OSDN Git Service

blk-rq-qos: refactor out common elements of blk-wbt
[uclinux-h8/linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46         int ddir, bytes, bucket;
47
48         ddir = rq_data_dir(rq);
49         bytes = blk_rq_bytes(rq);
50
51         bucket = ddir + 2*(ilog2(bytes) - 9);
52
53         if (bucket < 0)
54                 return -1;
55         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58         return bucket;
59 }
60
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66         return !list_empty_careful(&hctx->dispatch) ||
67                 sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75                                      struct blk_mq_ctx *ctx)
76 {
77         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82                                       struct blk_mq_ctx *ctx)
83 {
84         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88         struct hd_struct *part;
89         unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93                                   struct request *rq, void *priv,
94                                   bool reserved)
95 {
96         struct mq_inflight *mi = priv;
97
98         /*
99          * index[0] counts the specific partition that was asked for. index[1]
100          * counts the ones that are active on the whole device, so increment
101          * that if mi->part is indeed a partition, and not a whole device.
102          */
103         if (rq->part == mi->part)
104                 mi->inflight[0]++;
105         if (mi->part->partno)
106                 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110                       unsigned int inflight[2])
111 {
112         struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114         inflight[0] = inflight[1] = 0;
115         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119                                      struct request *rq, void *priv,
120                                      bool reserved)
121 {
122         struct mq_inflight *mi = priv;
123
124         if (rq->part == mi->part)
125                 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129                          unsigned int inflight[2])
130 {
131         struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133         inflight[0] = inflight[1] = 0;
134         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139         int freeze_depth;
140
141         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142         if (freeze_depth == 1) {
143                 percpu_ref_kill(&q->q_usage_counter);
144                 if (q->mq_ops)
145                         blk_mq_run_hw_queues(q, false);
146         }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157                                      unsigned long timeout)
158 {
159         return wait_event_timeout(q->mq_freeze_wq,
160                                         percpu_ref_is_zero(&q->q_usage_counter),
161                                         timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * In the !blk_mq case we are only calling this to kill the
173          * q_usage_counter, otherwise this increases the freeze depth
174          * and waits for it to return to zero.  For this reason there is
175          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176          * exported to drivers as the only user for unfreeze is blk_mq.
177          */
178         blk_freeze_queue_start(q);
179         if (!q->mq_ops)
180                 blk_drain_queue(q);
181         blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186         /*
187          * ...just an alias to keep freeze and unfreeze actions balanced
188          * in the blk_mq_* namespace
189          */
190         blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196         int freeze_depth;
197
198         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199         WARN_ON_ONCE(freeze_depth < 0);
200         if (!freeze_depth) {
201                 percpu_ref_reinit(&q->q_usage_counter);
202                 wake_up_all(&q->mq_freeze_wq);
203         }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228         struct blk_mq_hw_ctx *hctx;
229         unsigned int i;
230         bool rcu = false;
231
232         blk_mq_quiesce_queue_nowait(q);
233
234         queue_for_each_hw_ctx(q, hctx, i) {
235                 if (hctx->flags & BLK_MQ_F_BLOCKING)
236                         synchronize_srcu(hctx->srcu);
237                 else
238                         rcu = true;
239         }
240         if (rcu)
241                 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256         /* dispatch requests which are inserted during quiescing */
257         blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263         struct blk_mq_hw_ctx *hctx;
264         unsigned int i;
265
266         queue_for_each_hw_ctx(q, hctx, i)
267                 if (blk_mq_hw_queue_mapped(hctx))
268                         blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273         return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278                 unsigned int tag, unsigned int op)
279 {
280         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281         struct request *rq = tags->static_rqs[tag];
282         req_flags_t rq_flags = 0;
283
284         if (data->flags & BLK_MQ_REQ_INTERNAL) {
285                 rq->tag = -1;
286                 rq->internal_tag = tag;
287         } else {
288                 if (blk_mq_tag_busy(data->hctx)) {
289                         rq_flags = RQF_MQ_INFLIGHT;
290                         atomic_inc(&data->hctx->nr_active);
291                 }
292                 rq->tag = tag;
293                 rq->internal_tag = -1;
294                 data->hctx->tags->rqs[rq->tag] = rq;
295         }
296
297         /* csd/requeue_work/fifo_time is initialized before use */
298         rq->q = data->q;
299         rq->mq_ctx = data->ctx;
300         rq->rq_flags = rq_flags;
301         rq->cpu = -1;
302         rq->cmd_flags = op;
303         if (data->flags & BLK_MQ_REQ_PREEMPT)
304                 rq->rq_flags |= RQF_PREEMPT;
305         if (blk_queue_io_stat(data->q))
306                 rq->rq_flags |= RQF_IO_STAT;
307         INIT_LIST_HEAD(&rq->queuelist);
308         INIT_HLIST_NODE(&rq->hash);
309         RB_CLEAR_NODE(&rq->rb_node);
310         rq->rq_disk = NULL;
311         rq->part = NULL;
312         rq->start_time_ns = ktime_get_ns();
313         rq->io_start_time_ns = 0;
314         rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316         rq->nr_integrity_segments = 0;
317 #endif
318         rq->special = NULL;
319         /* tag was already set */
320         rq->extra_len = 0;
321         rq->__deadline = 0;
322
323         INIT_LIST_HEAD(&rq->timeout_list);
324         rq->timeout = 0;
325
326         rq->end_io = NULL;
327         rq->end_io_data = NULL;
328         rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331         rq->rl = NULL;
332 #endif
333
334         data->ctx->rq_dispatched[op_is_sync(op)]++;
335         refcount_set(&rq->ref, 1);
336         return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340                 struct bio *bio, unsigned int op,
341                 struct blk_mq_alloc_data *data)
342 {
343         struct elevator_queue *e = q->elevator;
344         struct request *rq;
345         unsigned int tag;
346         bool put_ctx_on_error = false;
347
348         blk_queue_enter_live(q);
349         data->q = q;
350         if (likely(!data->ctx)) {
351                 data->ctx = blk_mq_get_ctx(q);
352                 put_ctx_on_error = true;
353         }
354         if (likely(!data->hctx))
355                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356         if (op & REQ_NOWAIT)
357                 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359         if (e) {
360                 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362                 /*
363                  * Flush requests are special and go directly to the
364                  * dispatch list. Don't include reserved tags in the
365                  * limiting, as it isn't useful.
366                  */
367                 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368                     !(data->flags & BLK_MQ_REQ_RESERVED))
369                         e->type->ops.mq.limit_depth(op, data);
370         }
371
372         tag = blk_mq_get_tag(data);
373         if (tag == BLK_MQ_TAG_FAIL) {
374                 if (put_ctx_on_error) {
375                         blk_mq_put_ctx(data->ctx);
376                         data->ctx = NULL;
377                 }
378                 blk_queue_exit(q);
379                 return NULL;
380         }
381
382         rq = blk_mq_rq_ctx_init(data, tag, op);
383         if (!op_is_flush(op)) {
384                 rq->elv.icq = NULL;
385                 if (e && e->type->ops.mq.prepare_request) {
386                         if (e->type->icq_cache && rq_ioc(bio))
387                                 blk_mq_sched_assign_ioc(rq, bio);
388
389                         e->type->ops.mq.prepare_request(rq, bio);
390                         rq->rq_flags |= RQF_ELVPRIV;
391                 }
392         }
393         data->hctx->queued++;
394         return rq;
395 }
396
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398                 blk_mq_req_flags_t flags)
399 {
400         struct blk_mq_alloc_data alloc_data = { .flags = flags };
401         struct request *rq;
402         int ret;
403
404         ret = blk_queue_enter(q, flags);
405         if (ret)
406                 return ERR_PTR(ret);
407
408         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409         blk_queue_exit(q);
410
411         if (!rq)
412                 return ERR_PTR(-EWOULDBLOCK);
413
414         blk_mq_put_ctx(alloc_data.ctx);
415
416         rq->__data_len = 0;
417         rq->__sector = (sector_t) -1;
418         rq->bio = rq->biotail = NULL;
419         return rq;
420 }
421 EXPORT_SYMBOL(blk_mq_alloc_request);
422
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
425 {
426         struct blk_mq_alloc_data alloc_data = { .flags = flags };
427         struct request *rq;
428         unsigned int cpu;
429         int ret;
430
431         /*
432          * If the tag allocator sleeps we could get an allocation for a
433          * different hardware context.  No need to complicate the low level
434          * allocator for this for the rare use case of a command tied to
435          * a specific queue.
436          */
437         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438                 return ERR_PTR(-EINVAL);
439
440         if (hctx_idx >= q->nr_hw_queues)
441                 return ERR_PTR(-EIO);
442
443         ret = blk_queue_enter(q, flags);
444         if (ret)
445                 return ERR_PTR(ret);
446
447         /*
448          * Check if the hardware context is actually mapped to anything.
449          * If not tell the caller that it should skip this queue.
450          */
451         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453                 blk_queue_exit(q);
454                 return ERR_PTR(-EXDEV);
455         }
456         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
458
459         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460         blk_queue_exit(q);
461
462         if (!rq)
463                 return ERR_PTR(-EWOULDBLOCK);
464
465         return rq;
466 }
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
468
469 static void __blk_mq_free_request(struct request *rq)
470 {
471         struct request_queue *q = rq->q;
472         struct blk_mq_ctx *ctx = rq->mq_ctx;
473         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474         const int sched_tag = rq->internal_tag;
475
476         if (rq->tag != -1)
477                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478         if (sched_tag != -1)
479                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480         blk_mq_sched_restart(hctx);
481         blk_queue_exit(q);
482 }
483
484 void blk_mq_free_request(struct request *rq)
485 {
486         struct request_queue *q = rq->q;
487         struct elevator_queue *e = q->elevator;
488         struct blk_mq_ctx *ctx = rq->mq_ctx;
489         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
490
491         if (rq->rq_flags & RQF_ELVPRIV) {
492                 if (e && e->type->ops.mq.finish_request)
493                         e->type->ops.mq.finish_request(rq);
494                 if (rq->elv.icq) {
495                         put_io_context(rq->elv.icq->ioc);
496                         rq->elv.icq = NULL;
497                 }
498         }
499
500         ctx->rq_completed[rq_is_sync(rq)]++;
501         if (rq->rq_flags & RQF_MQ_INFLIGHT)
502                 atomic_dec(&hctx->nr_active);
503
504         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505                 laptop_io_completion(q->backing_dev_info);
506
507         rq_qos_done(q, rq);
508
509         if (blk_rq_rl(rq))
510                 blk_put_rl(blk_rq_rl(rq));
511
512         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513         if (refcount_dec_and_test(&rq->ref))
514                 __blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520         u64 now = ktime_get_ns();
521
522         if (rq->rq_flags & RQF_STATS) {
523                 blk_mq_poll_stats_start(rq->q);
524                 blk_stat_add(rq, now);
525         }
526
527         blk_account_io_done(rq, now);
528
529         if (rq->end_io) {
530                 rq_qos_done(rq->q, rq);
531                 rq->end_io(rq, error);
532         } else {
533                 if (unlikely(blk_bidi_rq(rq)))
534                         blk_mq_free_request(rq->next_rq);
535                 blk_mq_free_request(rq);
536         }
537 }
538 EXPORT_SYMBOL(__blk_mq_end_request);
539
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543                 BUG();
544         __blk_mq_end_request(rq, error);
545 }
546 EXPORT_SYMBOL(blk_mq_end_request);
547
548 static void __blk_mq_complete_request_remote(void *data)
549 {
550         struct request *rq = data;
551
552         rq->q->softirq_done_fn(rq);
553 }
554
555 static void __blk_mq_complete_request(struct request *rq)
556 {
557         struct blk_mq_ctx *ctx = rq->mq_ctx;
558         bool shared = false;
559         int cpu;
560
561         if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
562                         MQ_RQ_IN_FLIGHT)
563                 return;
564
565         if (rq->internal_tag != -1)
566                 blk_mq_sched_completed_request(rq);
567
568         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569                 rq->q->softirq_done_fn(rq);
570                 return;
571         }
572
573         cpu = get_cpu();
574         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575                 shared = cpus_share_cache(cpu, ctx->cpu);
576
577         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578                 rq->csd.func = __blk_mq_complete_request_remote;
579                 rq->csd.info = rq;
580                 rq->csd.flags = 0;
581                 smp_call_function_single_async(ctx->cpu, &rq->csd);
582         } else {
583                 rq->q->softirq_done_fn(rq);
584         }
585         put_cpu();
586 }
587
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589         __releases(hctx->srcu)
590 {
591         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592                 rcu_read_unlock();
593         else
594                 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598         __acquires(hctx->srcu)
599 {
600         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601                 /* shut up gcc false positive */
602                 *srcu_idx = 0;
603                 rcu_read_lock();
604         } else
605                 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:         the request being processed
611  *
612  * Description:
613  *      Ends all I/O on a request. It does not handle partial completions.
614  *      The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618         if (unlikely(blk_should_fake_timeout(rq->q)))
619                 return;
620         __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
624 int blk_mq_request_started(struct request *rq)
625 {
626         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
630 void blk_mq_start_request(struct request *rq)
631 {
632         struct request_queue *q = rq->q;
633
634         blk_mq_sched_started_request(rq);
635
636         trace_block_rq_issue(q, rq);
637
638         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639                 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641                 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643                 rq->rq_flags |= RQF_STATS;
644                 rq_qos_issue(q, rq);
645         }
646
647         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649         blk_add_timer(rq);
650         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652         if (q->dma_drain_size && blk_rq_bytes(rq)) {
653                 /*
654                  * Make sure space for the drain appears.  We know we can do
655                  * this because max_hw_segments has been adjusted to be one
656                  * fewer than the device can handle.
657                  */
658                 rq->nr_phys_segments++;
659         }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665         struct request_queue *q = rq->q;
666
667         blk_mq_put_driver_tag(rq);
668
669         trace_block_rq_requeue(q, rq);
670         rq_qos_requeue(q, rq);
671
672         if (blk_mq_request_started(rq)) {
673                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674                 rq->rq_flags &= ~RQF_TIMED_OUT;
675                 if (q->dma_drain_size && blk_rq_bytes(rq))
676                         rq->nr_phys_segments--;
677         }
678 }
679
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682         __blk_mq_requeue_request(rq);
683
684         /* this request will be re-inserted to io scheduler queue */
685         blk_mq_sched_requeue_request(rq);
686
687         BUG_ON(blk_queued_rq(rq));
688         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694         struct request_queue *q =
695                 container_of(work, struct request_queue, requeue_work.work);
696         LIST_HEAD(rq_list);
697         struct request *rq, *next;
698
699         spin_lock_irq(&q->requeue_lock);
700         list_splice_init(&q->requeue_list, &rq_list);
701         spin_unlock_irq(&q->requeue_lock);
702
703         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
705                         continue;
706
707                 rq->rq_flags &= ~RQF_SOFTBARRIER;
708                 list_del_init(&rq->queuelist);
709                 blk_mq_sched_insert_request(rq, true, false, false);
710         }
711
712         while (!list_empty(&rq_list)) {
713                 rq = list_entry(rq_list.next, struct request, queuelist);
714                 list_del_init(&rq->queuelist);
715                 blk_mq_sched_insert_request(rq, false, false, false);
716         }
717
718         blk_mq_run_hw_queues(q, false);
719 }
720
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722                                 bool kick_requeue_list)
723 {
724         struct request_queue *q = rq->q;
725         unsigned long flags;
726
727         /*
728          * We abuse this flag that is otherwise used by the I/O scheduler to
729          * request head insertion from the workqueue.
730          */
731         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732
733         spin_lock_irqsave(&q->requeue_lock, flags);
734         if (at_head) {
735                 rq->rq_flags |= RQF_SOFTBARRIER;
736                 list_add(&rq->queuelist, &q->requeue_list);
737         } else {
738                 list_add_tail(&rq->queuelist, &q->requeue_list);
739         }
740         spin_unlock_irqrestore(&q->requeue_lock, flags);
741
742         if (kick_requeue_list)
743                 blk_mq_kick_requeue_list(q);
744 }
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
746
747 void blk_mq_kick_requeue_list(struct request_queue *q)
748 {
749         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 }
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
752
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754                                     unsigned long msecs)
755 {
756         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757                                     msecs_to_jiffies(msecs));
758 }
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
760
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
762 {
763         if (tag < tags->nr_tags) {
764                 prefetch(tags->rqs[tag]);
765                 return tags->rqs[tag];
766         }
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
771
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773 {
774         req->rq_flags |= RQF_TIMED_OUT;
775         if (req->q->mq_ops->timeout) {
776                 enum blk_eh_timer_return ret;
777
778                 ret = req->q->mq_ops->timeout(req, reserved);
779                 if (ret == BLK_EH_DONE)
780                         return;
781                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782         }
783
784         blk_add_timer(req);
785 }
786
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
788 {
789         unsigned long deadline;
790
791         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
792                 return false;
793         if (rq->rq_flags & RQF_TIMED_OUT)
794                 return false;
795
796         deadline = blk_rq_deadline(rq);
797         if (time_after_eq(jiffies, deadline))
798                 return true;
799
800         if (*next == 0)
801                 *next = deadline;
802         else if (time_after(*next, deadline))
803                 *next = deadline;
804         return false;
805 }
806
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808                 struct request *rq, void *priv, bool reserved)
809 {
810         unsigned long *next = priv;
811
812         /*
813          * Just do a quick check if it is expired before locking the request in
814          * so we're not unnecessarilly synchronizing across CPUs.
815          */
816         if (!blk_mq_req_expired(rq, next))
817                 return;
818
819         /*
820          * We have reason to believe the request may be expired. Take a
821          * reference on the request to lock this request lifetime into its
822          * currently allocated context to prevent it from being reallocated in
823          * the event the completion by-passes this timeout handler.
824          *
825          * If the reference was already released, then the driver beat the
826          * timeout handler to posting a natural completion.
827          */
828         if (!refcount_inc_not_zero(&rq->ref))
829                 return;
830
831         /*
832          * The request is now locked and cannot be reallocated underneath the
833          * timeout handler's processing. Re-verify this exact request is truly
834          * expired; if it is not expired, then the request was completed and
835          * reallocated as a new request.
836          */
837         if (blk_mq_req_expired(rq, next))
838                 blk_mq_rq_timed_out(rq, reserved);
839         if (refcount_dec_and_test(&rq->ref))
840                 __blk_mq_free_request(rq);
841 }
842
843 static void blk_mq_timeout_work(struct work_struct *work)
844 {
845         struct request_queue *q =
846                 container_of(work, struct request_queue, timeout_work);
847         unsigned long next = 0;
848         struct blk_mq_hw_ctx *hctx;
849         int i;
850
851         /* A deadlock might occur if a request is stuck requiring a
852          * timeout at the same time a queue freeze is waiting
853          * completion, since the timeout code would not be able to
854          * acquire the queue reference here.
855          *
856          * That's why we don't use blk_queue_enter here; instead, we use
857          * percpu_ref_tryget directly, because we need to be able to
858          * obtain a reference even in the short window between the queue
859          * starting to freeze, by dropping the first reference in
860          * blk_freeze_queue_start, and the moment the last request is
861          * consumed, marked by the instant q_usage_counter reaches
862          * zero.
863          */
864         if (!percpu_ref_tryget(&q->q_usage_counter))
865                 return;
866
867         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
868
869         if (next != 0) {
870                 mod_timer(&q->timeout, next);
871         } else {
872                 /*
873                  * Request timeouts are handled as a forward rolling timer. If
874                  * we end up here it means that no requests are pending and
875                  * also that no request has been pending for a while. Mark
876                  * each hctx as idle.
877                  */
878                 queue_for_each_hw_ctx(q, hctx, i) {
879                         /* the hctx may be unmapped, so check it here */
880                         if (blk_mq_hw_queue_mapped(hctx))
881                                 blk_mq_tag_idle(hctx);
882                 }
883         }
884         blk_queue_exit(q);
885 }
886
887 struct flush_busy_ctx_data {
888         struct blk_mq_hw_ctx *hctx;
889         struct list_head *list;
890 };
891
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894         struct flush_busy_ctx_data *flush_data = data;
895         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898         spin_lock(&ctx->lock);
899         list_splice_tail_init(&ctx->rq_list, flush_data->list);
900         sbitmap_clear_bit(sb, bitnr);
901         spin_unlock(&ctx->lock);
902         return true;
903 }
904
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911         struct flush_busy_ctx_data data = {
912                 .hctx = hctx,
913                 .list = list,
914         };
915
916         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919
920 struct dispatch_rq_data {
921         struct blk_mq_hw_ctx *hctx;
922         struct request *rq;
923 };
924
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926                 void *data)
927 {
928         struct dispatch_rq_data *dispatch_data = data;
929         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932         spin_lock(&ctx->lock);
933         if (!list_empty(&ctx->rq_list)) {
934                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935                 list_del_init(&dispatch_data->rq->queuelist);
936                 if (list_empty(&ctx->rq_list))
937                         sbitmap_clear_bit(sb, bitnr);
938         }
939         spin_unlock(&ctx->lock);
940
941         return !dispatch_data->rq;
942 }
943
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945                                         struct blk_mq_ctx *start)
946 {
947         unsigned off = start ? start->index_hw : 0;
948         struct dispatch_rq_data data = {
949                 .hctx = hctx,
950                 .rq   = NULL,
951         };
952
953         __sbitmap_for_each_set(&hctx->ctx_map, off,
954                                dispatch_rq_from_ctx, &data);
955
956         return data.rq;
957 }
958
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961         if (!queued)
962                 return 0;
963
964         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966
967 bool blk_mq_get_driver_tag(struct request *rq)
968 {
969         struct blk_mq_alloc_data data = {
970                 .q = rq->q,
971                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972                 .flags = BLK_MQ_REQ_NOWAIT,
973         };
974
975         if (rq->tag != -1)
976                 goto done;
977
978         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
979                 data.flags |= BLK_MQ_REQ_RESERVED;
980
981         rq->tag = blk_mq_get_tag(&data);
982         if (rq->tag >= 0) {
983                 if (blk_mq_tag_busy(data.hctx)) {
984                         rq->rq_flags |= RQF_MQ_INFLIGHT;
985                         atomic_inc(&data.hctx->nr_active);
986                 }
987                 data.hctx->tags->rqs[rq->tag] = rq;
988         }
989
990 done:
991         return rq->tag != -1;
992 }
993
994 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
995                                 int flags, void *key)
996 {
997         struct blk_mq_hw_ctx *hctx;
998
999         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1000
1001         spin_lock(&hctx->dispatch_wait_lock);
1002         list_del_init(&wait->entry);
1003         spin_unlock(&hctx->dispatch_wait_lock);
1004
1005         blk_mq_run_hw_queue(hctx, true);
1006         return 1;
1007 }
1008
1009 /*
1010  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1012  * restart. For both cases, take care to check the condition again after
1013  * marking us as waiting.
1014  */
1015 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1016                                  struct request *rq)
1017 {
1018         struct wait_queue_head *wq;
1019         wait_queue_entry_t *wait;
1020         bool ret;
1021
1022         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1023                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1024                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1025
1026                 /*
1027                  * It's possible that a tag was freed in the window between the
1028                  * allocation failure and adding the hardware queue to the wait
1029                  * queue.
1030                  *
1031                  * Don't clear RESTART here, someone else could have set it.
1032                  * At most this will cost an extra queue run.
1033                  */
1034                 return blk_mq_get_driver_tag(rq);
1035         }
1036
1037         wait = &hctx->dispatch_wait;
1038         if (!list_empty_careful(&wait->entry))
1039                 return false;
1040
1041         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1042
1043         spin_lock_irq(&wq->lock);
1044         spin_lock(&hctx->dispatch_wait_lock);
1045         if (!list_empty(&wait->entry)) {
1046                 spin_unlock(&hctx->dispatch_wait_lock);
1047                 spin_unlock_irq(&wq->lock);
1048                 return false;
1049         }
1050
1051         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1052         __add_wait_queue(wq, wait);
1053
1054         /*
1055          * It's possible that a tag was freed in the window between the
1056          * allocation failure and adding the hardware queue to the wait
1057          * queue.
1058          */
1059         ret = blk_mq_get_driver_tag(rq);
1060         if (!ret) {
1061                 spin_unlock(&hctx->dispatch_wait_lock);
1062                 spin_unlock_irq(&wq->lock);
1063                 return false;
1064         }
1065
1066         /*
1067          * We got a tag, remove ourselves from the wait queue to ensure
1068          * someone else gets the wakeup.
1069          */
1070         list_del_init(&wait->entry);
1071         spin_unlock(&hctx->dispatch_wait_lock);
1072         spin_unlock_irq(&wq->lock);
1073
1074         return true;
1075 }
1076
1077 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1078 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1079 /*
1080  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1081  * - EWMA is one simple way to compute running average value
1082  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1083  * - take 4 as factor for avoiding to get too small(0) result, and this
1084  *   factor doesn't matter because EWMA decreases exponentially
1085  */
1086 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1087 {
1088         unsigned int ewma;
1089
1090         if (hctx->queue->elevator)
1091                 return;
1092
1093         ewma = hctx->dispatch_busy;
1094
1095         if (!ewma && !busy)
1096                 return;
1097
1098         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1099         if (busy)
1100                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1101         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1102
1103         hctx->dispatch_busy = ewma;
1104 }
1105
1106 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1107
1108 /*
1109  * Returns true if we did some work AND can potentially do more.
1110  */
1111 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1112                              bool got_budget)
1113 {
1114         struct blk_mq_hw_ctx *hctx;
1115         struct request *rq, *nxt;
1116         bool no_tag = false;
1117         int errors, queued;
1118         blk_status_t ret = BLK_STS_OK;
1119
1120         if (list_empty(list))
1121                 return false;
1122
1123         WARN_ON(!list_is_singular(list) && got_budget);
1124
1125         /*
1126          * Now process all the entries, sending them to the driver.
1127          */
1128         errors = queued = 0;
1129         do {
1130                 struct blk_mq_queue_data bd;
1131
1132                 rq = list_first_entry(list, struct request, queuelist);
1133
1134                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1135                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1136                         break;
1137
1138                 if (!blk_mq_get_driver_tag(rq)) {
1139                         /*
1140                          * The initial allocation attempt failed, so we need to
1141                          * rerun the hardware queue when a tag is freed. The
1142                          * waitqueue takes care of that. If the queue is run
1143                          * before we add this entry back on the dispatch list,
1144                          * we'll re-run it below.
1145                          */
1146                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1147                                 blk_mq_put_dispatch_budget(hctx);
1148                                 /*
1149                                  * For non-shared tags, the RESTART check
1150                                  * will suffice.
1151                                  */
1152                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1153                                         no_tag = true;
1154                                 break;
1155                         }
1156                 }
1157
1158                 list_del_init(&rq->queuelist);
1159
1160                 bd.rq = rq;
1161
1162                 /*
1163                  * Flag last if we have no more requests, or if we have more
1164                  * but can't assign a driver tag to it.
1165                  */
1166                 if (list_empty(list))
1167                         bd.last = true;
1168                 else {
1169                         nxt = list_first_entry(list, struct request, queuelist);
1170                         bd.last = !blk_mq_get_driver_tag(nxt);
1171                 }
1172
1173                 ret = q->mq_ops->queue_rq(hctx, &bd);
1174                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1175                         /*
1176                          * If an I/O scheduler has been configured and we got a
1177                          * driver tag for the next request already, free it
1178                          * again.
1179                          */
1180                         if (!list_empty(list)) {
1181                                 nxt = list_first_entry(list, struct request, queuelist);
1182                                 blk_mq_put_driver_tag(nxt);
1183                         }
1184                         list_add(&rq->queuelist, list);
1185                         __blk_mq_requeue_request(rq);
1186                         break;
1187                 }
1188
1189                 if (unlikely(ret != BLK_STS_OK)) {
1190                         errors++;
1191                         blk_mq_end_request(rq, BLK_STS_IOERR);
1192                         continue;
1193                 }
1194
1195                 queued++;
1196         } while (!list_empty(list));
1197
1198         hctx->dispatched[queued_to_index(queued)]++;
1199
1200         /*
1201          * Any items that need requeuing? Stuff them into hctx->dispatch,
1202          * that is where we will continue on next queue run.
1203          */
1204         if (!list_empty(list)) {
1205                 bool needs_restart;
1206
1207                 spin_lock(&hctx->lock);
1208                 list_splice_init(list, &hctx->dispatch);
1209                 spin_unlock(&hctx->lock);
1210
1211                 /*
1212                  * If SCHED_RESTART was set by the caller of this function and
1213                  * it is no longer set that means that it was cleared by another
1214                  * thread and hence that a queue rerun is needed.
1215                  *
1216                  * If 'no_tag' is set, that means that we failed getting
1217                  * a driver tag with an I/O scheduler attached. If our dispatch
1218                  * waitqueue is no longer active, ensure that we run the queue
1219                  * AFTER adding our entries back to the list.
1220                  *
1221                  * If no I/O scheduler has been configured it is possible that
1222                  * the hardware queue got stopped and restarted before requests
1223                  * were pushed back onto the dispatch list. Rerun the queue to
1224                  * avoid starvation. Notes:
1225                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1226                  *   been stopped before rerunning a queue.
1227                  * - Some but not all block drivers stop a queue before
1228                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1229                  *   and dm-rq.
1230                  *
1231                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1232                  * bit is set, run queue after a delay to avoid IO stalls
1233                  * that could otherwise occur if the queue is idle.
1234                  */
1235                 needs_restart = blk_mq_sched_needs_restart(hctx);
1236                 if (!needs_restart ||
1237                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1238                         blk_mq_run_hw_queue(hctx, true);
1239                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1240                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1241
1242                 blk_mq_update_dispatch_busy(hctx, true);
1243                 return false;
1244         } else
1245                 blk_mq_update_dispatch_busy(hctx, false);
1246
1247         /*
1248          * If the host/device is unable to accept more work, inform the
1249          * caller of that.
1250          */
1251         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1252                 return false;
1253
1254         return (queued + errors) != 0;
1255 }
1256
1257 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1258 {
1259         int srcu_idx;
1260
1261         /*
1262          * We should be running this queue from one of the CPUs that
1263          * are mapped to it.
1264          *
1265          * There are at least two related races now between setting
1266          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1267          * __blk_mq_run_hw_queue():
1268          *
1269          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1270          *   but later it becomes online, then this warning is harmless
1271          *   at all
1272          *
1273          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1274          *   but later it becomes offline, then the warning can't be
1275          *   triggered, and we depend on blk-mq timeout handler to
1276          *   handle dispatched requests to this hctx
1277          */
1278         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1279                 cpu_online(hctx->next_cpu)) {
1280                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1281                         raw_smp_processor_id(),
1282                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1283                 dump_stack();
1284         }
1285
1286         /*
1287          * We can't run the queue inline with ints disabled. Ensure that
1288          * we catch bad users of this early.
1289          */
1290         WARN_ON_ONCE(in_interrupt());
1291
1292         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1293
1294         hctx_lock(hctx, &srcu_idx);
1295         blk_mq_sched_dispatch_requests(hctx);
1296         hctx_unlock(hctx, srcu_idx);
1297 }
1298
1299 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1300 {
1301         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1302
1303         if (cpu >= nr_cpu_ids)
1304                 cpu = cpumask_first(hctx->cpumask);
1305         return cpu;
1306 }
1307
1308 /*
1309  * It'd be great if the workqueue API had a way to pass
1310  * in a mask and had some smarts for more clever placement.
1311  * For now we just round-robin here, switching for every
1312  * BLK_MQ_CPU_WORK_BATCH queued items.
1313  */
1314 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1315 {
1316         bool tried = false;
1317         int next_cpu = hctx->next_cpu;
1318
1319         if (hctx->queue->nr_hw_queues == 1)
1320                 return WORK_CPU_UNBOUND;
1321
1322         if (--hctx->next_cpu_batch <= 0) {
1323 select_cpu:
1324                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1325                                 cpu_online_mask);
1326                 if (next_cpu >= nr_cpu_ids)
1327                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1328                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1329         }
1330
1331         /*
1332          * Do unbound schedule if we can't find a online CPU for this hctx,
1333          * and it should only happen in the path of handling CPU DEAD.
1334          */
1335         if (!cpu_online(next_cpu)) {
1336                 if (!tried) {
1337                         tried = true;
1338                         goto select_cpu;
1339                 }
1340
1341                 /*
1342                  * Make sure to re-select CPU next time once after CPUs
1343                  * in hctx->cpumask become online again.
1344                  */
1345                 hctx->next_cpu = next_cpu;
1346                 hctx->next_cpu_batch = 1;
1347                 return WORK_CPU_UNBOUND;
1348         }
1349
1350         hctx->next_cpu = next_cpu;
1351         return next_cpu;
1352 }
1353
1354 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1355                                         unsigned long msecs)
1356 {
1357         if (unlikely(blk_mq_hctx_stopped(hctx)))
1358                 return;
1359
1360         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1361                 int cpu = get_cpu();
1362                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1363                         __blk_mq_run_hw_queue(hctx);
1364                         put_cpu();
1365                         return;
1366                 }
1367
1368                 put_cpu();
1369         }
1370
1371         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1372                                     msecs_to_jiffies(msecs));
1373 }
1374
1375 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1376 {
1377         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1378 }
1379 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1380
1381 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1382 {
1383         int srcu_idx;
1384         bool need_run;
1385
1386         /*
1387          * When queue is quiesced, we may be switching io scheduler, or
1388          * updating nr_hw_queues, or other things, and we can't run queue
1389          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1390          *
1391          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1392          * quiesced.
1393          */
1394         hctx_lock(hctx, &srcu_idx);
1395         need_run = !blk_queue_quiesced(hctx->queue) &&
1396                 blk_mq_hctx_has_pending(hctx);
1397         hctx_unlock(hctx, srcu_idx);
1398
1399         if (need_run) {
1400                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1401                 return true;
1402         }
1403
1404         return false;
1405 }
1406 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1407
1408 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1409 {
1410         struct blk_mq_hw_ctx *hctx;
1411         int i;
1412
1413         queue_for_each_hw_ctx(q, hctx, i) {
1414                 if (blk_mq_hctx_stopped(hctx))
1415                         continue;
1416
1417                 blk_mq_run_hw_queue(hctx, async);
1418         }
1419 }
1420 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1421
1422 /**
1423  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1424  * @q: request queue.
1425  *
1426  * The caller is responsible for serializing this function against
1427  * blk_mq_{start,stop}_hw_queue().
1428  */
1429 bool blk_mq_queue_stopped(struct request_queue *q)
1430 {
1431         struct blk_mq_hw_ctx *hctx;
1432         int i;
1433
1434         queue_for_each_hw_ctx(q, hctx, i)
1435                 if (blk_mq_hctx_stopped(hctx))
1436                         return true;
1437
1438         return false;
1439 }
1440 EXPORT_SYMBOL(blk_mq_queue_stopped);
1441
1442 /*
1443  * This function is often used for pausing .queue_rq() by driver when
1444  * there isn't enough resource or some conditions aren't satisfied, and
1445  * BLK_STS_RESOURCE is usually returned.
1446  *
1447  * We do not guarantee that dispatch can be drained or blocked
1448  * after blk_mq_stop_hw_queue() returns. Please use
1449  * blk_mq_quiesce_queue() for that requirement.
1450  */
1451 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1452 {
1453         cancel_delayed_work(&hctx->run_work);
1454
1455         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1456 }
1457 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1458
1459 /*
1460  * This function is often used for pausing .queue_rq() by driver when
1461  * there isn't enough resource or some conditions aren't satisfied, and
1462  * BLK_STS_RESOURCE is usually returned.
1463  *
1464  * We do not guarantee that dispatch can be drained or blocked
1465  * after blk_mq_stop_hw_queues() returns. Please use
1466  * blk_mq_quiesce_queue() for that requirement.
1467  */
1468 void blk_mq_stop_hw_queues(struct request_queue *q)
1469 {
1470         struct blk_mq_hw_ctx *hctx;
1471         int i;
1472
1473         queue_for_each_hw_ctx(q, hctx, i)
1474                 blk_mq_stop_hw_queue(hctx);
1475 }
1476 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1477
1478 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1479 {
1480         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1481
1482         blk_mq_run_hw_queue(hctx, false);
1483 }
1484 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1485
1486 void blk_mq_start_hw_queues(struct request_queue *q)
1487 {
1488         struct blk_mq_hw_ctx *hctx;
1489         int i;
1490
1491         queue_for_each_hw_ctx(q, hctx, i)
1492                 blk_mq_start_hw_queue(hctx);
1493 }
1494 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1495
1496 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1497 {
1498         if (!blk_mq_hctx_stopped(hctx))
1499                 return;
1500
1501         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1502         blk_mq_run_hw_queue(hctx, async);
1503 }
1504 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1505
1506 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1507 {
1508         struct blk_mq_hw_ctx *hctx;
1509         int i;
1510
1511         queue_for_each_hw_ctx(q, hctx, i)
1512                 blk_mq_start_stopped_hw_queue(hctx, async);
1513 }
1514 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1515
1516 static void blk_mq_run_work_fn(struct work_struct *work)
1517 {
1518         struct blk_mq_hw_ctx *hctx;
1519
1520         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1521
1522         /*
1523          * If we are stopped, don't run the queue.
1524          */
1525         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1526                 return;
1527
1528         __blk_mq_run_hw_queue(hctx);
1529 }
1530
1531 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1532                                             struct request *rq,
1533                                             bool at_head)
1534 {
1535         struct blk_mq_ctx *ctx = rq->mq_ctx;
1536
1537         lockdep_assert_held(&ctx->lock);
1538
1539         trace_block_rq_insert(hctx->queue, rq);
1540
1541         if (at_head)
1542                 list_add(&rq->queuelist, &ctx->rq_list);
1543         else
1544                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1545 }
1546
1547 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1548                              bool at_head)
1549 {
1550         struct blk_mq_ctx *ctx = rq->mq_ctx;
1551
1552         lockdep_assert_held(&ctx->lock);
1553
1554         __blk_mq_insert_req_list(hctx, rq, at_head);
1555         blk_mq_hctx_mark_pending(hctx, ctx);
1556 }
1557
1558 /*
1559  * Should only be used carefully, when the caller knows we want to
1560  * bypass a potential IO scheduler on the target device.
1561  */
1562 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1563 {
1564         struct blk_mq_ctx *ctx = rq->mq_ctx;
1565         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1566
1567         spin_lock(&hctx->lock);
1568         list_add_tail(&rq->queuelist, &hctx->dispatch);
1569         spin_unlock(&hctx->lock);
1570
1571         if (run_queue)
1572                 blk_mq_run_hw_queue(hctx, false);
1573 }
1574
1575 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1576                             struct list_head *list)
1577
1578 {
1579         struct request *rq;
1580
1581         /*
1582          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1583          * offline now
1584          */
1585         list_for_each_entry(rq, list, queuelist) {
1586                 BUG_ON(rq->mq_ctx != ctx);
1587                 trace_block_rq_insert(hctx->queue, rq);
1588         }
1589
1590         spin_lock(&ctx->lock);
1591         list_splice_tail_init(list, &ctx->rq_list);
1592         blk_mq_hctx_mark_pending(hctx, ctx);
1593         spin_unlock(&ctx->lock);
1594 }
1595
1596 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1597 {
1598         struct request *rqa = container_of(a, struct request, queuelist);
1599         struct request *rqb = container_of(b, struct request, queuelist);
1600
1601         return !(rqa->mq_ctx < rqb->mq_ctx ||
1602                  (rqa->mq_ctx == rqb->mq_ctx &&
1603                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1604 }
1605
1606 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1607 {
1608         struct blk_mq_ctx *this_ctx;
1609         struct request_queue *this_q;
1610         struct request *rq;
1611         LIST_HEAD(list);
1612         LIST_HEAD(ctx_list);
1613         unsigned int depth;
1614
1615         list_splice_init(&plug->mq_list, &list);
1616
1617         list_sort(NULL, &list, plug_ctx_cmp);
1618
1619         this_q = NULL;
1620         this_ctx = NULL;
1621         depth = 0;
1622
1623         while (!list_empty(&list)) {
1624                 rq = list_entry_rq(list.next);
1625                 list_del_init(&rq->queuelist);
1626                 BUG_ON(!rq->q);
1627                 if (rq->mq_ctx != this_ctx) {
1628                         if (this_ctx) {
1629                                 trace_block_unplug(this_q, depth, from_schedule);
1630                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1631                                                                 &ctx_list,
1632                                                                 from_schedule);
1633                         }
1634
1635                         this_ctx = rq->mq_ctx;
1636                         this_q = rq->q;
1637                         depth = 0;
1638                 }
1639
1640                 depth++;
1641                 list_add_tail(&rq->queuelist, &ctx_list);
1642         }
1643
1644         /*
1645          * If 'this_ctx' is set, we know we have entries to complete
1646          * on 'ctx_list'. Do those.
1647          */
1648         if (this_ctx) {
1649                 trace_block_unplug(this_q, depth, from_schedule);
1650                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1651                                                 from_schedule);
1652         }
1653 }
1654
1655 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1656 {
1657         blk_init_request_from_bio(rq, bio);
1658
1659         blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1660
1661         blk_account_io_start(rq, true);
1662 }
1663
1664 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1665 {
1666         if (rq->tag != -1)
1667                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1668
1669         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1670 }
1671
1672 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1673                                             struct request *rq,
1674                                             blk_qc_t *cookie)
1675 {
1676         struct request_queue *q = rq->q;
1677         struct blk_mq_queue_data bd = {
1678                 .rq = rq,
1679                 .last = true,
1680         };
1681         blk_qc_t new_cookie;
1682         blk_status_t ret;
1683
1684         new_cookie = request_to_qc_t(hctx, rq);
1685
1686         /*
1687          * For OK queue, we are done. For error, caller may kill it.
1688          * Any other error (busy), just add it to our list as we
1689          * previously would have done.
1690          */
1691         ret = q->mq_ops->queue_rq(hctx, &bd);
1692         switch (ret) {
1693         case BLK_STS_OK:
1694                 *cookie = new_cookie;
1695                 break;
1696         case BLK_STS_RESOURCE:
1697         case BLK_STS_DEV_RESOURCE:
1698                 __blk_mq_requeue_request(rq);
1699                 break;
1700         default:
1701                 *cookie = BLK_QC_T_NONE;
1702                 break;
1703         }
1704
1705         return ret;
1706 }
1707
1708 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1709                                                 struct request *rq,
1710                                                 blk_qc_t *cookie,
1711                                                 bool bypass_insert)
1712 {
1713         struct request_queue *q = rq->q;
1714         bool run_queue = true;
1715
1716         /*
1717          * RCU or SRCU read lock is needed before checking quiesced flag.
1718          *
1719          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1720          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1721          * and avoid driver to try to dispatch again.
1722          */
1723         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1724                 run_queue = false;
1725                 bypass_insert = false;
1726                 goto insert;
1727         }
1728
1729         if (q->elevator && !bypass_insert)
1730                 goto insert;
1731
1732         if (!blk_mq_get_dispatch_budget(hctx))
1733                 goto insert;
1734
1735         if (!blk_mq_get_driver_tag(rq)) {
1736                 blk_mq_put_dispatch_budget(hctx);
1737                 goto insert;
1738         }
1739
1740         return __blk_mq_issue_directly(hctx, rq, cookie);
1741 insert:
1742         if (bypass_insert)
1743                 return BLK_STS_RESOURCE;
1744
1745         blk_mq_sched_insert_request(rq, false, run_queue, false);
1746         return BLK_STS_OK;
1747 }
1748
1749 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1750                 struct request *rq, blk_qc_t *cookie)
1751 {
1752         blk_status_t ret;
1753         int srcu_idx;
1754
1755         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1756
1757         hctx_lock(hctx, &srcu_idx);
1758
1759         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1760         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1761                 blk_mq_sched_insert_request(rq, false, true, false);
1762         else if (ret != BLK_STS_OK)
1763                 blk_mq_end_request(rq, ret);
1764
1765         hctx_unlock(hctx, srcu_idx);
1766 }
1767
1768 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1769 {
1770         blk_status_t ret;
1771         int srcu_idx;
1772         blk_qc_t unused_cookie;
1773         struct blk_mq_ctx *ctx = rq->mq_ctx;
1774         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1775
1776         hctx_lock(hctx, &srcu_idx);
1777         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1778         hctx_unlock(hctx, srcu_idx);
1779
1780         return ret;
1781 }
1782
1783 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1784 {
1785         const int is_sync = op_is_sync(bio->bi_opf);
1786         const int is_flush_fua = op_is_flush(bio->bi_opf);
1787         struct blk_mq_alloc_data data = { .flags = 0 };
1788         struct request *rq;
1789         unsigned int request_count = 0;
1790         struct blk_plug *plug;
1791         struct request *same_queue_rq = NULL;
1792         blk_qc_t cookie;
1793         unsigned int wb_acct;
1794
1795         blk_queue_bounce(q, &bio);
1796
1797         blk_queue_split(q, &bio);
1798
1799         if (!bio_integrity_prep(bio))
1800                 return BLK_QC_T_NONE;
1801
1802         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1803             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1804                 return BLK_QC_T_NONE;
1805
1806         if (blk_mq_sched_bio_merge(q, bio))
1807                 return BLK_QC_T_NONE;
1808
1809         wb_acct = rq_qos_throttle(q, bio, NULL);
1810
1811         trace_block_getrq(q, bio, bio->bi_opf);
1812
1813         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1814         if (unlikely(!rq)) {
1815                 rq_qos_cleanup(q, wb_acct);
1816                 if (bio->bi_opf & REQ_NOWAIT)
1817                         bio_wouldblock_error(bio);
1818                 return BLK_QC_T_NONE;
1819         }
1820
1821         wbt_track(rq, wb_acct);
1822
1823         cookie = request_to_qc_t(data.hctx, rq);
1824
1825         plug = current->plug;
1826         if (unlikely(is_flush_fua)) {
1827                 blk_mq_put_ctx(data.ctx);
1828                 blk_mq_bio_to_request(rq, bio);
1829
1830                 /* bypass scheduler for flush rq */
1831                 blk_insert_flush(rq);
1832                 blk_mq_run_hw_queue(data.hctx, true);
1833         } else if (plug && q->nr_hw_queues == 1) {
1834                 struct request *last = NULL;
1835
1836                 blk_mq_put_ctx(data.ctx);
1837                 blk_mq_bio_to_request(rq, bio);
1838
1839                 /*
1840                  * @request_count may become stale because of schedule
1841                  * out, so check the list again.
1842                  */
1843                 if (list_empty(&plug->mq_list))
1844                         request_count = 0;
1845                 else if (blk_queue_nomerges(q))
1846                         request_count = blk_plug_queued_count(q);
1847
1848                 if (!request_count)
1849                         trace_block_plug(q);
1850                 else
1851                         last = list_entry_rq(plug->mq_list.prev);
1852
1853                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1854                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1855                         blk_flush_plug_list(plug, false);
1856                         trace_block_plug(q);
1857                 }
1858
1859                 list_add_tail(&rq->queuelist, &plug->mq_list);
1860         } else if (plug && !blk_queue_nomerges(q)) {
1861                 blk_mq_bio_to_request(rq, bio);
1862
1863                 /*
1864                  * We do limited plugging. If the bio can be merged, do that.
1865                  * Otherwise the existing request in the plug list will be
1866                  * issued. So the plug list will have one request at most
1867                  * The plug list might get flushed before this. If that happens,
1868                  * the plug list is empty, and same_queue_rq is invalid.
1869                  */
1870                 if (list_empty(&plug->mq_list))
1871                         same_queue_rq = NULL;
1872                 if (same_queue_rq)
1873                         list_del_init(&same_queue_rq->queuelist);
1874                 list_add_tail(&rq->queuelist, &plug->mq_list);
1875
1876                 blk_mq_put_ctx(data.ctx);
1877
1878                 if (same_queue_rq) {
1879                         data.hctx = blk_mq_map_queue(q,
1880                                         same_queue_rq->mq_ctx->cpu);
1881                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1882                                         &cookie);
1883                 }
1884         } else if (q->nr_hw_queues > 1 && is_sync) {
1885                 blk_mq_put_ctx(data.ctx);
1886                 blk_mq_bio_to_request(rq, bio);
1887                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1888         } else {
1889                 blk_mq_put_ctx(data.ctx);
1890                 blk_mq_bio_to_request(rq, bio);
1891                 blk_mq_sched_insert_request(rq, false, true, true);
1892         }
1893
1894         return cookie;
1895 }
1896
1897 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1898                      unsigned int hctx_idx)
1899 {
1900         struct page *page;
1901
1902         if (tags->rqs && set->ops->exit_request) {
1903                 int i;
1904
1905                 for (i = 0; i < tags->nr_tags; i++) {
1906                         struct request *rq = tags->static_rqs[i];
1907
1908                         if (!rq)
1909                                 continue;
1910                         set->ops->exit_request(set, rq, hctx_idx);
1911                         tags->static_rqs[i] = NULL;
1912                 }
1913         }
1914
1915         while (!list_empty(&tags->page_list)) {
1916                 page = list_first_entry(&tags->page_list, struct page, lru);
1917                 list_del_init(&page->lru);
1918                 /*
1919                  * Remove kmemleak object previously allocated in
1920                  * blk_mq_init_rq_map().
1921                  */
1922                 kmemleak_free(page_address(page));
1923                 __free_pages(page, page->private);
1924         }
1925 }
1926
1927 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1928 {
1929         kfree(tags->rqs);
1930         tags->rqs = NULL;
1931         kfree(tags->static_rqs);
1932         tags->static_rqs = NULL;
1933
1934         blk_mq_free_tags(tags);
1935 }
1936
1937 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1938                                         unsigned int hctx_idx,
1939                                         unsigned int nr_tags,
1940                                         unsigned int reserved_tags)
1941 {
1942         struct blk_mq_tags *tags;
1943         int node;
1944
1945         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1946         if (node == NUMA_NO_NODE)
1947                 node = set->numa_node;
1948
1949         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1950                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1951         if (!tags)
1952                 return NULL;
1953
1954         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1955                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1956                                  node);
1957         if (!tags->rqs) {
1958                 blk_mq_free_tags(tags);
1959                 return NULL;
1960         }
1961
1962         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1963                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1964                                         node);
1965         if (!tags->static_rqs) {
1966                 kfree(tags->rqs);
1967                 blk_mq_free_tags(tags);
1968                 return NULL;
1969         }
1970
1971         return tags;
1972 }
1973
1974 static size_t order_to_size(unsigned int order)
1975 {
1976         return (size_t)PAGE_SIZE << order;
1977 }
1978
1979 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1980                                unsigned int hctx_idx, int node)
1981 {
1982         int ret;
1983
1984         if (set->ops->init_request) {
1985                 ret = set->ops->init_request(set, rq, hctx_idx, node);
1986                 if (ret)
1987                         return ret;
1988         }
1989
1990         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1991         return 0;
1992 }
1993
1994 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1995                      unsigned int hctx_idx, unsigned int depth)
1996 {
1997         unsigned int i, j, entries_per_page, max_order = 4;
1998         size_t rq_size, left;
1999         int node;
2000
2001         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2002         if (node == NUMA_NO_NODE)
2003                 node = set->numa_node;
2004
2005         INIT_LIST_HEAD(&tags->page_list);
2006
2007         /*
2008          * rq_size is the size of the request plus driver payload, rounded
2009          * to the cacheline size
2010          */
2011         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2012                                 cache_line_size());
2013         left = rq_size * depth;
2014
2015         for (i = 0; i < depth; ) {
2016                 int this_order = max_order;
2017                 struct page *page;
2018                 int to_do;
2019                 void *p;
2020
2021                 while (this_order && left < order_to_size(this_order - 1))
2022                         this_order--;
2023
2024                 do {
2025                         page = alloc_pages_node(node,
2026                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2027                                 this_order);
2028                         if (page)
2029                                 break;
2030                         if (!this_order--)
2031                                 break;
2032                         if (order_to_size(this_order) < rq_size)
2033                                 break;
2034                 } while (1);
2035
2036                 if (!page)
2037                         goto fail;
2038
2039                 page->private = this_order;
2040                 list_add_tail(&page->lru, &tags->page_list);
2041
2042                 p = page_address(page);
2043                 /*
2044                  * Allow kmemleak to scan these pages as they contain pointers
2045                  * to additional allocations like via ops->init_request().
2046                  */
2047                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2048                 entries_per_page = order_to_size(this_order) / rq_size;
2049                 to_do = min(entries_per_page, depth - i);
2050                 left -= to_do * rq_size;
2051                 for (j = 0; j < to_do; j++) {
2052                         struct request *rq = p;
2053
2054                         tags->static_rqs[i] = rq;
2055                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2056                                 tags->static_rqs[i] = NULL;
2057                                 goto fail;
2058                         }
2059
2060                         p += rq_size;
2061                         i++;
2062                 }
2063         }
2064         return 0;
2065
2066 fail:
2067         blk_mq_free_rqs(set, tags, hctx_idx);
2068         return -ENOMEM;
2069 }
2070
2071 /*
2072  * 'cpu' is going away. splice any existing rq_list entries from this
2073  * software queue to the hw queue dispatch list, and ensure that it
2074  * gets run.
2075  */
2076 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2077 {
2078         struct blk_mq_hw_ctx *hctx;
2079         struct blk_mq_ctx *ctx;
2080         LIST_HEAD(tmp);
2081
2082         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2083         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2084
2085         spin_lock(&ctx->lock);
2086         if (!list_empty(&ctx->rq_list)) {
2087                 list_splice_init(&ctx->rq_list, &tmp);
2088                 blk_mq_hctx_clear_pending(hctx, ctx);
2089         }
2090         spin_unlock(&ctx->lock);
2091
2092         if (list_empty(&tmp))
2093                 return 0;
2094
2095         spin_lock(&hctx->lock);
2096         list_splice_tail_init(&tmp, &hctx->dispatch);
2097         spin_unlock(&hctx->lock);
2098
2099         blk_mq_run_hw_queue(hctx, true);
2100         return 0;
2101 }
2102
2103 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2104 {
2105         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2106                                             &hctx->cpuhp_dead);
2107 }
2108
2109 /* hctx->ctxs will be freed in queue's release handler */
2110 static void blk_mq_exit_hctx(struct request_queue *q,
2111                 struct blk_mq_tag_set *set,
2112                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2113 {
2114         blk_mq_debugfs_unregister_hctx(hctx);
2115
2116         if (blk_mq_hw_queue_mapped(hctx))
2117                 blk_mq_tag_idle(hctx);
2118
2119         if (set->ops->exit_request)
2120                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2121
2122         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2123
2124         if (set->ops->exit_hctx)
2125                 set->ops->exit_hctx(hctx, hctx_idx);
2126
2127         if (hctx->flags & BLK_MQ_F_BLOCKING)
2128                 cleanup_srcu_struct(hctx->srcu);
2129
2130         blk_mq_remove_cpuhp(hctx);
2131         blk_free_flush_queue(hctx->fq);
2132         sbitmap_free(&hctx->ctx_map);
2133 }
2134
2135 static void blk_mq_exit_hw_queues(struct request_queue *q,
2136                 struct blk_mq_tag_set *set, int nr_queue)
2137 {
2138         struct blk_mq_hw_ctx *hctx;
2139         unsigned int i;
2140
2141         queue_for_each_hw_ctx(q, hctx, i) {
2142                 if (i == nr_queue)
2143                         break;
2144                 blk_mq_exit_hctx(q, set, hctx, i);
2145         }
2146 }
2147
2148 static int blk_mq_init_hctx(struct request_queue *q,
2149                 struct blk_mq_tag_set *set,
2150                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2151 {
2152         int node;
2153
2154         node = hctx->numa_node;
2155         if (node == NUMA_NO_NODE)
2156                 node = hctx->numa_node = set->numa_node;
2157
2158         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2159         spin_lock_init(&hctx->lock);
2160         INIT_LIST_HEAD(&hctx->dispatch);
2161         hctx->queue = q;
2162         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2163
2164         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2165
2166         hctx->tags = set->tags[hctx_idx];
2167
2168         /*
2169          * Allocate space for all possible cpus to avoid allocation at
2170          * runtime
2171          */
2172         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2173                                         GFP_KERNEL, node);
2174         if (!hctx->ctxs)
2175                 goto unregister_cpu_notifier;
2176
2177         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2178                               node))
2179                 goto free_ctxs;
2180
2181         hctx->nr_ctx = 0;
2182
2183         spin_lock_init(&hctx->dispatch_wait_lock);
2184         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2185         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2186
2187         if (set->ops->init_hctx &&
2188             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2189                 goto free_bitmap;
2190
2191         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2192                 goto exit_hctx;
2193
2194         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2195         if (!hctx->fq)
2196                 goto sched_exit_hctx;
2197
2198         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2199                 goto free_fq;
2200
2201         if (hctx->flags & BLK_MQ_F_BLOCKING)
2202                 init_srcu_struct(hctx->srcu);
2203
2204         blk_mq_debugfs_register_hctx(q, hctx);
2205
2206         return 0;
2207
2208  free_fq:
2209         kfree(hctx->fq);
2210  sched_exit_hctx:
2211         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2212  exit_hctx:
2213         if (set->ops->exit_hctx)
2214                 set->ops->exit_hctx(hctx, hctx_idx);
2215  free_bitmap:
2216         sbitmap_free(&hctx->ctx_map);
2217  free_ctxs:
2218         kfree(hctx->ctxs);
2219  unregister_cpu_notifier:
2220         blk_mq_remove_cpuhp(hctx);
2221         return -1;
2222 }
2223
2224 static void blk_mq_init_cpu_queues(struct request_queue *q,
2225                                    unsigned int nr_hw_queues)
2226 {
2227         unsigned int i;
2228
2229         for_each_possible_cpu(i) {
2230                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2231                 struct blk_mq_hw_ctx *hctx;
2232
2233                 __ctx->cpu = i;
2234                 spin_lock_init(&__ctx->lock);
2235                 INIT_LIST_HEAD(&__ctx->rq_list);
2236                 __ctx->queue = q;
2237
2238                 /*
2239                  * Set local node, IFF we have more than one hw queue. If
2240                  * not, we remain on the home node of the device
2241                  */
2242                 hctx = blk_mq_map_queue(q, i);
2243                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2244                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2245         }
2246 }
2247
2248 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2249 {
2250         int ret = 0;
2251
2252         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2253                                         set->queue_depth, set->reserved_tags);
2254         if (!set->tags[hctx_idx])
2255                 return false;
2256
2257         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2258                                 set->queue_depth);
2259         if (!ret)
2260                 return true;
2261
2262         blk_mq_free_rq_map(set->tags[hctx_idx]);
2263         set->tags[hctx_idx] = NULL;
2264         return false;
2265 }
2266
2267 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2268                                          unsigned int hctx_idx)
2269 {
2270         if (set->tags[hctx_idx]) {
2271                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2272                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2273                 set->tags[hctx_idx] = NULL;
2274         }
2275 }
2276
2277 static void blk_mq_map_swqueue(struct request_queue *q)
2278 {
2279         unsigned int i, hctx_idx;
2280         struct blk_mq_hw_ctx *hctx;
2281         struct blk_mq_ctx *ctx;
2282         struct blk_mq_tag_set *set = q->tag_set;
2283
2284         /*
2285          * Avoid others reading imcomplete hctx->cpumask through sysfs
2286          */
2287         mutex_lock(&q->sysfs_lock);
2288
2289         queue_for_each_hw_ctx(q, hctx, i) {
2290                 cpumask_clear(hctx->cpumask);
2291                 hctx->nr_ctx = 0;
2292                 hctx->dispatch_from = NULL;
2293         }
2294
2295         /*
2296          * Map software to hardware queues.
2297          *
2298          * If the cpu isn't present, the cpu is mapped to first hctx.
2299          */
2300         for_each_possible_cpu(i) {
2301                 hctx_idx = q->mq_map[i];
2302                 /* unmapped hw queue can be remapped after CPU topo changed */
2303                 if (!set->tags[hctx_idx] &&
2304                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2305                         /*
2306                          * If tags initialization fail for some hctx,
2307                          * that hctx won't be brought online.  In this
2308                          * case, remap the current ctx to hctx[0] which
2309                          * is guaranteed to always have tags allocated
2310                          */
2311                         q->mq_map[i] = 0;
2312                 }
2313
2314                 ctx = per_cpu_ptr(q->queue_ctx, i);
2315                 hctx = blk_mq_map_queue(q, i);
2316
2317                 cpumask_set_cpu(i, hctx->cpumask);
2318                 ctx->index_hw = hctx->nr_ctx;
2319                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2320         }
2321
2322         mutex_unlock(&q->sysfs_lock);
2323
2324         queue_for_each_hw_ctx(q, hctx, i) {
2325                 /*
2326                  * If no software queues are mapped to this hardware queue,
2327                  * disable it and free the request entries.
2328                  */
2329                 if (!hctx->nr_ctx) {
2330                         /* Never unmap queue 0.  We need it as a
2331                          * fallback in case of a new remap fails
2332                          * allocation
2333                          */
2334                         if (i && set->tags[i])
2335                                 blk_mq_free_map_and_requests(set, i);
2336
2337                         hctx->tags = NULL;
2338                         continue;
2339                 }
2340
2341                 hctx->tags = set->tags[i];
2342                 WARN_ON(!hctx->tags);
2343
2344                 /*
2345                  * Set the map size to the number of mapped software queues.
2346                  * This is more accurate and more efficient than looping
2347                  * over all possibly mapped software queues.
2348                  */
2349                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2350
2351                 /*
2352                  * Initialize batch roundrobin counts
2353                  */
2354                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2355                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2356         }
2357 }
2358
2359 /*
2360  * Caller needs to ensure that we're either frozen/quiesced, or that
2361  * the queue isn't live yet.
2362  */
2363 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2364 {
2365         struct blk_mq_hw_ctx *hctx;
2366         int i;
2367
2368         queue_for_each_hw_ctx(q, hctx, i) {
2369                 if (shared)
2370                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2371                 else
2372                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2373         }
2374 }
2375
2376 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2377                                         bool shared)
2378 {
2379         struct request_queue *q;
2380
2381         lockdep_assert_held(&set->tag_list_lock);
2382
2383         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2384                 blk_mq_freeze_queue(q);
2385                 queue_set_hctx_shared(q, shared);
2386                 blk_mq_unfreeze_queue(q);
2387         }
2388 }
2389
2390 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2391 {
2392         struct blk_mq_tag_set *set = q->tag_set;
2393
2394         mutex_lock(&set->tag_list_lock);
2395         list_del_rcu(&q->tag_set_list);
2396         if (list_is_singular(&set->tag_list)) {
2397                 /* just transitioned to unshared */
2398                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2399                 /* update existing queue */
2400                 blk_mq_update_tag_set_depth(set, false);
2401         }
2402         mutex_unlock(&set->tag_list_lock);
2403         INIT_LIST_HEAD(&q->tag_set_list);
2404 }
2405
2406 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2407                                      struct request_queue *q)
2408 {
2409         q->tag_set = set;
2410
2411         mutex_lock(&set->tag_list_lock);
2412
2413         /*
2414          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2415          */
2416         if (!list_empty(&set->tag_list) &&
2417             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2418                 set->flags |= BLK_MQ_F_TAG_SHARED;
2419                 /* update existing queue */
2420                 blk_mq_update_tag_set_depth(set, true);
2421         }
2422         if (set->flags & BLK_MQ_F_TAG_SHARED)
2423                 queue_set_hctx_shared(q, true);
2424         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2425
2426         mutex_unlock(&set->tag_list_lock);
2427 }
2428
2429 /*
2430  * It is the actual release handler for mq, but we do it from
2431  * request queue's release handler for avoiding use-after-free
2432  * and headache because q->mq_kobj shouldn't have been introduced,
2433  * but we can't group ctx/kctx kobj without it.
2434  */
2435 void blk_mq_release(struct request_queue *q)
2436 {
2437         struct blk_mq_hw_ctx *hctx;
2438         unsigned int i;
2439
2440         /* hctx kobj stays in hctx */
2441         queue_for_each_hw_ctx(q, hctx, i) {
2442                 if (!hctx)
2443                         continue;
2444                 kobject_put(&hctx->kobj);
2445         }
2446
2447         q->mq_map = NULL;
2448
2449         kfree(q->queue_hw_ctx);
2450
2451         /*
2452          * release .mq_kobj and sw queue's kobject now because
2453          * both share lifetime with request queue.
2454          */
2455         blk_mq_sysfs_deinit(q);
2456
2457         free_percpu(q->queue_ctx);
2458 }
2459
2460 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2461 {
2462         struct request_queue *uninit_q, *q;
2463
2464         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2465         if (!uninit_q)
2466                 return ERR_PTR(-ENOMEM);
2467
2468         q = blk_mq_init_allocated_queue(set, uninit_q);
2469         if (IS_ERR(q))
2470                 blk_cleanup_queue(uninit_q);
2471
2472         return q;
2473 }
2474 EXPORT_SYMBOL(blk_mq_init_queue);
2475
2476 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2477 {
2478         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2479
2480         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2481                            __alignof__(struct blk_mq_hw_ctx)) !=
2482                      sizeof(struct blk_mq_hw_ctx));
2483
2484         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2485                 hw_ctx_size += sizeof(struct srcu_struct);
2486
2487         return hw_ctx_size;
2488 }
2489
2490 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2491                                                 struct request_queue *q)
2492 {
2493         int i, j;
2494         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2495
2496         blk_mq_sysfs_unregister(q);
2497
2498         /* protect against switching io scheduler  */
2499         mutex_lock(&q->sysfs_lock);
2500         for (i = 0; i < set->nr_hw_queues; i++) {
2501                 int node;
2502
2503                 if (hctxs[i])
2504                         continue;
2505
2506                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2507                 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2508                                         GFP_KERNEL, node);
2509                 if (!hctxs[i])
2510                         break;
2511
2512                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2513                                                 node)) {
2514                         kfree(hctxs[i]);
2515                         hctxs[i] = NULL;
2516                         break;
2517                 }
2518
2519                 atomic_set(&hctxs[i]->nr_active, 0);
2520                 hctxs[i]->numa_node = node;
2521                 hctxs[i]->queue_num = i;
2522
2523                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2524                         free_cpumask_var(hctxs[i]->cpumask);
2525                         kfree(hctxs[i]);
2526                         hctxs[i] = NULL;
2527                         break;
2528                 }
2529                 blk_mq_hctx_kobj_init(hctxs[i]);
2530         }
2531         for (j = i; j < q->nr_hw_queues; j++) {
2532                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2533
2534                 if (hctx) {
2535                         if (hctx->tags)
2536                                 blk_mq_free_map_and_requests(set, j);
2537                         blk_mq_exit_hctx(q, set, hctx, j);
2538                         kobject_put(&hctx->kobj);
2539                         hctxs[j] = NULL;
2540
2541                 }
2542         }
2543         q->nr_hw_queues = i;
2544         mutex_unlock(&q->sysfs_lock);
2545         blk_mq_sysfs_register(q);
2546 }
2547
2548 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2549                                                   struct request_queue *q)
2550 {
2551         /* mark the queue as mq asap */
2552         q->mq_ops = set->ops;
2553
2554         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2555                                              blk_mq_poll_stats_bkt,
2556                                              BLK_MQ_POLL_STATS_BKTS, q);
2557         if (!q->poll_cb)
2558                 goto err_exit;
2559
2560         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2561         if (!q->queue_ctx)
2562                 goto err_exit;
2563
2564         /* init q->mq_kobj and sw queues' kobjects */
2565         blk_mq_sysfs_init(q);
2566
2567         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2568                                                 GFP_KERNEL, set->numa_node);
2569         if (!q->queue_hw_ctx)
2570                 goto err_percpu;
2571
2572         q->mq_map = set->mq_map;
2573
2574         blk_mq_realloc_hw_ctxs(set, q);
2575         if (!q->nr_hw_queues)
2576                 goto err_hctxs;
2577
2578         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2579         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2580
2581         q->nr_queues = nr_cpu_ids;
2582
2583         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2584
2585         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2586                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2587
2588         q->sg_reserved_size = INT_MAX;
2589
2590         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2591         INIT_LIST_HEAD(&q->requeue_list);
2592         spin_lock_init(&q->requeue_lock);
2593
2594         blk_queue_make_request(q, blk_mq_make_request);
2595         if (q->mq_ops->poll)
2596                 q->poll_fn = blk_mq_poll;
2597
2598         /*
2599          * Do this after blk_queue_make_request() overrides it...
2600          */
2601         q->nr_requests = set->queue_depth;
2602
2603         /*
2604          * Default to classic polling
2605          */
2606         q->poll_nsec = -1;
2607
2608         if (set->ops->complete)
2609                 blk_queue_softirq_done(q, set->ops->complete);
2610
2611         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2612         blk_mq_add_queue_tag_set(set, q);
2613         blk_mq_map_swqueue(q);
2614
2615         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2616                 int ret;
2617
2618                 ret = elevator_init_mq(q);
2619                 if (ret)
2620                         return ERR_PTR(ret);
2621         }
2622
2623         return q;
2624
2625 err_hctxs:
2626         kfree(q->queue_hw_ctx);
2627 err_percpu:
2628         free_percpu(q->queue_ctx);
2629 err_exit:
2630         q->mq_ops = NULL;
2631         return ERR_PTR(-ENOMEM);
2632 }
2633 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2634
2635 void blk_mq_free_queue(struct request_queue *q)
2636 {
2637         struct blk_mq_tag_set   *set = q->tag_set;
2638
2639         blk_mq_del_queue_tag_set(q);
2640         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2641 }
2642
2643 /* Basically redo blk_mq_init_queue with queue frozen */
2644 static void blk_mq_queue_reinit(struct request_queue *q)
2645 {
2646         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2647
2648         blk_mq_debugfs_unregister_hctxs(q);
2649         blk_mq_sysfs_unregister(q);
2650
2651         /*
2652          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2653          * we should change hctx numa_node according to the new topology (this
2654          * involves freeing and re-allocating memory, worth doing?)
2655          */
2656         blk_mq_map_swqueue(q);
2657
2658         blk_mq_sysfs_register(q);
2659         blk_mq_debugfs_register_hctxs(q);
2660 }
2661
2662 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2663 {
2664         int i;
2665
2666         for (i = 0; i < set->nr_hw_queues; i++)
2667                 if (!__blk_mq_alloc_rq_map(set, i))
2668                         goto out_unwind;
2669
2670         return 0;
2671
2672 out_unwind:
2673         while (--i >= 0)
2674                 blk_mq_free_rq_map(set->tags[i]);
2675
2676         return -ENOMEM;
2677 }
2678
2679 /*
2680  * Allocate the request maps associated with this tag_set. Note that this
2681  * may reduce the depth asked for, if memory is tight. set->queue_depth
2682  * will be updated to reflect the allocated depth.
2683  */
2684 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2685 {
2686         unsigned int depth;
2687         int err;
2688
2689         depth = set->queue_depth;
2690         do {
2691                 err = __blk_mq_alloc_rq_maps(set);
2692                 if (!err)
2693                         break;
2694
2695                 set->queue_depth >>= 1;
2696                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2697                         err = -ENOMEM;
2698                         break;
2699                 }
2700         } while (set->queue_depth);
2701
2702         if (!set->queue_depth || err) {
2703                 pr_err("blk-mq: failed to allocate request map\n");
2704                 return -ENOMEM;
2705         }
2706
2707         if (depth != set->queue_depth)
2708                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2709                                                 depth, set->queue_depth);
2710
2711         return 0;
2712 }
2713
2714 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2715 {
2716         if (set->ops->map_queues) {
2717                 /*
2718                  * transport .map_queues is usually done in the following
2719                  * way:
2720                  *
2721                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2722                  *      mask = get_cpu_mask(queue)
2723                  *      for_each_cpu(cpu, mask)
2724                  *              set->mq_map[cpu] = queue;
2725                  * }
2726                  *
2727                  * When we need to remap, the table has to be cleared for
2728                  * killing stale mapping since one CPU may not be mapped
2729                  * to any hw queue.
2730                  */
2731                 blk_mq_clear_mq_map(set);
2732
2733                 return set->ops->map_queues(set);
2734         } else
2735                 return blk_mq_map_queues(set);
2736 }
2737
2738 /*
2739  * Alloc a tag set to be associated with one or more request queues.
2740  * May fail with EINVAL for various error conditions. May adjust the
2741  * requested depth down, if it's too large. In that case, the set
2742  * value will be stored in set->queue_depth.
2743  */
2744 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2745 {
2746         int ret;
2747
2748         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2749
2750         if (!set->nr_hw_queues)
2751                 return -EINVAL;
2752         if (!set->queue_depth)
2753                 return -EINVAL;
2754         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2755                 return -EINVAL;
2756
2757         if (!set->ops->queue_rq)
2758                 return -EINVAL;
2759
2760         if (!set->ops->get_budget ^ !set->ops->put_budget)
2761                 return -EINVAL;
2762
2763         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2764                 pr_info("blk-mq: reduced tag depth to %u\n",
2765                         BLK_MQ_MAX_DEPTH);
2766                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2767         }
2768
2769         /*
2770          * If a crashdump is active, then we are potentially in a very
2771          * memory constrained environment. Limit us to 1 queue and
2772          * 64 tags to prevent using too much memory.
2773          */
2774         if (is_kdump_kernel()) {
2775                 set->nr_hw_queues = 1;
2776                 set->queue_depth = min(64U, set->queue_depth);
2777         }
2778         /*
2779          * There is no use for more h/w queues than cpus.
2780          */
2781         if (set->nr_hw_queues > nr_cpu_ids)
2782                 set->nr_hw_queues = nr_cpu_ids;
2783
2784         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2785                                  GFP_KERNEL, set->numa_node);
2786         if (!set->tags)
2787                 return -ENOMEM;
2788
2789         ret = -ENOMEM;
2790         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2791                                    GFP_KERNEL, set->numa_node);
2792         if (!set->mq_map)
2793                 goto out_free_tags;
2794
2795         ret = blk_mq_update_queue_map(set);
2796         if (ret)
2797                 goto out_free_mq_map;
2798
2799         ret = blk_mq_alloc_rq_maps(set);
2800         if (ret)
2801                 goto out_free_mq_map;
2802
2803         mutex_init(&set->tag_list_lock);
2804         INIT_LIST_HEAD(&set->tag_list);
2805
2806         return 0;
2807
2808 out_free_mq_map:
2809         kfree(set->mq_map);
2810         set->mq_map = NULL;
2811 out_free_tags:
2812         kfree(set->tags);
2813         set->tags = NULL;
2814         return ret;
2815 }
2816 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2817
2818 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2819 {
2820         int i;
2821
2822         for (i = 0; i < nr_cpu_ids; i++)
2823                 blk_mq_free_map_and_requests(set, i);
2824
2825         kfree(set->mq_map);
2826         set->mq_map = NULL;
2827
2828         kfree(set->tags);
2829         set->tags = NULL;
2830 }
2831 EXPORT_SYMBOL(blk_mq_free_tag_set);
2832
2833 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2834 {
2835         struct blk_mq_tag_set *set = q->tag_set;
2836         struct blk_mq_hw_ctx *hctx;
2837         int i, ret;
2838
2839         if (!set)
2840                 return -EINVAL;
2841
2842         blk_mq_freeze_queue(q);
2843         blk_mq_quiesce_queue(q);
2844
2845         ret = 0;
2846         queue_for_each_hw_ctx(q, hctx, i) {
2847                 if (!hctx->tags)
2848                         continue;
2849                 /*
2850                  * If we're using an MQ scheduler, just update the scheduler
2851                  * queue depth. This is similar to what the old code would do.
2852                  */
2853                 if (!hctx->sched_tags) {
2854                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2855                                                         false);
2856                 } else {
2857                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2858                                                         nr, true);
2859                 }
2860                 if (ret)
2861                         break;
2862         }
2863
2864         if (!ret)
2865                 q->nr_requests = nr;
2866
2867         blk_mq_unquiesce_queue(q);
2868         blk_mq_unfreeze_queue(q);
2869
2870         return ret;
2871 }
2872
2873 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2874                                                         int nr_hw_queues)
2875 {
2876         struct request_queue *q;
2877
2878         lockdep_assert_held(&set->tag_list_lock);
2879
2880         if (nr_hw_queues > nr_cpu_ids)
2881                 nr_hw_queues = nr_cpu_ids;
2882         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2883                 return;
2884
2885         list_for_each_entry(q, &set->tag_list, tag_set_list)
2886                 blk_mq_freeze_queue(q);
2887
2888         set->nr_hw_queues = nr_hw_queues;
2889         blk_mq_update_queue_map(set);
2890         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2891                 blk_mq_realloc_hw_ctxs(set, q);
2892                 blk_mq_queue_reinit(q);
2893         }
2894
2895         list_for_each_entry(q, &set->tag_list, tag_set_list)
2896                 blk_mq_unfreeze_queue(q);
2897 }
2898
2899 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2900 {
2901         mutex_lock(&set->tag_list_lock);
2902         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2903         mutex_unlock(&set->tag_list_lock);
2904 }
2905 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2906
2907 /* Enable polling stats and return whether they were already enabled. */
2908 static bool blk_poll_stats_enable(struct request_queue *q)
2909 {
2910         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2911             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2912                 return true;
2913         blk_stat_add_callback(q, q->poll_cb);
2914         return false;
2915 }
2916
2917 static void blk_mq_poll_stats_start(struct request_queue *q)
2918 {
2919         /*
2920          * We don't arm the callback if polling stats are not enabled or the
2921          * callback is already active.
2922          */
2923         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2924             blk_stat_is_active(q->poll_cb))
2925                 return;
2926
2927         blk_stat_activate_msecs(q->poll_cb, 100);
2928 }
2929
2930 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2931 {
2932         struct request_queue *q = cb->data;
2933         int bucket;
2934
2935         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2936                 if (cb->stat[bucket].nr_samples)
2937                         q->poll_stat[bucket] = cb->stat[bucket];
2938         }
2939 }
2940
2941 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2942                                        struct blk_mq_hw_ctx *hctx,
2943                                        struct request *rq)
2944 {
2945         unsigned long ret = 0;
2946         int bucket;
2947
2948         /*
2949          * If stats collection isn't on, don't sleep but turn it on for
2950          * future users
2951          */
2952         if (!blk_poll_stats_enable(q))
2953                 return 0;
2954
2955         /*
2956          * As an optimistic guess, use half of the mean service time
2957          * for this type of request. We can (and should) make this smarter.
2958          * For instance, if the completion latencies are tight, we can
2959          * get closer than just half the mean. This is especially
2960          * important on devices where the completion latencies are longer
2961          * than ~10 usec. We do use the stats for the relevant IO size
2962          * if available which does lead to better estimates.
2963          */
2964         bucket = blk_mq_poll_stats_bkt(rq);
2965         if (bucket < 0)
2966                 return ret;
2967
2968         if (q->poll_stat[bucket].nr_samples)
2969                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2970
2971         return ret;
2972 }
2973
2974 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2975                                      struct blk_mq_hw_ctx *hctx,
2976                                      struct request *rq)
2977 {
2978         struct hrtimer_sleeper hs;
2979         enum hrtimer_mode mode;
2980         unsigned int nsecs;
2981         ktime_t kt;
2982
2983         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2984                 return false;
2985
2986         /*
2987          * poll_nsec can be:
2988          *
2989          * -1:  don't ever hybrid sleep
2990          *  0:  use half of prev avg
2991          * >0:  use this specific value
2992          */
2993         if (q->poll_nsec == -1)
2994                 return false;
2995         else if (q->poll_nsec > 0)
2996                 nsecs = q->poll_nsec;
2997         else
2998                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2999
3000         if (!nsecs)
3001                 return false;
3002
3003         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3004
3005         /*
3006          * This will be replaced with the stats tracking code, using
3007          * 'avg_completion_time / 2' as the pre-sleep target.
3008          */
3009         kt = nsecs;
3010
3011         mode = HRTIMER_MODE_REL;
3012         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3013         hrtimer_set_expires(&hs.timer, kt);
3014
3015         hrtimer_init_sleeper(&hs, current);
3016         do {
3017                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3018                         break;
3019                 set_current_state(TASK_UNINTERRUPTIBLE);
3020                 hrtimer_start_expires(&hs.timer, mode);
3021                 if (hs.task)
3022                         io_schedule();
3023                 hrtimer_cancel(&hs.timer);
3024                 mode = HRTIMER_MODE_ABS;
3025         } while (hs.task && !signal_pending(current));
3026
3027         __set_current_state(TASK_RUNNING);
3028         destroy_hrtimer_on_stack(&hs.timer);
3029         return true;
3030 }
3031
3032 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3033 {
3034         struct request_queue *q = hctx->queue;
3035         long state;
3036
3037         /*
3038          * If we sleep, have the caller restart the poll loop to reset
3039          * the state. Like for the other success return cases, the
3040          * caller is responsible for checking if the IO completed. If
3041          * the IO isn't complete, we'll get called again and will go
3042          * straight to the busy poll loop.
3043          */
3044         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3045                 return true;
3046
3047         hctx->poll_considered++;
3048
3049         state = current->state;
3050         while (!need_resched()) {
3051                 int ret;
3052
3053                 hctx->poll_invoked++;
3054
3055                 ret = q->mq_ops->poll(hctx, rq->tag);
3056                 if (ret > 0) {
3057                         hctx->poll_success++;
3058                         set_current_state(TASK_RUNNING);
3059                         return true;
3060                 }
3061
3062                 if (signal_pending_state(state, current))
3063                         set_current_state(TASK_RUNNING);
3064
3065                 if (current->state == TASK_RUNNING)
3066                         return true;
3067                 if (ret < 0)
3068                         break;
3069                 cpu_relax();
3070         }
3071
3072         __set_current_state(TASK_RUNNING);
3073         return false;
3074 }
3075
3076 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3077 {
3078         struct blk_mq_hw_ctx *hctx;
3079         struct request *rq;
3080
3081         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3082                 return false;
3083
3084         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3085         if (!blk_qc_t_is_internal(cookie))
3086                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3087         else {
3088                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3089                 /*
3090                  * With scheduling, if the request has completed, we'll
3091                  * get a NULL return here, as we clear the sched tag when
3092                  * that happens. The request still remains valid, like always,
3093                  * so we should be safe with just the NULL check.
3094                  */
3095                 if (!rq)
3096                         return false;
3097         }
3098
3099         return __blk_mq_poll(hctx, rq);
3100 }
3101
3102 static int __init blk_mq_init(void)
3103 {
3104         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3105                                 blk_mq_hctx_notify_dead);
3106         return 0;
3107 }
3108 subsys_initcall(blk_mq_init);