OSDN Git Service

Merge tag 'arm-dt-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[uclinux-h8/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if ((!mi->part->bd_partno || rq->part == mi->part) &&
137             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138                 mi->inflight[rq_data_dir(rq)]++;
139
140         return true;
141 }
142
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144                 struct block_device *part)
145 {
146         struct mq_inflight mi = { .part = part };
147
148         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149
150         return mi.inflight[0] + mi.inflight[1];
151 }
152
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154                 unsigned int inflight[2])
155 {
156         struct mq_inflight mi = { .part = part };
157
158         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159         inflight[0] = mi.inflight[0];
160         inflight[1] = mi.inflight[1];
161 }
162
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165         mutex_lock(&q->mq_freeze_lock);
166         if (++q->mq_freeze_depth == 1) {
167                 percpu_ref_kill(&q->q_usage_counter);
168                 mutex_unlock(&q->mq_freeze_lock);
169                 if (queue_is_mq(q))
170                         blk_mq_run_hw_queues(q, false);
171         } else {
172                 mutex_unlock(&q->mq_freeze_lock);
173         }
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184                                      unsigned long timeout)
185 {
186         return wait_event_timeout(q->mq_freeze_wq,
187                                         percpu_ref_is_zero(&q->q_usage_counter),
188                                         timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198         /*
199          * In the !blk_mq case we are only calling this to kill the
200          * q_usage_counter, otherwise this increases the freeze depth
201          * and waits for it to return to zero.  For this reason there is
202          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203          * exported to drivers as the only user for unfreeze is blk_mq.
204          */
205         blk_freeze_queue_start(q);
206         blk_mq_freeze_queue_wait(q);
207 }
208
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211         /*
212          * ...just an alias to keep freeze and unfreeze actions balanced
213          * in the blk_mq_* namespace
214          */
215         blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221         mutex_lock(&q->mq_freeze_lock);
222         if (force_atomic)
223                 q->q_usage_counter.data->force_atomic = true;
224         q->mq_freeze_depth--;
225         WARN_ON_ONCE(q->mq_freeze_depth < 0);
226         if (!q->mq_freeze_depth) {
227                 percpu_ref_resurrect(&q->q_usage_counter);
228                 wake_up_all(&q->mq_freeze_wq);
229         }
230         mutex_unlock(&q->mq_freeze_lock);
231 }
232
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235         __blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245         unsigned long flags;
246
247         spin_lock_irqsave(&q->queue_lock, flags);
248         if (!q->quiesce_depth++)
249                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250         spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263         if (blk_queue_has_srcu(q))
264                 synchronize_srcu(q->srcu);
265         else
266                 synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281         blk_mq_quiesce_queue_nowait(q);
282         blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295         unsigned long flags;
296         bool run_queue = false;
297
298         spin_lock_irqsave(&q->queue_lock, flags);
299         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300                 ;
301         } else if (!--q->quiesce_depth) {
302                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303                 run_queue = true;
304         }
305         spin_unlock_irqrestore(&q->queue_lock, flags);
306
307         /* dispatch requests which are inserted during quiescing */
308         if (run_queue)
309                 blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (!(data->rq_flags & RQF_ELV)) {
360                 rq->tag = tag;
361                 rq->internal_tag = BLK_MQ_NO_TAG;
362         } else {
363                 rq->tag = BLK_MQ_NO_TAG;
364                 rq->internal_tag = tag;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_ELV) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (!op_is_flush(data->cmd_flags) &&
398                     e->type->ops.prepare_request) {
399                         e->type->ops.prepare_request(rq);
400                         rq->rq_flags |= RQF_ELVPRIV;
401                 }
402         }
403
404         return rq;
405 }
406
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409                 u64 alloc_time_ns)
410 {
411         unsigned int tag, tag_offset;
412         struct blk_mq_tags *tags;
413         struct request *rq;
414         unsigned long tag_mask;
415         int i, nr = 0;
416
417         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418         if (unlikely(!tag_mask))
419                 return NULL;
420
421         tags = blk_mq_tags_from_data(data);
422         for (i = 0; tag_mask; i++) {
423                 if (!(tag_mask & (1UL << i)))
424                         continue;
425                 tag = tag_offset + i;
426                 prefetch(tags->static_rqs[tag]);
427                 tag_mask &= ~(1UL << i);
428                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429                 rq_list_add(data->cached_rq, rq);
430                 nr++;
431         }
432         /* caller already holds a reference, add for remainder */
433         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434         data->nr_tags -= nr;
435
436         return rq_list_pop(data->cached_rq);
437 }
438
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441         struct request_queue *q = data->q;
442         u64 alloc_time_ns = 0;
443         struct request *rq;
444         unsigned int tag;
445
446         /* alloc_time includes depth and tag waits */
447         if (blk_queue_rq_alloc_time(q))
448                 alloc_time_ns = ktime_get_ns();
449
450         if (data->cmd_flags & REQ_NOWAIT)
451                 data->flags |= BLK_MQ_REQ_NOWAIT;
452
453         if (q->elevator) {
454                 struct elevator_queue *e = q->elevator;
455
456                 data->rq_flags |= RQF_ELV;
457
458                 /*
459                  * Flush/passthrough requests are special and go directly to the
460                  * dispatch list. Don't include reserved tags in the
461                  * limiting, as it isn't useful.
462                  */
463                 if (!op_is_flush(data->cmd_flags) &&
464                     !blk_op_is_passthrough(data->cmd_flags) &&
465                     e->type->ops.limit_depth &&
466                     !(data->flags & BLK_MQ_REQ_RESERVED))
467                         e->type->ops.limit_depth(data->cmd_flags, data);
468         }
469
470 retry:
471         data->ctx = blk_mq_get_ctx(q);
472         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473         if (!(data->rq_flags & RQF_ELV))
474                 blk_mq_tag_busy(data->hctx);
475
476         /*
477          * Try batched alloc if we want more than 1 tag.
478          */
479         if (data->nr_tags > 1) {
480                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481                 if (rq)
482                         return rq;
483                 data->nr_tags = 1;
484         }
485
486         /*
487          * Waiting allocations only fail because of an inactive hctx.  In that
488          * case just retry the hctx assignment and tag allocation as CPU hotplug
489          * should have migrated us to an online CPU by now.
490          */
491         tag = blk_mq_get_tag(data);
492         if (tag == BLK_MQ_NO_TAG) {
493                 if (data->flags & BLK_MQ_REQ_NOWAIT)
494                         return NULL;
495                 /*
496                  * Give up the CPU and sleep for a random short time to
497                  * ensure that thread using a realtime scheduling class
498                  * are migrated off the CPU, and thus off the hctx that
499                  * is going away.
500                  */
501                 msleep(3);
502                 goto retry;
503         }
504
505         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506                                         alloc_time_ns);
507 }
508
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510                 blk_mq_req_flags_t flags)
511 {
512         struct blk_mq_alloc_data data = {
513                 .q              = q,
514                 .flags          = flags,
515                 .cmd_flags      = op,
516                 .nr_tags        = 1,
517         };
518         struct request *rq;
519         int ret;
520
521         ret = blk_queue_enter(q, flags);
522         if (ret)
523                 return ERR_PTR(ret);
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (!rq)
527                 goto out_queue_exit;
528         rq->__data_len = 0;
529         rq->__sector = (sector_t) -1;
530         rq->bio = rq->biotail = NULL;
531         return rq;
532 out_queue_exit:
533         blk_queue_exit(q);
534         return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541         struct blk_mq_alloc_data data = {
542                 .q              = q,
543                 .flags          = flags,
544                 .cmd_flags      = op,
545                 .nr_tags        = 1,
546         };
547         u64 alloc_time_ns = 0;
548         unsigned int cpu;
549         unsigned int tag;
550         int ret;
551
552         /* alloc_time includes depth and tag waits */
553         if (blk_queue_rq_alloc_time(q))
554                 alloc_time_ns = ktime_get_ns();
555
556         /*
557          * If the tag allocator sleeps we could get an allocation for a
558          * different hardware context.  No need to complicate the low level
559          * allocator for this for the rare use case of a command tied to
560          * a specific queue.
561          */
562         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563                 return ERR_PTR(-EINVAL);
564
565         if (hctx_idx >= q->nr_hw_queues)
566                 return ERR_PTR(-EIO);
567
568         ret = blk_queue_enter(q, flags);
569         if (ret)
570                 return ERR_PTR(ret);
571
572         /*
573          * Check if the hardware context is actually mapped to anything.
574          * If not tell the caller that it should skip this queue.
575          */
576         ret = -EXDEV;
577         data.hctx = xa_load(&q->hctx_table, hctx_idx);
578         if (!blk_mq_hw_queue_mapped(data.hctx))
579                 goto out_queue_exit;
580         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581         data.ctx = __blk_mq_get_ctx(q, cpu);
582
583         if (!q->elevator)
584                 blk_mq_tag_busy(data.hctx);
585         else
586                 data.rq_flags |= RQF_ELV;
587
588         ret = -EWOULDBLOCK;
589         tag = blk_mq_get_tag(&data);
590         if (tag == BLK_MQ_NO_TAG)
591                 goto out_queue_exit;
592         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593                                         alloc_time_ns);
594
595 out_queue_exit:
596         blk_queue_exit(q);
597         return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600
601 static void __blk_mq_free_request(struct request *rq)
602 {
603         struct request_queue *q = rq->q;
604         struct blk_mq_ctx *ctx = rq->mq_ctx;
605         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606         const int sched_tag = rq->internal_tag;
607
608         blk_crypto_free_request(rq);
609         blk_pm_mark_last_busy(rq);
610         rq->mq_hctx = NULL;
611         if (rq->tag != BLK_MQ_NO_TAG)
612                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613         if (sched_tag != BLK_MQ_NO_TAG)
614                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615         blk_mq_sched_restart(hctx);
616         blk_queue_exit(q);
617 }
618
619 void blk_mq_free_request(struct request *rq)
620 {
621         struct request_queue *q = rq->q;
622         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623
624         if ((rq->rq_flags & RQF_ELVPRIV) &&
625             q->elevator->type->ops.finish_request)
626                 q->elevator->type->ops.finish_request(rq);
627
628         if (rq->rq_flags & RQF_MQ_INFLIGHT)
629                 __blk_mq_dec_active_requests(hctx);
630
631         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632                 laptop_io_completion(q->disk->bdi);
633
634         rq_qos_done(q, rq);
635
636         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637         if (req_ref_put_and_test(rq))
638                 __blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644         struct request *rq;
645
646         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647                 blk_mq_free_request(rq);
648 }
649
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653                 rq->q->disk ? rq->q->disk->disk_name : "?",
654                 (unsigned long long) rq->cmd_flags);
655
656         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657                (unsigned long long)blk_rq_pos(rq),
658                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660                rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665                           unsigned int nbytes, blk_status_t error)
666 {
667         if (unlikely(error)) {
668                 bio->bi_status = error;
669         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670                 /*
671                  * Partial zone append completions cannot be supported as the
672                  * BIO fragments may end up not being written sequentially.
673                  */
674                 if (bio->bi_iter.bi_size != nbytes)
675                         bio->bi_status = BLK_STS_IOERR;
676                 else
677                         bio->bi_iter.bi_sector = rq->__sector;
678         }
679
680         bio_advance(bio, nbytes);
681
682         if (unlikely(rq->rq_flags & RQF_QUIET))
683                 bio_set_flag(bio, BIO_QUIET);
684         /* don't actually finish bio if it's part of flush sequence */
685         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686                 bio_endio(bio);
687 }
688
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691         if (req->part && blk_do_io_stat(req)) {
692                 const int sgrp = op_stat_group(req_op(req));
693
694                 part_stat_lock();
695                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696                 part_stat_unlock();
697         }
698 }
699
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702         printk_ratelimited(KERN_ERR
703                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704                 "phys_seg %u prio class %u\n",
705                 blk_status_to_str(status),
706                 req->q->disk ? req->q->disk->disk_name : "?",
707                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708                 req->cmd_flags & ~REQ_OP_MASK,
709                 req->nr_phys_segments,
710                 IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720         int total_bytes = blk_rq_bytes(req);
721         struct bio *bio = req->bio;
722
723         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724
725         if (!bio)
726                 return;
727
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730                 req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732
733         blk_account_io_completion(req, total_bytes);
734
735         do {
736                 struct bio *next = bio->bi_next;
737
738                 /* Completion has already been traced */
739                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740
741                 if (req_op(req) == REQ_OP_ZONE_APPEND)
742                         bio->bi_iter.bi_sector = req->__sector;
743
744                 if (!is_flush)
745                         bio_endio(bio);
746                 bio = next;
747         } while (bio);
748
749         /*
750          * Reset counters so that the request stacking driver
751          * can find how many bytes remain in the request
752          * later.
753          */
754         req->bio = NULL;
755         req->__data_len = 0;
756 }
757
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781                 unsigned int nr_bytes)
782 {
783         int total_bytes;
784
785         trace_block_rq_complete(req, error, nr_bytes);
786
787         if (!req->bio)
788                 return false;
789
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792             error == BLK_STS_OK)
793                 req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795
796         if (unlikely(error && !blk_rq_is_passthrough(req) &&
797                      !(req->rq_flags & RQF_QUIET))) {
798                 blk_print_req_error(req, error);
799                 trace_block_rq_error(req, error, nr_bytes);
800         }
801
802         blk_account_io_completion(req, nr_bytes);
803
804         total_bytes = 0;
805         while (req->bio) {
806                 struct bio *bio = req->bio;
807                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
808
809                 if (bio_bytes == bio->bi_iter.bi_size)
810                         req->bio = bio->bi_next;
811
812                 /* Completion has already been traced */
813                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
814                 req_bio_endio(req, bio, bio_bytes, error);
815
816                 total_bytes += bio_bytes;
817                 nr_bytes -= bio_bytes;
818
819                 if (!nr_bytes)
820                         break;
821         }
822
823         /*
824          * completely done
825          */
826         if (!req->bio) {
827                 /*
828                  * Reset counters so that the request stacking driver
829                  * can find how many bytes remain in the request
830                  * later.
831                  */
832                 req->__data_len = 0;
833                 return false;
834         }
835
836         req->__data_len -= total_bytes;
837
838         /* update sector only for requests with clear definition of sector */
839         if (!blk_rq_is_passthrough(req))
840                 req->__sector += total_bytes >> 9;
841
842         /* mixed attributes always follow the first bio */
843         if (req->rq_flags & RQF_MIXED_MERGE) {
844                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
845                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
846         }
847
848         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
849                 /*
850                  * If total number of sectors is less than the first segment
851                  * size, something has gone terribly wrong.
852                  */
853                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
854                         blk_dump_rq_flags(req, "request botched");
855                         req->__data_len = blk_rq_cur_bytes(req);
856                 }
857
858                 /* recalculate the number of segments */
859                 req->nr_phys_segments = blk_recalc_rq_segments(req);
860         }
861
862         return true;
863 }
864 EXPORT_SYMBOL_GPL(blk_update_request);
865
866 static void __blk_account_io_done(struct request *req, u64 now)
867 {
868         const int sgrp = op_stat_group(req_op(req));
869
870         part_stat_lock();
871         update_io_ticks(req->part, jiffies, true);
872         part_stat_inc(req->part, ios[sgrp]);
873         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
874         part_stat_unlock();
875 }
876
877 static inline void blk_account_io_done(struct request *req, u64 now)
878 {
879         /*
880          * Account IO completion.  flush_rq isn't accounted as a
881          * normal IO on queueing nor completion.  Accounting the
882          * containing request is enough.
883          */
884         if (blk_do_io_stat(req) && req->part &&
885             !(req->rq_flags & RQF_FLUSH_SEQ))
886                 __blk_account_io_done(req, now);
887 }
888
889 static void __blk_account_io_start(struct request *rq)
890 {
891         /*
892          * All non-passthrough requests are created from a bio with one
893          * exception: when a flush command that is part of a flush sequence
894          * generated by the state machine in blk-flush.c is cloned onto the
895          * lower device by dm-multipath we can get here without a bio.
896          */
897         if (rq->bio)
898                 rq->part = rq->bio->bi_bdev;
899         else
900                 rq->part = rq->q->disk->part0;
901
902         part_stat_lock();
903         update_io_ticks(rq->part, jiffies, false);
904         part_stat_unlock();
905 }
906
907 static inline void blk_account_io_start(struct request *req)
908 {
909         if (blk_do_io_stat(req))
910                 __blk_account_io_start(req);
911 }
912
913 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
914 {
915         if (rq->rq_flags & RQF_STATS) {
916                 blk_mq_poll_stats_start(rq->q);
917                 blk_stat_add(rq, now);
918         }
919
920         blk_mq_sched_completed_request(rq, now);
921         blk_account_io_done(rq, now);
922 }
923
924 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
925 {
926         if (blk_mq_need_time_stamp(rq))
927                 __blk_mq_end_request_acct(rq, ktime_get_ns());
928
929         if (rq->end_io) {
930                 rq_qos_done(rq->q, rq);
931                 rq->end_io(rq, error);
932         } else {
933                 blk_mq_free_request(rq);
934         }
935 }
936 EXPORT_SYMBOL(__blk_mq_end_request);
937
938 void blk_mq_end_request(struct request *rq, blk_status_t error)
939 {
940         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
941                 BUG();
942         __blk_mq_end_request(rq, error);
943 }
944 EXPORT_SYMBOL(blk_mq_end_request);
945
946 #define TAG_COMP_BATCH          32
947
948 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
949                                           int *tag_array, int nr_tags)
950 {
951         struct request_queue *q = hctx->queue;
952
953         /*
954          * All requests should have been marked as RQF_MQ_INFLIGHT, so
955          * update hctx->nr_active in batch
956          */
957         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
958                 __blk_mq_sub_active_requests(hctx, nr_tags);
959
960         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
961         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
962 }
963
964 void blk_mq_end_request_batch(struct io_comp_batch *iob)
965 {
966         int tags[TAG_COMP_BATCH], nr_tags = 0;
967         struct blk_mq_hw_ctx *cur_hctx = NULL;
968         struct request *rq;
969         u64 now = 0;
970
971         if (iob->need_ts)
972                 now = ktime_get_ns();
973
974         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
975                 prefetch(rq->bio);
976                 prefetch(rq->rq_next);
977
978                 blk_complete_request(rq);
979                 if (iob->need_ts)
980                         __blk_mq_end_request_acct(rq, now);
981
982                 rq_qos_done(rq->q, rq);
983
984                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
985                 if (!req_ref_put_and_test(rq))
986                         continue;
987
988                 blk_crypto_free_request(rq);
989                 blk_pm_mark_last_busy(rq);
990
991                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
992                         if (cur_hctx)
993                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
994                         nr_tags = 0;
995                         cur_hctx = rq->mq_hctx;
996                 }
997                 tags[nr_tags++] = rq->tag;
998         }
999
1000         if (nr_tags)
1001                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1002 }
1003 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1004
1005 static void blk_complete_reqs(struct llist_head *list)
1006 {
1007         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1008         struct request *rq, *next;
1009
1010         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1011                 rq->q->mq_ops->complete(rq);
1012 }
1013
1014 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1015 {
1016         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1017 }
1018
1019 static int blk_softirq_cpu_dead(unsigned int cpu)
1020 {
1021         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1022         return 0;
1023 }
1024
1025 static void __blk_mq_complete_request_remote(void *data)
1026 {
1027         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1028 }
1029
1030 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1031 {
1032         int cpu = raw_smp_processor_id();
1033
1034         if (!IS_ENABLED(CONFIG_SMP) ||
1035             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1036                 return false;
1037         /*
1038          * With force threaded interrupts enabled, raising softirq from an SMP
1039          * function call will always result in waking the ksoftirqd thread.
1040          * This is probably worse than completing the request on a different
1041          * cache domain.
1042          */
1043         if (force_irqthreads())
1044                 return false;
1045
1046         /* same CPU or cache domain?  Complete locally */
1047         if (cpu == rq->mq_ctx->cpu ||
1048             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1049              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1050                 return false;
1051
1052         /* don't try to IPI to an offline CPU */
1053         return cpu_online(rq->mq_ctx->cpu);
1054 }
1055
1056 static void blk_mq_complete_send_ipi(struct request *rq)
1057 {
1058         struct llist_head *list;
1059         unsigned int cpu;
1060
1061         cpu = rq->mq_ctx->cpu;
1062         list = &per_cpu(blk_cpu_done, cpu);
1063         if (llist_add(&rq->ipi_list, list)) {
1064                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1065                 smp_call_function_single_async(cpu, &rq->csd);
1066         }
1067 }
1068
1069 static void blk_mq_raise_softirq(struct request *rq)
1070 {
1071         struct llist_head *list;
1072
1073         preempt_disable();
1074         list = this_cpu_ptr(&blk_cpu_done);
1075         if (llist_add(&rq->ipi_list, list))
1076                 raise_softirq(BLOCK_SOFTIRQ);
1077         preempt_enable();
1078 }
1079
1080 bool blk_mq_complete_request_remote(struct request *rq)
1081 {
1082         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1083
1084         /*
1085          * For a polled request, always complete locallly, it's pointless
1086          * to redirect the completion.
1087          */
1088         if (rq->cmd_flags & REQ_POLLED)
1089                 return false;
1090
1091         if (blk_mq_complete_need_ipi(rq)) {
1092                 blk_mq_complete_send_ipi(rq);
1093                 return true;
1094         }
1095
1096         if (rq->q->nr_hw_queues == 1) {
1097                 blk_mq_raise_softirq(rq);
1098                 return true;
1099         }
1100         return false;
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1103
1104 /**
1105  * blk_mq_complete_request - end I/O on a request
1106  * @rq:         the request being processed
1107  *
1108  * Description:
1109  *      Complete a request by scheduling the ->complete_rq operation.
1110  **/
1111 void blk_mq_complete_request(struct request *rq)
1112 {
1113         if (!blk_mq_complete_request_remote(rq))
1114                 rq->q->mq_ops->complete(rq);
1115 }
1116 EXPORT_SYMBOL(blk_mq_complete_request);
1117
1118 /**
1119  * blk_mq_start_request - Start processing a request
1120  * @rq: Pointer to request to be started
1121  *
1122  * Function used by device drivers to notify the block layer that a request
1123  * is going to be processed now, so blk layer can do proper initializations
1124  * such as starting the timeout timer.
1125  */
1126 void blk_mq_start_request(struct request *rq)
1127 {
1128         struct request_queue *q = rq->q;
1129
1130         trace_block_rq_issue(rq);
1131
1132         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1133                 u64 start_time;
1134 #ifdef CONFIG_BLK_CGROUP
1135                 if (rq->bio)
1136                         start_time = bio_issue_time(&rq->bio->bi_issue);
1137                 else
1138 #endif
1139                         start_time = ktime_get_ns();
1140                 rq->io_start_time_ns = start_time;
1141                 rq->stats_sectors = blk_rq_sectors(rq);
1142                 rq->rq_flags |= RQF_STATS;
1143                 rq_qos_issue(q, rq);
1144         }
1145
1146         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1147
1148         blk_add_timer(rq);
1149         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1150
1151 #ifdef CONFIG_BLK_DEV_INTEGRITY
1152         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1153                 q->integrity.profile->prepare_fn(rq);
1154 #endif
1155         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1156                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1157 }
1158 EXPORT_SYMBOL(blk_mq_start_request);
1159
1160 /**
1161  * blk_end_sync_rq - executes a completion event on a request
1162  * @rq: request to complete
1163  * @error: end I/O status of the request
1164  */
1165 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1166 {
1167         struct completion *waiting = rq->end_io_data;
1168
1169         rq->end_io_data = (void *)(uintptr_t)error;
1170
1171         /*
1172          * complete last, if this is a stack request the process (and thus
1173          * the rq pointer) could be invalid right after this complete()
1174          */
1175         complete(waiting);
1176 }
1177
1178 /**
1179  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1180  * @rq:         request to insert
1181  * @at_head:    insert request at head or tail of queue
1182  * @done:       I/O completion handler
1183  *
1184  * Description:
1185  *    Insert a fully prepared request at the back of the I/O scheduler queue
1186  *    for execution.  Don't wait for completion.
1187  *
1188  * Note:
1189  *    This function will invoke @done directly if the queue is dead.
1190  */
1191 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1192 {
1193         WARN_ON(irqs_disabled());
1194         WARN_ON(!blk_rq_is_passthrough(rq));
1195
1196         rq->end_io = done;
1197
1198         blk_account_io_start(rq);
1199
1200         /*
1201          * don't check dying flag for MQ because the request won't
1202          * be reused after dying flag is set
1203          */
1204         blk_mq_sched_insert_request(rq, at_head, true, false);
1205 }
1206 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1207
1208 static bool blk_rq_is_poll(struct request *rq)
1209 {
1210         if (!rq->mq_hctx)
1211                 return false;
1212         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1213                 return false;
1214         if (WARN_ON_ONCE(!rq->bio))
1215                 return false;
1216         return true;
1217 }
1218
1219 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1220 {
1221         do {
1222                 bio_poll(rq->bio, NULL, 0);
1223                 cond_resched();
1224         } while (!completion_done(wait));
1225 }
1226
1227 /**
1228  * blk_execute_rq - insert a request into queue for execution
1229  * @rq:         request to insert
1230  * @at_head:    insert request at head or tail of queue
1231  *
1232  * Description:
1233  *    Insert a fully prepared request at the back of the I/O scheduler queue
1234  *    for execution and wait for completion.
1235  * Return: The blk_status_t result provided to blk_mq_end_request().
1236  */
1237 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1238 {
1239         DECLARE_COMPLETION_ONSTACK(wait);
1240         unsigned long hang_check;
1241
1242         rq->end_io_data = &wait;
1243         blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1244
1245         /* Prevent hang_check timer from firing at us during very long I/O */
1246         hang_check = sysctl_hung_task_timeout_secs;
1247
1248         if (blk_rq_is_poll(rq))
1249                 blk_rq_poll_completion(rq, &wait);
1250         else if (hang_check)
1251                 while (!wait_for_completion_io_timeout(&wait,
1252                                 hang_check * (HZ/2)))
1253                         ;
1254         else
1255                 wait_for_completion_io(&wait);
1256
1257         return (blk_status_t)(uintptr_t)rq->end_io_data;
1258 }
1259 EXPORT_SYMBOL(blk_execute_rq);
1260
1261 static void __blk_mq_requeue_request(struct request *rq)
1262 {
1263         struct request_queue *q = rq->q;
1264
1265         blk_mq_put_driver_tag(rq);
1266
1267         trace_block_rq_requeue(rq);
1268         rq_qos_requeue(q, rq);
1269
1270         if (blk_mq_request_started(rq)) {
1271                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1272                 rq->rq_flags &= ~RQF_TIMED_OUT;
1273         }
1274 }
1275
1276 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1277 {
1278         __blk_mq_requeue_request(rq);
1279
1280         /* this request will be re-inserted to io scheduler queue */
1281         blk_mq_sched_requeue_request(rq);
1282
1283         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1284 }
1285 EXPORT_SYMBOL(blk_mq_requeue_request);
1286
1287 static void blk_mq_requeue_work(struct work_struct *work)
1288 {
1289         struct request_queue *q =
1290                 container_of(work, struct request_queue, requeue_work.work);
1291         LIST_HEAD(rq_list);
1292         struct request *rq, *next;
1293
1294         spin_lock_irq(&q->requeue_lock);
1295         list_splice_init(&q->requeue_list, &rq_list);
1296         spin_unlock_irq(&q->requeue_lock);
1297
1298         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1299                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1300                         continue;
1301
1302                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1303                 list_del_init(&rq->queuelist);
1304                 /*
1305                  * If RQF_DONTPREP, rq has contained some driver specific
1306                  * data, so insert it to hctx dispatch list to avoid any
1307                  * merge.
1308                  */
1309                 if (rq->rq_flags & RQF_DONTPREP)
1310                         blk_mq_request_bypass_insert(rq, false, false);
1311                 else
1312                         blk_mq_sched_insert_request(rq, true, false, false);
1313         }
1314
1315         while (!list_empty(&rq_list)) {
1316                 rq = list_entry(rq_list.next, struct request, queuelist);
1317                 list_del_init(&rq->queuelist);
1318                 blk_mq_sched_insert_request(rq, false, false, false);
1319         }
1320
1321         blk_mq_run_hw_queues(q, false);
1322 }
1323
1324 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1325                                 bool kick_requeue_list)
1326 {
1327         struct request_queue *q = rq->q;
1328         unsigned long flags;
1329
1330         /*
1331          * We abuse this flag that is otherwise used by the I/O scheduler to
1332          * request head insertion from the workqueue.
1333          */
1334         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1335
1336         spin_lock_irqsave(&q->requeue_lock, flags);
1337         if (at_head) {
1338                 rq->rq_flags |= RQF_SOFTBARRIER;
1339                 list_add(&rq->queuelist, &q->requeue_list);
1340         } else {
1341                 list_add_tail(&rq->queuelist, &q->requeue_list);
1342         }
1343         spin_unlock_irqrestore(&q->requeue_lock, flags);
1344
1345         if (kick_requeue_list)
1346                 blk_mq_kick_requeue_list(q);
1347 }
1348
1349 void blk_mq_kick_requeue_list(struct request_queue *q)
1350 {
1351         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1352 }
1353 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1354
1355 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1356                                     unsigned long msecs)
1357 {
1358         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1359                                     msecs_to_jiffies(msecs));
1360 }
1361 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1362
1363 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1364                                bool reserved)
1365 {
1366         /*
1367          * If we find a request that isn't idle we know the queue is busy
1368          * as it's checked in the iter.
1369          * Return false to stop the iteration.
1370          */
1371         if (blk_mq_request_started(rq)) {
1372                 bool *busy = priv;
1373
1374                 *busy = true;
1375                 return false;
1376         }
1377
1378         return true;
1379 }
1380
1381 bool blk_mq_queue_inflight(struct request_queue *q)
1382 {
1383         bool busy = false;
1384
1385         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1386         return busy;
1387 }
1388 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1389
1390 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1391 {
1392         req->rq_flags |= RQF_TIMED_OUT;
1393         if (req->q->mq_ops->timeout) {
1394                 enum blk_eh_timer_return ret;
1395
1396                 ret = req->q->mq_ops->timeout(req, reserved);
1397                 if (ret == BLK_EH_DONE)
1398                         return;
1399                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1400         }
1401
1402         blk_add_timer(req);
1403 }
1404
1405 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1406 {
1407         unsigned long deadline;
1408
1409         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1410                 return false;
1411         if (rq->rq_flags & RQF_TIMED_OUT)
1412                 return false;
1413
1414         deadline = READ_ONCE(rq->deadline);
1415         if (time_after_eq(jiffies, deadline))
1416                 return true;
1417
1418         if (*next == 0)
1419                 *next = deadline;
1420         else if (time_after(*next, deadline))
1421                 *next = deadline;
1422         return false;
1423 }
1424
1425 void blk_mq_put_rq_ref(struct request *rq)
1426 {
1427         if (is_flush_rq(rq))
1428                 rq->end_io(rq, 0);
1429         else if (req_ref_put_and_test(rq))
1430                 __blk_mq_free_request(rq);
1431 }
1432
1433 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1434 {
1435         unsigned long *next = priv;
1436
1437         /*
1438          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1439          * be reallocated underneath the timeout handler's processing, then
1440          * the expire check is reliable. If the request is not expired, then
1441          * it was completed and reallocated as a new request after returning
1442          * from blk_mq_check_expired().
1443          */
1444         if (blk_mq_req_expired(rq, next))
1445                 blk_mq_rq_timed_out(rq, reserved);
1446         return true;
1447 }
1448
1449 static void blk_mq_timeout_work(struct work_struct *work)
1450 {
1451         struct request_queue *q =
1452                 container_of(work, struct request_queue, timeout_work);
1453         unsigned long next = 0;
1454         struct blk_mq_hw_ctx *hctx;
1455         unsigned long i;
1456
1457         /* A deadlock might occur if a request is stuck requiring a
1458          * timeout at the same time a queue freeze is waiting
1459          * completion, since the timeout code would not be able to
1460          * acquire the queue reference here.
1461          *
1462          * That's why we don't use blk_queue_enter here; instead, we use
1463          * percpu_ref_tryget directly, because we need to be able to
1464          * obtain a reference even in the short window between the queue
1465          * starting to freeze, by dropping the first reference in
1466          * blk_freeze_queue_start, and the moment the last request is
1467          * consumed, marked by the instant q_usage_counter reaches
1468          * zero.
1469          */
1470         if (!percpu_ref_tryget(&q->q_usage_counter))
1471                 return;
1472
1473         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1474
1475         if (next != 0) {
1476                 mod_timer(&q->timeout, next);
1477         } else {
1478                 /*
1479                  * Request timeouts are handled as a forward rolling timer. If
1480                  * we end up here it means that no requests are pending and
1481                  * also that no request has been pending for a while. Mark
1482                  * each hctx as idle.
1483                  */
1484                 queue_for_each_hw_ctx(q, hctx, i) {
1485                         /* the hctx may be unmapped, so check it here */
1486                         if (blk_mq_hw_queue_mapped(hctx))
1487                                 blk_mq_tag_idle(hctx);
1488                 }
1489         }
1490         blk_queue_exit(q);
1491 }
1492
1493 struct flush_busy_ctx_data {
1494         struct blk_mq_hw_ctx *hctx;
1495         struct list_head *list;
1496 };
1497
1498 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1499 {
1500         struct flush_busy_ctx_data *flush_data = data;
1501         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1502         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1503         enum hctx_type type = hctx->type;
1504
1505         spin_lock(&ctx->lock);
1506         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1507         sbitmap_clear_bit(sb, bitnr);
1508         spin_unlock(&ctx->lock);
1509         return true;
1510 }
1511
1512 /*
1513  * Process software queues that have been marked busy, splicing them
1514  * to the for-dispatch
1515  */
1516 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1517 {
1518         struct flush_busy_ctx_data data = {
1519                 .hctx = hctx,
1520                 .list = list,
1521         };
1522
1523         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1524 }
1525 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1526
1527 struct dispatch_rq_data {
1528         struct blk_mq_hw_ctx *hctx;
1529         struct request *rq;
1530 };
1531
1532 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1533                 void *data)
1534 {
1535         struct dispatch_rq_data *dispatch_data = data;
1536         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1537         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1538         enum hctx_type type = hctx->type;
1539
1540         spin_lock(&ctx->lock);
1541         if (!list_empty(&ctx->rq_lists[type])) {
1542                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1543                 list_del_init(&dispatch_data->rq->queuelist);
1544                 if (list_empty(&ctx->rq_lists[type]))
1545                         sbitmap_clear_bit(sb, bitnr);
1546         }
1547         spin_unlock(&ctx->lock);
1548
1549         return !dispatch_data->rq;
1550 }
1551
1552 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1553                                         struct blk_mq_ctx *start)
1554 {
1555         unsigned off = start ? start->index_hw[hctx->type] : 0;
1556         struct dispatch_rq_data data = {
1557                 .hctx = hctx,
1558                 .rq   = NULL,
1559         };
1560
1561         __sbitmap_for_each_set(&hctx->ctx_map, off,
1562                                dispatch_rq_from_ctx, &data);
1563
1564         return data.rq;
1565 }
1566
1567 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1568 {
1569         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1570         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1571         int tag;
1572
1573         blk_mq_tag_busy(rq->mq_hctx);
1574
1575         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1576                 bt = &rq->mq_hctx->tags->breserved_tags;
1577                 tag_offset = 0;
1578         } else {
1579                 if (!hctx_may_queue(rq->mq_hctx, bt))
1580                         return false;
1581         }
1582
1583         tag = __sbitmap_queue_get(bt);
1584         if (tag == BLK_MQ_NO_TAG)
1585                 return false;
1586
1587         rq->tag = tag + tag_offset;
1588         return true;
1589 }
1590
1591 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1592 {
1593         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1594                 return false;
1595
1596         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1597                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1598                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1599                 __blk_mq_inc_active_requests(hctx);
1600         }
1601         hctx->tags->rqs[rq->tag] = rq;
1602         return true;
1603 }
1604
1605 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1606                                 int flags, void *key)
1607 {
1608         struct blk_mq_hw_ctx *hctx;
1609
1610         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1611
1612         spin_lock(&hctx->dispatch_wait_lock);
1613         if (!list_empty(&wait->entry)) {
1614                 struct sbitmap_queue *sbq;
1615
1616                 list_del_init(&wait->entry);
1617                 sbq = &hctx->tags->bitmap_tags;
1618                 atomic_dec(&sbq->ws_active);
1619         }
1620         spin_unlock(&hctx->dispatch_wait_lock);
1621
1622         blk_mq_run_hw_queue(hctx, true);
1623         return 1;
1624 }
1625
1626 /*
1627  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1628  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1629  * restart. For both cases, take care to check the condition again after
1630  * marking us as waiting.
1631  */
1632 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1633                                  struct request *rq)
1634 {
1635         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1636         struct wait_queue_head *wq;
1637         wait_queue_entry_t *wait;
1638         bool ret;
1639
1640         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1641                 blk_mq_sched_mark_restart_hctx(hctx);
1642
1643                 /*
1644                  * It's possible that a tag was freed in the window between the
1645                  * allocation failure and adding the hardware queue to the wait
1646                  * queue.
1647                  *
1648                  * Don't clear RESTART here, someone else could have set it.
1649                  * At most this will cost an extra queue run.
1650                  */
1651                 return blk_mq_get_driver_tag(rq);
1652         }
1653
1654         wait = &hctx->dispatch_wait;
1655         if (!list_empty_careful(&wait->entry))
1656                 return false;
1657
1658         wq = &bt_wait_ptr(sbq, hctx)->wait;
1659
1660         spin_lock_irq(&wq->lock);
1661         spin_lock(&hctx->dispatch_wait_lock);
1662         if (!list_empty(&wait->entry)) {
1663                 spin_unlock(&hctx->dispatch_wait_lock);
1664                 spin_unlock_irq(&wq->lock);
1665                 return false;
1666         }
1667
1668         atomic_inc(&sbq->ws_active);
1669         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1670         __add_wait_queue(wq, wait);
1671
1672         /*
1673          * It's possible that a tag was freed in the window between the
1674          * allocation failure and adding the hardware queue to the wait
1675          * queue.
1676          */
1677         ret = blk_mq_get_driver_tag(rq);
1678         if (!ret) {
1679                 spin_unlock(&hctx->dispatch_wait_lock);
1680                 spin_unlock_irq(&wq->lock);
1681                 return false;
1682         }
1683
1684         /*
1685          * We got a tag, remove ourselves from the wait queue to ensure
1686          * someone else gets the wakeup.
1687          */
1688         list_del_init(&wait->entry);
1689         atomic_dec(&sbq->ws_active);
1690         spin_unlock(&hctx->dispatch_wait_lock);
1691         spin_unlock_irq(&wq->lock);
1692
1693         return true;
1694 }
1695
1696 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1697 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1698 /*
1699  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1700  * - EWMA is one simple way to compute running average value
1701  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1702  * - take 4 as factor for avoiding to get too small(0) result, and this
1703  *   factor doesn't matter because EWMA decreases exponentially
1704  */
1705 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1706 {
1707         unsigned int ewma;
1708
1709         ewma = hctx->dispatch_busy;
1710
1711         if (!ewma && !busy)
1712                 return;
1713
1714         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1715         if (busy)
1716                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1717         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1718
1719         hctx->dispatch_busy = ewma;
1720 }
1721
1722 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1723
1724 static void blk_mq_handle_dev_resource(struct request *rq,
1725                                        struct list_head *list)
1726 {
1727         struct request *next =
1728                 list_first_entry_or_null(list, struct request, queuelist);
1729
1730         /*
1731          * If an I/O scheduler has been configured and we got a driver tag for
1732          * the next request already, free it.
1733          */
1734         if (next)
1735                 blk_mq_put_driver_tag(next);
1736
1737         list_add(&rq->queuelist, list);
1738         __blk_mq_requeue_request(rq);
1739 }
1740
1741 static void blk_mq_handle_zone_resource(struct request *rq,
1742                                         struct list_head *zone_list)
1743 {
1744         /*
1745          * If we end up here it is because we cannot dispatch a request to a
1746          * specific zone due to LLD level zone-write locking or other zone
1747          * related resource not being available. In this case, set the request
1748          * aside in zone_list for retrying it later.
1749          */
1750         list_add(&rq->queuelist, zone_list);
1751         __blk_mq_requeue_request(rq);
1752 }
1753
1754 enum prep_dispatch {
1755         PREP_DISPATCH_OK,
1756         PREP_DISPATCH_NO_TAG,
1757         PREP_DISPATCH_NO_BUDGET,
1758 };
1759
1760 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1761                                                   bool need_budget)
1762 {
1763         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1764         int budget_token = -1;
1765
1766         if (need_budget) {
1767                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1768                 if (budget_token < 0) {
1769                         blk_mq_put_driver_tag(rq);
1770                         return PREP_DISPATCH_NO_BUDGET;
1771                 }
1772                 blk_mq_set_rq_budget_token(rq, budget_token);
1773         }
1774
1775         if (!blk_mq_get_driver_tag(rq)) {
1776                 /*
1777                  * The initial allocation attempt failed, so we need to
1778                  * rerun the hardware queue when a tag is freed. The
1779                  * waitqueue takes care of that. If the queue is run
1780                  * before we add this entry back on the dispatch list,
1781                  * we'll re-run it below.
1782                  */
1783                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1784                         /*
1785                          * All budgets not got from this function will be put
1786                          * together during handling partial dispatch
1787                          */
1788                         if (need_budget)
1789                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1790                         return PREP_DISPATCH_NO_TAG;
1791                 }
1792         }
1793
1794         return PREP_DISPATCH_OK;
1795 }
1796
1797 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1798 static void blk_mq_release_budgets(struct request_queue *q,
1799                 struct list_head *list)
1800 {
1801         struct request *rq;
1802
1803         list_for_each_entry(rq, list, queuelist) {
1804                 int budget_token = blk_mq_get_rq_budget_token(rq);
1805
1806                 if (budget_token >= 0)
1807                         blk_mq_put_dispatch_budget(q, budget_token);
1808         }
1809 }
1810
1811 /*
1812  * Returns true if we did some work AND can potentially do more.
1813  */
1814 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1815                              unsigned int nr_budgets)
1816 {
1817         enum prep_dispatch prep;
1818         struct request_queue *q = hctx->queue;
1819         struct request *rq, *nxt;
1820         int errors, queued;
1821         blk_status_t ret = BLK_STS_OK;
1822         LIST_HEAD(zone_list);
1823         bool needs_resource = false;
1824
1825         if (list_empty(list))
1826                 return false;
1827
1828         /*
1829          * Now process all the entries, sending them to the driver.
1830          */
1831         errors = queued = 0;
1832         do {
1833                 struct blk_mq_queue_data bd;
1834
1835                 rq = list_first_entry(list, struct request, queuelist);
1836
1837                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1838                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1839                 if (prep != PREP_DISPATCH_OK)
1840                         break;
1841
1842                 list_del_init(&rq->queuelist);
1843
1844                 bd.rq = rq;
1845
1846                 /*
1847                  * Flag last if we have no more requests, or if we have more
1848                  * but can't assign a driver tag to it.
1849                  */
1850                 if (list_empty(list))
1851                         bd.last = true;
1852                 else {
1853                         nxt = list_first_entry(list, struct request, queuelist);
1854                         bd.last = !blk_mq_get_driver_tag(nxt);
1855                 }
1856
1857                 /*
1858                  * once the request is queued to lld, no need to cover the
1859                  * budget any more
1860                  */
1861                 if (nr_budgets)
1862                         nr_budgets--;
1863                 ret = q->mq_ops->queue_rq(hctx, &bd);
1864                 switch (ret) {
1865                 case BLK_STS_OK:
1866                         queued++;
1867                         break;
1868                 case BLK_STS_RESOURCE:
1869                         needs_resource = true;
1870                         fallthrough;
1871                 case BLK_STS_DEV_RESOURCE:
1872                         blk_mq_handle_dev_resource(rq, list);
1873                         goto out;
1874                 case BLK_STS_ZONE_RESOURCE:
1875                         /*
1876                          * Move the request to zone_list and keep going through
1877                          * the dispatch list to find more requests the drive can
1878                          * accept.
1879                          */
1880                         blk_mq_handle_zone_resource(rq, &zone_list);
1881                         needs_resource = true;
1882                         break;
1883                 default:
1884                         errors++;
1885                         blk_mq_end_request(rq, ret);
1886                 }
1887         } while (!list_empty(list));
1888 out:
1889         if (!list_empty(&zone_list))
1890                 list_splice_tail_init(&zone_list, list);
1891
1892         /* If we didn't flush the entire list, we could have told the driver
1893          * there was more coming, but that turned out to be a lie.
1894          */
1895         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1896                 q->mq_ops->commit_rqs(hctx);
1897         /*
1898          * Any items that need requeuing? Stuff them into hctx->dispatch,
1899          * that is where we will continue on next queue run.
1900          */
1901         if (!list_empty(list)) {
1902                 bool needs_restart;
1903                 /* For non-shared tags, the RESTART check will suffice */
1904                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1905                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1906
1907                 if (nr_budgets)
1908                         blk_mq_release_budgets(q, list);
1909
1910                 spin_lock(&hctx->lock);
1911                 list_splice_tail_init(list, &hctx->dispatch);
1912                 spin_unlock(&hctx->lock);
1913
1914                 /*
1915                  * Order adding requests to hctx->dispatch and checking
1916                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1917                  * in blk_mq_sched_restart(). Avoid restart code path to
1918                  * miss the new added requests to hctx->dispatch, meantime
1919                  * SCHED_RESTART is observed here.
1920                  */
1921                 smp_mb();
1922
1923                 /*
1924                  * If SCHED_RESTART was set by the caller of this function and
1925                  * it is no longer set that means that it was cleared by another
1926                  * thread and hence that a queue rerun is needed.
1927                  *
1928                  * If 'no_tag' is set, that means that we failed getting
1929                  * a driver tag with an I/O scheduler attached. If our dispatch
1930                  * waitqueue is no longer active, ensure that we run the queue
1931                  * AFTER adding our entries back to the list.
1932                  *
1933                  * If no I/O scheduler has been configured it is possible that
1934                  * the hardware queue got stopped and restarted before requests
1935                  * were pushed back onto the dispatch list. Rerun the queue to
1936                  * avoid starvation. Notes:
1937                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1938                  *   been stopped before rerunning a queue.
1939                  * - Some but not all block drivers stop a queue before
1940                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1941                  *   and dm-rq.
1942                  *
1943                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1944                  * bit is set, run queue after a delay to avoid IO stalls
1945                  * that could otherwise occur if the queue is idle.  We'll do
1946                  * similar if we couldn't get budget or couldn't lock a zone
1947                  * and SCHED_RESTART is set.
1948                  */
1949                 needs_restart = blk_mq_sched_needs_restart(hctx);
1950                 if (prep == PREP_DISPATCH_NO_BUDGET)
1951                         needs_resource = true;
1952                 if (!needs_restart ||
1953                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1954                         blk_mq_run_hw_queue(hctx, true);
1955                 else if (needs_restart && needs_resource)
1956                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1957
1958                 blk_mq_update_dispatch_busy(hctx, true);
1959                 return false;
1960         } else
1961                 blk_mq_update_dispatch_busy(hctx, false);
1962
1963         return (queued + errors) != 0;
1964 }
1965
1966 /**
1967  * __blk_mq_run_hw_queue - Run a hardware queue.
1968  * @hctx: Pointer to the hardware queue to run.
1969  *
1970  * Send pending requests to the hardware.
1971  */
1972 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1973 {
1974         /*
1975          * We can't run the queue inline with ints disabled. Ensure that
1976          * we catch bad users of this early.
1977          */
1978         WARN_ON_ONCE(in_interrupt());
1979
1980         blk_mq_run_dispatch_ops(hctx->queue,
1981                         blk_mq_sched_dispatch_requests(hctx));
1982 }
1983
1984 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1985 {
1986         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1987
1988         if (cpu >= nr_cpu_ids)
1989                 cpu = cpumask_first(hctx->cpumask);
1990         return cpu;
1991 }
1992
1993 /*
1994  * It'd be great if the workqueue API had a way to pass
1995  * in a mask and had some smarts for more clever placement.
1996  * For now we just round-robin here, switching for every
1997  * BLK_MQ_CPU_WORK_BATCH queued items.
1998  */
1999 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2000 {
2001         bool tried = false;
2002         int next_cpu = hctx->next_cpu;
2003
2004         if (hctx->queue->nr_hw_queues == 1)
2005                 return WORK_CPU_UNBOUND;
2006
2007         if (--hctx->next_cpu_batch <= 0) {
2008 select_cpu:
2009                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2010                                 cpu_online_mask);
2011                 if (next_cpu >= nr_cpu_ids)
2012                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2013                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2014         }
2015
2016         /*
2017          * Do unbound schedule if we can't find a online CPU for this hctx,
2018          * and it should only happen in the path of handling CPU DEAD.
2019          */
2020         if (!cpu_online(next_cpu)) {
2021                 if (!tried) {
2022                         tried = true;
2023                         goto select_cpu;
2024                 }
2025
2026                 /*
2027                  * Make sure to re-select CPU next time once after CPUs
2028                  * in hctx->cpumask become online again.
2029                  */
2030                 hctx->next_cpu = next_cpu;
2031                 hctx->next_cpu_batch = 1;
2032                 return WORK_CPU_UNBOUND;
2033         }
2034
2035         hctx->next_cpu = next_cpu;
2036         return next_cpu;
2037 }
2038
2039 /**
2040  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2041  * @hctx: Pointer to the hardware queue to run.
2042  * @async: If we want to run the queue asynchronously.
2043  * @msecs: Milliseconds of delay to wait before running the queue.
2044  *
2045  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2046  * with a delay of @msecs.
2047  */
2048 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2049                                         unsigned long msecs)
2050 {
2051         if (unlikely(blk_mq_hctx_stopped(hctx)))
2052                 return;
2053
2054         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2055                 int cpu = get_cpu();
2056                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2057                         __blk_mq_run_hw_queue(hctx);
2058                         put_cpu();
2059                         return;
2060                 }
2061
2062                 put_cpu();
2063         }
2064
2065         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2066                                     msecs_to_jiffies(msecs));
2067 }
2068
2069 /**
2070  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2071  * @hctx: Pointer to the hardware queue to run.
2072  * @msecs: Milliseconds of delay to wait before running the queue.
2073  *
2074  * Run a hardware queue asynchronously with a delay of @msecs.
2075  */
2076 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2077 {
2078         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2079 }
2080 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2081
2082 /**
2083  * blk_mq_run_hw_queue - Start to run a hardware queue.
2084  * @hctx: Pointer to the hardware queue to run.
2085  * @async: If we want to run the queue asynchronously.
2086  *
2087  * Check if the request queue is not in a quiesced state and if there are
2088  * pending requests to be sent. If this is true, run the queue to send requests
2089  * to hardware.
2090  */
2091 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2092 {
2093         bool need_run;
2094
2095         /*
2096          * When queue is quiesced, we may be switching io scheduler, or
2097          * updating nr_hw_queues, or other things, and we can't run queue
2098          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2099          *
2100          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2101          * quiesced.
2102          */
2103         __blk_mq_run_dispatch_ops(hctx->queue, false,
2104                 need_run = !blk_queue_quiesced(hctx->queue) &&
2105                 blk_mq_hctx_has_pending(hctx));
2106
2107         if (need_run)
2108                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2109 }
2110 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2111
2112 /*
2113  * Is the request queue handled by an IO scheduler that does not respect
2114  * hardware queues when dispatching?
2115  */
2116 static bool blk_mq_has_sqsched(struct request_queue *q)
2117 {
2118         struct elevator_queue *e = q->elevator;
2119
2120         if (e && e->type->ops.dispatch_request &&
2121             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2122                 return true;
2123         return false;
2124 }
2125
2126 /*
2127  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2128  * scheduler.
2129  */
2130 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2131 {
2132         struct blk_mq_hw_ctx *hctx;
2133
2134         /*
2135          * If the IO scheduler does not respect hardware queues when
2136          * dispatching, we just don't bother with multiple HW queues and
2137          * dispatch from hctx for the current CPU since running multiple queues
2138          * just causes lock contention inside the scheduler and pointless cache
2139          * bouncing.
2140          */
2141         hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2142                                      raw_smp_processor_id());
2143         if (!blk_mq_hctx_stopped(hctx))
2144                 return hctx;
2145         return NULL;
2146 }
2147
2148 /**
2149  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2150  * @q: Pointer to the request queue to run.
2151  * @async: If we want to run the queue asynchronously.
2152  */
2153 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2154 {
2155         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2156         unsigned long i;
2157
2158         sq_hctx = NULL;
2159         if (blk_mq_has_sqsched(q))
2160                 sq_hctx = blk_mq_get_sq_hctx(q);
2161         queue_for_each_hw_ctx(q, hctx, i) {
2162                 if (blk_mq_hctx_stopped(hctx))
2163                         continue;
2164                 /*
2165                  * Dispatch from this hctx either if there's no hctx preferred
2166                  * by IO scheduler or if it has requests that bypass the
2167                  * scheduler.
2168                  */
2169                 if (!sq_hctx || sq_hctx == hctx ||
2170                     !list_empty_careful(&hctx->dispatch))
2171                         blk_mq_run_hw_queue(hctx, async);
2172         }
2173 }
2174 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2175
2176 /**
2177  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2178  * @q: Pointer to the request queue to run.
2179  * @msecs: Milliseconds of delay to wait before running the queues.
2180  */
2181 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2182 {
2183         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2184         unsigned long i;
2185
2186         sq_hctx = NULL;
2187         if (blk_mq_has_sqsched(q))
2188                 sq_hctx = blk_mq_get_sq_hctx(q);
2189         queue_for_each_hw_ctx(q, hctx, i) {
2190                 if (blk_mq_hctx_stopped(hctx))
2191                         continue;
2192                 /*
2193                  * If there is already a run_work pending, leave the
2194                  * pending delay untouched. Otherwise, a hctx can stall
2195                  * if another hctx is re-delaying the other's work
2196                  * before the work executes.
2197                  */
2198                 if (delayed_work_pending(&hctx->run_work))
2199                         continue;
2200                 /*
2201                  * Dispatch from this hctx either if there's no hctx preferred
2202                  * by IO scheduler or if it has requests that bypass the
2203                  * scheduler.
2204                  */
2205                 if (!sq_hctx || sq_hctx == hctx ||
2206                     !list_empty_careful(&hctx->dispatch))
2207                         blk_mq_delay_run_hw_queue(hctx, msecs);
2208         }
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2211
2212 /**
2213  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2214  * @q: request queue.
2215  *
2216  * The caller is responsible for serializing this function against
2217  * blk_mq_{start,stop}_hw_queue().
2218  */
2219 bool blk_mq_queue_stopped(struct request_queue *q)
2220 {
2221         struct blk_mq_hw_ctx *hctx;
2222         unsigned long i;
2223
2224         queue_for_each_hw_ctx(q, hctx, i)
2225                 if (blk_mq_hctx_stopped(hctx))
2226                         return true;
2227
2228         return false;
2229 }
2230 EXPORT_SYMBOL(blk_mq_queue_stopped);
2231
2232 /*
2233  * This function is often used for pausing .queue_rq() by driver when
2234  * there isn't enough resource or some conditions aren't satisfied, and
2235  * BLK_STS_RESOURCE is usually returned.
2236  *
2237  * We do not guarantee that dispatch can be drained or blocked
2238  * after blk_mq_stop_hw_queue() returns. Please use
2239  * blk_mq_quiesce_queue() for that requirement.
2240  */
2241 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2242 {
2243         cancel_delayed_work(&hctx->run_work);
2244
2245         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2246 }
2247 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2248
2249 /*
2250  * This function is often used for pausing .queue_rq() by driver when
2251  * there isn't enough resource or some conditions aren't satisfied, and
2252  * BLK_STS_RESOURCE is usually returned.
2253  *
2254  * We do not guarantee that dispatch can be drained or blocked
2255  * after blk_mq_stop_hw_queues() returns. Please use
2256  * blk_mq_quiesce_queue() for that requirement.
2257  */
2258 void blk_mq_stop_hw_queues(struct request_queue *q)
2259 {
2260         struct blk_mq_hw_ctx *hctx;
2261         unsigned long i;
2262
2263         queue_for_each_hw_ctx(q, hctx, i)
2264                 blk_mq_stop_hw_queue(hctx);
2265 }
2266 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2267
2268 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2269 {
2270         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2271
2272         blk_mq_run_hw_queue(hctx, false);
2273 }
2274 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2275
2276 void blk_mq_start_hw_queues(struct request_queue *q)
2277 {
2278         struct blk_mq_hw_ctx *hctx;
2279         unsigned long i;
2280
2281         queue_for_each_hw_ctx(q, hctx, i)
2282                 blk_mq_start_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2285
2286 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2287 {
2288         if (!blk_mq_hctx_stopped(hctx))
2289                 return;
2290
2291         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2292         blk_mq_run_hw_queue(hctx, async);
2293 }
2294 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2295
2296 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2297 {
2298         struct blk_mq_hw_ctx *hctx;
2299         unsigned long i;
2300
2301         queue_for_each_hw_ctx(q, hctx, i)
2302                 blk_mq_start_stopped_hw_queue(hctx, async);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2305
2306 static void blk_mq_run_work_fn(struct work_struct *work)
2307 {
2308         struct blk_mq_hw_ctx *hctx;
2309
2310         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2311
2312         /*
2313          * If we are stopped, don't run the queue.
2314          */
2315         if (blk_mq_hctx_stopped(hctx))
2316                 return;
2317
2318         __blk_mq_run_hw_queue(hctx);
2319 }
2320
2321 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2322                                             struct request *rq,
2323                                             bool at_head)
2324 {
2325         struct blk_mq_ctx *ctx = rq->mq_ctx;
2326         enum hctx_type type = hctx->type;
2327
2328         lockdep_assert_held(&ctx->lock);
2329
2330         trace_block_rq_insert(rq);
2331
2332         if (at_head)
2333                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2334         else
2335                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2336 }
2337
2338 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2339                              bool at_head)
2340 {
2341         struct blk_mq_ctx *ctx = rq->mq_ctx;
2342
2343         lockdep_assert_held(&ctx->lock);
2344
2345         __blk_mq_insert_req_list(hctx, rq, at_head);
2346         blk_mq_hctx_mark_pending(hctx, ctx);
2347 }
2348
2349 /**
2350  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2351  * @rq: Pointer to request to be inserted.
2352  * @at_head: true if the request should be inserted at the head of the list.
2353  * @run_queue: If we should run the hardware queue after inserting the request.
2354  *
2355  * Should only be used carefully, when the caller knows we want to
2356  * bypass a potential IO scheduler on the target device.
2357  */
2358 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2359                                   bool run_queue)
2360 {
2361         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2362
2363         spin_lock(&hctx->lock);
2364         if (at_head)
2365                 list_add(&rq->queuelist, &hctx->dispatch);
2366         else
2367                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2368         spin_unlock(&hctx->lock);
2369
2370         if (run_queue)
2371                 blk_mq_run_hw_queue(hctx, false);
2372 }
2373
2374 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2375                             struct list_head *list)
2376
2377 {
2378         struct request *rq;
2379         enum hctx_type type = hctx->type;
2380
2381         /*
2382          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2383          * offline now
2384          */
2385         list_for_each_entry(rq, list, queuelist) {
2386                 BUG_ON(rq->mq_ctx != ctx);
2387                 trace_block_rq_insert(rq);
2388         }
2389
2390         spin_lock(&ctx->lock);
2391         list_splice_tail_init(list, &ctx->rq_lists[type]);
2392         blk_mq_hctx_mark_pending(hctx, ctx);
2393         spin_unlock(&ctx->lock);
2394 }
2395
2396 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2397                               bool from_schedule)
2398 {
2399         if (hctx->queue->mq_ops->commit_rqs) {
2400                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2401                 hctx->queue->mq_ops->commit_rqs(hctx);
2402         }
2403         *queued = 0;
2404 }
2405
2406 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2407                 unsigned int nr_segs)
2408 {
2409         int err;
2410
2411         if (bio->bi_opf & REQ_RAHEAD)
2412                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2413
2414         rq->__sector = bio->bi_iter.bi_sector;
2415         rq->write_hint = bio->bi_write_hint;
2416         blk_rq_bio_prep(rq, bio, nr_segs);
2417
2418         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2419         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2420         WARN_ON_ONCE(err);
2421
2422         blk_account_io_start(rq);
2423 }
2424
2425 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2426                                             struct request *rq, bool last)
2427 {
2428         struct request_queue *q = rq->q;
2429         struct blk_mq_queue_data bd = {
2430                 .rq = rq,
2431                 .last = last,
2432         };
2433         blk_status_t ret;
2434
2435         /*
2436          * For OK queue, we are done. For error, caller may kill it.
2437          * Any other error (busy), just add it to our list as we
2438          * previously would have done.
2439          */
2440         ret = q->mq_ops->queue_rq(hctx, &bd);
2441         switch (ret) {
2442         case BLK_STS_OK:
2443                 blk_mq_update_dispatch_busy(hctx, false);
2444                 break;
2445         case BLK_STS_RESOURCE:
2446         case BLK_STS_DEV_RESOURCE:
2447                 blk_mq_update_dispatch_busy(hctx, true);
2448                 __blk_mq_requeue_request(rq);
2449                 break;
2450         default:
2451                 blk_mq_update_dispatch_busy(hctx, false);
2452                 break;
2453         }
2454
2455         return ret;
2456 }
2457
2458 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2459                                                 struct request *rq,
2460                                                 bool bypass_insert, bool last)
2461 {
2462         struct request_queue *q = rq->q;
2463         bool run_queue = true;
2464         int budget_token;
2465
2466         /*
2467          * RCU or SRCU read lock is needed before checking quiesced flag.
2468          *
2469          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2470          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2471          * and avoid driver to try to dispatch again.
2472          */
2473         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2474                 run_queue = false;
2475                 bypass_insert = false;
2476                 goto insert;
2477         }
2478
2479         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2480                 goto insert;
2481
2482         budget_token = blk_mq_get_dispatch_budget(q);
2483         if (budget_token < 0)
2484                 goto insert;
2485
2486         blk_mq_set_rq_budget_token(rq, budget_token);
2487
2488         if (!blk_mq_get_driver_tag(rq)) {
2489                 blk_mq_put_dispatch_budget(q, budget_token);
2490                 goto insert;
2491         }
2492
2493         return __blk_mq_issue_directly(hctx, rq, last);
2494 insert:
2495         if (bypass_insert)
2496                 return BLK_STS_RESOURCE;
2497
2498         blk_mq_sched_insert_request(rq, false, run_queue, false);
2499
2500         return BLK_STS_OK;
2501 }
2502
2503 /**
2504  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2505  * @hctx: Pointer of the associated hardware queue.
2506  * @rq: Pointer to request to be sent.
2507  *
2508  * If the device has enough resources to accept a new request now, send the
2509  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2510  * we can try send it another time in the future. Requests inserted at this
2511  * queue have higher priority.
2512  */
2513 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2514                 struct request *rq)
2515 {
2516         blk_status_t ret =
2517                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2518
2519         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2520                 blk_mq_request_bypass_insert(rq, false, true);
2521         else if (ret != BLK_STS_OK)
2522                 blk_mq_end_request(rq, ret);
2523 }
2524
2525 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2526 {
2527         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2528 }
2529
2530 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2531 {
2532         struct blk_mq_hw_ctx *hctx = NULL;
2533         struct request *rq;
2534         int queued = 0;
2535         int errors = 0;
2536
2537         while ((rq = rq_list_pop(&plug->mq_list))) {
2538                 bool last = rq_list_empty(plug->mq_list);
2539                 blk_status_t ret;
2540
2541                 if (hctx != rq->mq_hctx) {
2542                         if (hctx)
2543                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2544                         hctx = rq->mq_hctx;
2545                 }
2546
2547                 ret = blk_mq_request_issue_directly(rq, last);
2548                 switch (ret) {
2549                 case BLK_STS_OK:
2550                         queued++;
2551                         break;
2552                 case BLK_STS_RESOURCE:
2553                 case BLK_STS_DEV_RESOURCE:
2554                         blk_mq_request_bypass_insert(rq, false, last);
2555                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2556                         return;
2557                 default:
2558                         blk_mq_end_request(rq, ret);
2559                         errors++;
2560                         break;
2561                 }
2562         }
2563
2564         /*
2565          * If we didn't flush the entire list, we could have told the driver
2566          * there was more coming, but that turned out to be a lie.
2567          */
2568         if (errors)
2569                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2570 }
2571
2572 static void __blk_mq_flush_plug_list(struct request_queue *q,
2573                                      struct blk_plug *plug)
2574 {
2575         if (blk_queue_quiesced(q))
2576                 return;
2577         q->mq_ops->queue_rqs(&plug->mq_list);
2578 }
2579
2580 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2581 {
2582         struct blk_mq_hw_ctx *this_hctx = NULL;
2583         struct blk_mq_ctx *this_ctx = NULL;
2584         struct request *requeue_list = NULL;
2585         unsigned int depth = 0;
2586         LIST_HEAD(list);
2587
2588         do {
2589                 struct request *rq = rq_list_pop(&plug->mq_list);
2590
2591                 if (!this_hctx) {
2592                         this_hctx = rq->mq_hctx;
2593                         this_ctx = rq->mq_ctx;
2594                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2595                         rq_list_add(&requeue_list, rq);
2596                         continue;
2597                 }
2598                 list_add_tail(&rq->queuelist, &list);
2599                 depth++;
2600         } while (!rq_list_empty(plug->mq_list));
2601
2602         plug->mq_list = requeue_list;
2603         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2604         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2605 }
2606
2607 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2608 {
2609         struct request *rq;
2610
2611         if (rq_list_empty(plug->mq_list))
2612                 return;
2613         plug->rq_count = 0;
2614
2615         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2616                 struct request_queue *q;
2617
2618                 rq = rq_list_peek(&plug->mq_list);
2619                 q = rq->q;
2620
2621                 /*
2622                  * Peek first request and see if we have a ->queue_rqs() hook.
2623                  * If we do, we can dispatch the whole plug list in one go. We
2624                  * already know at this point that all requests belong to the
2625                  * same queue, caller must ensure that's the case.
2626                  *
2627                  * Since we pass off the full list to the driver at this point,
2628                  * we do not increment the active request count for the queue.
2629                  * Bypass shared tags for now because of that.
2630                  */
2631                 if (q->mq_ops->queue_rqs &&
2632                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2633                         blk_mq_run_dispatch_ops(q,
2634                                 __blk_mq_flush_plug_list(q, plug));
2635                         if (rq_list_empty(plug->mq_list))
2636                                 return;
2637                 }
2638
2639                 blk_mq_run_dispatch_ops(q,
2640                                 blk_mq_plug_issue_direct(plug, false));
2641                 if (rq_list_empty(plug->mq_list))
2642                         return;
2643         }
2644
2645         do {
2646                 blk_mq_dispatch_plug_list(plug, from_schedule);
2647         } while (!rq_list_empty(plug->mq_list));
2648 }
2649
2650 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2651                 struct list_head *list)
2652 {
2653         int queued = 0;
2654         int errors = 0;
2655
2656         while (!list_empty(list)) {
2657                 blk_status_t ret;
2658                 struct request *rq = list_first_entry(list, struct request,
2659                                 queuelist);
2660
2661                 list_del_init(&rq->queuelist);
2662                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2663                 if (ret != BLK_STS_OK) {
2664                         if (ret == BLK_STS_RESOURCE ||
2665                                         ret == BLK_STS_DEV_RESOURCE) {
2666                                 blk_mq_request_bypass_insert(rq, false,
2667                                                         list_empty(list));
2668                                 break;
2669                         }
2670                         blk_mq_end_request(rq, ret);
2671                         errors++;
2672                 } else
2673                         queued++;
2674         }
2675
2676         /*
2677          * If we didn't flush the entire list, we could have told
2678          * the driver there was more coming, but that turned out to
2679          * be a lie.
2680          */
2681         if ((!list_empty(list) || errors) &&
2682              hctx->queue->mq_ops->commit_rqs && queued)
2683                 hctx->queue->mq_ops->commit_rqs(hctx);
2684 }
2685
2686 /*
2687  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2688  * queues. This is important for md arrays to benefit from merging
2689  * requests.
2690  */
2691 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2692 {
2693         if (plug->multiple_queues)
2694                 return BLK_MAX_REQUEST_COUNT * 2;
2695         return BLK_MAX_REQUEST_COUNT;
2696 }
2697
2698 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2699 {
2700         struct request *last = rq_list_peek(&plug->mq_list);
2701
2702         if (!plug->rq_count) {
2703                 trace_block_plug(rq->q);
2704         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2705                    (!blk_queue_nomerges(rq->q) &&
2706                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2707                 blk_mq_flush_plug_list(plug, false);
2708                 trace_block_plug(rq->q);
2709         }
2710
2711         if (!plug->multiple_queues && last && last->q != rq->q)
2712                 plug->multiple_queues = true;
2713         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2714                 plug->has_elevator = true;
2715         rq->rq_next = NULL;
2716         rq_list_add(&plug->mq_list, rq);
2717         plug->rq_count++;
2718 }
2719
2720 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2721                                      struct bio *bio, unsigned int nr_segs)
2722 {
2723         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2724                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2725                         return true;
2726                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2727                         return true;
2728         }
2729         return false;
2730 }
2731
2732 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2733                                                struct blk_plug *plug,
2734                                                struct bio *bio,
2735                                                unsigned int nsegs)
2736 {
2737         struct blk_mq_alloc_data data = {
2738                 .q              = q,
2739                 .nr_tags        = 1,
2740                 .cmd_flags      = bio->bi_opf,
2741         };
2742         struct request *rq;
2743
2744         if (unlikely(bio_queue_enter(bio)))
2745                 return NULL;
2746
2747         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2748                 goto queue_exit;
2749
2750         rq_qos_throttle(q, bio);
2751
2752         if (plug) {
2753                 data.nr_tags = plug->nr_ios;
2754                 plug->nr_ios = 1;
2755                 data.cached_rq = &plug->cached_rq;
2756         }
2757
2758         rq = __blk_mq_alloc_requests(&data);
2759         if (rq)
2760                 return rq;
2761         rq_qos_cleanup(q, bio);
2762         if (bio->bi_opf & REQ_NOWAIT)
2763                 bio_wouldblock_error(bio);
2764 queue_exit:
2765         blk_queue_exit(q);
2766         return NULL;
2767 }
2768
2769 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2770                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2771 {
2772         struct request *rq;
2773
2774         if (!plug)
2775                 return NULL;
2776         rq = rq_list_peek(&plug->cached_rq);
2777         if (!rq || rq->q != q)
2778                 return NULL;
2779
2780         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2781                 *bio = NULL;
2782                 return NULL;
2783         }
2784
2785         rq_qos_throttle(q, *bio);
2786
2787         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2788                 return NULL;
2789         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2790                 return NULL;
2791
2792         rq->cmd_flags = (*bio)->bi_opf;
2793         plug->cached_rq = rq_list_next(rq);
2794         INIT_LIST_HEAD(&rq->queuelist);
2795         return rq;
2796 }
2797
2798 /**
2799  * blk_mq_submit_bio - Create and send a request to block device.
2800  * @bio: Bio pointer.
2801  *
2802  * Builds up a request structure from @q and @bio and send to the device. The
2803  * request may not be queued directly to hardware if:
2804  * * This request can be merged with another one
2805  * * We want to place request at plug queue for possible future merging
2806  * * There is an IO scheduler active at this queue
2807  *
2808  * It will not queue the request if there is an error with the bio, or at the
2809  * request creation.
2810  */
2811 void blk_mq_submit_bio(struct bio *bio)
2812 {
2813         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2814         struct blk_plug *plug = blk_mq_plug(q, bio);
2815         const int is_sync = op_is_sync(bio->bi_opf);
2816         struct request *rq;
2817         unsigned int nr_segs = 1;
2818         blk_status_t ret;
2819
2820         blk_queue_bounce(q, &bio);
2821         if (blk_may_split(q, bio))
2822                 __blk_queue_split(q, &bio, &nr_segs);
2823
2824         if (!bio_integrity_prep(bio))
2825                 return;
2826
2827         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2828         if (!rq) {
2829                 if (!bio)
2830                         return;
2831                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2832                 if (unlikely(!rq))
2833                         return;
2834         }
2835
2836         trace_block_getrq(bio);
2837
2838         rq_qos_track(q, rq, bio);
2839
2840         blk_mq_bio_to_request(rq, bio, nr_segs);
2841
2842         ret = blk_crypto_init_request(rq);
2843         if (ret != BLK_STS_OK) {
2844                 bio->bi_status = ret;
2845                 bio_endio(bio);
2846                 blk_mq_free_request(rq);
2847                 return;
2848         }
2849
2850         if (op_is_flush(bio->bi_opf)) {
2851                 blk_insert_flush(rq);
2852                 return;
2853         }
2854
2855         if (plug)
2856                 blk_add_rq_to_plug(plug, rq);
2857         else if ((rq->rq_flags & RQF_ELV) ||
2858                  (rq->mq_hctx->dispatch_busy &&
2859                   (q->nr_hw_queues == 1 || !is_sync)))
2860                 blk_mq_sched_insert_request(rq, false, true, true);
2861         else
2862                 blk_mq_run_dispatch_ops(rq->q,
2863                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2864 }
2865
2866 #ifdef CONFIG_BLK_MQ_STACKING
2867 /**
2868  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2869  * @rq: the request being queued
2870  */
2871 blk_status_t blk_insert_cloned_request(struct request *rq)
2872 {
2873         struct request_queue *q = rq->q;
2874         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2875         blk_status_t ret;
2876
2877         if (blk_rq_sectors(rq) > max_sectors) {
2878                 /*
2879                  * SCSI device does not have a good way to return if
2880                  * Write Same/Zero is actually supported. If a device rejects
2881                  * a non-read/write command (discard, write same,etc.) the
2882                  * low-level device driver will set the relevant queue limit to
2883                  * 0 to prevent blk-lib from issuing more of the offending
2884                  * operations. Commands queued prior to the queue limit being
2885                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2886                  * errors being propagated to upper layers.
2887                  */
2888                 if (max_sectors == 0)
2889                         return BLK_STS_NOTSUPP;
2890
2891                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2892                         __func__, blk_rq_sectors(rq), max_sectors);
2893                 return BLK_STS_IOERR;
2894         }
2895
2896         /*
2897          * The queue settings related to segment counting may differ from the
2898          * original queue.
2899          */
2900         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2901         if (rq->nr_phys_segments > queue_max_segments(q)) {
2902                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2903                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2904                 return BLK_STS_IOERR;
2905         }
2906
2907         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2908                 return BLK_STS_IOERR;
2909
2910         if (blk_crypto_insert_cloned_request(rq))
2911                 return BLK_STS_IOERR;
2912
2913         blk_account_io_start(rq);
2914
2915         /*
2916          * Since we have a scheduler attached on the top device,
2917          * bypass a potential scheduler on the bottom device for
2918          * insert.
2919          */
2920         blk_mq_run_dispatch_ops(q,
2921                         ret = blk_mq_request_issue_directly(rq, true));
2922         if (ret)
2923                 blk_account_io_done(rq, ktime_get_ns());
2924         return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2927
2928 /**
2929  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2930  * @rq: the clone request to be cleaned up
2931  *
2932  * Description:
2933  *     Free all bios in @rq for a cloned request.
2934  */
2935 void blk_rq_unprep_clone(struct request *rq)
2936 {
2937         struct bio *bio;
2938
2939         while ((bio = rq->bio) != NULL) {
2940                 rq->bio = bio->bi_next;
2941
2942                 bio_put(bio);
2943         }
2944 }
2945 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2946
2947 /**
2948  * blk_rq_prep_clone - Helper function to setup clone request
2949  * @rq: the request to be setup
2950  * @rq_src: original request to be cloned
2951  * @bs: bio_set that bios for clone are allocated from
2952  * @gfp_mask: memory allocation mask for bio
2953  * @bio_ctr: setup function to be called for each clone bio.
2954  *           Returns %0 for success, non %0 for failure.
2955  * @data: private data to be passed to @bio_ctr
2956  *
2957  * Description:
2958  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2959  *     Also, pages which the original bios are pointing to are not copied
2960  *     and the cloned bios just point same pages.
2961  *     So cloned bios must be completed before original bios, which means
2962  *     the caller must complete @rq before @rq_src.
2963  */
2964 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2965                       struct bio_set *bs, gfp_t gfp_mask,
2966                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2967                       void *data)
2968 {
2969         struct bio *bio, *bio_src;
2970
2971         if (!bs)
2972                 bs = &fs_bio_set;
2973
2974         __rq_for_each_bio(bio_src, rq_src) {
2975                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2976                                       bs);
2977                 if (!bio)
2978                         goto free_and_out;
2979
2980                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2981                         goto free_and_out;
2982
2983                 if (rq->bio) {
2984                         rq->biotail->bi_next = bio;
2985                         rq->biotail = bio;
2986                 } else {
2987                         rq->bio = rq->biotail = bio;
2988                 }
2989                 bio = NULL;
2990         }
2991
2992         /* Copy attributes of the original request to the clone request. */
2993         rq->__sector = blk_rq_pos(rq_src);
2994         rq->__data_len = blk_rq_bytes(rq_src);
2995         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2996                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2997                 rq->special_vec = rq_src->special_vec;
2998         }
2999         rq->nr_phys_segments = rq_src->nr_phys_segments;
3000         rq->ioprio = rq_src->ioprio;
3001
3002         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3003                 goto free_and_out;
3004
3005         return 0;
3006
3007 free_and_out:
3008         if (bio)
3009                 bio_put(bio);
3010         blk_rq_unprep_clone(rq);
3011
3012         return -ENOMEM;
3013 }
3014 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3015 #endif /* CONFIG_BLK_MQ_STACKING */
3016
3017 /*
3018  * Steal bios from a request and add them to a bio list.
3019  * The request must not have been partially completed before.
3020  */
3021 void blk_steal_bios(struct bio_list *list, struct request *rq)
3022 {
3023         if (rq->bio) {
3024                 if (list->tail)
3025                         list->tail->bi_next = rq->bio;
3026                 else
3027                         list->head = rq->bio;
3028                 list->tail = rq->biotail;
3029
3030                 rq->bio = NULL;
3031                 rq->biotail = NULL;
3032         }
3033
3034         rq->__data_len = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_steal_bios);
3037
3038 static size_t order_to_size(unsigned int order)
3039 {
3040         return (size_t)PAGE_SIZE << order;
3041 }
3042
3043 /* called before freeing request pool in @tags */
3044 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3045                                     struct blk_mq_tags *tags)
3046 {
3047         struct page *page;
3048         unsigned long flags;
3049
3050         /* There is no need to clear a driver tags own mapping */
3051         if (drv_tags == tags)
3052                 return;
3053
3054         list_for_each_entry(page, &tags->page_list, lru) {
3055                 unsigned long start = (unsigned long)page_address(page);
3056                 unsigned long end = start + order_to_size(page->private);
3057                 int i;
3058
3059                 for (i = 0; i < drv_tags->nr_tags; i++) {
3060                         struct request *rq = drv_tags->rqs[i];
3061                         unsigned long rq_addr = (unsigned long)rq;
3062
3063                         if (rq_addr >= start && rq_addr < end) {
3064                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3065                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3066                         }
3067                 }
3068         }
3069
3070         /*
3071          * Wait until all pending iteration is done.
3072          *
3073          * Request reference is cleared and it is guaranteed to be observed
3074          * after the ->lock is released.
3075          */
3076         spin_lock_irqsave(&drv_tags->lock, flags);
3077         spin_unlock_irqrestore(&drv_tags->lock, flags);
3078 }
3079
3080 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3081                      unsigned int hctx_idx)
3082 {
3083         struct blk_mq_tags *drv_tags;
3084         struct page *page;
3085
3086         if (list_empty(&tags->page_list))
3087                 return;
3088
3089         if (blk_mq_is_shared_tags(set->flags))
3090                 drv_tags = set->shared_tags;
3091         else
3092                 drv_tags = set->tags[hctx_idx];
3093
3094         if (tags->static_rqs && set->ops->exit_request) {
3095                 int i;
3096
3097                 for (i = 0; i < tags->nr_tags; i++) {
3098                         struct request *rq = tags->static_rqs[i];
3099
3100                         if (!rq)
3101                                 continue;
3102                         set->ops->exit_request(set, rq, hctx_idx);
3103                         tags->static_rqs[i] = NULL;
3104                 }
3105         }
3106
3107         blk_mq_clear_rq_mapping(drv_tags, tags);
3108
3109         while (!list_empty(&tags->page_list)) {
3110                 page = list_first_entry(&tags->page_list, struct page, lru);
3111                 list_del_init(&page->lru);
3112                 /*
3113                  * Remove kmemleak object previously allocated in
3114                  * blk_mq_alloc_rqs().
3115                  */
3116                 kmemleak_free(page_address(page));
3117                 __free_pages(page, page->private);
3118         }
3119 }
3120
3121 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3122 {
3123         kfree(tags->rqs);
3124         tags->rqs = NULL;
3125         kfree(tags->static_rqs);
3126         tags->static_rqs = NULL;
3127
3128         blk_mq_free_tags(tags);
3129 }
3130
3131 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3132                 unsigned int hctx_idx)
3133 {
3134         int i;
3135
3136         for (i = 0; i < set->nr_maps; i++) {
3137                 unsigned int start = set->map[i].queue_offset;
3138                 unsigned int end = start + set->map[i].nr_queues;
3139
3140                 if (hctx_idx >= start && hctx_idx < end)
3141                         break;
3142         }
3143
3144         if (i >= set->nr_maps)
3145                 i = HCTX_TYPE_DEFAULT;
3146
3147         return i;
3148 }
3149
3150 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3151                 unsigned int hctx_idx)
3152 {
3153         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3154
3155         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3156 }
3157
3158 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3159                                                unsigned int hctx_idx,
3160                                                unsigned int nr_tags,
3161                                                unsigned int reserved_tags)
3162 {
3163         int node = blk_mq_get_hctx_node(set, hctx_idx);
3164         struct blk_mq_tags *tags;
3165
3166         if (node == NUMA_NO_NODE)
3167                 node = set->numa_node;
3168
3169         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3170                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3171         if (!tags)
3172                 return NULL;
3173
3174         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3175                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3176                                  node);
3177         if (!tags->rqs) {
3178                 blk_mq_free_tags(tags);
3179                 return NULL;
3180         }
3181
3182         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3183                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3184                                         node);
3185         if (!tags->static_rqs) {
3186                 kfree(tags->rqs);
3187                 blk_mq_free_tags(tags);
3188                 return NULL;
3189         }
3190
3191         return tags;
3192 }
3193
3194 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3195                                unsigned int hctx_idx, int node)
3196 {
3197         int ret;
3198
3199         if (set->ops->init_request) {
3200                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3201                 if (ret)
3202                         return ret;
3203         }
3204
3205         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3206         return 0;
3207 }
3208
3209 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3210                             struct blk_mq_tags *tags,
3211                             unsigned int hctx_idx, unsigned int depth)
3212 {
3213         unsigned int i, j, entries_per_page, max_order = 4;
3214         int node = blk_mq_get_hctx_node(set, hctx_idx);
3215         size_t rq_size, left;
3216
3217         if (node == NUMA_NO_NODE)
3218                 node = set->numa_node;
3219
3220         INIT_LIST_HEAD(&tags->page_list);
3221
3222         /*
3223          * rq_size is the size of the request plus driver payload, rounded
3224          * to the cacheline size
3225          */
3226         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3227                                 cache_line_size());
3228         left = rq_size * depth;
3229
3230         for (i = 0; i < depth; ) {
3231                 int this_order = max_order;
3232                 struct page *page;
3233                 int to_do;
3234                 void *p;
3235
3236                 while (this_order && left < order_to_size(this_order - 1))
3237                         this_order--;
3238
3239                 do {
3240                         page = alloc_pages_node(node,
3241                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3242                                 this_order);
3243                         if (page)
3244                                 break;
3245                         if (!this_order--)
3246                                 break;
3247                         if (order_to_size(this_order) < rq_size)
3248                                 break;
3249                 } while (1);
3250
3251                 if (!page)
3252                         goto fail;
3253
3254                 page->private = this_order;
3255                 list_add_tail(&page->lru, &tags->page_list);
3256
3257                 p = page_address(page);
3258                 /*
3259                  * Allow kmemleak to scan these pages as they contain pointers
3260                  * to additional allocations like via ops->init_request().
3261                  */
3262                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3263                 entries_per_page = order_to_size(this_order) / rq_size;
3264                 to_do = min(entries_per_page, depth - i);
3265                 left -= to_do * rq_size;
3266                 for (j = 0; j < to_do; j++) {
3267                         struct request *rq = p;
3268
3269                         tags->static_rqs[i] = rq;
3270                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3271                                 tags->static_rqs[i] = NULL;
3272                                 goto fail;
3273                         }
3274
3275                         p += rq_size;
3276                         i++;
3277                 }
3278         }
3279         return 0;
3280
3281 fail:
3282         blk_mq_free_rqs(set, tags, hctx_idx);
3283         return -ENOMEM;
3284 }
3285
3286 struct rq_iter_data {
3287         struct blk_mq_hw_ctx *hctx;
3288         bool has_rq;
3289 };
3290
3291 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3292 {
3293         struct rq_iter_data *iter_data = data;
3294
3295         if (rq->mq_hctx != iter_data->hctx)
3296                 return true;
3297         iter_data->has_rq = true;
3298         return false;
3299 }
3300
3301 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3302 {
3303         struct blk_mq_tags *tags = hctx->sched_tags ?
3304                         hctx->sched_tags : hctx->tags;
3305         struct rq_iter_data data = {
3306                 .hctx   = hctx,
3307         };
3308
3309         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3310         return data.has_rq;
3311 }
3312
3313 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3314                 struct blk_mq_hw_ctx *hctx)
3315 {
3316         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3317                 return false;
3318         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3319                 return false;
3320         return true;
3321 }
3322
3323 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3324 {
3325         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3326                         struct blk_mq_hw_ctx, cpuhp_online);
3327
3328         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3329             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3330                 return 0;
3331
3332         /*
3333          * Prevent new request from being allocated on the current hctx.
3334          *
3335          * The smp_mb__after_atomic() Pairs with the implied barrier in
3336          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3337          * seen once we return from the tag allocator.
3338          */
3339         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3340         smp_mb__after_atomic();
3341
3342         /*
3343          * Try to grab a reference to the queue and wait for any outstanding
3344          * requests.  If we could not grab a reference the queue has been
3345          * frozen and there are no requests.
3346          */
3347         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3348                 while (blk_mq_hctx_has_requests(hctx))
3349                         msleep(5);
3350                 percpu_ref_put(&hctx->queue->q_usage_counter);
3351         }
3352
3353         return 0;
3354 }
3355
3356 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3357 {
3358         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3359                         struct blk_mq_hw_ctx, cpuhp_online);
3360
3361         if (cpumask_test_cpu(cpu, hctx->cpumask))
3362                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3363         return 0;
3364 }
3365
3366 /*
3367  * 'cpu' is going away. splice any existing rq_list entries from this
3368  * software queue to the hw queue dispatch list, and ensure that it
3369  * gets run.
3370  */
3371 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3372 {
3373         struct blk_mq_hw_ctx *hctx;
3374         struct blk_mq_ctx *ctx;
3375         LIST_HEAD(tmp);
3376         enum hctx_type type;
3377
3378         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3379         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3380                 return 0;
3381
3382         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3383         type = hctx->type;
3384
3385         spin_lock(&ctx->lock);
3386         if (!list_empty(&ctx->rq_lists[type])) {
3387                 list_splice_init(&ctx->rq_lists[type], &tmp);
3388                 blk_mq_hctx_clear_pending(hctx, ctx);
3389         }
3390         spin_unlock(&ctx->lock);
3391
3392         if (list_empty(&tmp))
3393                 return 0;
3394
3395         spin_lock(&hctx->lock);
3396         list_splice_tail_init(&tmp, &hctx->dispatch);
3397         spin_unlock(&hctx->lock);
3398
3399         blk_mq_run_hw_queue(hctx, true);
3400         return 0;
3401 }
3402
3403 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3404 {
3405         if (!(hctx->flags & BLK_MQ_F_STACKING))
3406                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3407                                                     &hctx->cpuhp_online);
3408         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3409                                             &hctx->cpuhp_dead);
3410 }
3411
3412 /*
3413  * Before freeing hw queue, clearing the flush request reference in
3414  * tags->rqs[] for avoiding potential UAF.
3415  */
3416 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3417                 unsigned int queue_depth, struct request *flush_rq)
3418 {
3419         int i;
3420         unsigned long flags;
3421
3422         /* The hw queue may not be mapped yet */
3423         if (!tags)
3424                 return;
3425
3426         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3427
3428         for (i = 0; i < queue_depth; i++)
3429                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3430
3431         /*
3432          * Wait until all pending iteration is done.
3433          *
3434          * Request reference is cleared and it is guaranteed to be observed
3435          * after the ->lock is released.
3436          */
3437         spin_lock_irqsave(&tags->lock, flags);
3438         spin_unlock_irqrestore(&tags->lock, flags);
3439 }
3440
3441 /* hctx->ctxs will be freed in queue's release handler */
3442 static void blk_mq_exit_hctx(struct request_queue *q,
3443                 struct blk_mq_tag_set *set,
3444                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3445 {
3446         struct request *flush_rq = hctx->fq->flush_rq;
3447
3448         if (blk_mq_hw_queue_mapped(hctx))
3449                 blk_mq_tag_idle(hctx);
3450
3451         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3452                         set->queue_depth, flush_rq);
3453         if (set->ops->exit_request)
3454                 set->ops->exit_request(set, flush_rq, hctx_idx);
3455
3456         if (set->ops->exit_hctx)
3457                 set->ops->exit_hctx(hctx, hctx_idx);
3458
3459         blk_mq_remove_cpuhp(hctx);
3460
3461         xa_erase(&q->hctx_table, hctx_idx);
3462
3463         spin_lock(&q->unused_hctx_lock);
3464         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3465         spin_unlock(&q->unused_hctx_lock);
3466 }
3467
3468 static void blk_mq_exit_hw_queues(struct request_queue *q,
3469                 struct blk_mq_tag_set *set, int nr_queue)
3470 {
3471         struct blk_mq_hw_ctx *hctx;
3472         unsigned long i;
3473
3474         queue_for_each_hw_ctx(q, hctx, i) {
3475                 if (i == nr_queue)
3476                         break;
3477                 blk_mq_exit_hctx(q, set, hctx, i);
3478         }
3479 }
3480
3481 static int blk_mq_init_hctx(struct request_queue *q,
3482                 struct blk_mq_tag_set *set,
3483                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3484 {
3485         hctx->queue_num = hctx_idx;
3486
3487         if (!(hctx->flags & BLK_MQ_F_STACKING))
3488                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3489                                 &hctx->cpuhp_online);
3490         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3491
3492         hctx->tags = set->tags[hctx_idx];
3493
3494         if (set->ops->init_hctx &&
3495             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3496                 goto unregister_cpu_notifier;
3497
3498         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3499                                 hctx->numa_node))
3500                 goto exit_hctx;
3501
3502         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3503                 goto exit_flush_rq;
3504
3505         return 0;
3506
3507  exit_flush_rq:
3508         if (set->ops->exit_request)
3509                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3510  exit_hctx:
3511         if (set->ops->exit_hctx)
3512                 set->ops->exit_hctx(hctx, hctx_idx);
3513  unregister_cpu_notifier:
3514         blk_mq_remove_cpuhp(hctx);
3515         return -1;
3516 }
3517
3518 static struct blk_mq_hw_ctx *
3519 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3520                 int node)
3521 {
3522         struct blk_mq_hw_ctx *hctx;
3523         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3524
3525         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3526         if (!hctx)
3527                 goto fail_alloc_hctx;
3528
3529         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3530                 goto free_hctx;
3531
3532         atomic_set(&hctx->nr_active, 0);
3533         if (node == NUMA_NO_NODE)
3534                 node = set->numa_node;
3535         hctx->numa_node = node;
3536
3537         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3538         spin_lock_init(&hctx->lock);
3539         INIT_LIST_HEAD(&hctx->dispatch);
3540         hctx->queue = q;
3541         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3542
3543         INIT_LIST_HEAD(&hctx->hctx_list);
3544
3545         /*
3546          * Allocate space for all possible cpus to avoid allocation at
3547          * runtime
3548          */
3549         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3550                         gfp, node);
3551         if (!hctx->ctxs)
3552                 goto free_cpumask;
3553
3554         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3555                                 gfp, node, false, false))
3556                 goto free_ctxs;
3557         hctx->nr_ctx = 0;
3558
3559         spin_lock_init(&hctx->dispatch_wait_lock);
3560         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3561         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3562
3563         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3564         if (!hctx->fq)
3565                 goto free_bitmap;
3566
3567         blk_mq_hctx_kobj_init(hctx);
3568
3569         return hctx;
3570
3571  free_bitmap:
3572         sbitmap_free(&hctx->ctx_map);
3573  free_ctxs:
3574         kfree(hctx->ctxs);
3575  free_cpumask:
3576         free_cpumask_var(hctx->cpumask);
3577  free_hctx:
3578         kfree(hctx);
3579  fail_alloc_hctx:
3580         return NULL;
3581 }
3582
3583 static void blk_mq_init_cpu_queues(struct request_queue *q,
3584                                    unsigned int nr_hw_queues)
3585 {
3586         struct blk_mq_tag_set *set = q->tag_set;
3587         unsigned int i, j;
3588
3589         for_each_possible_cpu(i) {
3590                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3591                 struct blk_mq_hw_ctx *hctx;
3592                 int k;
3593
3594                 __ctx->cpu = i;
3595                 spin_lock_init(&__ctx->lock);
3596                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3597                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3598
3599                 __ctx->queue = q;
3600
3601                 /*
3602                  * Set local node, IFF we have more than one hw queue. If
3603                  * not, we remain on the home node of the device
3604                  */
3605                 for (j = 0; j < set->nr_maps; j++) {
3606                         hctx = blk_mq_map_queue_type(q, j, i);
3607                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3608                                 hctx->numa_node = cpu_to_node(i);
3609                 }
3610         }
3611 }
3612
3613 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3614                                              unsigned int hctx_idx,
3615                                              unsigned int depth)
3616 {
3617         struct blk_mq_tags *tags;
3618         int ret;
3619
3620         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3621         if (!tags)
3622                 return NULL;
3623
3624         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3625         if (ret) {
3626                 blk_mq_free_rq_map(tags);
3627                 return NULL;
3628         }
3629
3630         return tags;
3631 }
3632
3633 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3634                                        int hctx_idx)
3635 {
3636         if (blk_mq_is_shared_tags(set->flags)) {
3637                 set->tags[hctx_idx] = set->shared_tags;
3638
3639                 return true;
3640         }
3641
3642         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3643                                                        set->queue_depth);
3644
3645         return set->tags[hctx_idx];
3646 }
3647
3648 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3649                              struct blk_mq_tags *tags,
3650                              unsigned int hctx_idx)
3651 {
3652         if (tags) {
3653                 blk_mq_free_rqs(set, tags, hctx_idx);
3654                 blk_mq_free_rq_map(tags);
3655         }
3656 }
3657
3658 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659                                       unsigned int hctx_idx)
3660 {
3661         if (!blk_mq_is_shared_tags(set->flags))
3662                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3663
3664         set->tags[hctx_idx] = NULL;
3665 }
3666
3667 static void blk_mq_map_swqueue(struct request_queue *q)
3668 {
3669         unsigned int j, hctx_idx;
3670         unsigned long i;
3671         struct blk_mq_hw_ctx *hctx;
3672         struct blk_mq_ctx *ctx;
3673         struct blk_mq_tag_set *set = q->tag_set;
3674
3675         queue_for_each_hw_ctx(q, hctx, i) {
3676                 cpumask_clear(hctx->cpumask);
3677                 hctx->nr_ctx = 0;
3678                 hctx->dispatch_from = NULL;
3679         }
3680
3681         /*
3682          * Map software to hardware queues.
3683          *
3684          * If the cpu isn't present, the cpu is mapped to first hctx.
3685          */
3686         for_each_possible_cpu(i) {
3687
3688                 ctx = per_cpu_ptr(q->queue_ctx, i);
3689                 for (j = 0; j < set->nr_maps; j++) {
3690                         if (!set->map[j].nr_queues) {
3691                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3692                                                 HCTX_TYPE_DEFAULT, i);
3693                                 continue;
3694                         }
3695                         hctx_idx = set->map[j].mq_map[i];
3696                         /* unmapped hw queue can be remapped after CPU topo changed */
3697                         if (!set->tags[hctx_idx] &&
3698                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3699                                 /*
3700                                  * If tags initialization fail for some hctx,
3701                                  * that hctx won't be brought online.  In this
3702                                  * case, remap the current ctx to hctx[0] which
3703                                  * is guaranteed to always have tags allocated
3704                                  */
3705                                 set->map[j].mq_map[i] = 0;
3706                         }
3707
3708                         hctx = blk_mq_map_queue_type(q, j, i);
3709                         ctx->hctxs[j] = hctx;
3710                         /*
3711                          * If the CPU is already set in the mask, then we've
3712                          * mapped this one already. This can happen if
3713                          * devices share queues across queue maps.
3714                          */
3715                         if (cpumask_test_cpu(i, hctx->cpumask))
3716                                 continue;
3717
3718                         cpumask_set_cpu(i, hctx->cpumask);
3719                         hctx->type = j;
3720                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3721                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3722
3723                         /*
3724                          * If the nr_ctx type overflows, we have exceeded the
3725                          * amount of sw queues we can support.
3726                          */
3727                         BUG_ON(!hctx->nr_ctx);
3728                 }
3729
3730                 for (; j < HCTX_MAX_TYPES; j++)
3731                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3732                                         HCTX_TYPE_DEFAULT, i);
3733         }
3734
3735         queue_for_each_hw_ctx(q, hctx, i) {
3736                 /*
3737                  * If no software queues are mapped to this hardware queue,
3738                  * disable it and free the request entries.
3739                  */
3740                 if (!hctx->nr_ctx) {
3741                         /* Never unmap queue 0.  We need it as a
3742                          * fallback in case of a new remap fails
3743                          * allocation
3744                          */
3745                         if (i)
3746                                 __blk_mq_free_map_and_rqs(set, i);
3747
3748                         hctx->tags = NULL;
3749                         continue;
3750                 }
3751
3752                 hctx->tags = set->tags[i];
3753                 WARN_ON(!hctx->tags);
3754
3755                 /*
3756                  * Set the map size to the number of mapped software queues.
3757                  * This is more accurate and more efficient than looping
3758                  * over all possibly mapped software queues.
3759                  */
3760                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3761
3762                 /*
3763                  * Initialize batch roundrobin counts
3764                  */
3765                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3766                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3767         }
3768 }
3769
3770 /*
3771  * Caller needs to ensure that we're either frozen/quiesced, or that
3772  * the queue isn't live yet.
3773  */
3774 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3775 {
3776         struct blk_mq_hw_ctx *hctx;
3777         unsigned long i;
3778
3779         queue_for_each_hw_ctx(q, hctx, i) {
3780                 if (shared) {
3781                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3782                 } else {
3783                         blk_mq_tag_idle(hctx);
3784                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3785                 }
3786         }
3787 }
3788
3789 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3790                                          bool shared)
3791 {
3792         struct request_queue *q;
3793
3794         lockdep_assert_held(&set->tag_list_lock);
3795
3796         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3797                 blk_mq_freeze_queue(q);
3798                 queue_set_hctx_shared(q, shared);
3799                 blk_mq_unfreeze_queue(q);
3800         }
3801 }
3802
3803 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3804 {
3805         struct blk_mq_tag_set *set = q->tag_set;
3806
3807         mutex_lock(&set->tag_list_lock);
3808         list_del(&q->tag_set_list);
3809         if (list_is_singular(&set->tag_list)) {
3810                 /* just transitioned to unshared */
3811                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3812                 /* update existing queue */
3813                 blk_mq_update_tag_set_shared(set, false);
3814         }
3815         mutex_unlock(&set->tag_list_lock);
3816         INIT_LIST_HEAD(&q->tag_set_list);
3817 }
3818
3819 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3820                                      struct request_queue *q)
3821 {
3822         mutex_lock(&set->tag_list_lock);
3823
3824         /*
3825          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3826          */
3827         if (!list_empty(&set->tag_list) &&
3828             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3829                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3830                 /* update existing queue */
3831                 blk_mq_update_tag_set_shared(set, true);
3832         }
3833         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3834                 queue_set_hctx_shared(q, true);
3835         list_add_tail(&q->tag_set_list, &set->tag_list);
3836
3837         mutex_unlock(&set->tag_list_lock);
3838 }
3839
3840 /* All allocations will be freed in release handler of q->mq_kobj */
3841 static int blk_mq_alloc_ctxs(struct request_queue *q)
3842 {
3843         struct blk_mq_ctxs *ctxs;
3844         int cpu;
3845
3846         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3847         if (!ctxs)
3848                 return -ENOMEM;
3849
3850         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3851         if (!ctxs->queue_ctx)
3852                 goto fail;
3853
3854         for_each_possible_cpu(cpu) {
3855                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3856                 ctx->ctxs = ctxs;
3857         }
3858
3859         q->mq_kobj = &ctxs->kobj;
3860         q->queue_ctx = ctxs->queue_ctx;
3861
3862         return 0;
3863  fail:
3864         kfree(ctxs);
3865         return -ENOMEM;
3866 }
3867
3868 /*
3869  * It is the actual release handler for mq, but we do it from
3870  * request queue's release handler for avoiding use-after-free
3871  * and headache because q->mq_kobj shouldn't have been introduced,
3872  * but we can't group ctx/kctx kobj without it.
3873  */
3874 void blk_mq_release(struct request_queue *q)
3875 {
3876         struct blk_mq_hw_ctx *hctx, *next;
3877         unsigned long i;
3878
3879         queue_for_each_hw_ctx(q, hctx, i)
3880                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3881
3882         /* all hctx are in .unused_hctx_list now */
3883         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3884                 list_del_init(&hctx->hctx_list);
3885                 kobject_put(&hctx->kobj);
3886         }
3887
3888         xa_destroy(&q->hctx_table);
3889
3890         /*
3891          * release .mq_kobj and sw queue's kobject now because
3892          * both share lifetime with request queue.
3893          */
3894         blk_mq_sysfs_deinit(q);
3895 }
3896
3897 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3898                 void *queuedata)
3899 {
3900         struct request_queue *q;
3901         int ret;
3902
3903         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3904         if (!q)
3905                 return ERR_PTR(-ENOMEM);
3906         q->queuedata = queuedata;
3907         ret = blk_mq_init_allocated_queue(set, q);
3908         if (ret) {
3909                 blk_cleanup_queue(q);
3910                 return ERR_PTR(ret);
3911         }
3912         return q;
3913 }
3914
3915 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3916 {
3917         return blk_mq_init_queue_data(set, NULL);
3918 }
3919 EXPORT_SYMBOL(blk_mq_init_queue);
3920
3921 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3922                 struct lock_class_key *lkclass)
3923 {
3924         struct request_queue *q;
3925         struct gendisk *disk;
3926
3927         q = blk_mq_init_queue_data(set, queuedata);
3928         if (IS_ERR(q))
3929                 return ERR_CAST(q);
3930
3931         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3932         if (!disk) {
3933                 blk_cleanup_queue(q);
3934                 return ERR_PTR(-ENOMEM);
3935         }
3936         return disk;
3937 }
3938 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3939
3940 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3941                 struct blk_mq_tag_set *set, struct request_queue *q,
3942                 int hctx_idx, int node)
3943 {
3944         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3945
3946         /* reuse dead hctx first */
3947         spin_lock(&q->unused_hctx_lock);
3948         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3949                 if (tmp->numa_node == node) {
3950                         hctx = tmp;
3951                         break;
3952                 }
3953         }
3954         if (hctx)
3955                 list_del_init(&hctx->hctx_list);
3956         spin_unlock(&q->unused_hctx_lock);
3957
3958         if (!hctx)
3959                 hctx = blk_mq_alloc_hctx(q, set, node);
3960         if (!hctx)
3961                 goto fail;
3962
3963         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3964                 goto free_hctx;
3965
3966         return hctx;
3967
3968  free_hctx:
3969         kobject_put(&hctx->kobj);
3970  fail:
3971         return NULL;
3972 }
3973
3974 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3975                                                 struct request_queue *q)
3976 {
3977         struct blk_mq_hw_ctx *hctx;
3978         unsigned long i, j;
3979
3980         /* protect against switching io scheduler  */
3981         mutex_lock(&q->sysfs_lock);
3982         for (i = 0; i < set->nr_hw_queues; i++) {
3983                 int old_node;
3984                 int node = blk_mq_get_hctx_node(set, i);
3985                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3986
3987                 if (old_hctx) {
3988                         old_node = old_hctx->numa_node;
3989                         blk_mq_exit_hctx(q, set, old_hctx, i);
3990                 }
3991
3992                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3993                         if (!old_hctx)
3994                                 break;
3995                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3996                                         node, old_node);
3997                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3998                         WARN_ON_ONCE(!hctx);
3999                 }
4000         }
4001         /*
4002          * Increasing nr_hw_queues fails. Free the newly allocated
4003          * hctxs and keep the previous q->nr_hw_queues.
4004          */
4005         if (i != set->nr_hw_queues) {
4006                 j = q->nr_hw_queues;
4007         } else {
4008                 j = i;
4009                 q->nr_hw_queues = set->nr_hw_queues;
4010         }
4011
4012         xa_for_each_start(&q->hctx_table, j, hctx, j)
4013                 blk_mq_exit_hctx(q, set, hctx, j);
4014         mutex_unlock(&q->sysfs_lock);
4015 }
4016
4017 static void blk_mq_update_poll_flag(struct request_queue *q)
4018 {
4019         struct blk_mq_tag_set *set = q->tag_set;
4020
4021         if (set->nr_maps > HCTX_TYPE_POLL &&
4022             set->map[HCTX_TYPE_POLL].nr_queues)
4023                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4024         else
4025                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4026 }
4027
4028 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4029                 struct request_queue *q)
4030 {
4031         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4032                         !!(set->flags & BLK_MQ_F_BLOCKING));
4033
4034         /* mark the queue as mq asap */
4035         q->mq_ops = set->ops;
4036
4037         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4038                                              blk_mq_poll_stats_bkt,
4039                                              BLK_MQ_POLL_STATS_BKTS, q);
4040         if (!q->poll_cb)
4041                 goto err_exit;
4042
4043         if (blk_mq_alloc_ctxs(q))
4044                 goto err_poll;
4045
4046         /* init q->mq_kobj and sw queues' kobjects */
4047         blk_mq_sysfs_init(q);
4048
4049         INIT_LIST_HEAD(&q->unused_hctx_list);
4050         spin_lock_init(&q->unused_hctx_lock);
4051
4052         xa_init(&q->hctx_table);
4053
4054         blk_mq_realloc_hw_ctxs(set, q);
4055         if (!q->nr_hw_queues)
4056                 goto err_hctxs;
4057
4058         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4059         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4060
4061         q->tag_set = set;
4062
4063         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4064         blk_mq_update_poll_flag(q);
4065
4066         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4067         INIT_LIST_HEAD(&q->requeue_list);
4068         spin_lock_init(&q->requeue_lock);
4069
4070         q->nr_requests = set->queue_depth;
4071
4072         /*
4073          * Default to classic polling
4074          */
4075         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4076
4077         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4078         blk_mq_add_queue_tag_set(set, q);
4079         blk_mq_map_swqueue(q);
4080         return 0;
4081
4082 err_hctxs:
4083         xa_destroy(&q->hctx_table);
4084         q->nr_hw_queues = 0;
4085         blk_mq_sysfs_deinit(q);
4086 err_poll:
4087         blk_stat_free_callback(q->poll_cb);
4088         q->poll_cb = NULL;
4089 err_exit:
4090         q->mq_ops = NULL;
4091         return -ENOMEM;
4092 }
4093 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4094
4095 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4096 void blk_mq_exit_queue(struct request_queue *q)
4097 {
4098         struct blk_mq_tag_set *set = q->tag_set;
4099
4100         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4101         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4102         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4103         blk_mq_del_queue_tag_set(q);
4104 }
4105
4106 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4107 {
4108         int i;
4109
4110         if (blk_mq_is_shared_tags(set->flags)) {
4111                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4112                                                 BLK_MQ_NO_HCTX_IDX,
4113                                                 set->queue_depth);
4114                 if (!set->shared_tags)
4115                         return -ENOMEM;
4116         }
4117
4118         for (i = 0; i < set->nr_hw_queues; i++) {
4119                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4120                         goto out_unwind;
4121                 cond_resched();
4122         }
4123
4124         return 0;
4125
4126 out_unwind:
4127         while (--i >= 0)
4128                 __blk_mq_free_map_and_rqs(set, i);
4129
4130         if (blk_mq_is_shared_tags(set->flags)) {
4131                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4132                                         BLK_MQ_NO_HCTX_IDX);
4133         }
4134
4135         return -ENOMEM;
4136 }
4137
4138 /*
4139  * Allocate the request maps associated with this tag_set. Note that this
4140  * may reduce the depth asked for, if memory is tight. set->queue_depth
4141  * will be updated to reflect the allocated depth.
4142  */
4143 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4144 {
4145         unsigned int depth;
4146         int err;
4147
4148         depth = set->queue_depth;
4149         do {
4150                 err = __blk_mq_alloc_rq_maps(set);
4151                 if (!err)
4152                         break;
4153
4154                 set->queue_depth >>= 1;
4155                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4156                         err = -ENOMEM;
4157                         break;
4158                 }
4159         } while (set->queue_depth);
4160
4161         if (!set->queue_depth || err) {
4162                 pr_err("blk-mq: failed to allocate request map\n");
4163                 return -ENOMEM;
4164         }
4165
4166         if (depth != set->queue_depth)
4167                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4168                                                 depth, set->queue_depth);
4169
4170         return 0;
4171 }
4172
4173 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4174 {
4175         /*
4176          * blk_mq_map_queues() and multiple .map_queues() implementations
4177          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4178          * number of hardware queues.
4179          */
4180         if (set->nr_maps == 1)
4181                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4182
4183         if (set->ops->map_queues && !is_kdump_kernel()) {
4184                 int i;
4185
4186                 /*
4187                  * transport .map_queues is usually done in the following
4188                  * way:
4189                  *
4190                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4191                  *      mask = get_cpu_mask(queue)
4192                  *      for_each_cpu(cpu, mask)
4193                  *              set->map[x].mq_map[cpu] = queue;
4194                  * }
4195                  *
4196                  * When we need to remap, the table has to be cleared for
4197                  * killing stale mapping since one CPU may not be mapped
4198                  * to any hw queue.
4199                  */
4200                 for (i = 0; i < set->nr_maps; i++)
4201                         blk_mq_clear_mq_map(&set->map[i]);
4202
4203                 return set->ops->map_queues(set);
4204         } else {
4205                 BUG_ON(set->nr_maps > 1);
4206                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4207         }
4208 }
4209
4210 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4211                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4212 {
4213         struct blk_mq_tags **new_tags;
4214
4215         if (cur_nr_hw_queues >= new_nr_hw_queues)
4216                 return 0;
4217
4218         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4219                                 GFP_KERNEL, set->numa_node);
4220         if (!new_tags)
4221                 return -ENOMEM;
4222
4223         if (set->tags)
4224                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4225                        sizeof(*set->tags));
4226         kfree(set->tags);
4227         set->tags = new_tags;
4228         set->nr_hw_queues = new_nr_hw_queues;
4229
4230         return 0;
4231 }
4232
4233 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4234                                 int new_nr_hw_queues)
4235 {
4236         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4237 }
4238
4239 /*
4240  * Alloc a tag set to be associated with one or more request queues.
4241  * May fail with EINVAL for various error conditions. May adjust the
4242  * requested depth down, if it's too large. In that case, the set
4243  * value will be stored in set->queue_depth.
4244  */
4245 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4246 {
4247         int i, ret;
4248
4249         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4250
4251         if (!set->nr_hw_queues)
4252                 return -EINVAL;
4253         if (!set->queue_depth)
4254                 return -EINVAL;
4255         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4256                 return -EINVAL;
4257
4258         if (!set->ops->queue_rq)
4259                 return -EINVAL;
4260
4261         if (!set->ops->get_budget ^ !set->ops->put_budget)
4262                 return -EINVAL;
4263
4264         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4265                 pr_info("blk-mq: reduced tag depth to %u\n",
4266                         BLK_MQ_MAX_DEPTH);
4267                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4268         }
4269
4270         if (!set->nr_maps)
4271                 set->nr_maps = 1;
4272         else if (set->nr_maps > HCTX_MAX_TYPES)
4273                 return -EINVAL;
4274
4275         /*
4276          * If a crashdump is active, then we are potentially in a very
4277          * memory constrained environment. Limit us to 1 queue and
4278          * 64 tags to prevent using too much memory.
4279          */
4280         if (is_kdump_kernel()) {
4281                 set->nr_hw_queues = 1;
4282                 set->nr_maps = 1;
4283                 set->queue_depth = min(64U, set->queue_depth);
4284         }
4285         /*
4286          * There is no use for more h/w queues than cpus if we just have
4287          * a single map
4288          */
4289         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4290                 set->nr_hw_queues = nr_cpu_ids;
4291
4292         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4293                 return -ENOMEM;
4294
4295         ret = -ENOMEM;
4296         for (i = 0; i < set->nr_maps; i++) {
4297                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4298                                                   sizeof(set->map[i].mq_map[0]),
4299                                                   GFP_KERNEL, set->numa_node);
4300                 if (!set->map[i].mq_map)
4301                         goto out_free_mq_map;
4302                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4303         }
4304
4305         ret = blk_mq_update_queue_map(set);
4306         if (ret)
4307                 goto out_free_mq_map;
4308
4309         ret = blk_mq_alloc_set_map_and_rqs(set);
4310         if (ret)
4311                 goto out_free_mq_map;
4312
4313         mutex_init(&set->tag_list_lock);
4314         INIT_LIST_HEAD(&set->tag_list);
4315
4316         return 0;
4317
4318 out_free_mq_map:
4319         for (i = 0; i < set->nr_maps; i++) {
4320                 kfree(set->map[i].mq_map);
4321                 set->map[i].mq_map = NULL;
4322         }
4323         kfree(set->tags);
4324         set->tags = NULL;
4325         return ret;
4326 }
4327 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4328
4329 /* allocate and initialize a tagset for a simple single-queue device */
4330 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4331                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4332                 unsigned int set_flags)
4333 {
4334         memset(set, 0, sizeof(*set));
4335         set->ops = ops;
4336         set->nr_hw_queues = 1;
4337         set->nr_maps = 1;
4338         set->queue_depth = queue_depth;
4339         set->numa_node = NUMA_NO_NODE;
4340         set->flags = set_flags;
4341         return blk_mq_alloc_tag_set(set);
4342 }
4343 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4344
4345 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4346 {
4347         int i, j;
4348
4349         for (i = 0; i < set->nr_hw_queues; i++)
4350                 __blk_mq_free_map_and_rqs(set, i);
4351
4352         if (blk_mq_is_shared_tags(set->flags)) {
4353                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4354                                         BLK_MQ_NO_HCTX_IDX);
4355         }
4356
4357         for (j = 0; j < set->nr_maps; j++) {
4358                 kfree(set->map[j].mq_map);
4359                 set->map[j].mq_map = NULL;
4360         }
4361
4362         kfree(set->tags);
4363         set->tags = NULL;
4364 }
4365 EXPORT_SYMBOL(blk_mq_free_tag_set);
4366
4367 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4368 {
4369         struct blk_mq_tag_set *set = q->tag_set;
4370         struct blk_mq_hw_ctx *hctx;
4371         int ret;
4372         unsigned long i;
4373
4374         if (!set)
4375                 return -EINVAL;
4376
4377         if (q->nr_requests == nr)
4378                 return 0;
4379
4380         blk_mq_freeze_queue(q);
4381         blk_mq_quiesce_queue(q);
4382
4383         ret = 0;
4384         queue_for_each_hw_ctx(q, hctx, i) {
4385                 if (!hctx->tags)
4386                         continue;
4387                 /*
4388                  * If we're using an MQ scheduler, just update the scheduler
4389                  * queue depth. This is similar to what the old code would do.
4390                  */
4391                 if (hctx->sched_tags) {
4392                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4393                                                       nr, true);
4394                 } else {
4395                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4396                                                       false);
4397                 }
4398                 if (ret)
4399                         break;
4400                 if (q->elevator && q->elevator->type->ops.depth_updated)
4401                         q->elevator->type->ops.depth_updated(hctx);
4402         }
4403         if (!ret) {
4404                 q->nr_requests = nr;
4405                 if (blk_mq_is_shared_tags(set->flags)) {
4406                         if (q->elevator)
4407                                 blk_mq_tag_update_sched_shared_tags(q);
4408                         else
4409                                 blk_mq_tag_resize_shared_tags(set, nr);
4410                 }
4411         }
4412
4413         blk_mq_unquiesce_queue(q);
4414         blk_mq_unfreeze_queue(q);
4415
4416         return ret;
4417 }
4418
4419 /*
4420  * request_queue and elevator_type pair.
4421  * It is just used by __blk_mq_update_nr_hw_queues to cache
4422  * the elevator_type associated with a request_queue.
4423  */
4424 struct blk_mq_qe_pair {
4425         struct list_head node;
4426         struct request_queue *q;
4427         struct elevator_type *type;
4428 };
4429
4430 /*
4431  * Cache the elevator_type in qe pair list and switch the
4432  * io scheduler to 'none'
4433  */
4434 static bool blk_mq_elv_switch_none(struct list_head *head,
4435                 struct request_queue *q)
4436 {
4437         struct blk_mq_qe_pair *qe;
4438
4439         if (!q->elevator)
4440                 return true;
4441
4442         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4443         if (!qe)
4444                 return false;
4445
4446         INIT_LIST_HEAD(&qe->node);
4447         qe->q = q;
4448         qe->type = q->elevator->type;
4449         list_add(&qe->node, head);
4450
4451         mutex_lock(&q->sysfs_lock);
4452         /*
4453          * After elevator_switch_mq, the previous elevator_queue will be
4454          * released by elevator_release. The reference of the io scheduler
4455          * module get by elevator_get will also be put. So we need to get
4456          * a reference of the io scheduler module here to prevent it to be
4457          * removed.
4458          */
4459         __module_get(qe->type->elevator_owner);
4460         elevator_switch_mq(q, NULL);
4461         mutex_unlock(&q->sysfs_lock);
4462
4463         return true;
4464 }
4465
4466 static void blk_mq_elv_switch_back(struct list_head *head,
4467                 struct request_queue *q)
4468 {
4469         struct blk_mq_qe_pair *qe;
4470         struct elevator_type *t = NULL;
4471
4472         list_for_each_entry(qe, head, node)
4473                 if (qe->q == q) {
4474                         t = qe->type;
4475                         break;
4476                 }
4477
4478         if (!t)
4479                 return;
4480
4481         list_del(&qe->node);
4482         kfree(qe);
4483
4484         mutex_lock(&q->sysfs_lock);
4485         elevator_switch_mq(q, t);
4486         mutex_unlock(&q->sysfs_lock);
4487 }
4488
4489 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4490                                                         int nr_hw_queues)
4491 {
4492         struct request_queue *q;
4493         LIST_HEAD(head);
4494         int prev_nr_hw_queues;
4495
4496         lockdep_assert_held(&set->tag_list_lock);
4497
4498         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4499                 nr_hw_queues = nr_cpu_ids;
4500         if (nr_hw_queues < 1)
4501                 return;
4502         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4503                 return;
4504
4505         list_for_each_entry(q, &set->tag_list, tag_set_list)
4506                 blk_mq_freeze_queue(q);
4507         /*
4508          * Switch IO scheduler to 'none', cleaning up the data associated
4509          * with the previous scheduler. We will switch back once we are done
4510          * updating the new sw to hw queue mappings.
4511          */
4512         list_for_each_entry(q, &set->tag_list, tag_set_list)
4513                 if (!blk_mq_elv_switch_none(&head, q))
4514                         goto switch_back;
4515
4516         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4517                 blk_mq_debugfs_unregister_hctxs(q);
4518                 blk_mq_sysfs_unregister(q);
4519         }
4520
4521         prev_nr_hw_queues = set->nr_hw_queues;
4522         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4523             0)
4524                 goto reregister;
4525
4526         set->nr_hw_queues = nr_hw_queues;
4527 fallback:
4528         blk_mq_update_queue_map(set);
4529         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4530                 blk_mq_realloc_hw_ctxs(set, q);
4531                 blk_mq_update_poll_flag(q);
4532                 if (q->nr_hw_queues != set->nr_hw_queues) {
4533                         int i = prev_nr_hw_queues;
4534
4535                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4536                                         nr_hw_queues, prev_nr_hw_queues);
4537                         for (; i < set->nr_hw_queues; i++)
4538                                 __blk_mq_free_map_and_rqs(set, i);
4539
4540                         set->nr_hw_queues = prev_nr_hw_queues;
4541                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4542                         goto fallback;
4543                 }
4544                 blk_mq_map_swqueue(q);
4545         }
4546
4547 reregister:
4548         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4549                 blk_mq_sysfs_register(q);
4550                 blk_mq_debugfs_register_hctxs(q);
4551         }
4552
4553 switch_back:
4554         list_for_each_entry(q, &set->tag_list, tag_set_list)
4555                 blk_mq_elv_switch_back(&head, q);
4556
4557         list_for_each_entry(q, &set->tag_list, tag_set_list)
4558                 blk_mq_unfreeze_queue(q);
4559 }
4560
4561 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4562 {
4563         mutex_lock(&set->tag_list_lock);
4564         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4565         mutex_unlock(&set->tag_list_lock);
4566 }
4567 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4568
4569 /* Enable polling stats and return whether they were already enabled. */
4570 static bool blk_poll_stats_enable(struct request_queue *q)
4571 {
4572         if (q->poll_stat)
4573                 return true;
4574
4575         return blk_stats_alloc_enable(q);
4576 }
4577
4578 static void blk_mq_poll_stats_start(struct request_queue *q)
4579 {
4580         /*
4581          * We don't arm the callback if polling stats are not enabled or the
4582          * callback is already active.
4583          */
4584         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4585                 return;
4586
4587         blk_stat_activate_msecs(q->poll_cb, 100);
4588 }
4589
4590 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4591 {
4592         struct request_queue *q = cb->data;
4593         int bucket;
4594
4595         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4596                 if (cb->stat[bucket].nr_samples)
4597                         q->poll_stat[bucket] = cb->stat[bucket];
4598         }
4599 }
4600
4601 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4602                                        struct request *rq)
4603 {
4604         unsigned long ret = 0;
4605         int bucket;
4606
4607         /*
4608          * If stats collection isn't on, don't sleep but turn it on for
4609          * future users
4610          */
4611         if (!blk_poll_stats_enable(q))
4612                 return 0;
4613
4614         /*
4615          * As an optimistic guess, use half of the mean service time
4616          * for this type of request. We can (and should) make this smarter.
4617          * For instance, if the completion latencies are tight, we can
4618          * get closer than just half the mean. This is especially
4619          * important on devices where the completion latencies are longer
4620          * than ~10 usec. We do use the stats for the relevant IO size
4621          * if available which does lead to better estimates.
4622          */
4623         bucket = blk_mq_poll_stats_bkt(rq);
4624         if (bucket < 0)
4625                 return ret;
4626
4627         if (q->poll_stat[bucket].nr_samples)
4628                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4629
4630         return ret;
4631 }
4632
4633 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4634 {
4635         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4636         struct request *rq = blk_qc_to_rq(hctx, qc);
4637         struct hrtimer_sleeper hs;
4638         enum hrtimer_mode mode;
4639         unsigned int nsecs;
4640         ktime_t kt;
4641
4642         /*
4643          * If a request has completed on queue that uses an I/O scheduler, we
4644          * won't get back a request from blk_qc_to_rq.
4645          */
4646         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4647                 return false;
4648
4649         /*
4650          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4651          *
4652          *  0:  use half of prev avg
4653          * >0:  use this specific value
4654          */
4655         if (q->poll_nsec > 0)
4656                 nsecs = q->poll_nsec;
4657         else
4658                 nsecs = blk_mq_poll_nsecs(q, rq);
4659
4660         if (!nsecs)
4661                 return false;
4662
4663         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4664
4665         /*
4666          * This will be replaced with the stats tracking code, using
4667          * 'avg_completion_time / 2' as the pre-sleep target.
4668          */
4669         kt = nsecs;
4670
4671         mode = HRTIMER_MODE_REL;
4672         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4673         hrtimer_set_expires(&hs.timer, kt);
4674
4675         do {
4676                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4677                         break;
4678                 set_current_state(TASK_UNINTERRUPTIBLE);
4679                 hrtimer_sleeper_start_expires(&hs, mode);
4680                 if (hs.task)
4681                         io_schedule();
4682                 hrtimer_cancel(&hs.timer);
4683                 mode = HRTIMER_MODE_ABS;
4684         } while (hs.task && !signal_pending(current));
4685
4686         __set_current_state(TASK_RUNNING);
4687         destroy_hrtimer_on_stack(&hs.timer);
4688
4689         /*
4690          * If we sleep, have the caller restart the poll loop to reset the
4691          * state.  Like for the other success return cases, the caller is
4692          * responsible for checking if the IO completed.  If the IO isn't
4693          * complete, we'll get called again and will go straight to the busy
4694          * poll loop.
4695          */
4696         return true;
4697 }
4698
4699 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4700                                struct io_comp_batch *iob, unsigned int flags)
4701 {
4702         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4703         long state = get_current_state();
4704         int ret;
4705
4706         do {
4707                 ret = q->mq_ops->poll(hctx, iob);
4708                 if (ret > 0) {
4709                         __set_current_state(TASK_RUNNING);
4710                         return ret;
4711                 }
4712
4713                 if (signal_pending_state(state, current))
4714                         __set_current_state(TASK_RUNNING);
4715                 if (task_is_running(current))
4716                         return 1;
4717
4718                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4719                         break;
4720                 cpu_relax();
4721         } while (!need_resched());
4722
4723         __set_current_state(TASK_RUNNING);
4724         return 0;
4725 }
4726
4727 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4728                 unsigned int flags)
4729 {
4730         if (!(flags & BLK_POLL_NOSLEEP) &&
4731             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4732                 if (blk_mq_poll_hybrid(q, cookie))
4733                         return 1;
4734         }
4735         return blk_mq_poll_classic(q, cookie, iob, flags);
4736 }
4737
4738 unsigned int blk_mq_rq_cpu(struct request *rq)
4739 {
4740         return rq->mq_ctx->cpu;
4741 }
4742 EXPORT_SYMBOL(blk_mq_rq_cpu);
4743
4744 void blk_mq_cancel_work_sync(struct request_queue *q)
4745 {
4746         if (queue_is_mq(q)) {
4747                 struct blk_mq_hw_ctx *hctx;
4748                 unsigned long i;
4749
4750                 cancel_delayed_work_sync(&q->requeue_work);
4751
4752                 queue_for_each_hw_ctx(q, hctx, i)
4753                         cancel_delayed_work_sync(&hctx->run_work);
4754         }
4755 }
4756
4757 static int __init blk_mq_init(void)
4758 {
4759         int i;
4760
4761         for_each_possible_cpu(i)
4762                 init_llist_head(&per_cpu(blk_cpu_done, i));
4763         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4764
4765         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4766                                   "block/softirq:dead", NULL,
4767                                   blk_softirq_cpu_dead);
4768         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4769                                 blk_mq_hctx_notify_dead);
4770         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4771                                 blk_mq_hctx_notify_online,
4772                                 blk_mq_hctx_notify_offline);
4773         return 0;
4774 }
4775 subsys_initcall(blk_mq_init);