OSDN Git Service

kaiser: merged update
[android-x86/kernel.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 #define CPA_FREE_PAGETABLES 8
56
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
59
60 void update_page_count(int level, unsigned long pages)
61 {
62         /* Protect against CPA */
63         spin_lock(&pgd_lock);
64         direct_pages_count[level] += pages;
65         spin_unlock(&pgd_lock);
66 }
67
68 static void split_page_count(int level)
69 {
70         if (direct_pages_count[level] == 0)
71                 return;
72
73         direct_pages_count[level]--;
74         direct_pages_count[level - 1] += PTRS_PER_PTE;
75 }
76
77 void arch_report_meminfo(struct seq_file *m)
78 {
79         seq_printf(m, "DirectMap4k:    %8lu kB\n",
80                         direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82         seq_printf(m, "DirectMap2M:    %8lu kB\n",
83                         direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85         seq_printf(m, "DirectMap4M:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88         if (direct_gbpages)
89                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
90                         direct_pages_count[PG_LEVEL_1G] << 20);
91 }
92 #else
93 static inline void split_page_count(int level) { }
94 #endif
95
96 #ifdef CONFIG_X86_64
97
98 static inline unsigned long highmap_start_pfn(void)
99 {
100         return __pa_symbol(_text) >> PAGE_SHIFT;
101 }
102
103 static inline unsigned long highmap_end_pfn(void)
104 {
105         /* Do not reference physical address outside the kernel. */
106         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
107 }
108
109 #endif
110
111 static inline int
112 within(unsigned long addr, unsigned long start, unsigned long end)
113 {
114         return addr >= start && addr < end;
115 }
116
117 static inline int
118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
119 {
120         return addr >= start && addr <= end;
121 }
122
123 /*
124  * Flushing functions
125  */
126
127 /**
128  * clflush_cache_range - flush a cache range with clflush
129  * @vaddr:      virtual start address
130  * @size:       number of bytes to flush
131  *
132  * clflushopt is an unordered instruction which needs fencing with mfence or
133  * sfence to avoid ordering issues.
134  */
135 void clflush_cache_range(void *vaddr, unsigned int size)
136 {
137         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139         void *vend = vaddr + size;
140
141         if (p >= vend)
142                 return;
143
144         mb();
145
146         for (; p < vend; p += clflush_size)
147                 clflushopt(p);
148
149         mb();
150 }
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
152
153 static void __cpa_flush_all(void *arg)
154 {
155         unsigned long cache = (unsigned long)arg;
156
157         /*
158          * Flush all to work around Errata in early athlons regarding
159          * large page flushing.
160          */
161         __flush_tlb_all();
162
163         if (cache && boot_cpu_data.x86 >= 4)
164                 wbinvd();
165 }
166
167 static void cpa_flush_all(unsigned long cache)
168 {
169         BUG_ON(irqs_disabled());
170
171         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
172 }
173
174 static void __cpa_flush_range(void *arg)
175 {
176         /*
177          * We could optimize that further and do individual per page
178          * tlb invalidates for a low number of pages. Caveat: we must
179          * flush the high aliases on 64bit as well.
180          */
181         __flush_tlb_all();
182 }
183
184 static void cpa_flush_range(unsigned long start, int numpages, int cache)
185 {
186         unsigned int i, level;
187         unsigned long addr;
188
189         BUG_ON(irqs_disabled());
190         WARN_ON(PAGE_ALIGN(start) != start);
191
192         on_each_cpu(__cpa_flush_range, NULL, 1);
193
194         if (!cache)
195                 return;
196
197         /*
198          * We only need to flush on one CPU,
199          * clflush is a MESI-coherent instruction that
200          * will cause all other CPUs to flush the same
201          * cachelines:
202          */
203         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
204                 pte_t *pte = lookup_address(addr, &level);
205
206                 /*
207                  * Only flush present addresses:
208                  */
209                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
210                         clflush_cache_range((void *) addr, PAGE_SIZE);
211         }
212 }
213
214 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
215                             int in_flags, struct page **pages)
216 {
217         unsigned int i, level;
218         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
219
220         BUG_ON(irqs_disabled());
221
222         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
223
224         if (!cache || do_wbinvd)
225                 return;
226
227         /*
228          * We only need to flush on one CPU,
229          * clflush is a MESI-coherent instruction that
230          * will cause all other CPUs to flush the same
231          * cachelines:
232          */
233         for (i = 0; i < numpages; i++) {
234                 unsigned long addr;
235                 pte_t *pte;
236
237                 if (in_flags & CPA_PAGES_ARRAY)
238                         addr = (unsigned long)page_address(pages[i]);
239                 else
240                         addr = start[i];
241
242                 pte = lookup_address(addr, &level);
243
244                 /*
245                  * Only flush present addresses:
246                  */
247                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
248                         clflush_cache_range((void *)addr, PAGE_SIZE);
249         }
250 }
251
252 /*
253  * Certain areas of memory on x86 require very specific protection flags,
254  * for example the BIOS area or kernel text. Callers don't always get this
255  * right (again, ioremap() on BIOS memory is not uncommon) so this function
256  * checks and fixes these known static required protection bits.
257  */
258 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
259                                    unsigned long pfn)
260 {
261         pgprot_t forbidden = __pgprot(0);
262
263         /*
264          * The BIOS area between 640k and 1Mb needs to be executable for
265          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
266          */
267 #ifdef CONFIG_PCI_BIOS
268         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
269                 pgprot_val(forbidden) |= _PAGE_NX;
270 #endif
271
272         /*
273          * The kernel text needs to be executable for obvious reasons
274          * Does not cover __inittext since that is gone later on. On
275          * 64bit we do not enforce !NX on the low mapping
276          */
277         if (within(address, (unsigned long)_text, (unsigned long)_etext))
278                 pgprot_val(forbidden) |= _PAGE_NX;
279
280         /*
281          * The .rodata section needs to be read-only. Using the pfn
282          * catches all aliases.
283          */
284         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
285                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
286                 pgprot_val(forbidden) |= _PAGE_RW;
287
288 #if defined(CONFIG_X86_64)
289         /*
290          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
291          * kernel text mappings for the large page aligned text, rodata sections
292          * will be always read-only. For the kernel identity mappings covering
293          * the holes caused by this alignment can be anything that user asks.
294          *
295          * This will preserve the large page mappings for kernel text/data
296          * at no extra cost.
297          */
298         if (kernel_set_to_readonly &&
299             within(address, (unsigned long)_text,
300                    (unsigned long)__end_rodata_hpage_align)) {
301                 unsigned int level;
302
303                 /*
304                  * Don't enforce the !RW mapping for the kernel text mapping,
305                  * if the current mapping is already using small page mapping.
306                  * No need to work hard to preserve large page mappings in this
307                  * case.
308                  *
309                  * This also fixes the Linux Xen paravirt guest boot failure
310                  * (because of unexpected read-only mappings for kernel identity
311                  * mappings). In this paravirt guest case, the kernel text
312                  * mapping and the kernel identity mapping share the same
313                  * page-table pages. Thus we can't really use different
314                  * protections for the kernel text and identity mappings. Also,
315                  * these shared mappings are made of small page mappings.
316                  * Thus this don't enforce !RW mapping for small page kernel
317                  * text mapping logic will help Linux Xen parvirt guest boot
318                  * as well.
319                  */
320                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
321                         pgprot_val(forbidden) |= _PAGE_RW;
322         }
323 #endif
324
325         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
326
327         return prot;
328 }
329
330 /*
331  * Lookup the page table entry for a virtual address in a specific pgd.
332  * Return a pointer to the entry and the level of the mapping.
333  */
334 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
335                              unsigned int *level)
336 {
337         pud_t *pud;
338         pmd_t *pmd;
339
340         *level = PG_LEVEL_NONE;
341
342         if (pgd_none(*pgd))
343                 return NULL;
344
345         pud = pud_offset(pgd, address);
346         if (pud_none(*pud))
347                 return NULL;
348
349         *level = PG_LEVEL_1G;
350         if (pud_large(*pud) || !pud_present(*pud))
351                 return (pte_t *)pud;
352
353         pmd = pmd_offset(pud, address);
354         if (pmd_none(*pmd))
355                 return NULL;
356
357         *level = PG_LEVEL_2M;
358         if (pmd_large(*pmd) || !pmd_present(*pmd))
359                 return (pte_t *)pmd;
360
361         *level = PG_LEVEL_4K;
362
363         return pte_offset_kernel(pmd, address);
364 }
365
366 /*
367  * Lookup the page table entry for a virtual address. Return a pointer
368  * to the entry and the level of the mapping.
369  *
370  * Note: We return pud and pmd either when the entry is marked large
371  * or when the present bit is not set. Otherwise we would return a
372  * pointer to a nonexisting mapping.
373  */
374 pte_t *lookup_address(unsigned long address, unsigned int *level)
375 {
376         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
377 }
378 EXPORT_SYMBOL_GPL(lookup_address);
379
380 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
381                                   unsigned int *level)
382 {
383         if (cpa->pgd)
384                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
385                                                address, level);
386
387         return lookup_address(address, level);
388 }
389
390 /*
391  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
392  * or NULL if not present.
393  */
394 pmd_t *lookup_pmd_address(unsigned long address)
395 {
396         pgd_t *pgd;
397         pud_t *pud;
398
399         pgd = pgd_offset_k(address);
400         if (pgd_none(*pgd))
401                 return NULL;
402
403         pud = pud_offset(pgd, address);
404         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
405                 return NULL;
406
407         return pmd_offset(pud, address);
408 }
409
410 /*
411  * This is necessary because __pa() does not work on some
412  * kinds of memory, like vmalloc() or the alloc_remap()
413  * areas on 32-bit NUMA systems.  The percpu areas can
414  * end up in this kind of memory, for instance.
415  *
416  * This could be optimized, but it is only intended to be
417  * used at inititalization time, and keeping it
418  * unoptimized should increase the testing coverage for
419  * the more obscure platforms.
420  */
421 phys_addr_t slow_virt_to_phys(void *__virt_addr)
422 {
423         unsigned long virt_addr = (unsigned long)__virt_addr;
424         phys_addr_t phys_addr;
425         unsigned long offset;
426         enum pg_level level;
427         pte_t *pte;
428
429         pte = lookup_address(virt_addr, &level);
430         BUG_ON(!pte);
431
432         /*
433          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
434          * before being left-shifted PAGE_SHIFT bits -- this trick is to
435          * make 32-PAE kernel work correctly.
436          */
437         switch (level) {
438         case PG_LEVEL_1G:
439                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
440                 offset = virt_addr & ~PUD_PAGE_MASK;
441                 break;
442         case PG_LEVEL_2M:
443                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
444                 offset = virt_addr & ~PMD_PAGE_MASK;
445                 break;
446         default:
447                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
448                 offset = virt_addr & ~PAGE_MASK;
449         }
450
451         return (phys_addr_t)(phys_addr | offset);
452 }
453 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
454
455 /*
456  * Set the new pmd in all the pgds we know about:
457  */
458 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
459 {
460         /* change init_mm */
461         set_pte_atomic(kpte, pte);
462 #ifdef CONFIG_X86_32
463         if (!SHARED_KERNEL_PMD) {
464                 struct page *page;
465
466                 list_for_each_entry(page, &pgd_list, lru) {
467                         pgd_t *pgd;
468                         pud_t *pud;
469                         pmd_t *pmd;
470
471                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
472                         pud = pud_offset(pgd, address);
473                         pmd = pmd_offset(pud, address);
474                         set_pte_atomic((pte_t *)pmd, pte);
475                 }
476         }
477 #endif
478 }
479
480 static int
481 try_preserve_large_page(pte_t *kpte, unsigned long address,
482                         struct cpa_data *cpa)
483 {
484         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
485         pte_t new_pte, old_pte, *tmp;
486         pgprot_t old_prot, new_prot, req_prot;
487         int i, do_split = 1;
488         enum pg_level level;
489
490         if (cpa->force_split)
491                 return 1;
492
493         spin_lock(&pgd_lock);
494         /*
495          * Check for races, another CPU might have split this page
496          * up already:
497          */
498         tmp = _lookup_address_cpa(cpa, address, &level);
499         if (tmp != kpte)
500                 goto out_unlock;
501
502         switch (level) {
503         case PG_LEVEL_2M:
504                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
505                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
506                 break;
507         case PG_LEVEL_1G:
508                 old_prot = pud_pgprot(*(pud_t *)kpte);
509                 old_pfn = pud_pfn(*(pud_t *)kpte);
510                 break;
511         default:
512                 do_split = -EINVAL;
513                 goto out_unlock;
514         }
515
516         psize = page_level_size(level);
517         pmask = page_level_mask(level);
518
519         /*
520          * Calculate the number of pages, which fit into this large
521          * page starting at address:
522          */
523         nextpage_addr = (address + psize) & pmask;
524         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
525         if (numpages < cpa->numpages)
526                 cpa->numpages = numpages;
527
528         /*
529          * We are safe now. Check whether the new pgprot is the same:
530          * Convert protection attributes to 4k-format, as cpa->mask* are set
531          * up accordingly.
532          */
533         old_pte = *kpte;
534         req_prot = pgprot_large_2_4k(old_prot);
535
536         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
537         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
538
539         /*
540          * req_prot is in format of 4k pages. It must be converted to large
541          * page format: the caching mode includes the PAT bit located at
542          * different bit positions in the two formats.
543          */
544         req_prot = pgprot_4k_2_large(req_prot);
545
546         /*
547          * Set the PSE and GLOBAL flags only if the PRESENT flag is
548          * set otherwise pmd_present/pmd_huge will return true even on
549          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
550          * for the ancient hardware that doesn't support it.
551          */
552         if (pgprot_val(req_prot) & _PAGE_PRESENT)
553                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
554         else
555                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
556
557         req_prot = canon_pgprot(req_prot);
558
559         /*
560          * old_pfn points to the large page base pfn. So we need
561          * to add the offset of the virtual address:
562          */
563         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
564         cpa->pfn = pfn;
565
566         new_prot = static_protections(req_prot, address, pfn);
567
568         /*
569          * We need to check the full range, whether
570          * static_protection() requires a different pgprot for one of
571          * the pages in the range we try to preserve:
572          */
573         addr = address & pmask;
574         pfn = old_pfn;
575         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
576                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
577
578                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
579                         goto out_unlock;
580         }
581
582         /*
583          * If there are no changes, return. maxpages has been updated
584          * above:
585          */
586         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
587                 do_split = 0;
588                 goto out_unlock;
589         }
590
591         /*
592          * We need to change the attributes. Check, whether we can
593          * change the large page in one go. We request a split, when
594          * the address is not aligned and the number of pages is
595          * smaller than the number of pages in the large page. Note
596          * that we limited the number of possible pages already to
597          * the number of pages in the large page.
598          */
599         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
600                 /*
601                  * The address is aligned and the number of pages
602                  * covers the full page.
603                  */
604                 new_pte = pfn_pte(old_pfn, new_prot);
605                 __set_pmd_pte(kpte, address, new_pte);
606                 cpa->flags |= CPA_FLUSHTLB;
607                 do_split = 0;
608         }
609
610 out_unlock:
611         spin_unlock(&pgd_lock);
612
613         return do_split;
614 }
615
616 static int
617 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
618                    struct page *base)
619 {
620         pte_t *pbase = (pte_t *)page_address(base);
621         unsigned long ref_pfn, pfn, pfninc = 1;
622         unsigned int i, level;
623         pte_t *tmp;
624         pgprot_t ref_prot;
625
626         spin_lock(&pgd_lock);
627         /*
628          * Check for races, another CPU might have split this page
629          * up for us already:
630          */
631         tmp = _lookup_address_cpa(cpa, address, &level);
632         if (tmp != kpte) {
633                 spin_unlock(&pgd_lock);
634                 return 1;
635         }
636
637         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
638
639         switch (level) {
640         case PG_LEVEL_2M:
641                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
642                 /* clear PSE and promote PAT bit to correct position */
643                 ref_prot = pgprot_large_2_4k(ref_prot);
644                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
645                 break;
646
647         case PG_LEVEL_1G:
648                 ref_prot = pud_pgprot(*(pud_t *)kpte);
649                 ref_pfn = pud_pfn(*(pud_t *)kpte);
650                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
651
652                 /*
653                  * Clear the PSE flags if the PRESENT flag is not set
654                  * otherwise pmd_present/pmd_huge will return true
655                  * even on a non present pmd.
656                  */
657                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
658                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
659                 break;
660
661         default:
662                 spin_unlock(&pgd_lock);
663                 return 1;
664         }
665
666         /*
667          * Set the GLOBAL flags only if the PRESENT flag is set
668          * otherwise pmd/pte_present will return true even on a non
669          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
670          * for the ancient hardware that doesn't support it.
671          */
672         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
673                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
674         else
675                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
676
677         /*
678          * Get the target pfn from the original entry:
679          */
680         pfn = ref_pfn;
681         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
682                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
683
684         if (virt_addr_valid(address)) {
685                 unsigned long pfn = PFN_DOWN(__pa(address));
686
687                 if (pfn_range_is_mapped(pfn, pfn + 1))
688                         split_page_count(level);
689         }
690
691         /*
692          * Install the new, split up pagetable.
693          *
694          * We use the standard kernel pagetable protections for the new
695          * pagetable protections, the actual ptes set above control the
696          * primary protection behavior:
697          */
698         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
699
700         /*
701          * Intel Atom errata AAH41 workaround.
702          *
703          * The real fix should be in hw or in a microcode update, but
704          * we also probabilistically try to reduce the window of having
705          * a large TLB mixed with 4K TLBs while instruction fetches are
706          * going on.
707          */
708         __flush_tlb_all();
709         spin_unlock(&pgd_lock);
710
711         return 0;
712 }
713
714 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
715                             unsigned long address)
716 {
717         struct page *base;
718
719         if (!debug_pagealloc_enabled())
720                 spin_unlock(&cpa_lock);
721         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
722         if (!debug_pagealloc_enabled())
723                 spin_lock(&cpa_lock);
724         if (!base)
725                 return -ENOMEM;
726
727         if (__split_large_page(cpa, kpte, address, base))
728                 __free_page(base);
729
730         return 0;
731 }
732
733 static bool try_to_free_pte_page(struct cpa_data *cpa, pte_t *pte)
734 {
735         int i;
736
737         if (!(cpa->flags & CPA_FREE_PAGETABLES))
738                 return false;
739
740         for (i = 0; i < PTRS_PER_PTE; i++)
741                 if (!pte_none(pte[i]))
742                         return false;
743
744         free_page((unsigned long)pte);
745         return true;
746 }
747
748 static bool try_to_free_pmd_page(struct cpa_data *cpa, pmd_t *pmd)
749 {
750         int i;
751
752         if (!(cpa->flags & CPA_FREE_PAGETABLES))
753                 return false;
754
755         for (i = 0; i < PTRS_PER_PMD; i++)
756                 if (!pmd_none(pmd[i]))
757                         return false;
758
759         free_page((unsigned long)pmd);
760         return true;
761 }
762
763 static bool unmap_pte_range(struct cpa_data *cpa, pmd_t *pmd,
764                             unsigned long start,
765                             unsigned long end)
766 {
767         pte_t *pte = pte_offset_kernel(pmd, start);
768
769         while (start < end) {
770                 set_pte(pte, __pte(0));
771
772                 start += PAGE_SIZE;
773                 pte++;
774         }
775
776         if (try_to_free_pte_page(cpa, (pte_t *)pmd_page_vaddr(*pmd))) {
777                 pmd_clear(pmd);
778                 return true;
779         }
780         return false;
781 }
782
783 static void __unmap_pmd_range(struct cpa_data *cpa, pud_t *pud, pmd_t *pmd,
784                               unsigned long start, unsigned long end)
785 {
786         if (unmap_pte_range(cpa, pmd, start, end))
787                 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
788                         pud_clear(pud);
789 }
790
791 static void unmap_pmd_range(struct cpa_data *cpa, pud_t *pud,
792                             unsigned long start, unsigned long end)
793 {
794         pmd_t *pmd = pmd_offset(pud, start);
795
796         /*
797          * Not on a 2MB page boundary?
798          */
799         if (start & (PMD_SIZE - 1)) {
800                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
801                 unsigned long pre_end = min_t(unsigned long, end, next_page);
802
803                 __unmap_pmd_range(cpa, pud, pmd, start, pre_end);
804
805                 start = pre_end;
806                 pmd++;
807         }
808
809         /*
810          * Try to unmap in 2M chunks.
811          */
812         while (end - start >= PMD_SIZE) {
813                 if (pmd_large(*pmd))
814                         pmd_clear(pmd);
815                 else
816                         __unmap_pmd_range(cpa, pud, pmd,
817                                           start, start + PMD_SIZE);
818
819                 start += PMD_SIZE;
820                 pmd++;
821         }
822
823         /*
824          * 4K leftovers?
825          */
826         if (start < end)
827                 return __unmap_pmd_range(cpa, pud, pmd, start, end);
828
829         /*
830          * Try again to free the PMD page if haven't succeeded above.
831          */
832         if (!pud_none(*pud))
833                 if (try_to_free_pmd_page(cpa, (pmd_t *)pud_page_vaddr(*pud)))
834                         pud_clear(pud);
835 }
836
837 static void __unmap_pud_range(struct cpa_data *cpa, pgd_t *pgd,
838                               unsigned long start,
839                               unsigned long end)
840 {
841         pud_t *pud = pud_offset(pgd, start);
842
843         /*
844          * Not on a GB page boundary?
845          */
846         if (start & (PUD_SIZE - 1)) {
847                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
848                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
849
850                 unmap_pmd_range(cpa, pud, start, pre_end);
851
852                 start = pre_end;
853                 pud++;
854         }
855
856         /*
857          * Try to unmap in 1G chunks?
858          */
859         while (end - start >= PUD_SIZE) {
860
861                 if (pud_large(*pud))
862                         pud_clear(pud);
863                 else
864                         unmap_pmd_range(cpa, pud, start, start + PUD_SIZE);
865
866                 start += PUD_SIZE;
867                 pud++;
868         }
869
870         /*
871          * 2M leftovers?
872          */
873         if (start < end)
874                 unmap_pmd_range(cpa, pud, start, end);
875
876         /*
877          * No need to try to free the PUD page because we'll free it in
878          * populate_pgd's error path
879          */
880 }
881
882 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
883 {
884         struct cpa_data cpa = {
885                 .flags = CPA_FREE_PAGETABLES,
886         };
887
888         __unmap_pud_range(&cpa, pgd, start, end);
889 }
890
891 void unmap_pud_range_nofree(pgd_t *pgd, unsigned long start, unsigned long end)
892 {
893         struct cpa_data cpa = {
894                 .flags = 0,
895         };
896
897         __unmap_pud_range(&cpa, pgd, start, end);
898 }
899
900 static int alloc_pte_page(pmd_t *pmd)
901 {
902         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
903         if (!pte)
904                 return -1;
905
906         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
907         return 0;
908 }
909
910 static int alloc_pmd_page(pud_t *pud)
911 {
912         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
913         if (!pmd)
914                 return -1;
915
916         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
917         return 0;
918 }
919
920 static void populate_pte(struct cpa_data *cpa,
921                          unsigned long start, unsigned long end,
922                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
923 {
924         pte_t *pte;
925
926         pte = pte_offset_kernel(pmd, start);
927
928         /*
929          * Set the GLOBAL flags only if the PRESENT flag is
930          * set otherwise pte_present will return true even on
931          * a non present pte. The canon_pgprot will clear
932          * _PAGE_GLOBAL for the ancient hardware that doesn't
933          * support it.
934          */
935         if (pgprot_val(pgprot) & _PAGE_PRESENT)
936                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
937         else
938                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
939
940         pgprot = canon_pgprot(pgprot);
941
942         while (num_pages-- && start < end) {
943                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
944
945                 start    += PAGE_SIZE;
946                 cpa->pfn++;
947                 pte++;
948         }
949 }
950
951 static long populate_pmd(struct cpa_data *cpa,
952                          unsigned long start, unsigned long end,
953                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
954 {
955         long cur_pages = 0;
956         pmd_t *pmd;
957         pgprot_t pmd_pgprot;
958
959         /*
960          * Not on a 2M boundary?
961          */
962         if (start & (PMD_SIZE - 1)) {
963                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
964                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
965
966                 pre_end   = min_t(unsigned long, pre_end, next_page);
967                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
968                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
969
970                 /*
971                  * Need a PTE page?
972                  */
973                 pmd = pmd_offset(pud, start);
974                 if (pmd_none(*pmd))
975                         if (alloc_pte_page(pmd))
976                                 return -1;
977
978                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
979
980                 start = pre_end;
981         }
982
983         /*
984          * We mapped them all?
985          */
986         if (num_pages == cur_pages)
987                 return cur_pages;
988
989         pmd_pgprot = pgprot_4k_2_large(pgprot);
990
991         while (end - start >= PMD_SIZE) {
992
993                 /*
994                  * We cannot use a 1G page so allocate a PMD page if needed.
995                  */
996                 if (pud_none(*pud))
997                         if (alloc_pmd_page(pud))
998                                 return -1;
999
1000                 pmd = pmd_offset(pud, start);
1001
1002                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1003                                    massage_pgprot(pmd_pgprot)));
1004
1005                 start     += PMD_SIZE;
1006                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1007                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1008         }
1009
1010         /*
1011          * Map trailing 4K pages.
1012          */
1013         if (start < end) {
1014                 pmd = pmd_offset(pud, start);
1015                 if (pmd_none(*pmd))
1016                         if (alloc_pte_page(pmd))
1017                                 return -1;
1018
1019                 populate_pte(cpa, start, end, num_pages - cur_pages,
1020                              pmd, pgprot);
1021         }
1022         return num_pages;
1023 }
1024
1025 static long populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
1026                          pgprot_t pgprot)
1027 {
1028         pud_t *pud;
1029         unsigned long end;
1030         long cur_pages = 0;
1031         pgprot_t pud_pgprot;
1032
1033         end = start + (cpa->numpages << PAGE_SHIFT);
1034
1035         /*
1036          * Not on a Gb page boundary? => map everything up to it with
1037          * smaller pages.
1038          */
1039         if (start & (PUD_SIZE - 1)) {
1040                 unsigned long pre_end;
1041                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1042
1043                 pre_end   = min_t(unsigned long, end, next_page);
1044                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1045                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1046
1047                 pud = pud_offset(pgd, start);
1048
1049                 /*
1050                  * Need a PMD page?
1051                  */
1052                 if (pud_none(*pud))
1053                         if (alloc_pmd_page(pud))
1054                                 return -1;
1055
1056                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1057                                          pud, pgprot);
1058                 if (cur_pages < 0)
1059                         return cur_pages;
1060
1061                 start = pre_end;
1062         }
1063
1064         /* We mapped them all? */
1065         if (cpa->numpages == cur_pages)
1066                 return cur_pages;
1067
1068         pud = pud_offset(pgd, start);
1069         pud_pgprot = pgprot_4k_2_large(pgprot);
1070
1071         /*
1072          * Map everything starting from the Gb boundary, possibly with 1G pages
1073          */
1074         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1075                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1076                                    massage_pgprot(pud_pgprot)));
1077
1078                 start     += PUD_SIZE;
1079                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1080                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1081                 pud++;
1082         }
1083
1084         /* Map trailing leftover */
1085         if (start < end) {
1086                 long tmp;
1087
1088                 pud = pud_offset(pgd, start);
1089                 if (pud_none(*pud))
1090                         if (alloc_pmd_page(pud))
1091                                 return -1;
1092
1093                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1094                                    pud, pgprot);
1095                 if (tmp < 0)
1096                         return cur_pages;
1097
1098                 cur_pages += tmp;
1099         }
1100         return cur_pages;
1101 }
1102
1103 /*
1104  * Restrictions for kernel page table do not necessarily apply when mapping in
1105  * an alternate PGD.
1106  */
1107 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1108 {
1109         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1110         pud_t *pud = NULL;      /* shut up gcc */
1111         pgd_t *pgd_entry;
1112         long ret;
1113
1114         pgd_entry = cpa->pgd + pgd_index(addr);
1115
1116         /*
1117          * Allocate a PUD page and hand it down for mapping.
1118          */
1119         if (pgd_none(*pgd_entry)) {
1120                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1121                 if (!pud)
1122                         return -1;
1123
1124                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1125         }
1126
1127         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1128         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1129
1130         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1131         if (ret < 0) {
1132                 /*
1133                  * Leave the PUD page in place in case some other CPU or thread
1134                  * already found it, but remove any useless entries we just
1135                  * added to it.
1136                  */
1137                 unmap_pud_range(pgd_entry, addr,
1138                                 addr + (cpa->numpages << PAGE_SHIFT));
1139                 return ret;
1140         }
1141
1142         cpa->numpages = ret;
1143         return 0;
1144 }
1145
1146 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1147                                int primary)
1148 {
1149         if (cpa->pgd) {
1150                 /*
1151                  * Right now, we only execute this code path when mapping
1152                  * the EFI virtual memory map regions, no other users
1153                  * provide a ->pgd value. This may change in the future.
1154                  */
1155                 return populate_pgd(cpa, vaddr);
1156         }
1157
1158         /*
1159          * Ignore all non primary paths.
1160          */
1161         if (!primary) {
1162                 cpa->numpages = 1;
1163                 return 0;
1164         }
1165
1166         /*
1167          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1168          * to have holes.
1169          * Also set numpages to '1' indicating that we processed cpa req for
1170          * one virtual address page and its pfn. TBD: numpages can be set based
1171          * on the initial value and the level returned by lookup_address().
1172          */
1173         if (within(vaddr, PAGE_OFFSET,
1174                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1175                 cpa->numpages = 1;
1176                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1177                 return 0;
1178         } else {
1179                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1180                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1181                         *cpa->vaddr);
1182
1183                 return -EFAULT;
1184         }
1185 }
1186
1187 static int __change_page_attr(struct cpa_data *cpa, int primary)
1188 {
1189         unsigned long address;
1190         int do_split, err;
1191         unsigned int level;
1192         pte_t *kpte, old_pte;
1193
1194         if (cpa->flags & CPA_PAGES_ARRAY) {
1195                 struct page *page = cpa->pages[cpa->curpage];
1196                 if (unlikely(PageHighMem(page)))
1197                         return 0;
1198                 address = (unsigned long)page_address(page);
1199         } else if (cpa->flags & CPA_ARRAY)
1200                 address = cpa->vaddr[cpa->curpage];
1201         else
1202                 address = *cpa->vaddr;
1203 repeat:
1204         kpte = _lookup_address_cpa(cpa, address, &level);
1205         if (!kpte)
1206                 return __cpa_process_fault(cpa, address, primary);
1207
1208         old_pte = *kpte;
1209         if (pte_none(old_pte))
1210                 return __cpa_process_fault(cpa, address, primary);
1211
1212         if (level == PG_LEVEL_4K) {
1213                 pte_t new_pte;
1214                 pgprot_t new_prot = pte_pgprot(old_pte);
1215                 unsigned long pfn = pte_pfn(old_pte);
1216
1217                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1218                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1219
1220                 new_prot = static_protections(new_prot, address, pfn);
1221
1222                 /*
1223                  * Set the GLOBAL flags only if the PRESENT flag is
1224                  * set otherwise pte_present will return true even on
1225                  * a non present pte. The canon_pgprot will clear
1226                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1227                  * support it.
1228                  */
1229                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1230                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1231                 else
1232                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1233
1234                 /*
1235                  * We need to keep the pfn from the existing PTE,
1236                  * after all we're only going to change it's attributes
1237                  * not the memory it points to
1238                  */
1239                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1240                 cpa->pfn = pfn;
1241                 /*
1242                  * Do we really change anything ?
1243                  */
1244                 if (pte_val(old_pte) != pte_val(new_pte)) {
1245                         set_pte_atomic(kpte, new_pte);
1246                         cpa->flags |= CPA_FLUSHTLB;
1247                 }
1248                 cpa->numpages = 1;
1249                 return 0;
1250         }
1251
1252         /*
1253          * Check, whether we can keep the large page intact
1254          * and just change the pte:
1255          */
1256         do_split = try_preserve_large_page(kpte, address, cpa);
1257         /*
1258          * When the range fits into the existing large page,
1259          * return. cp->numpages and cpa->tlbflush have been updated in
1260          * try_large_page:
1261          */
1262         if (do_split <= 0)
1263                 return do_split;
1264
1265         /*
1266          * We have to split the large page:
1267          */
1268         err = split_large_page(cpa, kpte, address);
1269         if (!err) {
1270                 /*
1271                  * Do a global flush tlb after splitting the large page
1272                  * and before we do the actual change page attribute in the PTE.
1273                  *
1274                  * With out this, we violate the TLB application note, that says
1275                  * "The TLBs may contain both ordinary and large-page
1276                  *  translations for a 4-KByte range of linear addresses. This
1277                  *  may occur if software modifies the paging structures so that
1278                  *  the page size used for the address range changes. If the two
1279                  *  translations differ with respect to page frame or attributes
1280                  *  (e.g., permissions), processor behavior is undefined and may
1281                  *  be implementation-specific."
1282                  *
1283                  * We do this global tlb flush inside the cpa_lock, so that we
1284                  * don't allow any other cpu, with stale tlb entries change the
1285                  * page attribute in parallel, that also falls into the
1286                  * just split large page entry.
1287                  */
1288                 flush_tlb_all();
1289                 goto repeat;
1290         }
1291
1292         return err;
1293 }
1294
1295 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1296
1297 static int cpa_process_alias(struct cpa_data *cpa)
1298 {
1299         struct cpa_data alias_cpa;
1300         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1301         unsigned long vaddr;
1302         int ret;
1303
1304         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1305                 return 0;
1306
1307         /*
1308          * No need to redo, when the primary call touched the direct
1309          * mapping already:
1310          */
1311         if (cpa->flags & CPA_PAGES_ARRAY) {
1312                 struct page *page = cpa->pages[cpa->curpage];
1313                 if (unlikely(PageHighMem(page)))
1314                         return 0;
1315                 vaddr = (unsigned long)page_address(page);
1316         } else if (cpa->flags & CPA_ARRAY)
1317                 vaddr = cpa->vaddr[cpa->curpage];
1318         else
1319                 vaddr = *cpa->vaddr;
1320
1321         if (!(within(vaddr, PAGE_OFFSET,
1322                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1323
1324                 alias_cpa = *cpa;
1325                 alias_cpa.vaddr = &laddr;
1326                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1327
1328                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1329                 if (ret)
1330                         return ret;
1331         }
1332
1333 #ifdef CONFIG_X86_64
1334         /*
1335          * If the primary call didn't touch the high mapping already
1336          * and the physical address is inside the kernel map, we need
1337          * to touch the high mapped kernel as well:
1338          */
1339         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1340             within_inclusive(cpa->pfn, highmap_start_pfn(),
1341                              highmap_end_pfn())) {
1342                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1343                                                __START_KERNEL_map - phys_base;
1344                 alias_cpa = *cpa;
1345                 alias_cpa.vaddr = &temp_cpa_vaddr;
1346                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1347
1348                 /*
1349                  * The high mapping range is imprecise, so ignore the
1350                  * return value.
1351                  */
1352                 __change_page_attr_set_clr(&alias_cpa, 0);
1353         }
1354 #endif
1355
1356         return 0;
1357 }
1358
1359 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1360 {
1361         unsigned long numpages = cpa->numpages;
1362         int ret;
1363
1364         while (numpages) {
1365                 /*
1366                  * Store the remaining nr of pages for the large page
1367                  * preservation check.
1368                  */
1369                 cpa->numpages = numpages;
1370                 /* for array changes, we can't use large page */
1371                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1372                         cpa->numpages = 1;
1373
1374                 if (!debug_pagealloc_enabled())
1375                         spin_lock(&cpa_lock);
1376                 ret = __change_page_attr(cpa, checkalias);
1377                 if (!debug_pagealloc_enabled())
1378                         spin_unlock(&cpa_lock);
1379                 if (ret)
1380                         return ret;
1381
1382                 if (checkalias) {
1383                         ret = cpa_process_alias(cpa);
1384                         if (ret)
1385                                 return ret;
1386                 }
1387
1388                 /*
1389                  * Adjust the number of pages with the result of the
1390                  * CPA operation. Either a large page has been
1391                  * preserved or a single page update happened.
1392                  */
1393                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1394                 numpages -= cpa->numpages;
1395                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1396                         cpa->curpage++;
1397                 else
1398                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1399
1400         }
1401         return 0;
1402 }
1403
1404 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1405                                     pgprot_t mask_set, pgprot_t mask_clr,
1406                                     int force_split, int in_flag,
1407                                     struct page **pages)
1408 {
1409         struct cpa_data cpa;
1410         int ret, cache, checkalias;
1411         unsigned long baddr = 0;
1412
1413         memset(&cpa, 0, sizeof(cpa));
1414
1415         /*
1416          * Check, if we are requested to change a not supported
1417          * feature:
1418          */
1419         mask_set = canon_pgprot(mask_set);
1420         mask_clr = canon_pgprot(mask_clr);
1421         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1422                 return 0;
1423
1424         /* Ensure we are PAGE_SIZE aligned */
1425         if (in_flag & CPA_ARRAY) {
1426                 int i;
1427                 for (i = 0; i < numpages; i++) {
1428                         if (addr[i] & ~PAGE_MASK) {
1429                                 addr[i] &= PAGE_MASK;
1430                                 WARN_ON_ONCE(1);
1431                         }
1432                 }
1433         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1434                 /*
1435                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1436                  * No need to cehck in that case
1437                  */
1438                 if (*addr & ~PAGE_MASK) {
1439                         *addr &= PAGE_MASK;
1440                         /*
1441                          * People should not be passing in unaligned addresses:
1442                          */
1443                         WARN_ON_ONCE(1);
1444                 }
1445                 /*
1446                  * Save address for cache flush. *addr is modified in the call
1447                  * to __change_page_attr_set_clr() below.
1448                  */
1449                 baddr = *addr;
1450         }
1451
1452         /* Must avoid aliasing mappings in the highmem code */
1453         kmap_flush_unused();
1454
1455         vm_unmap_aliases();
1456
1457         cpa.vaddr = addr;
1458         cpa.pages = pages;
1459         cpa.numpages = numpages;
1460         cpa.mask_set = mask_set;
1461         cpa.mask_clr = mask_clr;
1462         cpa.flags = 0;
1463         cpa.curpage = 0;
1464         cpa.force_split = force_split;
1465
1466         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1467                 cpa.flags |= in_flag;
1468
1469         /* No alias checking for _NX bit modifications */
1470         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1471
1472         ret = __change_page_attr_set_clr(&cpa, checkalias);
1473
1474         /*
1475          * Check whether we really changed something:
1476          */
1477         if (!(cpa.flags & CPA_FLUSHTLB))
1478                 goto out;
1479
1480         /*
1481          * No need to flush, when we did not set any of the caching
1482          * attributes:
1483          */
1484         cache = !!pgprot2cachemode(mask_set);
1485
1486         /*
1487          * On success we use CLFLUSH, when the CPU supports it to
1488          * avoid the WBINVD. If the CPU does not support it and in the
1489          * error case we fall back to cpa_flush_all (which uses
1490          * WBINVD):
1491          */
1492         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1493                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1494                         cpa_flush_array(addr, numpages, cache,
1495                                         cpa.flags, pages);
1496                 } else
1497                         cpa_flush_range(baddr, numpages, cache);
1498         } else
1499                 cpa_flush_all(cache);
1500
1501 out:
1502         return ret;
1503 }
1504
1505 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1506                                        pgprot_t mask, int array)
1507 {
1508         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1509                 (array ? CPA_ARRAY : 0), NULL);
1510 }
1511
1512 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1513                                          pgprot_t mask, int array)
1514 {
1515         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1516                 (array ? CPA_ARRAY : 0), NULL);
1517 }
1518
1519 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1520                                        pgprot_t mask)
1521 {
1522         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1523                 CPA_PAGES_ARRAY, pages);
1524 }
1525
1526 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1527                                          pgprot_t mask)
1528 {
1529         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1530                 CPA_PAGES_ARRAY, pages);
1531 }
1532
1533 int _set_memory_uc(unsigned long addr, int numpages)
1534 {
1535         /*
1536          * for now UC MINUS. see comments in ioremap_nocache()
1537          * If you really need strong UC use ioremap_uc(), but note
1538          * that you cannot override IO areas with set_memory_*() as
1539          * these helpers cannot work with IO memory.
1540          */
1541         return change_page_attr_set(&addr, numpages,
1542                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1543                                     0);
1544 }
1545
1546 int set_memory_uc(unsigned long addr, int numpages)
1547 {
1548         int ret;
1549
1550         /*
1551          * for now UC MINUS. see comments in ioremap_nocache()
1552          */
1553         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1554                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1555         if (ret)
1556                 goto out_err;
1557
1558         ret = _set_memory_uc(addr, numpages);
1559         if (ret)
1560                 goto out_free;
1561
1562         return 0;
1563
1564 out_free:
1565         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1566 out_err:
1567         return ret;
1568 }
1569 EXPORT_SYMBOL(set_memory_uc);
1570
1571 static int _set_memory_array(unsigned long *addr, int addrinarray,
1572                 enum page_cache_mode new_type)
1573 {
1574         enum page_cache_mode set_type;
1575         int i, j;
1576         int ret;
1577
1578         for (i = 0; i < addrinarray; i++) {
1579                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1580                                         new_type, NULL);
1581                 if (ret)
1582                         goto out_free;
1583         }
1584
1585         /* If WC, set to UC- first and then WC */
1586         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1587                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1588
1589         ret = change_page_attr_set(addr, addrinarray,
1590                                    cachemode2pgprot(set_type), 1);
1591
1592         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1593                 ret = change_page_attr_set_clr(addr, addrinarray,
1594                                                cachemode2pgprot(
1595                                                 _PAGE_CACHE_MODE_WC),
1596                                                __pgprot(_PAGE_CACHE_MASK),
1597                                                0, CPA_ARRAY, NULL);
1598         if (ret)
1599                 goto out_free;
1600
1601         return 0;
1602
1603 out_free:
1604         for (j = 0; j < i; j++)
1605                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1606
1607         return ret;
1608 }
1609
1610 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1611 {
1612         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1613 }
1614 EXPORT_SYMBOL(set_memory_array_uc);
1615
1616 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1617 {
1618         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1619 }
1620 EXPORT_SYMBOL(set_memory_array_wc);
1621
1622 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1623 {
1624         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1625 }
1626 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1627
1628 int _set_memory_wc(unsigned long addr, int numpages)
1629 {
1630         int ret;
1631         unsigned long addr_copy = addr;
1632
1633         ret = change_page_attr_set(&addr, numpages,
1634                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1635                                    0);
1636         if (!ret) {
1637                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1638                                                cachemode2pgprot(
1639                                                 _PAGE_CACHE_MODE_WC),
1640                                                __pgprot(_PAGE_CACHE_MASK),
1641                                                0, 0, NULL);
1642         }
1643         return ret;
1644 }
1645
1646 int set_memory_wc(unsigned long addr, int numpages)
1647 {
1648         int ret;
1649
1650         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1651                 _PAGE_CACHE_MODE_WC, NULL);
1652         if (ret)
1653                 return ret;
1654
1655         ret = _set_memory_wc(addr, numpages);
1656         if (ret)
1657                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL(set_memory_wc);
1662
1663 int _set_memory_wt(unsigned long addr, int numpages)
1664 {
1665         return change_page_attr_set(&addr, numpages,
1666                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1667 }
1668
1669 int set_memory_wt(unsigned long addr, int numpages)
1670 {
1671         int ret;
1672
1673         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1674                               _PAGE_CACHE_MODE_WT, NULL);
1675         if (ret)
1676                 return ret;
1677
1678         ret = _set_memory_wt(addr, numpages);
1679         if (ret)
1680                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1681
1682         return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(set_memory_wt);
1685
1686 int _set_memory_wb(unsigned long addr, int numpages)
1687 {
1688         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1689         return change_page_attr_clear(&addr, numpages,
1690                                       __pgprot(_PAGE_CACHE_MASK), 0);
1691 }
1692
1693 int set_memory_wb(unsigned long addr, int numpages)
1694 {
1695         int ret;
1696
1697         ret = _set_memory_wb(addr, numpages);
1698         if (ret)
1699                 return ret;
1700
1701         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1702         return 0;
1703 }
1704 EXPORT_SYMBOL(set_memory_wb);
1705
1706 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1707 {
1708         int i;
1709         int ret;
1710
1711         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1712         ret = change_page_attr_clear(addr, addrinarray,
1713                                       __pgprot(_PAGE_CACHE_MASK), 1);
1714         if (ret)
1715                 return ret;
1716
1717         for (i = 0; i < addrinarray; i++)
1718                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1719
1720         return 0;
1721 }
1722 EXPORT_SYMBOL(set_memory_array_wb);
1723
1724 int set_memory_x(unsigned long addr, int numpages)
1725 {
1726         if (!(__supported_pte_mask & _PAGE_NX))
1727                 return 0;
1728
1729         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1730 }
1731 EXPORT_SYMBOL(set_memory_x);
1732
1733 int set_memory_nx(unsigned long addr, int numpages)
1734 {
1735         if (!(__supported_pte_mask & _PAGE_NX))
1736                 return 0;
1737
1738         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1739 }
1740 EXPORT_SYMBOL(set_memory_nx);
1741
1742 int set_memory_ro(unsigned long addr, int numpages)
1743 {
1744         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1745 }
1746
1747 int set_memory_rw(unsigned long addr, int numpages)
1748 {
1749         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1750 }
1751
1752 int set_memory_np(unsigned long addr, int numpages)
1753 {
1754         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1755 }
1756
1757 int set_memory_4k(unsigned long addr, int numpages)
1758 {
1759         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1760                                         __pgprot(0), 1, 0, NULL);
1761 }
1762
1763 int set_pages_uc(struct page *page, int numpages)
1764 {
1765         unsigned long addr = (unsigned long)page_address(page);
1766
1767         return set_memory_uc(addr, numpages);
1768 }
1769 EXPORT_SYMBOL(set_pages_uc);
1770
1771 static int _set_pages_array(struct page **pages, int addrinarray,
1772                 enum page_cache_mode new_type)
1773 {
1774         unsigned long start;
1775         unsigned long end;
1776         enum page_cache_mode set_type;
1777         int i;
1778         int free_idx;
1779         int ret;
1780
1781         for (i = 0; i < addrinarray; i++) {
1782                 if (PageHighMem(pages[i]))
1783                         continue;
1784                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1785                 end = start + PAGE_SIZE;
1786                 if (reserve_memtype(start, end, new_type, NULL))
1787                         goto err_out;
1788         }
1789
1790         /* If WC, set to UC- first and then WC */
1791         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1792                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1793
1794         ret = cpa_set_pages_array(pages, addrinarray,
1795                                   cachemode2pgprot(set_type));
1796         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1797                 ret = change_page_attr_set_clr(NULL, addrinarray,
1798                                                cachemode2pgprot(
1799                                                 _PAGE_CACHE_MODE_WC),
1800                                                __pgprot(_PAGE_CACHE_MASK),
1801                                                0, CPA_PAGES_ARRAY, pages);
1802         if (ret)
1803                 goto err_out;
1804         return 0; /* Success */
1805 err_out:
1806         free_idx = i;
1807         for (i = 0; i < free_idx; i++) {
1808                 if (PageHighMem(pages[i]))
1809                         continue;
1810                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1811                 end = start + PAGE_SIZE;
1812                 free_memtype(start, end);
1813         }
1814         return -EINVAL;
1815 }
1816
1817 int set_pages_array_uc(struct page **pages, int addrinarray)
1818 {
1819         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1820 }
1821 EXPORT_SYMBOL(set_pages_array_uc);
1822
1823 int set_pages_array_wc(struct page **pages, int addrinarray)
1824 {
1825         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1826 }
1827 EXPORT_SYMBOL(set_pages_array_wc);
1828
1829 int set_pages_array_wt(struct page **pages, int addrinarray)
1830 {
1831         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1832 }
1833 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1834
1835 int set_pages_wb(struct page *page, int numpages)
1836 {
1837         unsigned long addr = (unsigned long)page_address(page);
1838
1839         return set_memory_wb(addr, numpages);
1840 }
1841 EXPORT_SYMBOL(set_pages_wb);
1842
1843 int set_pages_array_wb(struct page **pages, int addrinarray)
1844 {
1845         int retval;
1846         unsigned long start;
1847         unsigned long end;
1848         int i;
1849
1850         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1851         retval = cpa_clear_pages_array(pages, addrinarray,
1852                         __pgprot(_PAGE_CACHE_MASK));
1853         if (retval)
1854                 return retval;
1855
1856         for (i = 0; i < addrinarray; i++) {
1857                 if (PageHighMem(pages[i]))
1858                         continue;
1859                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1860                 end = start + PAGE_SIZE;
1861                 free_memtype(start, end);
1862         }
1863
1864         return 0;
1865 }
1866 EXPORT_SYMBOL(set_pages_array_wb);
1867
1868 int set_pages_x(struct page *page, int numpages)
1869 {
1870         unsigned long addr = (unsigned long)page_address(page);
1871
1872         return set_memory_x(addr, numpages);
1873 }
1874 EXPORT_SYMBOL(set_pages_x);
1875
1876 int set_pages_nx(struct page *page, int numpages)
1877 {
1878         unsigned long addr = (unsigned long)page_address(page);
1879
1880         return set_memory_nx(addr, numpages);
1881 }
1882 EXPORT_SYMBOL(set_pages_nx);
1883
1884 int set_pages_ro(struct page *page, int numpages)
1885 {
1886         unsigned long addr = (unsigned long)page_address(page);
1887
1888         return set_memory_ro(addr, numpages);
1889 }
1890
1891 int set_pages_rw(struct page *page, int numpages)
1892 {
1893         unsigned long addr = (unsigned long)page_address(page);
1894
1895         return set_memory_rw(addr, numpages);
1896 }
1897
1898 #ifdef CONFIG_DEBUG_PAGEALLOC
1899
1900 static int __set_pages_p(struct page *page, int numpages)
1901 {
1902         unsigned long tempaddr = (unsigned long) page_address(page);
1903         struct cpa_data cpa = { .vaddr = &tempaddr,
1904                                 .pgd = NULL,
1905                                 .numpages = numpages,
1906                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1907                                 .mask_clr = __pgprot(0),
1908                                 .flags = 0};
1909
1910         /*
1911          * No alias checking needed for setting present flag. otherwise,
1912          * we may need to break large pages for 64-bit kernel text
1913          * mappings (this adds to complexity if we want to do this from
1914          * atomic context especially). Let's keep it simple!
1915          */
1916         return __change_page_attr_set_clr(&cpa, 0);
1917 }
1918
1919 static int __set_pages_np(struct page *page, int numpages)
1920 {
1921         unsigned long tempaddr = (unsigned long) page_address(page);
1922         struct cpa_data cpa = { .vaddr = &tempaddr,
1923                                 .pgd = NULL,
1924                                 .numpages = numpages,
1925                                 .mask_set = __pgprot(0),
1926                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1927                                 .flags = 0};
1928
1929         /*
1930          * No alias checking needed for setting not present flag. otherwise,
1931          * we may need to break large pages for 64-bit kernel text
1932          * mappings (this adds to complexity if we want to do this from
1933          * atomic context especially). Let's keep it simple!
1934          */
1935         return __change_page_attr_set_clr(&cpa, 0);
1936 }
1937
1938 void __kernel_map_pages(struct page *page, int numpages, int enable)
1939 {
1940         if (PageHighMem(page))
1941                 return;
1942         if (!enable) {
1943                 debug_check_no_locks_freed(page_address(page),
1944                                            numpages * PAGE_SIZE);
1945         }
1946
1947         /*
1948          * The return value is ignored as the calls cannot fail.
1949          * Large pages for identity mappings are not used at boot time
1950          * and hence no memory allocations during large page split.
1951          */
1952         if (enable)
1953                 __set_pages_p(page, numpages);
1954         else
1955                 __set_pages_np(page, numpages);
1956
1957         /*
1958          * We should perform an IPI and flush all tlbs,
1959          * but that can deadlock->flush only current cpu:
1960          */
1961         __flush_tlb_all();
1962
1963         arch_flush_lazy_mmu_mode();
1964 }
1965
1966 #ifdef CONFIG_HIBERNATION
1967
1968 bool kernel_page_present(struct page *page)
1969 {
1970         unsigned int level;
1971         pte_t *pte;
1972
1973         if (PageHighMem(page))
1974                 return false;
1975
1976         pte = lookup_address((unsigned long)page_address(page), &level);
1977         return (pte_val(*pte) & _PAGE_PRESENT);
1978 }
1979
1980 #endif /* CONFIG_HIBERNATION */
1981
1982 #endif /* CONFIG_DEBUG_PAGEALLOC */
1983
1984 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1985                             unsigned numpages, unsigned long page_flags)
1986 {
1987         int retval = -EINVAL;
1988
1989         struct cpa_data cpa = {
1990                 .vaddr = &address,
1991                 .pfn = pfn,
1992                 .pgd = pgd,
1993                 .numpages = numpages,
1994                 .mask_set = __pgprot(0),
1995                 .mask_clr = __pgprot(0),
1996                 .flags = 0,
1997         };
1998
1999         if (!(__supported_pte_mask & _PAGE_NX))
2000                 goto out;
2001
2002         if (!(page_flags & _PAGE_NX))
2003                 cpa.mask_clr = __pgprot(_PAGE_NX);
2004
2005         if (!(page_flags & _PAGE_RW))
2006                 cpa.mask_clr = __pgprot(_PAGE_RW);
2007
2008         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2009
2010         retval = __change_page_attr_set_clr(&cpa, 0);
2011         __flush_tlb_all();
2012
2013 out:
2014         return retval;
2015 }
2016
2017 /*
2018  * The testcases use internal knowledge of the implementation that shouldn't
2019  * be exposed to the rest of the kernel. Include these directly here.
2020  */
2021 #ifdef CONFIG_CPA_DEBUG
2022 #include "pageattr-test.c"
2023 #endif