OSDN Git Service

Merge 4.4.104 into android-4.4
[sagit-ice-cold/kernel_xiaomi_msm8998.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84         if (direct_gbpages)
85                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
89 static inline void split_page_count(int level) { }
90 #endif
91
92 #ifdef CONFIG_X86_64
93
94 static inline unsigned long highmap_start_pfn(void)
95 {
96         return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98
99 static inline unsigned long highmap_end_pfn(void)
100 {
101         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103
104 #endif
105
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111
112 static inline int
113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115         return addr >= start && addr < end;
116 }
117
118 /*
119  * Flushing functions
120  */
121
122 /**
123  * clflush_cache_range - flush a cache range with clflush
124  * @vaddr:      virtual start address
125  * @size:       number of bytes to flush
126  *
127  * clflushopt is an unordered instruction which needs fencing with mfence or
128  * sfence to avoid ordering issues.
129  */
130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132         unsigned long clflush_mask = boot_cpu_data.x86_clflush_size - 1;
133         void *vend = vaddr + size;
134         void *p;
135
136         mb();
137
138         for (p = (void *)((unsigned long)vaddr & ~clflush_mask);
139              p < vend; p += boot_cpu_data.x86_clflush_size)
140                 clflushopt(p);
141
142         mb();
143 }
144 EXPORT_SYMBOL_GPL(clflush_cache_range);
145
146 static void __cpa_flush_all(void *arg)
147 {
148         unsigned long cache = (unsigned long)arg;
149
150         /*
151          * Flush all to work around Errata in early athlons regarding
152          * large page flushing.
153          */
154         __flush_tlb_all();
155
156         if (cache && boot_cpu_data.x86 >= 4)
157                 wbinvd();
158 }
159
160 static void cpa_flush_all(unsigned long cache)
161 {
162         BUG_ON(irqs_disabled());
163
164         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
165 }
166
167 static void __cpa_flush_range(void *arg)
168 {
169         /*
170          * We could optimize that further and do individual per page
171          * tlb invalidates for a low number of pages. Caveat: we must
172          * flush the high aliases on 64bit as well.
173          */
174         __flush_tlb_all();
175 }
176
177 static void cpa_flush_range(unsigned long start, int numpages, int cache)
178 {
179         unsigned int i, level;
180         unsigned long addr;
181
182         BUG_ON(irqs_disabled());
183         WARN_ON(PAGE_ALIGN(start) != start);
184
185         on_each_cpu(__cpa_flush_range, NULL, 1);
186
187         if (!cache)
188                 return;
189
190         /*
191          * We only need to flush on one CPU,
192          * clflush is a MESI-coherent instruction that
193          * will cause all other CPUs to flush the same
194          * cachelines:
195          */
196         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
197                 pte_t *pte = lookup_address(addr, &level);
198
199                 /*
200                  * Only flush present addresses:
201                  */
202                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
203                         clflush_cache_range((void *) addr, PAGE_SIZE);
204         }
205 }
206
207 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
208                             int in_flags, struct page **pages)
209 {
210         unsigned int i, level;
211         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
212
213         BUG_ON(irqs_disabled());
214
215         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
216
217         if (!cache || do_wbinvd)
218                 return;
219
220         /*
221          * We only need to flush on one CPU,
222          * clflush is a MESI-coherent instruction that
223          * will cause all other CPUs to flush the same
224          * cachelines:
225          */
226         for (i = 0; i < numpages; i++) {
227                 unsigned long addr;
228                 pte_t *pte;
229
230                 if (in_flags & CPA_PAGES_ARRAY)
231                         addr = (unsigned long)page_address(pages[i]);
232                 else
233                         addr = start[i];
234
235                 pte = lookup_address(addr, &level);
236
237                 /*
238                  * Only flush present addresses:
239                  */
240                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
241                         clflush_cache_range((void *)addr, PAGE_SIZE);
242         }
243 }
244
245 /*
246  * Certain areas of memory on x86 require very specific protection flags,
247  * for example the BIOS area or kernel text. Callers don't always get this
248  * right (again, ioremap() on BIOS memory is not uncommon) so this function
249  * checks and fixes these known static required protection bits.
250  */
251 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
252                                    unsigned long pfn)
253 {
254         pgprot_t forbidden = __pgprot(0);
255
256         /*
257          * The BIOS area between 640k and 1Mb needs to be executable for
258          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
259          */
260 #ifdef CONFIG_PCI_BIOS
261         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
262                 pgprot_val(forbidden) |= _PAGE_NX;
263 #endif
264
265         /*
266          * The kernel text needs to be executable for obvious reasons
267          * Does not cover __inittext since that is gone later on. On
268          * 64bit we do not enforce !NX on the low mapping
269          */
270         if (within(address, (unsigned long)_text, (unsigned long)_etext))
271                 pgprot_val(forbidden) |= _PAGE_NX;
272
273         /*
274          * The .rodata section needs to be read-only. Using the pfn
275          * catches all aliases.
276          */
277         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
278                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
279                 pgprot_val(forbidden) |= _PAGE_RW;
280
281 #if defined(CONFIG_X86_64)
282         /*
283          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
284          * kernel text mappings for the large page aligned text, rodata sections
285          * will be always read-only. For the kernel identity mappings covering
286          * the holes caused by this alignment can be anything that user asks.
287          *
288          * This will preserve the large page mappings for kernel text/data
289          * at no extra cost.
290          */
291         if (kernel_set_to_readonly &&
292             within(address, (unsigned long)_text,
293                    (unsigned long)__end_rodata_hpage_align)) {
294                 unsigned int level;
295
296                 /*
297                  * Don't enforce the !RW mapping for the kernel text mapping,
298                  * if the current mapping is already using small page mapping.
299                  * No need to work hard to preserve large page mappings in this
300                  * case.
301                  *
302                  * This also fixes the Linux Xen paravirt guest boot failure
303                  * (because of unexpected read-only mappings for kernel identity
304                  * mappings). In this paravirt guest case, the kernel text
305                  * mapping and the kernel identity mapping share the same
306                  * page-table pages. Thus we can't really use different
307                  * protections for the kernel text and identity mappings. Also,
308                  * these shared mappings are made of small page mappings.
309                  * Thus this don't enforce !RW mapping for small page kernel
310                  * text mapping logic will help Linux Xen parvirt guest boot
311                  * as well.
312                  */
313                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
314                         pgprot_val(forbidden) |= _PAGE_RW;
315         }
316 #endif
317
318         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
319
320         return prot;
321 }
322
323 /*
324  * Lookup the page table entry for a virtual address in a specific pgd.
325  * Return a pointer to the entry and the level of the mapping.
326  */
327 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
328                              unsigned int *level)
329 {
330         pud_t *pud;
331         pmd_t *pmd;
332
333         *level = PG_LEVEL_NONE;
334
335         if (pgd_none(*pgd))
336                 return NULL;
337
338         pud = pud_offset(pgd, address);
339         if (pud_none(*pud))
340                 return NULL;
341
342         *level = PG_LEVEL_1G;
343         if (pud_large(*pud) || !pud_present(*pud))
344                 return (pte_t *)pud;
345
346         pmd = pmd_offset(pud, address);
347         if (pmd_none(*pmd))
348                 return NULL;
349
350         *level = PG_LEVEL_2M;
351         if (pmd_large(*pmd) || !pmd_present(*pmd))
352                 return (pte_t *)pmd;
353
354         *level = PG_LEVEL_4K;
355
356         return pte_offset_kernel(pmd, address);
357 }
358
359 /*
360  * Lookup the page table entry for a virtual address. Return a pointer
361  * to the entry and the level of the mapping.
362  *
363  * Note: We return pud and pmd either when the entry is marked large
364  * or when the present bit is not set. Otherwise we would return a
365  * pointer to a nonexisting mapping.
366  */
367 pte_t *lookup_address(unsigned long address, unsigned int *level)
368 {
369         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
370 }
371 EXPORT_SYMBOL_GPL(lookup_address);
372
373 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
374                                   unsigned int *level)
375 {
376         if (cpa->pgd)
377                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
378                                                address, level);
379
380         return lookup_address(address, level);
381 }
382
383 /*
384  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
385  * or NULL if not present.
386  */
387 pmd_t *lookup_pmd_address(unsigned long address)
388 {
389         pgd_t *pgd;
390         pud_t *pud;
391
392         pgd = pgd_offset_k(address);
393         if (pgd_none(*pgd))
394                 return NULL;
395
396         pud = pud_offset(pgd, address);
397         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
398                 return NULL;
399
400         return pmd_offset(pud, address);
401 }
402
403 /*
404  * This is necessary because __pa() does not work on some
405  * kinds of memory, like vmalloc() or the alloc_remap()
406  * areas on 32-bit NUMA systems.  The percpu areas can
407  * end up in this kind of memory, for instance.
408  *
409  * This could be optimized, but it is only intended to be
410  * used at inititalization time, and keeping it
411  * unoptimized should increase the testing coverage for
412  * the more obscure platforms.
413  */
414 phys_addr_t slow_virt_to_phys(void *__virt_addr)
415 {
416         unsigned long virt_addr = (unsigned long)__virt_addr;
417         phys_addr_t phys_addr;
418         unsigned long offset;
419         enum pg_level level;
420         pte_t *pte;
421
422         pte = lookup_address(virt_addr, &level);
423         BUG_ON(!pte);
424
425         /*
426          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
427          * before being left-shifted PAGE_SHIFT bits -- this trick is to
428          * make 32-PAE kernel work correctly.
429          */
430         switch (level) {
431         case PG_LEVEL_1G:
432                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
433                 offset = virt_addr & ~PUD_PAGE_MASK;
434                 break;
435         case PG_LEVEL_2M:
436                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
437                 offset = virt_addr & ~PMD_PAGE_MASK;
438                 break;
439         default:
440                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
441                 offset = virt_addr & ~PAGE_MASK;
442         }
443
444         return (phys_addr_t)(phys_addr | offset);
445 }
446 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
447
448 /*
449  * Set the new pmd in all the pgds we know about:
450  */
451 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
452 {
453         /* change init_mm */
454         set_pte_atomic(kpte, pte);
455 #ifdef CONFIG_X86_32
456         if (!SHARED_KERNEL_PMD) {
457                 struct page *page;
458
459                 list_for_each_entry(page, &pgd_list, lru) {
460                         pgd_t *pgd;
461                         pud_t *pud;
462                         pmd_t *pmd;
463
464                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
465                         pud = pud_offset(pgd, address);
466                         pmd = pmd_offset(pud, address);
467                         set_pte_atomic((pte_t *)pmd, pte);
468                 }
469         }
470 #endif
471 }
472
473 static int
474 try_preserve_large_page(pte_t *kpte, unsigned long address,
475                         struct cpa_data *cpa)
476 {
477         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
478         pte_t new_pte, old_pte, *tmp;
479         pgprot_t old_prot, new_prot, req_prot;
480         int i, do_split = 1;
481         enum pg_level level;
482
483         if (cpa->force_split)
484                 return 1;
485
486         spin_lock(&pgd_lock);
487         /*
488          * Check for races, another CPU might have split this page
489          * up already:
490          */
491         tmp = _lookup_address_cpa(cpa, address, &level);
492         if (tmp != kpte)
493                 goto out_unlock;
494
495         switch (level) {
496         case PG_LEVEL_2M:
497                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
498                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
499                 break;
500         case PG_LEVEL_1G:
501                 old_prot = pud_pgprot(*(pud_t *)kpte);
502                 old_pfn = pud_pfn(*(pud_t *)kpte);
503                 break;
504         default:
505                 do_split = -EINVAL;
506                 goto out_unlock;
507         }
508
509         psize = page_level_size(level);
510         pmask = page_level_mask(level);
511
512         /*
513          * Calculate the number of pages, which fit into this large
514          * page starting at address:
515          */
516         nextpage_addr = (address + psize) & pmask;
517         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
518         if (numpages < cpa->numpages)
519                 cpa->numpages = numpages;
520
521         /*
522          * We are safe now. Check whether the new pgprot is the same:
523          * Convert protection attributes to 4k-format, as cpa->mask* are set
524          * up accordingly.
525          */
526         old_pte = *kpte;
527         req_prot = pgprot_large_2_4k(old_prot);
528
529         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
530         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
531
532         /*
533          * req_prot is in format of 4k pages. It must be converted to large
534          * page format: the caching mode includes the PAT bit located at
535          * different bit positions in the two formats.
536          */
537         req_prot = pgprot_4k_2_large(req_prot);
538
539         /*
540          * Set the PSE and GLOBAL flags only if the PRESENT flag is
541          * set otherwise pmd_present/pmd_huge will return true even on
542          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
543          * for the ancient hardware that doesn't support it.
544          */
545         if (pgprot_val(req_prot) & _PAGE_PRESENT)
546                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
547         else
548                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
549
550         req_prot = canon_pgprot(req_prot);
551
552         /*
553          * old_pfn points to the large page base pfn. So we need
554          * to add the offset of the virtual address:
555          */
556         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
557         cpa->pfn = pfn;
558
559         new_prot = static_protections(req_prot, address, pfn);
560
561         /*
562          * We need to check the full range, whether
563          * static_protection() requires a different pgprot for one of
564          * the pages in the range we try to preserve:
565          */
566         addr = address & pmask;
567         pfn = old_pfn;
568         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
569                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
570
571                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
572                         goto out_unlock;
573         }
574
575         /*
576          * If there are no changes, return. maxpages has been updated
577          * above:
578          */
579         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
580                 do_split = 0;
581                 goto out_unlock;
582         }
583
584         /*
585          * We need to change the attributes. Check, whether we can
586          * change the large page in one go. We request a split, when
587          * the address is not aligned and the number of pages is
588          * smaller than the number of pages in the large page. Note
589          * that we limited the number of possible pages already to
590          * the number of pages in the large page.
591          */
592         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
593                 /*
594                  * The address is aligned and the number of pages
595                  * covers the full page.
596                  */
597                 new_pte = pfn_pte(old_pfn, new_prot);
598                 __set_pmd_pte(kpte, address, new_pte);
599                 cpa->flags |= CPA_FLUSHTLB;
600                 do_split = 0;
601         }
602
603 out_unlock:
604         spin_unlock(&pgd_lock);
605
606         return do_split;
607 }
608
609 static int
610 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
611                    struct page *base)
612 {
613         pte_t *pbase = (pte_t *)page_address(base);
614         unsigned long ref_pfn, pfn, pfninc = 1;
615         unsigned int i, level;
616         pte_t *tmp;
617         pgprot_t ref_prot;
618
619         spin_lock(&pgd_lock);
620         /*
621          * Check for races, another CPU might have split this page
622          * up for us already:
623          */
624         tmp = _lookup_address_cpa(cpa, address, &level);
625         if (tmp != kpte) {
626                 spin_unlock(&pgd_lock);
627                 return 1;
628         }
629
630         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
631
632         switch (level) {
633         case PG_LEVEL_2M:
634                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
635                 /* clear PSE and promote PAT bit to correct position */
636                 ref_prot = pgprot_large_2_4k(ref_prot);
637                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
638                 break;
639
640         case PG_LEVEL_1G:
641                 ref_prot = pud_pgprot(*(pud_t *)kpte);
642                 ref_pfn = pud_pfn(*(pud_t *)kpte);
643                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
644
645                 /*
646                  * Clear the PSE flags if the PRESENT flag is not set
647                  * otherwise pmd_present/pmd_huge will return true
648                  * even on a non present pmd.
649                  */
650                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
651                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
652                 break;
653
654         default:
655                 spin_unlock(&pgd_lock);
656                 return 1;
657         }
658
659         /*
660          * Set the GLOBAL flags only if the PRESENT flag is set
661          * otherwise pmd/pte_present will return true even on a non
662          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
663          * for the ancient hardware that doesn't support it.
664          */
665         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
666                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
667         else
668                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
669
670         /*
671          * Get the target pfn from the original entry:
672          */
673         pfn = ref_pfn;
674         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
675                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
676
677         if (virt_addr_valid(address)) {
678                 unsigned long pfn = PFN_DOWN(__pa(address));
679
680                 if (pfn_range_is_mapped(pfn, pfn + 1))
681                         split_page_count(level);
682         }
683
684         /*
685          * Install the new, split up pagetable.
686          *
687          * We use the standard kernel pagetable protections for the new
688          * pagetable protections, the actual ptes set above control the
689          * primary protection behavior:
690          */
691         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
692
693         /*
694          * Intel Atom errata AAH41 workaround.
695          *
696          * The real fix should be in hw or in a microcode update, but
697          * we also probabilistically try to reduce the window of having
698          * a large TLB mixed with 4K TLBs while instruction fetches are
699          * going on.
700          */
701         __flush_tlb_all();
702         spin_unlock(&pgd_lock);
703
704         return 0;
705 }
706
707 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
708                             unsigned long address)
709 {
710         struct page *base;
711
712         if (!debug_pagealloc)
713                 spin_unlock(&cpa_lock);
714         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
715         if (!debug_pagealloc)
716                 spin_lock(&cpa_lock);
717         if (!base)
718                 return -ENOMEM;
719
720         if (__split_large_page(cpa, kpte, address, base))
721                 __free_page(base);
722
723         return 0;
724 }
725
726 static bool try_to_free_pte_page(pte_t *pte)
727 {
728         int i;
729
730         for (i = 0; i < PTRS_PER_PTE; i++)
731                 if (!pte_none(pte[i]))
732                         return false;
733
734         free_page((unsigned long)pte);
735         return true;
736 }
737
738 static bool try_to_free_pmd_page(pmd_t *pmd)
739 {
740         int i;
741
742         for (i = 0; i < PTRS_PER_PMD; i++)
743                 if (!pmd_none(pmd[i]))
744                         return false;
745
746         free_page((unsigned long)pmd);
747         return true;
748 }
749
750 static bool try_to_free_pud_page(pud_t *pud)
751 {
752         int i;
753
754         for (i = 0; i < PTRS_PER_PUD; i++)
755                 if (!pud_none(pud[i]))
756                         return false;
757
758         free_page((unsigned long)pud);
759         return true;
760 }
761
762 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
763 {
764         pte_t *pte = pte_offset_kernel(pmd, start);
765
766         while (start < end) {
767                 set_pte(pte, __pte(0));
768
769                 start += PAGE_SIZE;
770                 pte++;
771         }
772
773         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
774                 pmd_clear(pmd);
775                 return true;
776         }
777         return false;
778 }
779
780 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
781                               unsigned long start, unsigned long end)
782 {
783         if (unmap_pte_range(pmd, start, end))
784                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
785                         pud_clear(pud);
786 }
787
788 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
789 {
790         pmd_t *pmd = pmd_offset(pud, start);
791
792         /*
793          * Not on a 2MB page boundary?
794          */
795         if (start & (PMD_SIZE - 1)) {
796                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
797                 unsigned long pre_end = min_t(unsigned long, end, next_page);
798
799                 __unmap_pmd_range(pud, pmd, start, pre_end);
800
801                 start = pre_end;
802                 pmd++;
803         }
804
805         /*
806          * Try to unmap in 2M chunks.
807          */
808         while (end - start >= PMD_SIZE) {
809                 if (pmd_large(*pmd))
810                         pmd_clear(pmd);
811                 else
812                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
813
814                 start += PMD_SIZE;
815                 pmd++;
816         }
817
818         /*
819          * 4K leftovers?
820          */
821         if (start < end)
822                 return __unmap_pmd_range(pud, pmd, start, end);
823
824         /*
825          * Try again to free the PMD page if haven't succeeded above.
826          */
827         if (!pud_none(*pud))
828                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
829                         pud_clear(pud);
830 }
831
832 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
833 {
834         pud_t *pud = pud_offset(pgd, start);
835
836         /*
837          * Not on a GB page boundary?
838          */
839         if (start & (PUD_SIZE - 1)) {
840                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
841                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
842
843                 unmap_pmd_range(pud, start, pre_end);
844
845                 start = pre_end;
846                 pud++;
847         }
848
849         /*
850          * Try to unmap in 1G chunks?
851          */
852         while (end - start >= PUD_SIZE) {
853
854                 if (pud_large(*pud))
855                         pud_clear(pud);
856                 else
857                         unmap_pmd_range(pud, start, start + PUD_SIZE);
858
859                 start += PUD_SIZE;
860                 pud++;
861         }
862
863         /*
864          * 2M leftovers?
865          */
866         if (start < end)
867                 unmap_pmd_range(pud, start, end);
868
869         /*
870          * No need to try to free the PUD page because we'll free it in
871          * populate_pgd's error path
872          */
873 }
874
875 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
876 {
877         pgd_t *pgd_entry = root + pgd_index(addr);
878
879         unmap_pud_range(pgd_entry, addr, end);
880
881         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
882                 pgd_clear(pgd_entry);
883 }
884
885 static int alloc_pte_page(pmd_t *pmd)
886 {
887         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
888         if (!pte)
889                 return -1;
890
891         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
892         return 0;
893 }
894
895 static int alloc_pmd_page(pud_t *pud)
896 {
897         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
898         if (!pmd)
899                 return -1;
900
901         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
902         return 0;
903 }
904
905 static void populate_pte(struct cpa_data *cpa,
906                          unsigned long start, unsigned long end,
907                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
908 {
909         pte_t *pte;
910
911         pte = pte_offset_kernel(pmd, start);
912
913         while (num_pages-- && start < end) {
914                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
915
916                 start    += PAGE_SIZE;
917                 cpa->pfn++;
918                 pte++;
919         }
920 }
921
922 static int populate_pmd(struct cpa_data *cpa,
923                         unsigned long start, unsigned long end,
924                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
925 {
926         unsigned int cur_pages = 0;
927         pmd_t *pmd;
928         pgprot_t pmd_pgprot;
929
930         /*
931          * Not on a 2M boundary?
932          */
933         if (start & (PMD_SIZE - 1)) {
934                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
935                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
936
937                 pre_end   = min_t(unsigned long, pre_end, next_page);
938                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
939                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
940
941                 /*
942                  * Need a PTE page?
943                  */
944                 pmd = pmd_offset(pud, start);
945                 if (pmd_none(*pmd))
946                         if (alloc_pte_page(pmd))
947                                 return -1;
948
949                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
950
951                 start = pre_end;
952         }
953
954         /*
955          * We mapped them all?
956          */
957         if (num_pages == cur_pages)
958                 return cur_pages;
959
960         pmd_pgprot = pgprot_4k_2_large(pgprot);
961
962         while (end - start >= PMD_SIZE) {
963
964                 /*
965                  * We cannot use a 1G page so allocate a PMD page if needed.
966                  */
967                 if (pud_none(*pud))
968                         if (alloc_pmd_page(pud))
969                                 return -1;
970
971                 pmd = pmd_offset(pud, start);
972
973                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
974                                    massage_pgprot(pmd_pgprot)));
975
976                 start     += PMD_SIZE;
977                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
978                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
979         }
980
981         /*
982          * Map trailing 4K pages.
983          */
984         if (start < end) {
985                 pmd = pmd_offset(pud, start);
986                 if (pmd_none(*pmd))
987                         if (alloc_pte_page(pmd))
988                                 return -1;
989
990                 populate_pte(cpa, start, end, num_pages - cur_pages,
991                              pmd, pgprot);
992         }
993         return num_pages;
994 }
995
996 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
997                         pgprot_t pgprot)
998 {
999         pud_t *pud;
1000         unsigned long end;
1001         int cur_pages = 0;
1002         pgprot_t pud_pgprot;
1003
1004         end = start + (cpa->numpages << PAGE_SHIFT);
1005
1006         /*
1007          * Not on a Gb page boundary? => map everything up to it with
1008          * smaller pages.
1009          */
1010         if (start & (PUD_SIZE - 1)) {
1011                 unsigned long pre_end;
1012                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1013
1014                 pre_end   = min_t(unsigned long, end, next_page);
1015                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1016                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1017
1018                 pud = pud_offset(pgd, start);
1019
1020                 /*
1021                  * Need a PMD page?
1022                  */
1023                 if (pud_none(*pud))
1024                         if (alloc_pmd_page(pud))
1025                                 return -1;
1026
1027                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1028                                          pud, pgprot);
1029                 if (cur_pages < 0)
1030                         return cur_pages;
1031
1032                 start = pre_end;
1033         }
1034
1035         /* We mapped them all? */
1036         if (cpa->numpages == cur_pages)
1037                 return cur_pages;
1038
1039         pud = pud_offset(pgd, start);
1040         pud_pgprot = pgprot_4k_2_large(pgprot);
1041
1042         /*
1043          * Map everything starting from the Gb boundary, possibly with 1G pages
1044          */
1045         while (end - start >= PUD_SIZE) {
1046                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1047                                    massage_pgprot(pud_pgprot)));
1048
1049                 start     += PUD_SIZE;
1050                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1051                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1052                 pud++;
1053         }
1054
1055         /* Map trailing leftover */
1056         if (start < end) {
1057                 int tmp;
1058
1059                 pud = pud_offset(pgd, start);
1060                 if (pud_none(*pud))
1061                         if (alloc_pmd_page(pud))
1062                                 return -1;
1063
1064                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1065                                    pud, pgprot);
1066                 if (tmp < 0)
1067                         return cur_pages;
1068
1069                 cur_pages += tmp;
1070         }
1071         return cur_pages;
1072 }
1073
1074 /*
1075  * Restrictions for kernel page table do not necessarily apply when mapping in
1076  * an alternate PGD.
1077  */
1078 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1079 {
1080         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1081         pud_t *pud = NULL;      /* shut up gcc */
1082         pgd_t *pgd_entry;
1083         int ret;
1084
1085         pgd_entry = cpa->pgd + pgd_index(addr);
1086
1087         /*
1088          * Allocate a PUD page and hand it down for mapping.
1089          */
1090         if (pgd_none(*pgd_entry)) {
1091                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1092                 if (!pud)
1093                         return -1;
1094
1095                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1096         }
1097
1098         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1099         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1100
1101         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1102         if (ret < 0) {
1103                 unmap_pgd_range(cpa->pgd, addr,
1104                                 addr + (cpa->numpages << PAGE_SHIFT));
1105                 return ret;
1106         }
1107
1108         cpa->numpages = ret;
1109         return 0;
1110 }
1111
1112 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1113                                int primary)
1114 {
1115         if (cpa->pgd)
1116                 return populate_pgd(cpa, vaddr);
1117
1118         /*
1119          * Ignore all non primary paths.
1120          */
1121         if (!primary)
1122                 return 0;
1123
1124         /*
1125          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1126          * to have holes.
1127          * Also set numpages to '1' indicating that we processed cpa req for
1128          * one virtual address page and its pfn. TBD: numpages can be set based
1129          * on the initial value and the level returned by lookup_address().
1130          */
1131         if (within(vaddr, PAGE_OFFSET,
1132                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1133                 cpa->numpages = 1;
1134                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1135                 return 0;
1136         } else {
1137                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1138                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1139                         *cpa->vaddr);
1140
1141                 return -EFAULT;
1142         }
1143 }
1144
1145 static int __change_page_attr(struct cpa_data *cpa, int primary)
1146 {
1147         unsigned long address;
1148         int do_split, err;
1149         unsigned int level;
1150         pte_t *kpte, old_pte;
1151
1152         if (cpa->flags & CPA_PAGES_ARRAY) {
1153                 struct page *page = cpa->pages[cpa->curpage];
1154                 if (unlikely(PageHighMem(page)))
1155                         return 0;
1156                 address = (unsigned long)page_address(page);
1157         } else if (cpa->flags & CPA_ARRAY)
1158                 address = cpa->vaddr[cpa->curpage];
1159         else
1160                 address = *cpa->vaddr;
1161 repeat:
1162         kpte = _lookup_address_cpa(cpa, address, &level);
1163         if (!kpte)
1164                 return __cpa_process_fault(cpa, address, primary);
1165
1166         old_pte = *kpte;
1167         if (!pte_val(old_pte))
1168                 return __cpa_process_fault(cpa, address, primary);
1169
1170         if (level == PG_LEVEL_4K) {
1171                 pte_t new_pte;
1172                 pgprot_t new_prot = pte_pgprot(old_pte);
1173                 unsigned long pfn = pte_pfn(old_pte);
1174
1175                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1176                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1177
1178                 new_prot = static_protections(new_prot, address, pfn);
1179
1180                 /*
1181                  * Set the GLOBAL flags only if the PRESENT flag is
1182                  * set otherwise pte_present will return true even on
1183                  * a non present pte. The canon_pgprot will clear
1184                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1185                  * support it.
1186                  */
1187                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1188                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1189                 else
1190                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1191
1192                 /*
1193                  * We need to keep the pfn from the existing PTE,
1194                  * after all we're only going to change it's attributes
1195                  * not the memory it points to
1196                  */
1197                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1198                 cpa->pfn = pfn;
1199                 /*
1200                  * Do we really change anything ?
1201                  */
1202                 if (pte_val(old_pte) != pte_val(new_pte)) {
1203                         set_pte_atomic(kpte, new_pte);
1204                         cpa->flags |= CPA_FLUSHTLB;
1205                 }
1206                 cpa->numpages = 1;
1207                 return 0;
1208         }
1209
1210         /*
1211          * Check, whether we can keep the large page intact
1212          * and just change the pte:
1213          */
1214         do_split = try_preserve_large_page(kpte, address, cpa);
1215         /*
1216          * When the range fits into the existing large page,
1217          * return. cp->numpages and cpa->tlbflush have been updated in
1218          * try_large_page:
1219          */
1220         if (do_split <= 0)
1221                 return do_split;
1222
1223         /*
1224          * We have to split the large page:
1225          */
1226         err = split_large_page(cpa, kpte, address);
1227         if (!err) {
1228                 /*
1229                  * Do a global flush tlb after splitting the large page
1230                  * and before we do the actual change page attribute in the PTE.
1231                  *
1232                  * With out this, we violate the TLB application note, that says
1233                  * "The TLBs may contain both ordinary and large-page
1234                  *  translations for a 4-KByte range of linear addresses. This
1235                  *  may occur if software modifies the paging structures so that
1236                  *  the page size used for the address range changes. If the two
1237                  *  translations differ with respect to page frame or attributes
1238                  *  (e.g., permissions), processor behavior is undefined and may
1239                  *  be implementation-specific."
1240                  *
1241                  * We do this global tlb flush inside the cpa_lock, so that we
1242                  * don't allow any other cpu, with stale tlb entries change the
1243                  * page attribute in parallel, that also falls into the
1244                  * just split large page entry.
1245                  */
1246                 flush_tlb_all();
1247                 goto repeat;
1248         }
1249
1250         return err;
1251 }
1252
1253 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1254
1255 static int cpa_process_alias(struct cpa_data *cpa)
1256 {
1257         struct cpa_data alias_cpa;
1258         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1259         unsigned long vaddr;
1260         int ret;
1261
1262         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1263                 return 0;
1264
1265         /*
1266          * No need to redo, when the primary call touched the direct
1267          * mapping already:
1268          */
1269         if (cpa->flags & CPA_PAGES_ARRAY) {
1270                 struct page *page = cpa->pages[cpa->curpage];
1271                 if (unlikely(PageHighMem(page)))
1272                         return 0;
1273                 vaddr = (unsigned long)page_address(page);
1274         } else if (cpa->flags & CPA_ARRAY)
1275                 vaddr = cpa->vaddr[cpa->curpage];
1276         else
1277                 vaddr = *cpa->vaddr;
1278
1279         if (!(within(vaddr, PAGE_OFFSET,
1280                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1281
1282                 alias_cpa = *cpa;
1283                 alias_cpa.vaddr = &laddr;
1284                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1285
1286                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1287                 if (ret)
1288                         return ret;
1289         }
1290
1291 #ifdef CONFIG_X86_64
1292         /*
1293          * If the primary call didn't touch the high mapping already
1294          * and the physical address is inside the kernel map, we need
1295          * to touch the high mapped kernel as well:
1296          */
1297         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1298             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1299                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1300                                                __START_KERNEL_map - phys_base;
1301                 alias_cpa = *cpa;
1302                 alias_cpa.vaddr = &temp_cpa_vaddr;
1303                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1304
1305                 /*
1306                  * The high mapping range is imprecise, so ignore the
1307                  * return value.
1308                  */
1309                 __change_page_attr_set_clr(&alias_cpa, 0);
1310         }
1311 #endif
1312
1313         return 0;
1314 }
1315
1316 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1317 {
1318         int ret, numpages = cpa->numpages;
1319
1320         while (numpages) {
1321                 /*
1322                  * Store the remaining nr of pages for the large page
1323                  * preservation check.
1324                  */
1325                 cpa->numpages = numpages;
1326                 /* for array changes, we can't use large page */
1327                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1328                         cpa->numpages = 1;
1329
1330                 if (!debug_pagealloc)
1331                         spin_lock(&cpa_lock);
1332                 ret = __change_page_attr(cpa, checkalias);
1333                 if (!debug_pagealloc)
1334                         spin_unlock(&cpa_lock);
1335                 if (ret)
1336                         return ret;
1337
1338                 if (checkalias) {
1339                         ret = cpa_process_alias(cpa);
1340                         if (ret)
1341                                 return ret;
1342                 }
1343
1344                 /*
1345                  * Adjust the number of pages with the result of the
1346                  * CPA operation. Either a large page has been
1347                  * preserved or a single page update happened.
1348                  */
1349                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1350                 numpages -= cpa->numpages;
1351                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1352                         cpa->curpage++;
1353                 else
1354                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1355
1356         }
1357         return 0;
1358 }
1359
1360 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1361                                     pgprot_t mask_set, pgprot_t mask_clr,
1362                                     int force_split, int in_flag,
1363                                     struct page **pages)
1364 {
1365         struct cpa_data cpa;
1366         int ret, cache, checkalias;
1367         unsigned long baddr = 0;
1368
1369         memset(&cpa, 0, sizeof(cpa));
1370
1371         /*
1372          * Check, if we are requested to change a not supported
1373          * feature:
1374          */
1375         mask_set = canon_pgprot(mask_set);
1376         mask_clr = canon_pgprot(mask_clr);
1377         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1378                 return 0;
1379
1380         /* Ensure we are PAGE_SIZE aligned */
1381         if (in_flag & CPA_ARRAY) {
1382                 int i;
1383                 for (i = 0; i < numpages; i++) {
1384                         if (addr[i] & ~PAGE_MASK) {
1385                                 addr[i] &= PAGE_MASK;
1386                                 WARN_ON_ONCE(1);
1387                         }
1388                 }
1389         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1390                 /*
1391                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1392                  * No need to cehck in that case
1393                  */
1394                 if (*addr & ~PAGE_MASK) {
1395                         *addr &= PAGE_MASK;
1396                         /*
1397                          * People should not be passing in unaligned addresses:
1398                          */
1399                         WARN_ON_ONCE(1);
1400                 }
1401                 /*
1402                  * Save address for cache flush. *addr is modified in the call
1403                  * to __change_page_attr_set_clr() below.
1404                  */
1405                 baddr = *addr;
1406         }
1407
1408         /* Must avoid aliasing mappings in the highmem code */
1409         kmap_flush_unused();
1410
1411         vm_unmap_aliases();
1412
1413         cpa.vaddr = addr;
1414         cpa.pages = pages;
1415         cpa.numpages = numpages;
1416         cpa.mask_set = mask_set;
1417         cpa.mask_clr = mask_clr;
1418         cpa.flags = 0;
1419         cpa.curpage = 0;
1420         cpa.force_split = force_split;
1421
1422         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1423                 cpa.flags |= in_flag;
1424
1425         /* No alias checking for _NX bit modifications */
1426         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1427
1428         ret = __change_page_attr_set_clr(&cpa, checkalias);
1429
1430         /*
1431          * Check whether we really changed something:
1432          */
1433         if (!(cpa.flags & CPA_FLUSHTLB))
1434                 goto out;
1435
1436         /*
1437          * No need to flush, when we did not set any of the caching
1438          * attributes:
1439          */
1440         cache = !!pgprot2cachemode(mask_set);
1441
1442         /*
1443          * On success we use CLFLUSH, when the CPU supports it to
1444          * avoid the WBINVD. If the CPU does not support it and in the
1445          * error case we fall back to cpa_flush_all (which uses
1446          * WBINVD):
1447          */
1448         if (!ret && cpu_has_clflush) {
1449                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1450                         cpa_flush_array(addr, numpages, cache,
1451                                         cpa.flags, pages);
1452                 } else
1453                         cpa_flush_range(baddr, numpages, cache);
1454         } else
1455                 cpa_flush_all(cache);
1456
1457 out:
1458         return ret;
1459 }
1460
1461 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1462                                        pgprot_t mask, int array)
1463 {
1464         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1465                 (array ? CPA_ARRAY : 0), NULL);
1466 }
1467
1468 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1469                                          pgprot_t mask, int array)
1470 {
1471         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1472                 (array ? CPA_ARRAY : 0), NULL);
1473 }
1474
1475 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1476                                        pgprot_t mask)
1477 {
1478         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1479                 CPA_PAGES_ARRAY, pages);
1480 }
1481
1482 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1483                                          pgprot_t mask)
1484 {
1485         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1486                 CPA_PAGES_ARRAY, pages);
1487 }
1488
1489 int _set_memory_uc(unsigned long addr, int numpages)
1490 {
1491         /*
1492          * for now UC MINUS. see comments in ioremap_nocache()
1493          * If you really need strong UC use ioremap_uc(), but note
1494          * that you cannot override IO areas with set_memory_*() as
1495          * these helpers cannot work with IO memory.
1496          */
1497         return change_page_attr_set(&addr, numpages,
1498                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1499                                     0);
1500 }
1501
1502 int set_memory_uc(unsigned long addr, int numpages)
1503 {
1504         int ret;
1505
1506         /*
1507          * for now UC MINUS. see comments in ioremap_nocache()
1508          */
1509         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1510                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1511         if (ret)
1512                 goto out_err;
1513
1514         ret = _set_memory_uc(addr, numpages);
1515         if (ret)
1516                 goto out_free;
1517
1518         return 0;
1519
1520 out_free:
1521         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1522 out_err:
1523         return ret;
1524 }
1525 EXPORT_SYMBOL(set_memory_uc);
1526
1527 static int _set_memory_array(unsigned long *addr, int addrinarray,
1528                 enum page_cache_mode new_type)
1529 {
1530         enum page_cache_mode set_type;
1531         int i, j;
1532         int ret;
1533
1534         for (i = 0; i < addrinarray; i++) {
1535                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1536                                         new_type, NULL);
1537                 if (ret)
1538                         goto out_free;
1539         }
1540
1541         /* If WC, set to UC- first and then WC */
1542         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1543                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1544
1545         ret = change_page_attr_set(addr, addrinarray,
1546                                    cachemode2pgprot(set_type), 1);
1547
1548         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1549                 ret = change_page_attr_set_clr(addr, addrinarray,
1550                                                cachemode2pgprot(
1551                                                 _PAGE_CACHE_MODE_WC),
1552                                                __pgprot(_PAGE_CACHE_MASK),
1553                                                0, CPA_ARRAY, NULL);
1554         if (ret)
1555                 goto out_free;
1556
1557         return 0;
1558
1559 out_free:
1560         for (j = 0; j < i; j++)
1561                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1562
1563         return ret;
1564 }
1565
1566 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1567 {
1568         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1569 }
1570 EXPORT_SYMBOL(set_memory_array_uc);
1571
1572 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1573 {
1574         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1575 }
1576 EXPORT_SYMBOL(set_memory_array_wc);
1577
1578 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1579 {
1580         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1581 }
1582 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1583
1584 int _set_memory_wc(unsigned long addr, int numpages)
1585 {
1586         int ret;
1587         unsigned long addr_copy = addr;
1588
1589         ret = change_page_attr_set(&addr, numpages,
1590                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1591                                    0);
1592         if (!ret) {
1593                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1594                                                cachemode2pgprot(
1595                                                 _PAGE_CACHE_MODE_WC),
1596                                                __pgprot(_PAGE_CACHE_MASK),
1597                                                0, 0, NULL);
1598         }
1599         return ret;
1600 }
1601
1602 int set_memory_wc(unsigned long addr, int numpages)
1603 {
1604         int ret;
1605
1606         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1607                 _PAGE_CACHE_MODE_WC, NULL);
1608         if (ret)
1609                 return ret;
1610
1611         ret = _set_memory_wc(addr, numpages);
1612         if (ret)
1613                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1614
1615         return ret;
1616 }
1617 EXPORT_SYMBOL(set_memory_wc);
1618
1619 int _set_memory_wt(unsigned long addr, int numpages)
1620 {
1621         return change_page_attr_set(&addr, numpages,
1622                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1623 }
1624
1625 int set_memory_wt(unsigned long addr, int numpages)
1626 {
1627         int ret;
1628
1629         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1630                               _PAGE_CACHE_MODE_WT, NULL);
1631         if (ret)
1632                 return ret;
1633
1634         ret = _set_memory_wt(addr, numpages);
1635         if (ret)
1636                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1637
1638         return ret;
1639 }
1640 EXPORT_SYMBOL_GPL(set_memory_wt);
1641
1642 int _set_memory_wb(unsigned long addr, int numpages)
1643 {
1644         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1645         return change_page_attr_clear(&addr, numpages,
1646                                       __pgprot(_PAGE_CACHE_MASK), 0);
1647 }
1648
1649 int set_memory_wb(unsigned long addr, int numpages)
1650 {
1651         int ret;
1652
1653         ret = _set_memory_wb(addr, numpages);
1654         if (ret)
1655                 return ret;
1656
1657         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1658         return 0;
1659 }
1660 EXPORT_SYMBOL(set_memory_wb);
1661
1662 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1663 {
1664         int i;
1665         int ret;
1666
1667         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1668         ret = change_page_attr_clear(addr, addrinarray,
1669                                       __pgprot(_PAGE_CACHE_MASK), 1);
1670         if (ret)
1671                 return ret;
1672
1673         for (i = 0; i < addrinarray; i++)
1674                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1675
1676         return 0;
1677 }
1678 EXPORT_SYMBOL(set_memory_array_wb);
1679
1680 int set_memory_x(unsigned long addr, int numpages)
1681 {
1682         if (!(__supported_pte_mask & _PAGE_NX))
1683                 return 0;
1684
1685         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1686 }
1687 EXPORT_SYMBOL(set_memory_x);
1688
1689 int set_memory_nx(unsigned long addr, int numpages)
1690 {
1691         if (!(__supported_pte_mask & _PAGE_NX))
1692                 return 0;
1693
1694         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1695 }
1696 EXPORT_SYMBOL(set_memory_nx);
1697
1698 int set_memory_ro(unsigned long addr, int numpages)
1699 {
1700         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1701 }
1702
1703 int set_memory_rw(unsigned long addr, int numpages)
1704 {
1705         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1706 }
1707
1708 int set_memory_np(unsigned long addr, int numpages)
1709 {
1710         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1711 }
1712
1713 int set_memory_4k(unsigned long addr, int numpages)
1714 {
1715         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1716                                         __pgprot(0), 1, 0, NULL);
1717 }
1718
1719 int set_pages_uc(struct page *page, int numpages)
1720 {
1721         unsigned long addr = (unsigned long)page_address(page);
1722
1723         return set_memory_uc(addr, numpages);
1724 }
1725 EXPORT_SYMBOL(set_pages_uc);
1726
1727 static int _set_pages_array(struct page **pages, int addrinarray,
1728                 enum page_cache_mode new_type)
1729 {
1730         unsigned long start;
1731         unsigned long end;
1732         enum page_cache_mode set_type;
1733         int i;
1734         int free_idx;
1735         int ret;
1736
1737         for (i = 0; i < addrinarray; i++) {
1738                 if (PageHighMem(pages[i]))
1739                         continue;
1740                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1741                 end = start + PAGE_SIZE;
1742                 if (reserve_memtype(start, end, new_type, NULL))
1743                         goto err_out;
1744         }
1745
1746         /* If WC, set to UC- first and then WC */
1747         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1748                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1749
1750         ret = cpa_set_pages_array(pages, addrinarray,
1751                                   cachemode2pgprot(set_type));
1752         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1753                 ret = change_page_attr_set_clr(NULL, addrinarray,
1754                                                cachemode2pgprot(
1755                                                 _PAGE_CACHE_MODE_WC),
1756                                                __pgprot(_PAGE_CACHE_MASK),
1757                                                0, CPA_PAGES_ARRAY, pages);
1758         if (ret)
1759                 goto err_out;
1760         return 0; /* Success */
1761 err_out:
1762         free_idx = i;
1763         for (i = 0; i < free_idx; i++) {
1764                 if (PageHighMem(pages[i]))
1765                         continue;
1766                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1767                 end = start + PAGE_SIZE;
1768                 free_memtype(start, end);
1769         }
1770         return -EINVAL;
1771 }
1772
1773 int set_pages_array_uc(struct page **pages, int addrinarray)
1774 {
1775         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1776 }
1777 EXPORT_SYMBOL(set_pages_array_uc);
1778
1779 int set_pages_array_wc(struct page **pages, int addrinarray)
1780 {
1781         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1782 }
1783 EXPORT_SYMBOL(set_pages_array_wc);
1784
1785 int set_pages_array_wt(struct page **pages, int addrinarray)
1786 {
1787         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1788 }
1789 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1790
1791 int set_pages_wb(struct page *page, int numpages)
1792 {
1793         unsigned long addr = (unsigned long)page_address(page);
1794
1795         return set_memory_wb(addr, numpages);
1796 }
1797 EXPORT_SYMBOL(set_pages_wb);
1798
1799 int set_pages_array_wb(struct page **pages, int addrinarray)
1800 {
1801         int retval;
1802         unsigned long start;
1803         unsigned long end;
1804         int i;
1805
1806         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1807         retval = cpa_clear_pages_array(pages, addrinarray,
1808                         __pgprot(_PAGE_CACHE_MASK));
1809         if (retval)
1810                 return retval;
1811
1812         for (i = 0; i < addrinarray; i++) {
1813                 if (PageHighMem(pages[i]))
1814                         continue;
1815                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1816                 end = start + PAGE_SIZE;
1817                 free_memtype(start, end);
1818         }
1819
1820         return 0;
1821 }
1822 EXPORT_SYMBOL(set_pages_array_wb);
1823
1824 int set_pages_x(struct page *page, int numpages)
1825 {
1826         unsigned long addr = (unsigned long)page_address(page);
1827
1828         return set_memory_x(addr, numpages);
1829 }
1830 EXPORT_SYMBOL(set_pages_x);
1831
1832 int set_pages_nx(struct page *page, int numpages)
1833 {
1834         unsigned long addr = (unsigned long)page_address(page);
1835
1836         return set_memory_nx(addr, numpages);
1837 }
1838 EXPORT_SYMBOL(set_pages_nx);
1839
1840 int set_pages_ro(struct page *page, int numpages)
1841 {
1842         unsigned long addr = (unsigned long)page_address(page);
1843
1844         return set_memory_ro(addr, numpages);
1845 }
1846
1847 int set_pages_rw(struct page *page, int numpages)
1848 {
1849         unsigned long addr = (unsigned long)page_address(page);
1850
1851         return set_memory_rw(addr, numpages);
1852 }
1853
1854 #ifdef CONFIG_DEBUG_PAGEALLOC
1855
1856 static int __set_pages_p(struct page *page, int numpages)
1857 {
1858         unsigned long tempaddr = (unsigned long) page_address(page);
1859         struct cpa_data cpa = { .vaddr = &tempaddr,
1860                                 .pgd = NULL,
1861                                 .numpages = numpages,
1862                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1863                                 .mask_clr = __pgprot(0),
1864                                 .flags = 0};
1865
1866         /*
1867          * No alias checking needed for setting present flag. otherwise,
1868          * we may need to break large pages for 64-bit kernel text
1869          * mappings (this adds to complexity if we want to do this from
1870          * atomic context especially). Let's keep it simple!
1871          */
1872         return __change_page_attr_set_clr(&cpa, 0);
1873 }
1874
1875 static int __set_pages_np(struct page *page, int numpages)
1876 {
1877         unsigned long tempaddr = (unsigned long) page_address(page);
1878         struct cpa_data cpa = { .vaddr = &tempaddr,
1879                                 .pgd = NULL,
1880                                 .numpages = numpages,
1881                                 .mask_set = __pgprot(0),
1882                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1883                                 .flags = 0};
1884
1885         /*
1886          * No alias checking needed for setting not present flag. otherwise,
1887          * we may need to break large pages for 64-bit kernel text
1888          * mappings (this adds to complexity if we want to do this from
1889          * atomic context especially). Let's keep it simple!
1890          */
1891         return __change_page_attr_set_clr(&cpa, 0);
1892 }
1893
1894 void __kernel_map_pages(struct page *page, int numpages, int enable)
1895 {
1896         if (PageHighMem(page))
1897                 return;
1898         if (!enable) {
1899                 debug_check_no_locks_freed(page_address(page),
1900                                            numpages * PAGE_SIZE);
1901         }
1902
1903         /*
1904          * The return value is ignored as the calls cannot fail.
1905          * Large pages for identity mappings are not used at boot time
1906          * and hence no memory allocations during large page split.
1907          */
1908         if (enable)
1909                 __set_pages_p(page, numpages);
1910         else
1911                 __set_pages_np(page, numpages);
1912
1913         /*
1914          * We should perform an IPI and flush all tlbs,
1915          * but that can deadlock->flush only current cpu:
1916          */
1917         __flush_tlb_all();
1918
1919         arch_flush_lazy_mmu_mode();
1920 }
1921
1922 #ifdef CONFIG_HIBERNATION
1923
1924 bool kernel_page_present(struct page *page)
1925 {
1926         unsigned int level;
1927         pte_t *pte;
1928
1929         if (PageHighMem(page))
1930                 return false;
1931
1932         pte = lookup_address((unsigned long)page_address(page), &level);
1933         return (pte_val(*pte) & _PAGE_PRESENT);
1934 }
1935
1936 #endif /* CONFIG_HIBERNATION */
1937
1938 #endif /* CONFIG_DEBUG_PAGEALLOC */
1939
1940 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1941                             unsigned numpages, unsigned long page_flags)
1942 {
1943         int retval = -EINVAL;
1944
1945         struct cpa_data cpa = {
1946                 .vaddr = &address,
1947                 .pfn = pfn,
1948                 .pgd = pgd,
1949                 .numpages = numpages,
1950                 .mask_set = __pgprot(0),
1951                 .mask_clr = __pgprot(0),
1952                 .flags = 0,
1953         };
1954
1955         if (!(__supported_pte_mask & _PAGE_NX))
1956                 goto out;
1957
1958         if (!(page_flags & _PAGE_NX))
1959                 cpa.mask_clr = __pgprot(_PAGE_NX);
1960
1961         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1962
1963         retval = __change_page_attr_set_clr(&cpa, 0);
1964         __flush_tlb_all();
1965
1966 out:
1967         return retval;
1968 }
1969
1970 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1971                                unsigned numpages)
1972 {
1973         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1974 }
1975
1976 /*
1977  * The testcases use internal knowledge of the implementation that shouldn't
1978  * be exposed to the rest of the kernel. Include these directly here.
1979  */
1980 #ifdef CONFIG_CPA_DEBUG
1981 #include "pageattr-test.c"
1982 #endif