.pio.count = 0;
6633                 return 1;
6634         }
6635
6636         /* For size less than 4 we merge, else we zero extend */
6637         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6638
6639         /*
6640          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6641          * the copy and tracing
6642          */
6643         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6644                                  vcpu->arch.pio.port, &val, 1);
6645         kvm_rax_write(vcpu, val);
6646
6647         return kvm_skip_emulated_instruction(vcpu);
6648 }
6649
6650 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6651                            unsigned short port)
6652 {
6653         unsigned long val;
6654         int ret;
6655
6656         /* For size less than 4 we merge, else we zero extend */
6657         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6658
6659         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6660                                        &val, 1);
6661         if (ret) {
6662                 kvm_rax_write(vcpu, val);
6663                 return ret;
6664         }
6665
6666         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6667         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6668
6669         return 0;
6670 }
6671
6672 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6673 {
6674         int ret;
6675
6676         if (in)
6677                 ret = kvm_fast_pio_in(vcpu, size, port);
6678         else
6679                 ret = kvm_fast_pio_out(vcpu, size, port);
6680         return ret && kvm_skip_emulated_instruction(vcpu);
6681 }
6682 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6683
6684 static int kvmclock_cpu_down_prep(unsigned int cpu)
6685 {
6686         __this_cpu_write(cpu_tsc_khz, 0);
6687         return 0;
6688 }
6689
6690 static void tsc_khz_changed(void *data)
6691 {
6692         struct cpufreq_freqs *freq = data;
6693         unsigned long khz = 0;
6694
6695         if (data)
6696                 khz = freq->new;
6697         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6698                 khz = cpufreq_quick_get(raw_smp_processor_id());
6699         if (!khz)
6700                 khz = tsc_khz;
6701         __this_cpu_write(cpu_tsc_khz, khz);
6702 }
6703
6704 #ifdef CONFIG_X86_64
6705 static void kvm_hyperv_tsc_notifier(void)
6706 {
6707         struct kvm *kvm;
6708         struct kvm_vcpu *vcpu;
6709         int cpu;
6710
6711         spin_lock(&kvm_lock);
6712         list_for_each_entry(kvm, &vm_list, vm_list)
6713                 kvm_make_mclock_inprogress_request(kvm);
6714
6715         hyperv_stop_tsc_emulation();
6716
6717         /* TSC frequency always matches when on Hyper-V */
6718         for_each_present_cpu(cpu)
6719                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6720         kvm_max_guest_tsc_khz = tsc_khz;
6721
6722         list_for_each_entry(kvm, &vm_list, vm_list) {
6723                 struct kvm_arch *ka = &kvm->arch;
6724
6725                 spin_lock(&ka->pvclock_gtod_sync_lock);
6726
6727                 pvclock_update_vm_gtod_copy(kvm);
6728
6729                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6730                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6731
6732                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6733                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6734
6735                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6736         }
6737         spin_unlock(&kvm_lock);
6738 }
6739 #endif
6740
6741 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6742 {
6743         struct kvm *kvm;
6744         struct kvm_vcpu *vcpu;
6745         int i, send_ipi = 0;
6746
6747         /*
6748          * We allow guests to temporarily run on slowing clocks,
6749          * provided we notify them after, or to run on accelerating
6750          * clocks, provided we notify them before.  Thus time never
6751          * goes backwards.
6752          *
6753          * However, we have a problem.  We can't atomically update
6754          * the frequency of a given CPU from this function; it is
6755          * merely a notifier, which can be called from any CPU.
6756          * Changing the TSC frequency at arbitrary points in time
6757          * requires a recomputation of local variables related to
6758          * the TSC for each VCPU.  We must flag these local variables
6759          * to be updated and be sure the update takes place with the
6760          * new frequency before any guests proceed.
6761          *
6762          * Unfortunately, the combination of hotplug CPU and frequency
6763          * change creates an intractable locking scenario; the order
6764          * of when these callouts happen is undefined with respect to
6765          * CPU hotplug, and they can race with each other.  As such,
6766          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6767          * undefined; you can actually have a CPU frequency change take
6768          * place in between the computation of X and the setting of the
6769          * variable.  To protect against this problem, all updates of
6770          * the per_cpu tsc_khz variable are done in an interrupt
6771          * protected IPI, and all callers wishing to update the value
6772          * must wait for a synchronous IPI to complete (which is trivial
6773          * if the caller is on the CPU already).  This establishes the
6774          * necessary total order on variable updates.
6775          *
6776          * Note that because a guest time update may take place
6777          * anytime after the setting of the VCPU's request bit, the
6778          * correct TSC value must be set before the request.  However,
6779          * to ensure the update actually makes it to any guest which
6780          * starts running in hardware virtualization between the set
6781          * and the acquisition of the spinlock, we must also ping the
6782          * CPU after setting the request bit.
6783          *
6784          */
6785
6786         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6787
6788         spin_lock(&kvm_lock);
6789         list_for_each_entry(kvm, &vm_list, vm_list) {
6790                 kvm_for_each_vcpu(i, vcpu, kvm) {
6791                         if (vcpu->cpu != cpu)
6792                                 continue;
6793                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6794                         if (vcpu->cpu != smp_processor_id())
6795                                 send_ipi = 1;
6796                 }
6797         }
6798         spin_unlock(&kvm_lock);
6799
6800         if (freq->old < freq->new && send_ipi) {
6801                 /*
6802                  * We upscale the frequency.  Must make the guest
6803                  * doesn't see old kvmclock values while running with
6804                  * the new frequency, otherwise we risk the guest sees
6805                  * time go backwards.
6806                  *
6807                  * In case we update the frequency for another cpu
6808                  * (which might be in guest context) send an interrupt
6809                  * to kick the cpu out of guest context.  Next time
6810                  * guest context is entered kvmclock will be updated,
6811                  * so the guest will not see stale values.
6812                  */
6813                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6814         }
6815 }
6816
6817 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6818                                      void *data)
6819 {
6820         struct cpufreq_freqs *freq = data;
6821         int cpu;
6822
6823         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6824                 return 0;
6825         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6826                 return 0;
6827
6828         for_each_cpu(cpu, freq->policy->cpus)
6829                 __kvmclock_cpufreq_notifier(freq, cpu);
6830
6831         return 0;
6832 }
6833
6834 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6835         .notifier_call  = kvmclock_cpufreq_notifier
6836 };
6837
6838 static int kvmclock_cpu_online(unsigned int cpu)
6839 {
6840         tsc_khz_changed(NULL);
6841         return 0;
6842 }
6843
6844 static void kvm_timer_init(void)
6845 {
6846         max_tsc_khz = tsc_khz;
6847
6848         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6849 #ifdef CONFIG_CPU_FREQ
6850                 struct cpufreq_policy policy;
6851                 int cpu;
6852
6853                 memset(&policy, 0, sizeof(policy));
6854                 cpu = get_cpu();
6855                 cpufreq_get_policy(&policy, cpu);
6856                 if (policy.cpuinfo.max_freq)
6857                         max_tsc_khz = policy.cpuinfo.max_freq;
6858                 put_cpu();
6859 #endif
6860                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6861                                           CPUFREQ_TRANSITION_NOTIFIER);
6862         }
6863         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6864
6865         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6866                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6867 }
6868
6869 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6870 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6871
6872 int kvm_is_in_guest(void)
6873 {
6874         return __this_cpu_read(current_vcpu) != NULL;
6875 }
6876
6877 static int kvm_is_user_mode(void)
6878 {
6879         int user_mode = 3;
6880
6881         if (__this_cpu_read(current_vcpu))
6882                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6883
6884         return user_mode != 0;
6885 }
6886
6887 static unsigned long kvm_get_guest_ip(void)
6888 {
6889         unsigned long ip = 0;
6890
6891         if (__this_cpu_read(current_vcpu))
6892                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6893
6894         return ip;
6895 }
6896
6897 static void kvm_handle_intel_pt_intr(void)
6898 {
6899         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6900
6901         kvm_make_request(KVM_REQ_PMI, vcpu);
6902         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6903                         (unsigned long *)&vcpu->arch.pmu.global_status);
6904 }
6905
6906 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6907         .is_in_guest            = kvm_is_in_guest,
6908         .is_user_mode           = kvm_is_user_mode,
6909         .get_guest_ip           = kvm_get_guest_ip,
6910         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6911 };
6912
6913 #ifdef CONFIG_X86_64
6914 static void pvclock_gtod_update_fn(struct work_struct *work)
6915 {
6916         struct kvm *kvm;
6917
6918         struct kvm_vcpu *vcpu;
6919         int i;
6920
6921         spin_lock(&kvm_lock);
6922         list_for_each_entry(kvm, &vm_list, vm_list)
6923                 kvm_for_each_vcpu(i, vcpu, kvm)
6924                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6925         atomic_set(&kvm_guest_has_master_clock, 0);
6926         spin_unlock(&kvm_lock);
6927 }
6928
6929 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6930
6931 /*
6932  * Notification about pvclock gtod data update.
6933  */
6934 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6935                                void *priv)
6936 {
6937         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6938         struct timekeeper *tk = priv;
6939
6940         update_pvclock_gtod(tk);
6941
6942         /* disable master clock if host does not trust, or does not
6943          * use, TSC based clocksource.
6944          */
6945         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6946             atomic_read(&kvm_guest_has_master_clock) != 0)
6947                 queue_work(system_long_wq, &pvclock_gtod_work);
6948
6949         return 0;
6950 }
6951
6952 static struct notifier_block pvclock_gtod_notifier = {
6953         .notifier_call = pvclock_gtod_notify,
6954 };
6955 #endif
6956
6957 int kvm_arch_init(void *opaque)
6958 {
6959         int r;
6960         struct kvm_x86_ops *ops = opaque;
6961
6962         if (kvm_x86_ops) {
6963                 printk(KERN_ERR "kvm: already loaded the other module\n");
6964                 r = -EEXIST;
6965                 goto out;
6966         }
6967
6968         if (!ops->cpu_has_kvm_support()) {
6969                 printk(KERN_ERR "kvm: no hardware support\n");
6970                 r = -EOPNOTSUPP;
6971                 goto out;
6972         }
6973         if (ops->disabled_by_bios()) {
6974                 printk(KERN_ERR "kvm: disabled by bios\n");
6975                 r = -EOPNOTSUPP;
6976                 goto out;
6977         }
6978
6979         /*
6980          * KVM explicitly assumes that the guest has an FPU and
6981          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6982          * vCPU's FPU state as a fxregs_state struct.
6983          */
6984         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6985                 printk(KERN_ERR "kvm: inadequate fpu\n");
6986                 r = -EOPNOTSUPP;
6987                 goto out;
6988         }
6989
6990         r = -ENOMEM;
6991         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6992                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6993                                           NULL);
6994         if (!x86_fpu_cache) {
6995                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6996                 goto out;
6997         }
6998
6999         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7000         if (!shared_msrs) {
7001                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7002                 goto out_free_x86_fpu_cache;
7003         }
7004
7005         r = kvm_mmu_module_init();
7006         if (r)
7007                 goto out_free_percpu;
7008
7009         kvm_x86_ops = ops;
7010
7011         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7012                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7013                         PT_PRESENT_MASK, 0, sme_me_mask);
7014         kvm_timer_init();
7015
7016         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7017
7018         if (boot_cpu_has(X86_FEATURE_XSAVE))
7019                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7020
7021         kvm_lapic_init();
7022 #ifdef CONFIG_X86_64
7023         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7024
7025         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7026                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7027 #endif
7028
7029         return 0;
7030
7031 out_free_percpu:
7032         free_percpu(shared_msrs);
7033 out_free_x86_fpu_cache:
7034         kmem_cache_destroy(x86_fpu_cache);
7035 out:
7036         return r;
7037 }
7038
7039 void kvm_arch_exit(void)
7040 {
7041 #ifdef CONFIG_X86_64
7042         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7043                 clear_hv_tscchange_cb();
7044 #endif
7045         kvm_lapic_exit();
7046         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7047
7048         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7049                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7050                                             CPUFREQ_TRANSITION_NOTIFIER);
7051         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7052 #ifdef CONFIG_X86_64
7053         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7054 #endif
7055         kvm_x86_ops = NULL;
7056         kvm_mmu_module_exit();
7057         free_percpu(shared_msrs);
7058         kmem_cache_destroy(x86_fpu_cache);
7059 }
7060
7061 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7062 {
7063         ++vcpu->stat.halt_exits;
7064         if (lapic_in_kernel(vcpu)) {
7065                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7066                 return 1;
7067         } else {
7068                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7069                 return 0;
7070         }
7071 }
7072 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7073
7074 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7075 {
7076         int ret = kvm_skip_emulated_instruction(vcpu);
7077         /*
7078          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7079          * KVM_EXIT_DEBUG here.
7080          */
7081         return kvm_vcpu_halt(vcpu) && ret;
7082 }
7083 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7084
7085 #ifdef CONFIG_X86_64
7086 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7087                                 unsigned long clock_type)
7088 {
7089         struct kvm_clock_pairing clock_pairing;
7090         struct timespec64 ts;
7091         u64 cycle;
7092         int ret;
7093
7094         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7095                 return -KVM_EOPNOTSUPP;
7096
7097         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7098                 return -KVM_EOPNOTSUPP;
7099
7100         clock_pairing.sec = ts.tv_sec;
7101         clock_pairing.nsec = ts.tv_nsec;
7102         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7103         clock_pairing.flags = 0;
7104         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7105
7106         ret = 0;
7107         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7108                             sizeof(struct kvm_clock_pairing)))
7109                 ret = -KVM_EFAULT;
7110
7111         return ret;
7112 }
7113 #endif
7114
7115 /*
7116  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7117  *
7118  * @apicid - apicid of vcpu to be kicked.
7119  */
7120 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7121 {
7122         struct kvm_lapic_irq lapic_irq;
7123
7124         lapic_irq.shorthand = 0;
7125         lapic_irq.dest_mode = 0;
7126         lapic_irq.level = 0;
7127         lapic_irq.dest_id = apicid;
7128         lapic_irq.msi_redir_hint = false;
7129
7130         lapic_irq.delivery_mode = APIC_DM_REMRD;
7131         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7132 }
7133
7134 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7135 {
7136         if (!lapic_in_kernel(vcpu)) {
7137                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7138                 return;
7139         }
7140         if (!vcpu->arch.apicv_active)
7141                 return;
7142
7143         vcpu->arch.apicv_active = false;
7144         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7145 }
7146
7147 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7148 {
7149         unsigned long nr, a0, a1, a2, a3, ret;
7150         int op_64_bit;
7151
7152         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7153                 return kvm_hv_hypercall(vcpu);
7154
7155         nr = kvm_rax_read(vcpu);
7156         a0 = kvm_rbx_read(vcpu);
7157         a1 = kvm_rcx_read(vcpu);
7158         a2 = kvm_rdx_read(vcpu);
7159         a3 = kvm_rsi_read(vcpu);
7160
7161         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7162
7163         op_64_bit = is_64_bit_mode(vcpu);
7164         if (!op_64_bit) {
7165                 nr &= 0xFFFFFFFF;
7166                 a0 &= 0xFFFFFFFF;
7167                 a1 &= 0xFFFFFFFF;
7168                 a2 &= 0xFFFFFFFF;
7169                 a3 &= 0xFFFFFFFF;
7170         }
7171
7172         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7173                 ret = -KVM_EPERM;
7174                 goto out;
7175         }
7176
7177         switch (nr) {
7178         case KVM_HC_VAPIC_POLL_IRQ:
7179                 ret = 0;
7180                 break;
7181         case KVM_HC_KICK_CPU:
7182                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7183                 ret = 0;
7184                 break;
7185 #ifdef CONFIG_X86_64
7186         case KVM_HC_CLOCK_PAIRING:
7187                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7188                 break;
7189 #endif
7190         case KVM_HC_SEND_IPI:
7191                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7192                 break;
7193         default:
7194                 ret = -KVM_ENOSYS;
7195                 break;
7196         }
7197 out:
7198         if (!op_64_bit)
7199                 ret = (u32)ret;
7200         kvm_rax_write(vcpu, ret);
7201
7202         ++vcpu->stat.hypercalls;
7203         return kvm_skip_emulated_instruction(vcpu);
7204 }
7205 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7206
7207 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7208 {
7209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7210         char instruction[3];
7211         unsigned long rip = kvm_rip_read(vcpu);
7212
7213         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7214
7215         return emulator_write_emulated(ctxt, rip, instruction, 3,
7216                 &ctxt->exception);
7217 }
7218
7219 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7220 {
7221         return vcpu->run->request_interrupt_window &&
7222                 likely(!pic_in_kernel(vcpu->kvm));
7223 }
7224
7225 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7226 {
7227         struct kvm_run *kvm_run = vcpu->run;
7228
7229         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7230         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7231         kvm_run->cr8 = kvm_get_cr8(vcpu);
7232         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7233         kvm_run->ready_for_interrupt_injection =
7234                 pic_in_kernel(vcpu->kvm) ||
7235                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7236 }
7237
7238 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7239 {
7240         int max_irr, tpr;
7241
7242         if (!kvm_x86_ops->update_cr8_intercept)
7243                 return;
7244
7245         if (!lapic_in_kernel(vcpu))
7246                 return;
7247
7248         if (vcpu->arch.apicv_active)
7249                 return;
7250
7251         if (!vcpu->arch.apic->vapic_addr)
7252                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7253         else
7254                 max_irr = -1;
7255
7256         if (max_irr != -1)
7257                 max_irr >>= 4;
7258
7259         tpr = kvm_lapic_get_cr8(vcpu);
7260
7261         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7262 }
7263
7264 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7265 {
7266         int r;
7267
7268         /* try to reinject previous events if any */
7269
7270         if (vcpu->arch.exception.injected)
7271                 kvm_x86_ops->queue_exception(vcpu);
7272         /*
7273          * Do not inject an NMI or interrupt if there is a pending
7274          * exception.  Exceptions and interrupts are recognized at
7275          * instruction boundaries, i.e. the start of an instruction.
7276          * Trap-like exceptions, e.g. #DB, have higher priority than
7277          * NMIs and interrupts, i.e. traps are recognized before an
7278          * NMI/interrupt that's pending on the same instruction.
7279          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7280          * priority, but are only generated (pended) during instruction
7281          * execution, i.e. a pending fault-like exception means the
7282          * fault occurred on the *previous* instruction and must be
7283          * serviced prior to recognizing any new events in order to
7284          * fully complete the previous instruction.
7285          */
7286         else if (!vcpu->arch.exception.pending) {
7287                 if (vcpu->arch.nmi_injected)
7288                         kvm_x86_ops->set_nmi(vcpu);
7289                 else if (vcpu->arch.interrupt.injected)
7290                         kvm_x86_ops->set_irq(vcpu);
7291         }
7292
7293         /*
7294          * Call check_nested_events() even if we reinjected a previous event
7295          * in order for caller to determine if it should require immediate-exit
7296          * from L2 to L1 due to pending L1 events which require exit
7297          * from L2 to L1.
7298          */
7299         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7300                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7301                 if (r != 0)
7302                         return r;
7303         }
7304
7305         /* try to inject new event if pending */
7306         if (vcpu->arch.exception.pending) {
7307                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7308                                         vcpu->arch.exception.has_error_code,
7309                                         vcpu->arch.exception.error_code);
7310
7311                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7312                 vcpu->arch.exception.pending = false;
7313                 vcpu->arch.exception.injected = true;
7314
7315                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7316                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7317                                              X86_EFLAGS_RF);
7318
7319                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7320                         /*
7321                          * This code assumes that nSVM doesn't use
7322                          * check_nested_events(). If it does, the
7323                          * DR6/DR7 changes should happen before L1
7324                          * gets a #VMEXIT for an intercepted #DB in
7325                          * L2.  (Under VMX, on the other hand, the
7326                          * DR6/DR7 changes should not happen in the
7327                          * event of a VM-exit to L1 for an intercepted
7328                          * #DB in L2.)
7329                          */
7330                         kvm_deliver_exception_payload(vcpu);
7331                         if (vcpu->arch.dr7 & DR7_GD) {
7332                                 vcpu->arch.dr7 &= ~DR7_GD;
7333                                 kvm_update_dr7(vcpu);
7334                         }
7335                 }
7336
7337                 kvm_x86_ops->queue_exception(vcpu);
7338         }
7339
7340         /* Don't consider new event if we re-injected an event */
7341         if (kvm_event_needs_reinjection(vcpu))
7342                 return 0;
7343
7344         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7345             kvm_x86_ops->smi_allowed(vcpu)) {
7346                 vcpu->arch.smi_pending = false;
7347                 ++vcpu->arch.smi_count;
7348                 enter_smm(vcpu);
7349         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7350                 --vcpu->arch.nmi_pending;
7351                 vcpu->arch.nmi_injected = true;
7352                 kvm_x86_ops->set_nmi(vcpu);
7353         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7354                 /*
7355                  * Because interrupts can be injected asynchronously, we are
7356                  * calling check_nested_events again here to avoid a race condition.
7357                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7358                  * proposal and current concerns.  Perhaps we should be setting
7359                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7360                  */
7361                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7362                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7363                         if (r != 0)
7364                                 return r;
7365                 }
7366                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7367                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7368                                             false);
7369                         kvm_x86_ops->set_irq(vcpu);
7370                 }
7371         }
7372
7373         return 0;
7374 }
7375
7376 static void process_nmi(struct kvm_vcpu *vcpu)
7377 {
7378         unsigned limit = 2;
7379
7380         /*
7381          * x86 is limited to one NMI running, and one NMI pending after it.
7382          * If an NMI is already in progress, limit further NMIs to just one.
7383          * Otherwise, allow two (and we'll inject the first one immediately).
7384          */
7385         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7386                 limit = 1;
7387
7388         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7389         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7390         kvm_make_request(KVM_REQ_EVENT, vcpu);
7391 }
7392
7393 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7394 {
7395         u32 flags = 0;
7396         flags |= seg->g       << 23;
7397         flags |= seg->db      << 22;
7398         flags |= seg->l       << 21;
7399         flags |= seg->avl     << 20;
7400         flags |= seg->present << 15;
7401         flags |= seg->dpl     << 13;
7402         flags |= seg->s       << 12;
7403         flags |= seg->type    << 8;
7404         return flags;
7405 }
7406
7407 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7408 {
7409         struct kvm_segment seg;
7410         int offset;
7411
7412         kvm_get_segment(vcpu, &seg, n);
7413         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7414
7415         if (n < 3)
7416                 offset = 0x7f84 + n * 12;
7417         else
7418                 offset = 0x7f2c + (n - 3) * 12;
7419
7420         put_smstate(u32, buf, offset + 8, seg.base);
7421         put_smstate(u32, buf, offset + 4, seg.limit);
7422         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7423 }
7424
7425 #ifdef CONFIG_X86_64
7426 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7427 {
7428         struct kvm_segment seg;
7429         int offset;
7430         u16 flags;
7431
7432         kvm_get_segment(vcpu, &seg, n);
7433         offset = 0x7e00 + n * 16;
7434
7435         flags = enter_smm_get_segment_flags(&seg) >> 8;
7436         put_smstate(u16, buf, offset, seg.selector);
7437         put_smstate(u16, buf, offset + 2, flags);
7438         put_smstate(u32, buf, offset + 4, seg.limit);
7439         put_smstate(u64, buf, offset + 8, seg.base);
7440 }
7441 #endif
7442
7443 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7444 {
7445         struct desc_ptr dt;
7446         struct kvm_segment seg;
7447         unsigned long val;
7448         int i;
7449
7450         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7451         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7452         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7453         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7454
7455         for (i = 0; i < 8; i++)
7456                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7457
7458         kvm_get_dr(vcpu, 6, &val);
7459         put_smstate(u32, buf, 0x7fcc, (u32)val);
7460         kvm_get_dr(vcpu, 7, &val);
7461         put_smstate(u32, buf, 0x7fc8, (u32)val);
7462
7463         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7464         put_smstate(u32, buf, 0x7fc4, seg.selector);
7465         put_smstate(u32, buf, 0x7f64, seg.base);
7466         put_smstate(u32, buf, 0x7f60, seg.limit);
7467         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7468
7469         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7470         put_smstate(u32, buf, 0x7fc0, seg.selector);
7471         put_smstate(u32, buf, 0x7f80, seg.base);
7472         put_smstate(u32, buf, 0x7f7c, seg.limit);
7473         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7474
7475         kvm_x86_ops->get_gdt(vcpu, &dt);
7476         put_smstate(u32, buf, 0x7f74, dt.address);
7477         put_smstate(u32, buf, 0x7f70, dt.size);
7478
7479         kvm_x86_ops->get_idt(vcpu, &dt);
7480         put_smstate(u32, buf, 0x7f58, dt.address);
7481         put_smstate(u32, buf, 0x7f54, dt.size);
7482
7483         for (i = 0; i < 6; i++)
7484                 enter_smm_save_seg_32(vcpu, buf, i);
7485
7486         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7487
7488         /* revision id */
7489         put_smstate(u32, buf, 0x7efc, 0x00020000);
7490         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7491 }
7492
7493 #ifdef CONFIG_X86_64
7494 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7495 {
7496         struct desc_ptr dt;
7497         struct kvm_segment seg;
7498         unsigned long val;
7499         int i;
7500
7501         for (i = 0; i < 16; i++)
7502                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7503
7504         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7505         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7506
7507         kvm_get_dr(vcpu, 6, &val);
7508         put_smstate(u64, buf, 0x7f68, val);
7509         kvm_get_dr(vcpu, 7, &val);
7510         put_smstate(u64, buf, 0x7f60, val);
7511
7512         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7513         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7514         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7515
7516         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7517
7518         /* revision id */
7519         put_smstate(u32, buf, 0x7efc, 0x00020064);
7520
7521         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7522
7523         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7524         put_smstate(u16, buf, 0x7e90, seg.selector);
7525         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7526         put_smstate(u32, buf, 0x7e94, seg.limit);
7527         put_smstate(u64, buf, 0x7e98, seg.base);
7528
7529         kvm_x86_ops->get_idt(vcpu, &dt);
7530         put_smstate(u32, buf, 0x7e84, dt.size);
7531         put_smstate(u64, buf, 0x7e88, dt.address);
7532
7533         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7534         put_smstate(u16, buf, 0x7e70, seg.selector);
7535         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7536         put_smstate(u32, buf, 0x7e74, seg.limit);
7537         put_smstate(u64, buf, 0x7e78, seg.base);
7538
7539         kvm_x86_ops->get_gdt(vcpu, &dt);
7540         put_smstate(u32, buf, 0x7e64, dt.size);
7541         put_smstate(u64, buf, 0x7e68, dt.address);
7542
7543         for (i = 0; i < 6; i++)
7544                 enter_smm_save_seg_64(vcpu, buf, i);
7545 }
7546 #endif
7547
7548 static void enter_smm(struct kvm_vcpu *vcpu)
7549 {
7550         struct kvm_segment cs, ds;
7551         struct desc_ptr dt;
7552         char buf[512];
7553         u32 cr0;
7554
7555         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7556         memset(buf, 0, 512);
7557 #ifdef CONFIG_X86_64
7558         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7559                 enter_smm_save_state_64(vcpu, buf);
7560         else
7561 #endif
7562                 enter_smm_save_state_32(vcpu, buf);
7563
7564         /*
7565          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7566          * vCPU state (e.g. leave guest mode) after we've saved the state into
7567          * the SMM state-save area.
7568          */
7569         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7570
7571         vcpu->arch.hflags |= HF_SMM_MASK;
7572         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7573
7574         if (kvm_x86_ops->get_nmi_mask(vcpu))
7575                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7576         else
7577                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7578
7579         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7580         kvm_rip_write(vcpu, 0x8000);
7581
7582         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7583         kvm_x86_ops->set_cr0(vcpu, cr0);
7584         vcpu->arch.cr0 = cr0;
7585
7586         kvm_x86_ops->set_cr4(vcpu, 0);
7587
7588         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7589         dt.address = dt.size = 0;
7590         kvm_x86_ops->set_idt(vcpu, &dt);
7591
7592         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7593
7594         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7595         cs.base = vcpu->arch.smbase;
7596
7597         ds.selector = 0;
7598         ds.base = 0;
7599
7600         cs.limit    = ds.limit = 0xffffffff;
7601         cs.type     = ds.type = 0x3;
7602         cs.dpl      = ds.dpl = 0;
7603         cs.db       = ds.db = 0;
7604         cs.s        = ds.s = 1;
7605         cs.l        = ds.l = 0;
7606         cs.g        = ds.g = 1;
7607         cs.avl      = ds.avl = 0;
7608         cs.present  = ds.present = 1;
7609         cs.unusable = ds.unusable = 0;
7610         cs.padding  = ds.padding = 0;
7611
7612         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7613         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7614         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7615         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7616         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7617         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7618
7619 #ifdef CONFIG_X86_64
7620         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7621                 kvm_x86_ops->set_efer(vcpu, 0);
7622 #endif
7623
7624         kvm_update_cpuid(vcpu);
7625         kvm_mmu_reset_context(vcpu);
7626 }
7627
7628 static void process_smi(struct kvm_vcpu *vcpu)
7629 {
7630         vcpu->arch.smi_pending = true;
7631         kvm_make_request(KVM_REQ_EVENT, vcpu);
7632 }
7633
7634 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7635 {
7636         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7637 }
7638
7639 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7640 {
7641         if (!kvm_apic_present(vcpu))
7642                 return;
7643
7644         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7645
7646         if (irqchip_split(vcpu->kvm))
7647                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7648         else {
7649                 if (vcpu->arch.apicv_active)
7650                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7651                 if (ioapic_in_kernel(vcpu->kvm))
7652                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7653         }
7654
7655         if (is_guest_mode(vcpu))
7656                 vcpu->arch.load_eoi_exitmap_pending = true;
7657         else
7658                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7659 }
7660
7661 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7662 {
7663         u64 eoi_exit_bitmap[4];
7664
7665         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7666                 return;
7667
7668         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7669                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7670         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7671 }
7672
7673 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7674                 unsigned long start, unsigned long end,
7675                 bool blockable)
7676 {
7677         unsigned long apic_address;
7678
7679         /*
7680          * The physical address of apic access page is stored in the VMCS.
7681          * Update it when it becomes invalid.
7682          */
7683         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7684         if (start <= apic_address && apic_address < end)
7685                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7686
7687         return 0;
7688 }
7689
7690 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7691 {
7692         struct page *page = NULL;
7693
7694         if (!lapic_in_kernel(vcpu))
7695                 return;
7696
7697         if (!kvm_x86_ops->set_apic_access_page_addr)
7698                 return;
7699
7700         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7701         if (is_error_page(page))
7702                 return;
7703         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7704
7705         /*
7706          * Do not pin apic access page in memory, the MMU notifier
7707          * will call us again if it is migrated or swapped out.
7708          */
7709         put_page(page);
7710 }
7711 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7712
7713 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7714 {
7715         smp_send_reschedule(vcpu->cpu);
7716 }
7717 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7718
7719 /*
7720  * Returns 1 to let vcpu_run() continue the guest execution loop without
7721  * exiting to the userspace.  Otherwise, the value will be returned to the
7722  * userspace.
7723  */
7724 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7725 {
7726         int r;
7727         bool req_int_win =
7728                 dm_request_for_irq_injection(vcpu) &&
7729                 kvm_cpu_accept_dm_intr(vcpu);
7730
7731         bool req_immediate_exit = false;
7732
7733         if (kvm_request_pending(vcpu)) {
7734                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7735                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7736                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7737                         kvm_mmu_unload(vcpu);
7738                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7739                         __kvm_migrate_timers(vcpu);
7740                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7741                         kvm_gen_update_masterclock(vcpu->kvm);
7742                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7743                         kvm_gen_kvmclock_update(vcpu);
7744                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7745                         r = kvm_guest_time_update(vcpu);
7746                         if (unlikely(r))
7747                                 goto out;
7748                 }
7749                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7750                         kvm_mmu_sync_roots(vcpu);
7751                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7752                         kvm_mmu_load_cr3(vcpu);
7753                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7754                         kvm_vcpu_flush_tlb(vcpu, true);
7755                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7756                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7757                         r = 0;
7758                         goto out;
7759                 }
7760                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7761                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7762                         vcpu->mmio_needed = 0;
7763                         r = 0;
7764                         goto out;
7765                 }
7766                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7767                         /* Page is swapped out. Do synthetic halt */
7768                         vcpu->arch.apf.halted = true;
7769                         r = 1;
7770                         goto out;
7771                 }
7772                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7773                         record_steal_time(vcpu);
7774                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7775                         process_smi(vcpu);
7776                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7777                         process_nmi(vcpu);
7778                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7779                         kvm_pmu_handle_event(vcpu);
7780                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7781                         kvm_pmu_deliver_pmi(vcpu);
7782                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7783                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7784                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7785                                      vcpu->arch.ioapic_handled_vectors)) {
7786                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7787                                 vcpu->run->eoi.vector =
7788                                                 vcpu->arch.pending_ioapic_eoi;
7789                                 r = 0;
7790                                 goto out;
7791                         }
7792                 }
7793                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7794                         vcpu_scan_ioapic(vcpu);
7795                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7796                         vcpu_load_eoi_exitmap(vcpu);
7797                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7798                         kvm_vcpu_reload_apic_access_page(vcpu);
7799                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7800                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7801                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7802                         r = 0;
7803                         goto out;
7804                 }
7805                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7806                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7807                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7808                         r = 0;
7809                         goto out;
7810                 }
7811                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7812                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7813                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7814                         r = 0;
7815                         goto out;
7816                 }
7817
7818                 /*
7819                  * KVM_REQ_HV_STIMER has to be processed after
7820                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7821                  * depend on the guest clock being up-to-date
7822                  */
7823                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7824                         kvm_hv_process_stimers(vcpu);
7825         }
7826
7827         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7828                 ++vcpu->stat.req_event;
7829                 kvm_apic_accept_events(vcpu);
7830                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7831                         r = 1;
7832                         goto out;
7833                 }
7834
7835                 if (inject_pending_event(vcpu, req_int_win) != 0)
7836                         req_immediate_exit = true;
7837                 else {
7838                         /* Enable SMI/NMI/IRQ window open exits if needed.
7839                          *
7840                          * SMIs have three cases:
7841                          * 1) They can be nested, and then there is nothing to
7842                          *    do here because RSM will cause a vmexit anyway.
7843                          * 2) There is an ISA-specific reason why SMI cannot be
7844                          *    injected, and the moment when this changes can be
7845                          *    intercepted.
7846                          * 3) Or the SMI can be pending because
7847                          *    inject_pending_event has completed the injection
7848                          *    of an IRQ or NMI from the previous vmexit, and
7849                          *    then we request an immediate exit to inject the
7850                          *    SMI.
7851                          */
7852                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7853                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7854                                         req_immediate_exit = true;
7855                         if (vcpu->arch.nmi_pending)
7856                                 kvm_x86_ops->enable_nmi_window(vcpu);
7857                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7858                                 kvm_x86_ops->enable_irq_window(vcpu);
7859                         WARN_ON(vcpu->arch.exception.pending);
7860                 }
7861
7862                 if (kvm_lapic_enabled(vcpu)) {
7863                         update_cr8_intercept(vcpu);
7864                         kvm_lapic_sync_to_vapic(vcpu);
7865                 }
7866         }
7867
7868         r = kvm_mmu_reload(vcpu);
7869         if (unlikely(r)) {
7870                 goto cancel_injection;
7871         }
7872
7873         preempt_disable();
7874
7875         kvm_x86_ops->prepare_guest_switch(vcpu);
7876
7877         /*
7878          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7879          * IPI are then delayed after guest entry, which ensures that they
7880          * result in virtual interrupt delivery.
7881          */
7882         local_irq_disable();
7883         vcpu->mode = IN_GUEST_MODE;
7884
7885         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7886
7887         /*
7888          * 1) We should set ->mode before checking ->requests.  Please see
7889          * the comment in kvm_vcpu_exiting_guest_mode().
7890          *
7891          * 2) For APICv, we should set ->mode before checking PID.ON. This
7892          * pairs with the memory barrier implicit in pi_test_and_set_on
7893          * (see vmx_deliver_posted_interrupt).
7894          *
7895          * 3) This also orders the write to mode from any reads to the page
7896          * tables done while the VCPU is running.  Please see the comment
7897          * in kvm_flush_remote_tlbs.
7898          */
7899         smp_mb__after_srcu_read_unlock();
7900
7901         /*
7902          * This handles the case where a posted interrupt was
7903          * notified with kvm_vcpu_kick.
7904          */
7905         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7906                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7907
7908         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7909             || need_resched() || signal_pending(current)) {
7910                 vcpu->mode = OUTSIDE_GUEST_MODE;
7911                 smp_wmb();
7912                 local_irq_enable();
7913                 preempt_enable();
7914                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7915                 r = 1;
7916                 goto cancel_injection;
7917         }
7918
7919         if (req_immediate_exit) {
7920                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7921                 kvm_x86_ops->request_immediate_exit(vcpu);
7922         }
7923
7924         trace_kvm_entry(vcpu->vcpu_id);
7925         guest_enter_irqoff();
7926
7927         fpregs_assert_state_consistent();
7928         if (test_thread_flag(TIF_NEED_FPU_LOAD))
7929                 switch_fpu_return();
7930
7931         if (unlikely(vcpu->arch.switch_db_regs)) {
7932                 set_debugreg(0, 7);
7933                 set_debugreg(vcpu->arch.eff_db[0], 0);
7934                 set_debugreg(vcpu->arch.eff_db[1], 1);
7935                 set_debugreg(vcpu->arch.eff_db[2], 2);
7936                 set_debugreg(vcpu->arch.eff_db[3], 3);
7937                 set_debugreg(vcpu->arch.dr6, 6);
7938                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7939         }
7940
7941         kvm_x86_ops->run(vcpu);
7942
7943         /*
7944          * Do this here before restoring debug registers on the host.  And
7945          * since we do this before handling the vmexit, a DR access vmexit
7946          * can (a) read the correct value of the debug registers, (b) set
7947          * KVM_DEBUGREG_WONT_EXIT again.
7948          */
7949         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7950                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7951                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7952                 kvm_update_dr0123(vcpu);
7953                 kvm_update_dr6(vcpu);
7954                 kvm_update_dr7(vcpu);
7955                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7956         }
7957
7958         /*
7959          * If the guest has used debug registers, at least dr7
7960          * will be disabled while returning to the host.
7961          * If we don't have active breakpoints in the host, we don't
7962          * care about the messed up debug address registers. But if
7963          * we have some of them active, restore the old state.
7964          */
7965         if (hw_breakpoint_active())
7966                 hw_breakpoint_restore();
7967
7968         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7969
7970         vcpu->mode = OUTSIDE_GUEST_MODE;
7971         smp_wmb();
7972
7973         kvm_before_interrupt(vcpu);
7974         kvm_x86_ops->handle_external_intr(vcpu);
7975         kvm_after_interrupt(vcpu);
7976
7977         ++vcpu->stat.exits;
7978
7979         guest_exit_irqoff();
7980         if (lapic_in_kernel(vcpu)) {
7981                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
7982                 if (delta != S64_MIN) {
7983                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
7984                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
7985                 }
7986         }
7987
7988         local_irq_enable();
7989         preempt_enable();
7990
7991         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7992
7993         /*
7994          * Profile KVM exit RIPs:
7995          */
7996         if (unlikely(prof_on == KVM_PROFILING)) {
7997                 unsigned long rip = kvm_rip_read(vcpu);
7998                 profile_hit(KVM_PROFILING, (void *)rip);
7999         }
8000
8001         if (unlikely(vcpu->arch.tsc_always_catchup))
8002                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8003
8004         if (vcpu->arch.apic_attention)
8005                 kvm_lapic_sync_from_vapic(vcpu);
8006
8007         vcpu->arch.gpa_available = false;
8008         r = kvm_x86_ops->handle_exit(vcpu);
8009         return r;
8010
8011 cancel_injection:
8012         kvm_x86_ops->cancel_injection(vcpu);
8013         if (unlikely(vcpu->arch.apic_attention))
8014                 kvm_lapic_sync_from_vapic(vcpu);
8015 out:
8016         return r;
8017 }
8018
8019 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8020 {
8021         if (!kvm_arch_vcpu_runnable(vcpu) &&
8022             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8023                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8024                 kvm_vcpu_block(vcpu);
8025                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8026
8027                 if (kvm_x86_ops->post_block)
8028                         kvm_x86_ops->post_block(vcpu);
8029
8030                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8031                         return 1;
8032         }
8033
8034         kvm_apic_accept_events(vcpu);
8035         switch(vcpu->arch.mp_state) {
8036         case KVM_MP_STATE_HALTED:
8037                 vcpu->arch.pv.pv_unhalted = false;
8038                 vcpu->arch.mp_state =
8039                         KVM_MP_STATE_RUNNABLE;
8040                 /* fall through */
8041         case KVM_MP_STATE_RUNNABLE:
8042                 vcpu->arch.apf.halted = false;
8043                 break;
8044         case KVM_MP_STATE_INIT_RECEIVED:
8045                 break;
8046         default:
8047                 return -EINTR;
8048                 break;
8049         }
8050         return 1;
8051 }
8052
8053 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8054 {
8055         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8056                 kvm_x86_ops->check_nested_events(vcpu, false);
8057
8058         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8059                 !vcpu->arch.apf.halted);
8060 }
8061
8062 static int vcpu_run(struct kvm_vcpu *vcpu)
8063 {
8064         int r;
8065         struct kvm *kvm = vcpu->kvm;
8066
8067         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8068         vcpu->arch.l1tf_flush_l1d = true;
8069
8070         for (;;) {
8071                 if (kvm_vcpu_running(vcpu)) {
8072                         r = vcpu_enter_guest(vcpu);
8073                 } else {
8074                         r = vcpu_block(kvm, vcpu);
8075                 }
8076
8077                 if (r <= 0)
8078                         break;
8079
8080                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8081                 if (kvm_cpu_has_pending_timer(vcpu))
8082                         kvm_inject_pending_timer_irqs(vcpu);
8083
8084                 if (dm_request_for_irq_injection(vcpu) &&
8085                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8086                         r = 0;
8087                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8088                         ++vcpu->stat.request_irq_exits;
8089                         break;
8090                 }
8091
8092                 kvm_check_async_pf_completion(vcpu);
8093
8094                 if (signal_pending(current)) {
8095                         r = -EINTR;
8096                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8097                         ++vcpu->stat.signal_exits;
8098                         break;
8099                 }
8100                 if (need_resched()) {
8101                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8102                         cond_resched();
8103                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8104                 }
8105         }
8106
8107         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8108
8109         return r;
8110 }
8111
8112 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8113 {
8114         int r;
8115         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8116         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8117         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8118         if (r != EMULATE_DONE)
8119                 return 0;
8120         return 1;
8121 }
8122
8123 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8124 {
8125         BUG_ON(!vcpu->arch.pio.count);
8126
8127         return complete_emulated_io(vcpu);
8128 }
8129
8130 /*
8131  * Implements the following, as a state machine:
8132  *
8133  * read:
8134  *   for each fragment
8135  *     for each mmio piece in the fragment
8136  *       write gpa, len
8137  *       exit
8138  *       copy data
8139  *   execute insn
8140  *
8141  * write:
8142  *   for each fragment
8143  *     for each mmio piece in the fragment
8144  *       write gpa, len
8145  *       copy data
8146  *       exit
8147  */
8148 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8149 {
8150         struct kvm_run *run = vcpu->run;
8151         struct kvm_mmio_fragment *frag;
8152         unsigned len;
8153
8154         BUG_ON(!vcpu->mmio_needed);
8155
8156         /* Complete previous fragment */
8157         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8158         len = min(8u, frag->len);
8159         if (!vcpu->mmio_is_write)
8160                 memcpy(frag->data, run->mmio.data, len);
8161
8162         if (frag->len <= 8) {
8163                 /* Switch to the next fragment. */
8164                 frag++;
8165                 vcpu->mmio_cur_fragment++;
8166         } else {
8167                 /* Go forward to the next mmio piece. */
8168                 frag->data += len;
8169                 frag->gpa += len;
8170                 frag->len -= len;
8171         }
8172
8173         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8174                 vcpu->mmio_needed = 0;
8175
8176                 /* FIXME: return into emulator if single-stepping.  */
8177                 if (vcpu->mmio_is_write)
8178                         return 1;
8179                 vcpu->mmio_read_completed = 1;
8180                 return complete_emulated_io(vcpu);
8181         }
8182
8183         run->exit_reason = KVM_EXIT_MMIO;
8184         run->mmio.phys_addr = frag->gpa;
8185         if (vcpu->mmio_is_write)
8186                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8187         run->mmio.len = min(8u, frag->len);
8188         run->mmio.is_write = vcpu->mmio_is_write;
8189         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8190         return 0;
8191 }
8192
8193 /* Swap (qemu) user FPU context for the guest FPU context. */
8194 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8195 {
8196         fpregs_lock();
8197
8198         copy_fpregs_to_fpstate(&current->thread.fpu);
8199         /* PKRU is separately restored in kvm_x86_ops->run.  */
8200         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8201                                 ~XFEATURE_MASK_PKRU);
8202
8203         fpregs_mark_activate();
8204         fpregs_unlock();
8205
8206         trace_kvm_fpu(1);
8207 }
8208
8209 /* When vcpu_run ends, restore user space FPU context. */
8210 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8211 {
8212         fpregs_lock();
8213
8214         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8215         copy_kernel_to_fpregs(&current->thread.fpu.state);
8216
8217         fpregs_mark_activate();
8218         fpregs_unlock();
8219
8220         ++vcpu->stat.fpu_reload;
8221         trace_kvm_fpu(0);
8222 }
8223
8224 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8225 {
8226         int r;
8227
8228         vcpu_load(vcpu);
8229         kvm_sigset_activate(vcpu);
8230         kvm_load_guest_fpu(vcpu);
8231
8232         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8233                 if (kvm_run->immediate_exit) {
8234                         r = -EINTR;
8235                         goto out;
8236                 }
8237                 kvm_vcpu_block(vcpu);
8238                 kvm_apic_accept_events(vcpu);
8239                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8240                 r = -EAGAIN;
8241                 if (signal_pending(current)) {
8242                         r = -EINTR;
8243                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8244                         ++vcpu->stat.signal_exits;
8245                 }
8246                 goto out;
8247         }
8248
8249         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8250                 r = -EINVAL;
8251                 goto out;
8252         }
8253
8254         if (vcpu->run->kvm_dirty_regs) {
8255                 r = sync_regs(vcpu);
8256                 if (r != 0)
8257                         goto out;
8258         }
8259
8260         /* re-sync apic's tpr */
8261         if (!lapic_in_kernel(vcpu)) {
8262                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8263                         r = -EINVAL;
8264                         goto out;
8265                 }
8266         }
8267
8268         if (unlikely(vcpu->arch.complete_userspace_io)) {
8269                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8270                 vcpu->arch.complete_userspace_io = NULL;
8271                 r = cui(vcpu);
8272                 if (r <= 0)
8273                         goto out;
8274         } else
8275                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8276
8277         if (kvm_run->immediate_exit)
8278                 r = -EINTR;
8279         else
8280                 r = vcpu_run(vcpu);
8281
8282 out:
8283         kvm_put_guest_fpu(vcpu);
8284         if (vcpu->run->kvm_valid_regs)
8285                 store_regs(vcpu);
8286         post_kvm_run_save(vcpu);
8287         kvm_sigset_deactivate(vcpu);
8288
8289         vcpu_put(vcpu);
8290         return r;
8291 }
8292
8293 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8294 {
8295         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8296                 /*
8297                  * We are here if userspace calls get_regs() in the middle of
8298                  * instruction emulation. Registers state needs to be copied
8299                  * back from emulation context to vcpu. Userspace shouldn't do
8300                  * that usually, but some bad designed PV devices (vmware
8301                  * backdoor interface) need this to work
8302                  */
8303                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8304                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8305         }
8306         regs->rax = kvm_rax_read(vcpu);
8307         regs->rbx = kvm_rbx_read(vcpu);
8308         regs->rcx = kvm_rcx_read(vcpu);
8309         regs->rdx = kvm_rdx_read(vcpu);
8310         regs->rsi = kvm_rsi_read(vcpu);
8311         regs->rdi = kvm_rdi_read(vcpu);
8312         regs->rsp = kvm_rsp_read(vcpu);
8313         regs->rbp = kvm_rbp_read(vcpu);
8314 #ifdef CONFIG_X86_64
8315         regs->r8 = kvm_r8_read(vcpu);
8316         regs->r9 = kvm_r9_read(vcpu);
8317         regs->r10 = kvm_r10_read(vcpu);
8318         regs->r11 = kvm_r11_read(vcpu);
8319         regs->r12 = kvm_r12_read(vcpu);
8320         regs->r13 = kvm_r13_read(vcpu);
8321         regs->r14 = kvm_r14_read(vcpu);
8322         regs->r15 = kvm_r15_read(vcpu);
8323 #endif
8324
8325         regs->rip = kvm_rip_read(vcpu);
8326         regs->rflags = kvm_get_rflags(vcpu);
8327 }
8328
8329 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8330 {
8331         vcpu_load(vcpu);
8332         __get_regs(vcpu, regs);
8333         vcpu_put(vcpu);
8334         return 0;
8335 }
8336
8337 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8338 {
8339         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8340         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8341
8342         kvm_rax_write(vcpu, regs->rax);
8343         kvm_rbx_write(vcpu, regs->rbx);
8344         kvm_rcx_write(vcpu, regs->rcx);
8345         kvm_rdx_write(vcpu, regs->rdx);
8346         kvm_rsi_write(vcpu, regs->rsi);
8347         kvm_rdi_write(vcpu, regs->rdi);
8348         kvm_rsp_write(vcpu, regs->rsp);
8349         kvm_rbp_write(vcpu, regs->rbp);
8350 #ifdef CONFIG_X86_64
8351         kvm_r8_write(vcpu, regs->r8);
8352         kvm_r9_write(vcpu, regs->r9);
8353         kvm_r10_write(vcpu, regs->r10);
8354         kvm_r11_write(vcpu, regs->r11);
8355         kvm_r12_write(vcpu, regs->r12);
8356         kvm_r13_write(vcpu, regs->r13);
8357         kvm_r14_write(vcpu, regs->r14);
8358         kvm_r15_write(vcpu, regs->r15);
8359 #endif
8360
8361         kvm_rip_write(vcpu, regs->rip);
8362         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8363
8364         vcpu->arch.exception.pending = false;
8365
8366         kvm_make_request(KVM_REQ_EVENT, vcpu);
8367 }
8368
8369 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8370 {
8371         vcpu_load(vcpu);
8372         __set_regs(vcpu, regs);
8373         vcpu_put(vcpu);
8374         return 0;
8375 }
8376
8377 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8378 {
8379         struct kvm_segment cs;
8380
8381         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8382         *db = cs.db;
8383         *l = cs.l;
8384 }
8385 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8386
8387 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8388 {
8389         struct desc_ptr dt;
8390
8391         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8392         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8393         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8394         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8395         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8396         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8397
8398         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8399         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8400
8401         kvm_x86_ops->get_idt(vcpu, &dt);
8402         sregs->idt.limit = dt.size;
8403         sregs->idt.base = dt.address;
8404         kvm_x86_ops->get_gdt(vcpu, &dt);
8405         sregs->gdt.limit = dt.size;
8406         sregs->gdt.base = dt.address;
8407
8408         sregs->cr0 = kvm_read_cr0(vcpu);
8409         sregs->cr2 = vcpu->arch.cr2;
8410         sregs->cr3 = kvm_read_cr3(vcpu);
8411         sregs->cr4 = kvm_read_cr4(vcpu);
8412         sregs->cr8 = kvm_get_cr8(vcpu);
8413         sregs->efer = vcpu->arch.efer;
8414         sregs->apic_base = kvm_get_apic_base(vcpu);
8415
8416         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8417
8418         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8419                 set_bit(vcpu->arch.interrupt.nr,
8420                         (unsigned long *)sregs->interrupt_bitmap);
8421 }
8422
8423 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8424                                   struct kvm_sregs *sregs)
8425 {
8426         vcpu_load(vcpu);
8427         __get_sregs(vcpu, sregs);
8428         vcpu_put(vcpu);
8429         return 0;
8430 }
8431
8432 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8433                                     struct kvm_mp_state *mp_state)
8434 {
8435         vcpu_load(vcpu);
8436
8437         kvm_apic_accept_events(vcpu);
8438         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8439                                         vcpu->arch.pv.pv_unhalted)
8440                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8441         else
8442                 mp_state->mp_state = vcpu->arch.mp_state;
8443
8444         vcpu_put(vcpu);
8445         return 0;
8446 }
8447
8448 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8449                                     struct kvm_mp_state *mp_state)
8450 {
8451         int ret = -EINVAL;
8452
8453         vcpu_load(vcpu);
8454
8455         if (!lapic_in_kernel(vcpu) &&
8456             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8457                 goto out;
8458
8459         /* INITs are latched while in SMM */
8460         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8461             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8462              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8463                 goto out;
8464
8465         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8466                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8467                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8468         } else
8469                 vcpu->arch.mp_state = mp_state->mp_state;
8470         kvm_make_request(KVM_REQ_EVENT, vcpu);
8471
8472         ret = 0;
8473 out:
8474         vcpu_put(vcpu);
8475         return ret;
8476 }
8477
8478 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8479                     int reason, bool has_error_code, u32 error_code)
8480 {
8481         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8482         int ret;
8483
8484         init_emulate_ctxt(vcpu);
8485
8486         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8487                                    has_error_code, error_code);
8488
8489         if (ret)
8490                 return EMULATE_FAIL;
8491
8492         kvm_rip_write(vcpu, ctxt->eip);
8493         kvm_set_rflags(vcpu, ctxt->eflags);
8494         kvm_make_request(KVM_REQ_EVENT, vcpu);
8495         return EMULATE_DONE;
8496 }
8497 EXPORT_SYMBOL_GPL(kvm_task_switch);
8498
8499 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8500 {
8501         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8502                         (sregs->cr4 & X86_CR4_OSXSAVE))
8503                 return  -EINVAL;
8504
8505         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8506                 /*
8507                  * When EFER.LME and CR0.PG are set, the processor is in
8508                  * 64-bit mode (though maybe in a 32-bit code segment).
8509                  * CR4.PAE and EFER.LMA must be set.
8510                  */
8511                 if (!(sregs->cr4 & X86_CR4_PAE)
8512                     || !(sregs->efer & EFER_LMA))
8513                         return -EINVAL;
8514         } else {
8515                 /*
8516                  * Not in 64-bit mode: EFER.LMA is clear and the code
8517                  * segment cannot be 64-bit.
8518                  */
8519                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8520                         return -EINVAL;
8521         }
8522
8523         return 0;
8524 }
8525
8526 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8527 {
8528         struct msr_data apic_base_msr;
8529         int mmu_reset_needed = 0;
8530         int cpuid_update_needed = 0;
8531         int pending_vec, max_bits, idx;
8532         struct desc_ptr dt;
8533         int ret = -EINVAL;
8534
8535         if (kvm_valid_sregs(vcpu, sregs))
8536                 goto out;
8537
8538         apic_base_msr.data = sregs->apic_base;
8539         apic_base_msr.host_initiated = true;
8540         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8541                 goto out;
8542
8543         dt.size = sregs->idt.limit;
8544         dt.address = sregs->idt.base;
8545         kvm_x86_ops->set_idt(vcpu, &dt);
8546         dt.size = sregs->gdt.limit;
8547         dt.address = sregs->gdt.base;
8548         kvm_x86_ops->set_gdt(vcpu, &dt);
8549
8550         vcpu->arch.cr2 = sregs->cr2;
8551         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8552         vcpu->arch.cr3 = sregs->cr3;
8553         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8554
8555         kvm_set_cr8(vcpu, sregs->cr8);
8556
8557         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8558         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8559
8560         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8561         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8562         vcpu->arch.cr0 = sregs->cr0;
8563
8564         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8565         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8566                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8567         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8568         if (cpuid_update_needed)
8569                 kvm_update_cpuid(vcpu);
8570
8571         idx = srcu_read_lock(&vcpu->kvm->srcu);
8572         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8573                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8574                 mmu_reset_needed = 1;
8575         }
8576         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8577
8578         if (mmu_reset_needed)
8579                 kvm_mmu_reset_context(vcpu);
8580
8581         max_bits = KVM_NR_INTERRUPTS;
8582         pending_vec = find_first_bit(
8583                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8584         if (pending_vec < max_bits) {
8585                 kvm_queue_interrupt(vcpu, pending_vec, false);
8586                 pr_debug("Set back pending irq %d\n", pending_vec);
8587         }
8588
8589         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8590         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8591         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8592         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8593         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8594         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8595
8596         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8597         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8598
8599         update_cr8_intercept(vcpu);
8600
8601         /* Older userspace won't unhalt the vcpu on reset. */
8602         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8603             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8604             !is_protmode(vcpu))
8605                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8606
8607         kvm_make_request(KVM_REQ_EVENT, vcpu);
8608
8609         ret = 0;
8610 out:
8611         return ret;
8612 }
8613
8614 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8615                                   struct kvm_sregs *sregs)
8616 {
8617         int ret;
8618
8619         vcpu_load(vcpu);
8620         ret = __set_sregs(vcpu, sregs);
8621         vcpu_put(vcpu);
8622         return ret;
8623 }
8624
8625 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8626                                         struct kvm_guest_debug *dbg)
8627 {
8628         unsigned long rflags;
8629         int i, r;
8630
8631         vcpu_load(vcpu);
8632
8633         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8634                 r = -EBUSY;
8635                 if (vcpu->arch.exception.pending)
8636                         goto out;
8637                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8638                         kvm_queue_exception(vcpu, DB_VECTOR);
8639                 else
8640                         kvm_queue_exception(vcpu, BP_VECTOR);
8641         }
8642
8643         /*
8644          * Read rflags as long as potentially injected trace flags are still
8645          * filtered out.
8646          */
8647         rflags = kvm_get_rflags(vcpu);
8648
8649         vcpu->guest_debug = dbg->control;
8650         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8651                 vcpu->guest_debug = 0;
8652
8653         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8654                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8655                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8656                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8657         } else {
8658                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8659                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8660         }
8661         kvm_update_dr7(vcpu);
8662
8663         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8664                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8665                         get_segment_base(vcpu, VCPU_SREG_CS);
8666
8667         /*
8668          * Trigger an rflags update that will inject or remove the trace
8669          * flags.
8670          */
8671         kvm_set_rflags(vcpu, rflags);
8672
8673         kvm_x86_ops->update_bp_intercept(vcpu);
8674
8675         r = 0;
8676
8677 out:
8678         vcpu_put(vcpu);
8679         return r;
8680 }
8681
8682 /*
8683  * Translate a guest virtual address to a guest physical address.
8684  */
8685 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8686                                     struct kvm_translation *tr)
8687 {
8688         unsigned long vaddr = tr->linear_address;
8689         gpa_t gpa;
8690         int idx;
8691
8692         vcpu_load(vcpu);
8693
8694         idx = srcu_read_lock(&vcpu->kvm->srcu);
8695         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8696         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8697         tr->physical_address = gpa;
8698         tr->valid = gpa != UNMAPPED_GVA;
8699         tr->writeable = 1;
8700         tr->usermode = 0;
8701
8702         vcpu_put(vcpu);
8703         return 0;
8704 }
8705
8706 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8707 {
8708         struct fxregs_state *fxsave;
8709
8710         vcpu_load(vcpu);
8711
8712         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8713         memcpy(fpu->fpr, fxsave->st_space, 128);
8714         fpu->fcw = fxsave->cwd;
8715         fpu->fsw = fxsave->swd;
8716         fpu->ftwx = fxsave->twd;
8717         fpu->last_opcode = fxsave->fop;
8718         fpu->last_ip = fxsave->rip;
8719         fpu->last_dp = fxsave->rdp;
8720         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8721
8722         vcpu_put(vcpu);
8723         return 0;
8724 }
8725
8726 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8727 {
8728         struct fxregs_state *fxsave;
8729
8730         vcpu_load(vcpu);
8731
8732         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8733
8734         memcpy(fxsave->st_space, fpu->fpr, 128);
8735         fxsave->cwd = fpu->fcw;
8736         fxsave->swd = fpu->fsw;
8737         fxsave->twd = fpu->ftwx;
8738         fxsave->fop = fpu->last_opcode;
8739         fxsave->rip = fpu->last_ip;
8740         fxsave->rdp = fpu->last_dp;
8741         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8742
8743         vcpu_put(vcpu);
8744         return 0;
8745 }
8746
8747 static void store_regs(struct kvm_vcpu *vcpu)
8748 {
8749         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8750
8751         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8752                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8753
8754         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8755                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8756
8757         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8758                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8759                                 vcpu, &vcpu->run->s.regs.events);
8760 }
8761
8762 static int sync_regs(struct kvm_vcpu *vcpu)
8763 {
8764         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8765                 return -EINVAL;
8766
8767         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8768                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8769                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8770         }
8771         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8772                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8773                         return -EINVAL;
8774                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8775         }
8776         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8777                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8778                                 vcpu, &vcpu->run->s.regs.events))
8779                         return -EINVAL;
8780                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8781         }
8782
8783         return 0;
8784 }
8785
8786 static void fx_init(struct kvm_vcpu *vcpu)
8787 {
8788         fpstate_init(&vcpu->arch.guest_fpu->state);
8789         if (boot_cpu_has(X86_FEATURE_XSAVES))
8790                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8791                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8792
8793         /*
8794          * Ensure guest xcr0 is valid for loading
8795          */
8796         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8797
8798         vcpu->arch.cr0 |= X86_CR0_ET;
8799 }
8800
8801 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8802 {
8803         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8804
8805         kvmclock_reset(vcpu);
8806
8807         kvm_x86_ops->vcpu_free(vcpu);
8808         free_cpumask_var(wbinvd_dirty_mask);
8809 }
8810
8811 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8812                                                 unsigned int id)
8813 {
8814         struct kvm_vcpu *vcpu;
8815
8816         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8817                 printk_once(KERN_WARNING
8818                 "kvm: SMP vm created on host with unstable TSC; "
8819                 "guest TSC will not be reliable\n");
8820
8821         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8822
8823         return vcpu;
8824 }
8825
8826 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8827 {
8828         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8829         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8830         kvm_vcpu_mtrr_init(vcpu);
8831         vcpu_load(vcpu);
8832         kvm_vcpu_reset(vcpu, false);
8833         kvm_init_mmu(vcpu, false);
8834         vcpu_put(vcpu);
8835         return 0;
8836 }
8837
8838 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8839 {
8840         struct msr_data msr;
8841         struct kvm *kvm = vcpu->kvm;
8842
8843         kvm_hv_vcpu_postcreate(vcpu);
8844
8845         if (mutex_lock_killable(&vcpu->mutex))
8846                 return;
8847         vcpu_load(vcpu);
8848         msr.data = 0x0;
8849         msr.index = MSR_IA32_TSC;
8850         msr.host_initiated = true;
8851         kvm_write_tsc(vcpu, &msr);
8852         vcpu_put(vcpu);
8853         mutex_unlock(&vcpu->mutex);
8854
8855         if (!kvmclock_periodic_sync)
8856                 return;
8857
8858         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8859                                         KVMCLOCK_SYNC_PERIOD);
8860 }
8861
8862 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8863 {
8864         vcpu->arch.apf.msr_val = 0;
8865
8866         vcpu_load(vcpu);
8867         kvm_mmu_unload(vcpu);
8868         vcpu_put(vcpu);
8869
8870         kvm_x86_ops->vcpu_free(vcpu);
8871 }
8872
8873 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8874 {
8875         kvm_lapic_reset(vcpu, init_event);
8876
8877         vcpu->arch.hflags = 0;
8878
8879         vcpu->arch.smi_pending = 0;
8880         vcpu->arch.smi_count = 0;
8881         atomic_set(&vcpu->arch.nmi_queued, 0);
8882         vcpu->arch.nmi_pending = 0;
8883         vcpu->arch.nmi_injected = false;
8884         kvm_clear_interrupt_queue(vcpu);
8885         kvm_clear_exception_queue(vcpu);
8886         vcpu->arch.exception.pending = false;
8887
8888         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8889         kvm_update_dr0123(vcpu);
8890         vcpu->arch.dr6 = DR6_INIT;
8891         kvm_update_dr6(vcpu);
8892         vcpu->arch.dr7 = DR7_FIXED_1;
8893         kvm_update_dr7(vcpu);
8894
8895         vcpu->arch.cr2 = 0;
8896
8897         kvm_make_request(KVM_REQ_EVENT, vcpu);
8898         vcpu->arch.apf.msr_val = 0;
8899         vcpu->arch.st.msr_val = 0;
8900
8901         kvmclock_reset(vcpu);
8902
8903         kvm_clear_async_pf_completion_queue(vcpu);
8904         kvm_async_pf_hash_reset(vcpu);
8905         vcpu->arch.apf.halted = false;
8906
8907         if (kvm_mpx_supported()) {
8908                 void *mpx_state_buffer;
8909
8910                 /*
8911                  * To avoid have the INIT path from kvm_apic_has_events() that be
8912                  * called with loaded FPU and does not let userspace fix the state.
8913                  */
8914                 if (init_event)
8915                         kvm_put_guest_fpu(vcpu);
8916                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8917                                         XFEATURE_BNDREGS);
8918                 if (mpx_state_buffer)
8919                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8920                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8921                                         XFEATURE_BNDCSR);
8922                 if (mpx_state_buffer)
8923                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8924                 if (init_event)
8925                         kvm_load_guest_fpu(vcpu);
8926         }
8927
8928         if (!init_event) {
8929                 kvm_pmu_reset(vcpu);
8930                 vcpu->arch.smbase = 0x30000;
8931
8932                 vcpu->arch.msr_misc_features_enables = 0;
8933
8934                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8935         }
8936
8937         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8938         vcpu->arch.regs_avail = ~0;
8939         vcpu->arch.regs_dirty = ~0;
8940
8941         vcpu->arch.ia32_xss = 0;
8942
8943         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8944 }
8945
8946 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8947 {
8948         struct kvm_segment cs;
8949
8950         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8951         cs.selector = vector << 8;
8952         cs.base = vector << 12;
8953         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8954         kvm_rip_write(vcpu, 0);
8955 }
8956
8957 int kvm_arch_hardware_enable(void)
8958 {
8959         struct kvm *kvm;
8960         struct kvm_vcpu *vcpu;
8961         int i;
8962         int ret;
8963         u64 local_tsc;
8964         u64 max_tsc = 0;
8965         bool stable, backwards_tsc = false;
8966
8967         kvm_shared_msr_cpu_online();
8968         ret = kvm_x86_ops->hardware_enable();
8969         if (ret != 0)
8970                 return ret;
8971
8972         local_tsc = rdtsc();
8973         stable = !kvm_check_tsc_unstable();
8974         list_for_each_entry(kvm, &vm_list, vm_list) {
8975                 kvm_for_each_vcpu(i, vcpu, kvm) {
8976                         if (!stable && vcpu->cpu == smp_processor_id())
8977                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8978                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8979                                 backwards_tsc = true;
8980                                 if (vcpu->arch.last_host_tsc > max_tsc)
8981                                         max_tsc = vcpu->arch.last_host_tsc;
8982                         }
8983                 }
8984         }
8985
8986         /*
8987          * Sometimes, even reliable TSCs go backwards.  This happens on
8988          * platforms that reset TSC during suspend or hibernate actions, but
8989          * maintain synchronization.  We must compensate.  Fortunately, we can
8990          * detect that condition here, which happens early in CPU bringup,
8991          * before any KVM threads can be running.  Unfortunately, we can't
8992          * bring the TSCs fully up to date with real time, as we aren't yet far
8993          * enough into CPU bringup that we know how much real time has actually
8994          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8995          * variables that haven't been updated yet.
8996          *
8997          * So we simply find the maximum observed TSC above, then record the
8998          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8999          * the adjustment will be applied.  Note that we accumulate
9000          * adjustments, in case multiple suspend cycles happen before some VCPU
9001          * gets a chance to run again.  In the event that no KVM threads get a
9002          * chance to run, we will miss the entire elapsed period, as we'll have
9003          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9004          * loose cycle time.  This isn't too big a deal, since the loss will be
9005          * uniform across all VCPUs (not to mention the scenario is extremely
9006          * unlikely). It is possible that a second hibernate recovery happens
9007          * much faster than a first, causing the observed TSC here to be
9008          * smaller; this would require additional padding adjustment, which is
9009          * why we set last_host_tsc to the local tsc observed here.
9010          *
9011          * N.B. - this code below runs only on platforms with reliable TSC,
9012          * as that is the only way backwards_tsc is set above.  Also note
9013          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9014          * have the same delta_cyc adjustment applied if backwards_tsc
9015          * is detected.  Note further, this adjustment is only done once,
9016          * as we reset last_host_tsc on all VCPUs to stop this from being
9017          * called multiple times (one for each physical CPU bringup).
9018          *
9019          * Platforms with unreliable TSCs don't have to deal with this, they
9020          * will be compensated by the logic in vcpu_load, which sets the TSC to
9021          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9022          * guarantee that they stay in perfect synchronization.
9023          */
9024         if (backwards_tsc) {
9025                 u64 delta_cyc = max_tsc - local_tsc;
9026                 list_for_each_entry(kvm, &vm_list, vm_list) {
9027                         kvm->arch.backwards_tsc_observed = true;
9028                         kvm_for_each_vcpu(i, vcpu, kvm) {
9029                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9030                                 vcpu->arch.last_host_tsc = local_tsc;
9031                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9032                         }
9033
9034                         /*
9035                          * We have to disable TSC offset matching.. if you were
9036                          * booting a VM while issuing an S4 host suspend....
9037                          * you may have some problem.  Solving this issue is
9038                          * left as an exercise to the reader.
9039                          */
9040                         kvm->arch.last_tsc_nsec = 0;
9041                         kvm->arch.last_tsc_write = 0;
9042                 }
9043
9044         }
9045         return 0;
9046 }
9047
9048 void kvm_arch_hardware_disable(void)
9049 {
9050         kvm_x86_ops->hardware_disable();
9051         drop_user_return_notifiers();
9052 }
9053
9054 int kvm_arch_hardware_setup(void)
9055 {
9056         int r;
9057
9058         r = kvm_x86_ops->hardware_setup();
9059         if (r != 0)
9060                 return r;
9061
9062         if (kvm_has_tsc_control) {
9063                 /*
9064                  * Make sure the user can only configure tsc_khz values that
9065                  * fit into a signed integer.
9066                  * A min value is not calculated because it will always
9067                  * be 1 on all machines.
9068                  */
9069                 u64 max = min(0x7fffffffULL,
9070                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9071                 kvm_max_guest_tsc_khz = max;
9072
9073                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9074         }
9075
9076         kvm_init_msr_list();
9077         return 0;
9078 }
9079
9080 void kvm_arch_hardware_unsetup(void)
9081 {
9082         kvm_x86_ops->hardware_unsetup();
9083 }
9084
9085 int kvm_arch_check_processor_compat(void)
9086 {
9087         return kvm_x86_ops->check_processor_compatibility();
9088 }
9089
9090 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9091 {
9092         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9093 }
9094 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9095
9096 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9097 {
9098         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9099 }
9100
9101 struct static_key kvm_no_apic_vcpu __read_mostly;
9102 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9103
9104 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9105 {
9106         struct page *page;
9107         int r;
9108
9109         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9110         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9111                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9112         else
9113                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9114
9115         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9116         if (!page) {
9117                 r = -ENOMEM;
9118                 goto fail;
9119         }
9120         vcpu->arch.pio_data = page_address(page);
9121
9122         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9123
9124         r = kvm_mmu_create(vcpu);
9125         if (r < 0)
9126                 goto fail_free_pio_data;
9127
9128         if (irqchip_in_kernel(vcpu->kvm)) {
9129                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9130                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9131                 if (r < 0)
9132                         goto fail_mmu_destroy;
9133         } else
9134                 static_key_slow_inc(&kvm_no_apic_vcpu);
9135
9136         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9137                                        GFP_KERNEL_ACCOUNT);
9138         if (!vcpu->arch.mce_banks) {
9139                 r = -ENOMEM;
9140                 goto fail_free_lapic;
9141         }
9142         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9143
9144         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9145                                 GFP_KERNEL_ACCOUNT)) {
9146                 r = -ENOMEM;
9147                 goto fail_free_mce_banks;
9148         }
9149
9150         fx_init(vcpu);
9151
9152         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9153
9154         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9155
9156         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9157
9158         kvm_async_pf_hash_reset(vcpu);
9159         kvm_pmu_init(vcpu);
9160
9161         vcpu->arch.pending_external_vector = -1;
9162         vcpu->arch.preempted_in_kernel = false;
9163
9164         kvm_hv_vcpu_init(vcpu);
9165
9166         return 0;
9167
9168 fail_free_mce_banks:
9169         kfree(vcpu->arch.mce_banks);
9170 fail_free_lapic:
9171         kvm_free_lapic(vcpu);
9172 fail_mmu_destroy:
9173         kvm_mmu_destroy(vcpu);
9174 fail_free_pio_data:
9175         free_page((unsigned long)vcpu->arch.pio_data);
9176 fail:
9177         return r;
9178 }
9179
9180 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9181 {
9182         int idx;
9183
9184         kvm_hv_vcpu_uninit(vcpu);
9185         kvm_pmu_destroy(vcpu);
9186         kfree(vcpu->arch.mce_banks);
9187         kvm_free_lapic(vcpu);
9188         idx = srcu_read_lock(&vcpu->kvm->srcu);
9189         kvm_mmu_destroy(vcpu);
9190         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9191         free_page((unsigned long)vcpu->arch.pio_data);
9192         if (!lapic_in_kernel(vcpu))
9193                 static_key_slow_dec(&kvm_no_apic_vcpu);
9194 }
9195
9196 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9197 {
9198         vcpu->arch.l1tf_flush_l1d = true;
9199         kvm_x86_ops->sched_in(vcpu, cpu);
9200 }
9201
9202 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9203 {
9204         if (type)
9205                 return -EINVAL;
9206
9207         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9208         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9209         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9210         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9211
9212         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9213         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9214         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9215         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9216                 &kvm->arch.irq_sources_bitmap);
9217
9218         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9219         mutex_init(&kvm->arch.apic_map_lock);
9220         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9221
9222         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9223         pvclock_update_vm_gtod_copy(kvm);
9224
9225         kvm->arch.guest_can_read_msr_platform_info = true;
9226
9227         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9228         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9229
9230         kvm_hv_init_vm(kvm);
9231         kvm_page_track_init(kvm);
9232         kvm_mmu_init_vm(kvm);
9233
9234         if (kvm_x86_ops->vm_init)
9235                 return kvm_x86_ops->vm_init(kvm);
9236
9237         return 0;
9238 }
9239
9240 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9241 {
9242         vcpu_load(vcpu);
9243         kvm_mmu_unload(vcpu);
9244         vcpu_put(vcpu);
9245 }
9246
9247 static void kvm_free_vcpus(struct kvm *kvm)
9248 {
9249         unsigned int i;
9250         struct kvm_vcpu *vcpu;
9251
9252         /*
9253          * Unpin any mmu pages first.
9254          */
9255         kvm_for_each_vcpu(i, vcpu, kvm) {
9256                 kvm_clear_async_pf_completion_queue(vcpu);
9257                 kvm_unload_vcpu_mmu(vcpu);
9258         }
9259         kvm_for_each_vcpu(i, vcpu, kvm)
9260                 kvm_arch_vcpu_free(vcpu);
9261
9262         mutex_lock(&kvm->lock);
9263         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9264                 kvm->vcpus[i] = NULL;
9265
9266         atomic_set(&kvm->online_vcpus, 0);
9267         mutex_unlock(&kvm->lock);
9268 }
9269
9270 void kvm_arch_sync_events(struct kvm *kvm)
9271 {
9272         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9273         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9274         kvm_free_pit(kvm);
9275 }
9276
9277 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9278 {
9279         int i, r;
9280         unsigned long hva;
9281         struct kvm_memslots *slots = kvm_memslots(kvm);
9282         struct kvm_memory_slot *slot, old;
9283
9284         /* Called with kvm->slots_lock held.  */
9285         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9286                 return -EINVAL;
9287
9288         slot = id_to_memslot(slots, id);
9289         if (size) {
9290                 if (slot->npages)
9291                         return -EEXIST;
9292
9293                 /*
9294                  * MAP_SHARED to prevent internal slot pages from being moved
9295                  * by fork()/COW.
9296                  */
9297                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9298                               MAP_SHARED | MAP_ANONYMOUS, 0);
9299                 if (IS_ERR((void *)hva))
9300                         return PTR_ERR((void *)hva);
9301         } else {
9302                 if (!slot->npages)
9303                         return 0;
9304
9305                 hva = 0;
9306         }
9307
9308         old = *slot;
9309         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9310                 struct kvm_userspace_memory_region m;
9311
9312                 m.slot = id | (i << 16);
9313                 m.flags = 0;
9314                 m.guest_phys_addr = gpa;
9315                 m.userspace_addr = hva;
9316                 m.memory_size = size;
9317                 r = __kvm_set_memory_region(kvm, &m);
9318                 if (r < 0)
9319                         return r;
9320         }
9321
9322         if (!size)
9323                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9324
9325         return 0;
9326 }
9327 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9328
9329 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9330 {
9331         int r;
9332
9333         mutex_lock(&kvm->slots_lock);
9334         r = __x86_set_memory_region(kvm, id, gpa, size);
9335         mutex_unlock(&kvm->slots_lock);
9336
9337         return r;
9338 }
9339 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9340
9341 void kvm_arch_destroy_vm(struct kvm *kvm)
9342 {
9343         if (current->mm == kvm->mm) {
9344                 /*
9345                  * Free memory regions allocated on behalf of userspace,
9346                  * unless the the memory map has changed due to process exit
9347                  * or fd copying.
9348                  */
9349                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9350                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9351                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9352         }
9353         if (kvm_x86_ops->vm_destroy)
9354                 kvm_x86_ops->vm_destroy(kvm);
9355         kvm_pic_destroy(kvm);
9356         kvm_ioapic_destroy(kvm);
9357         kvm_free_vcpus(kvm);
9358         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9359         kvm_mmu_uninit_vm(kvm);
9360         kvm_page_track_cleanup(kvm);
9361         kvm_hv_destroy_vm(kvm);
9362 }
9363
9364 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9365                            struct kvm_memory_slot *dont)
9366 {
9367         int i;
9368
9369         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9370                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9371                         kvfree(free->arch.rmap[i]);
9372                         free->arch.rmap[i] = NULL;
9373                 }
9374                 if (i == 0)
9375                         continue;
9376
9377                 if (!dont || free->arch.lpage_info[i - 1] !=
9378                              dont->arch.lpage_info[i - 1]) {
9379                         kvfree(free->arch.lpage_info[i - 1]);
9380                         free->arch.lpage_info[i - 1] = NULL;
9381                 }
9382         }
9383
9384         kvm_page_track_free_memslot(free, dont);
9385 }
9386
9387 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9388                             unsigned long npages)
9389 {
9390         int i;
9391
9392         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9393                 struct kvm_lpage_info *linfo;
9394                 unsigned long ugfn;
9395                 int lpages;
9396                 int level = i + 1;
9397
9398                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9399                                       slot->base_gfn, level) + 1;
9400
9401                 slot->arch.rmap[i] =
9402                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9403                                  GFP_KERNEL_ACCOUNT);
9404                 if (!slot->arch.rmap[i])
9405                         goto out_free;
9406                 if (i == 0)
9407                         continue;
9408
9409                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9410                 if (!linfo)
9411                         goto out_free;
9412
9413                 slot->arch.lpage_info[i - 1] = linfo;
9414
9415                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9416                         linfo[0].disallow_lpage = 1;
9417                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9418                         linfo[lpages - 1].disallow_lpage = 1;
9419                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9420                 /*
9421                  * If the gfn and userspace address are not aligned wrt each
9422                  * other, or if explicitly asked to, disable large page
9423                  * support for this slot
9424                  */
9425                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9426                     !kvm_largepages_enabled()) {
9427                         unsigned long j;
9428
9429                         for (j = 0; j < lpages; ++j)
9430                                 linfo[j].disallow_lpage = 1;
9431                 }
9432         }
9433
9434         if (kvm_page_track_create_memslot(slot, npages))
9435                 goto out_free;
9436
9437         return 0;
9438
9439 out_free:
9440         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9441                 kvfree(slot->arch.rmap[i]);
9442                 slot->arch.rmap[i] = NULL;
9443                 if (i == 0)
9444                         continue;
9445
9446                 kvfree(slot->arch.lpage_info[i - 1]);
9447                 slot->arch.lpage_info[i - 1] = NULL;
9448         }
9449         return -ENOMEM;
9450 }
9451
9452 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9453 {
9454         /*
9455          * memslots->generation has been incremented.
9456          * mmio generation may have reached its maximum value.
9457          */
9458         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9459 }
9460
9461 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9462                                 struct kvm_memory_slot *memslot,
9463                                 const struct kvm_userspace_memory_region *mem,
9464                                 enum kvm_mr_change change)
9465 {
9466         return 0;
9467 }
9468
9469 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9470                                      struct kvm_memory_slot *new)
9471 {
9472         /* Still write protect RO slot */
9473         if (new->flags & KVM_MEM_READONLY) {
9474                 kvm_mmu_slot_remove_write_access(kvm, new);
9475                 return;
9476         }
9477
9478         /*
9479          * Call kvm_x86_ops dirty logging hooks when they are valid.
9480          *
9481          * kvm_x86_ops->slot_disable_log_dirty is called when:
9482          *
9483          *  - KVM_MR_CREATE with dirty logging is disabled
9484          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9485          *
9486          * The reason is, in case of PML, we need to set D-bit for any slots
9487          * with dirty logging disabled in order to eliminate unnecessary GPA
9488          * logging in PML buffer (and potential PML buffer full VMEXT). This
9489          * guarantees leaving PML enabled during guest's lifetime won't have
9490          * any additional overhead from PML when guest is running with dirty
9491          * logging disabled for memory slots.
9492          *
9493          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9494          * to dirty logging mode.
9495          *
9496          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9497          *
9498          * In case of write protect:
9499          *
9500          * Write protect all pages for dirty logging.
9501          *
9502          * All the sptes including the large sptes which point to this
9503          * slot are set to readonly. We can not create any new large
9504          * spte on this slot until the end of the logging.
9505          *
9506          * See the comments in fast_page_fault().
9507          */
9508         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9509                 if (kvm_x86_ops->slot_enable_log_dirty)
9510                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9511                 else
9512                         kvm_mmu_slot_remove_write_access(kvm, new);
9513         } else {
9514                 if (kvm_x86_ops->slot_disable_log_dirty)
9515                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9516         }
9517 }
9518
9519 void kvm_arch_commit_memory_region(struct kvm *kvm,
9520                                 const struct kvm_userspace_memory_region *mem,
9521                                 const struct kvm_memory_slot *old,
9522                                 const struct kvm_memory_slot *new,
9523                                 enum kvm_mr_change change)
9524 {
9525         if (!kvm->arch.n_requested_mmu_pages)
9526                 kvm_mmu_change_mmu_pages(kvm,
9527                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9528
9529         /*
9530          * Dirty logging tracks sptes in 4k granularity, meaning that large
9531          * sptes have to be split.  If live migration is successful, the guest
9532          * in the source machine will be destroyed and large sptes will be
9533          * created in the destination. However, if the guest continues to run
9534          * in the source machine (for example if live migration fails), small
9535          * sptes will remain around and cause bad performance.
9536          *
9537          * Scan sptes if dirty logging has been stopped, dropping those
9538          * which can be collapsed into a single large-page spte.  Later
9539          * page faults will create the large-page sptes.
9540          */
9541         if ((change != KVM_MR_DELETE) &&
9542                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9543                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9544                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9545
9546         /*
9547          * Set up write protection and/or dirty logging for the new slot.
9548          *
9549          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9550          * been zapped so no dirty logging staff is needed for old slot. For
9551          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9552          * new and it's also covered when dealing with the new slot.
9553          *
9554          * FIXME: const-ify all uses of struct kvm_memory_slot.
9555          */
9556         if (change != KVM_MR_DELETE)
9557                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9558 }
9559
9560 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9561 {
9562         kvm_mmu_zap_all(kvm);
9563 }
9564
9565 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9566                                    struct kvm_memory_slot *slot)
9567 {
9568         kvm_page_track_flush_slot(kvm, slot);
9569 }
9570
9571 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9572 {
9573         return (is_guest_mode(vcpu) &&
9574                         kvm_x86_ops->guest_apic_has_interrupt &&
9575                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9576 }
9577
9578 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9579 {
9580         if (!list_empty_careful(&vcpu->async_pf.done))
9581                 return true;
9582
9583         if (kvm_apic_has_events(vcpu))
9584                 return true;
9585
9586         if (vcpu->arch.pv.pv_unhalted)
9587                 return true;
9588
9589         if (vcpu->arch.exception.pending)
9590                 return true;
9591
9592         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9593             (vcpu->arch.nmi_pending &&
9594              kvm_x86_ops->nmi_allowed(vcpu)))
9595                 return true;
9596
9597         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9598             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9599                 return true;
9600
9601         if (kvm_arch_interrupt_allowed(vcpu) &&
9602             (kvm_cpu_has_interrupt(vcpu) ||
9603             kvm_guest_apic_has_interrupt(vcpu)))
9604                 return true;
9605
9606         if (kvm_hv_has_stimer_pending(vcpu))
9607                 return true;
9608
9609         return false;
9610 }
9611
9612 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9613 {
9614         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9615 }
9616
9617 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9618 {
9619         return vcpu->arch.preempted_in_kernel;
9620 }
9621
9622 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9623 {
9624         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9625 }
9626
9627 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9628 {
9629         return kvm_x86_ops->interrupt_allowed(vcpu);
9630 }
9631
9632 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9633 {
9634         if (is_64_bit_mode(vcpu))
9635                 return kvm_rip_read(vcpu);
9636         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9637                      kvm_rip_read(vcpu));
9638 }
9639 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9640
9641 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9642 {
9643         return kvm_get_linear_rip(vcpu) == linear_rip;
9644 }
9645 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9646
9647 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9648 {
9649         unsigned long rflags;
9650
9651         rflags = kvm_x86_ops->get_rflags(vcpu);
9652         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9653                 rflags &= ~X86_EFLAGS_TF;
9654         return rflags;
9655 }
9656 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9657
9658 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9659 {
9660         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9661             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9662                 rflags |= X86_EFLAGS_TF;
9663         kvm_x86_ops->set_rflags(vcpu, rflags);
9664 }
9665
9666 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9667 {
9668         __kvm_set_rflags(vcpu, rflags);
9669         kvm_make_request(KVM_REQ_EVENT, vcpu);
9670 }
9671 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9672
9673 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9674 {
9675         int r;
9676
9677         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9678               work->wakeup_all)
9679                 return;
9680
9681         r = kvm_mmu_reload(vcpu);
9682         if (unlikely(r))
9683                 return;
9684
9685         if (!vcpu->arch.mmu->direct_map &&
9686               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9687                 return;
9688
9689         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9690 }
9691
9692 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9693 {
9694         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9695 }
9696
9697 static inline u32 kvm_async_pf_next_probe(u32 key)
9698 {
9699         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9700 }
9701
9702 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9703 {
9704         u32 key = kvm_async_pf_hash_fn(gfn);
9705
9706         while (vcpu->arch.apf.gfns[key] != ~0)
9707                 key = kvm_async_pf_next_probe(key);
9708
9709         vcpu->arch.apf.gfns[key] = gfn;
9710 }
9711
9712 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9713 {
9714         int i;
9715         u32 key = kvm_async_pf_hash_fn(gfn);
9716
9717         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9718                      (vcpu->arch.apf.gfns[key] != gfn &&
9719                       vcpu->arch.apf.gfns[key] != ~0); i++)
9720                 key = kvm_async_pf_next_probe(key);
9721
9722         return key;
9723 }
9724
9725 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9726 {
9727         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9728 }
9729
9730 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9731 {
9732         u32 i, j, k;
9733
9734         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9735         while (true) {
9736                 vcpu->arch.apf.gfns[i] = ~0;
9737                 do {
9738                         j = kvm_async_pf_next_probe(j);
9739                         if (vcpu->arch.apf.gfns[j] == ~0)
9740                                 return;
9741                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9742                         /*
9743                          * k lies cyclically in ]i,j]
9744                          * |    i.k.j |
9745                          * |....j i.k.| or  |.k..j i...|
9746                          */
9747                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9748                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9749                 i = j;
9750         }
9751 }
9752
9753 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9754 {
9755
9756         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9757                                       sizeof(val));
9758 }
9759
9760 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9761 {
9762
9763         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9764                                       sizeof(u32));
9765 }
9766
9767 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9768                                      struct kvm_async_pf *work)
9769 {
9770         struct x86_exception fault;
9771
9772         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9773         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9774
9775         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9776             (vcpu->arch.apf.send_user_only &&
9777              kvm_x86_ops->get_cpl(vcpu) == 0))
9778                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9779         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9780                 fault.vector = PF_VECTOR;
9781                 fault.error_code_valid = true;
9782                 fault.error_code = 0;
9783                 fault.nested_page_fault = false;
9784                 fault.address = work->arch.token;
9785                 fault.async_page_fault = true;
9786                 kvm_inject_page_fault(vcpu, &fault);
9787         }
9788 }
9789
9790 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9791                                  struct kvm_async_pf *work)
9792 {
9793         struct x86_exception fault;
9794         u32 val;
9795
9796         if (work->wakeup_all)
9797                 work->arch.token = ~0; /* broadcast wakeup */
9798         else
9799                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9800         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9801
9802         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9803             !apf_get_user(vcpu, &val)) {
9804                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9805                     vcpu->arch.exception.pending &&
9806                     vcpu->arch.exception.nr == PF_VECTOR &&
9807                     !apf_put_user(vcpu, 0)) {
9808                         vcpu->arch.exception.injected = false;
9809                         vcpu->arch.exception.pending = false;
9810                         vcpu->arch.exception.nr = 0;
9811                         vcpu->arch.exception.has_error_code = false;
9812                         vcpu->arch.exception.error_code = 0;
9813                         vcpu->arch.exception.has_payload = false;
9814                         vcpu->arch.exception.payload = 0;
9815                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9816                         fault.vector = PF_VECTOR;
9817                         fault.error_code_valid = true;
9818                         fault.error_code = 0;
9819                         fault.nested_page_fault = false;
9820                         fault.address = work->arch.token;
9821                         fault.async_page_fault = true;
9822                         kvm_inject_page_fault(vcpu, &fault);
9823                 }
9824         }
9825         vcpu->arch.apf.halted = false;
9826         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9827 }
9828
9829 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9830 {
9831         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9832                 return true;
9833         else
9834                 return kvm_can_do_async_pf(vcpu);
9835 }
9836
9837 void kvm_arch_start_assignment(struct kvm *kvm)
9838 {
9839         atomic_inc(&kvm->arch.assigned_device_count);
9840 }
9841 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9842
9843 void kvm_arch_end_assignment(struct kvm *kvm)
9844 {
9845         atomic_dec(&kvm->arch.assigned_device_count);
9846 }
9847 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9848
9849 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9850 {
9851         return atomic_read(&kvm->arch.assigned_device_count);
9852 }
9853 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9854
9855 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9856 {
9857         atomic_inc(&kvm->arch.noncoherent_dma_count);
9858 }
9859 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9860
9861 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9862 {
9863         atomic_dec(&kvm->arch.noncoherent_dma_count);
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9866
9867 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9868 {
9869         return atomic_read(&kvm->arch.noncoherent_dma_count);
9870 }
9871 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9872
9873 bool kvm_arch_has_irq_bypass(void)
9874 {
9875         return kvm_x86_ops->update_pi_irte != NULL;
9876 }
9877
9878 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9879                                       struct irq_bypass_producer *prod)
9880 {
9881         struct kvm_kernel_irqfd *irqfd =
9882                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9883
9884         irqfd->producer = prod;
9885
9886         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9887                                            prod->irq, irqfd->gsi, 1);
9888 }
9889
9890 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9891                                       struct irq_bypass_producer *prod)
9892 {
9893         int ret;
9894         struct kvm_kernel_irqfd *irqfd =
9895                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9896
9897         WARN_ON(irqfd->producer != prod);
9898         irqfd->producer = NULL;
9899
9900         /*
9901          * When producer of consumer is unregistered, we change back to
9902          * remapped mode, so we can re-use the current implementation
9903          * when the irq is masked/disabled or the consumer side (KVM
9904          * int this case doesn't want to receive the interrupts.
9905         */
9906         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9907         if (ret)
9908                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9909                        " fails: %d\n", irqfd->consumer.token, ret);
9910 }
9911
9912 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9913                                    uint32_t guest_irq, bool set)
9914 {
9915         if (!kvm_x86_ops->update_pi_irte)
9916                 return -EINVAL;
9917
9918         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9919 }
9920
9921 bool kvm_vector_hashing_enabled(void)
9922 {
9923         return vector_hashing;
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9926
9927 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9928 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9929 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9930 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9932 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9935 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9936 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9937 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9942 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9943 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9944 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9945 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);