OSDN Git Service

dm: discard support requires all targets in a table support discards
[uclinux-h8/linux.git] / block / partition-generic.c
1 /*
2  *  Code extracted from drivers/block/genhd.c
3  *  Copyright (C) 1991-1998  Linus Torvalds
4  *  Re-organised Feb 1998 Russell King
5  *
6  *  We now have independent partition support from the
7  *  block drivers, which allows all the partition code to
8  *  be grouped in one location, and it to be mostly self
9  *  contained.
10  */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
20
21 #include "partitions/check.h"
22
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
26  
27 /*
28  * disk_name() is used by partition check code and the genhd driver.
29  * It formats the devicename of the indicated disk into
30  * the supplied buffer (of size at least 32), and returns
31  * a pointer to that same buffer (for convenience).
32  */
33
34 char *disk_name(struct gendisk *hd, int partno, char *buf)
35 {
36         if (!partno)
37                 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38         else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39                 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40         else
41                 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
42
43         return buf;
44 }
45
46 const char *bdevname(struct block_device *bdev, char *buf)
47 {
48         return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
49 }
50
51 EXPORT_SYMBOL(bdevname);
52
53 /*
54  * There's very little reason to use this, you should really
55  * have a struct block_device just about everywhere and use
56  * bdevname() instead.
57  */
58 const char *__bdevname(dev_t dev, char *buffer)
59 {
60         scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61                                 MAJOR(dev), MINOR(dev));
62         return buffer;
63 }
64
65 EXPORT_SYMBOL(__bdevname);
66
67 static ssize_t part_partition_show(struct device *dev,
68                                    struct device_attribute *attr, char *buf)
69 {
70         struct hd_struct *p = dev_to_part(dev);
71
72         return sprintf(buf, "%d\n", p->partno);
73 }
74
75 static ssize_t part_start_show(struct device *dev,
76                                struct device_attribute *attr, char *buf)
77 {
78         struct hd_struct *p = dev_to_part(dev);
79
80         return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
81 }
82
83 ssize_t part_size_show(struct device *dev,
84                        struct device_attribute *attr, char *buf)
85 {
86         struct hd_struct *p = dev_to_part(dev);
87         return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
88 }
89
90 static ssize_t part_ro_show(struct device *dev,
91                             struct device_attribute *attr, char *buf)
92 {
93         struct hd_struct *p = dev_to_part(dev);
94         return sprintf(buf, "%d\n", p->policy ? 1 : 0);
95 }
96
97 static ssize_t part_alignment_offset_show(struct device *dev,
98                                           struct device_attribute *attr, char *buf)
99 {
100         struct hd_struct *p = dev_to_part(dev);
101         return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
102 }
103
104 static ssize_t part_discard_alignment_show(struct device *dev,
105                                            struct device_attribute *attr, char *buf)
106 {
107         struct hd_struct *p = dev_to_part(dev);
108         return sprintf(buf, "%u\n", p->discard_alignment);
109 }
110
111 ssize_t part_stat_show(struct device *dev,
112                        struct device_attribute *attr, char *buf)
113 {
114         struct hd_struct *p = dev_to_part(dev);
115         struct request_queue *q = part_to_disk(p)->queue;
116         unsigned int inflight[2];
117         int cpu;
118
119         cpu = part_stat_lock();
120         part_round_stats(q, cpu, p);
121         part_stat_unlock();
122         part_in_flight(q, p, inflight);
123         return sprintf(buf,
124                 "%8lu %8lu %8llu %8u "
125                 "%8lu %8lu %8llu %8u "
126                 "%8u %8u %8u"
127                 "\n",
128                 part_stat_read(p, ios[READ]),
129                 part_stat_read(p, merges[READ]),
130                 (unsigned long long)part_stat_read(p, sectors[READ]),
131                 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
132                 part_stat_read(p, ios[WRITE]),
133                 part_stat_read(p, merges[WRITE]),
134                 (unsigned long long)part_stat_read(p, sectors[WRITE]),
135                 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
136                 inflight[0],
137                 jiffies_to_msecs(part_stat_read(p, io_ticks)),
138                 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
139 }
140
141 ssize_t part_inflight_show(struct device *dev,
142                         struct device_attribute *attr, char *buf)
143 {
144         struct hd_struct *p = dev_to_part(dev);
145
146         return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
147                 atomic_read(&p->in_flight[1]));
148 }
149
150 #ifdef CONFIG_FAIL_MAKE_REQUEST
151 ssize_t part_fail_show(struct device *dev,
152                        struct device_attribute *attr, char *buf)
153 {
154         struct hd_struct *p = dev_to_part(dev);
155
156         return sprintf(buf, "%d\n", p->make_it_fail);
157 }
158
159 ssize_t part_fail_store(struct device *dev,
160                         struct device_attribute *attr,
161                         const char *buf, size_t count)
162 {
163         struct hd_struct *p = dev_to_part(dev);
164         int i;
165
166         if (count > 0 && sscanf(buf, "%d", &i) > 0)
167                 p->make_it_fail = (i == 0) ? 0 : 1;
168
169         return count;
170 }
171 #endif
172
173 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
174 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
175 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
176 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
177 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
178 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
179                    NULL);
180 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
181 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
182 #ifdef CONFIG_FAIL_MAKE_REQUEST
183 static struct device_attribute dev_attr_fail =
184         __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
185 #endif
186
187 static struct attribute *part_attrs[] = {
188         &dev_attr_partition.attr,
189         &dev_attr_start.attr,
190         &dev_attr_size.attr,
191         &dev_attr_ro.attr,
192         &dev_attr_alignment_offset.attr,
193         &dev_attr_discard_alignment.attr,
194         &dev_attr_stat.attr,
195         &dev_attr_inflight.attr,
196 #ifdef CONFIG_FAIL_MAKE_REQUEST
197         &dev_attr_fail.attr,
198 #endif
199         NULL
200 };
201
202 static struct attribute_group part_attr_group = {
203         .attrs = part_attrs,
204 };
205
206 static const struct attribute_group *part_attr_groups[] = {
207         &part_attr_group,
208 #ifdef CONFIG_BLK_DEV_IO_TRACE
209         &blk_trace_attr_group,
210 #endif
211         NULL
212 };
213
214 static void part_release(struct device *dev)
215 {
216         struct hd_struct *p = dev_to_part(dev);
217         blk_free_devt(dev->devt);
218         hd_free_part(p);
219         kfree(p);
220 }
221
222 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
223 {
224         struct hd_struct *part = dev_to_part(dev);
225
226         add_uevent_var(env, "PARTN=%u", part->partno);
227         if (part->info && part->info->volname[0])
228                 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
229         return 0;
230 }
231
232 struct device_type part_type = {
233         .name           = "partition",
234         .groups         = part_attr_groups,
235         .release        = part_release,
236         .uevent         = part_uevent,
237 };
238
239 static void delete_partition_rcu_cb(struct rcu_head *head)
240 {
241         struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
242
243         part->start_sect = 0;
244         part->nr_sects = 0;
245         part_stat_set_all(part, 0);
246         put_device(part_to_dev(part));
247 }
248
249 void __delete_partition(struct percpu_ref *ref)
250 {
251         struct hd_struct *part = container_of(ref, struct hd_struct, ref);
252         call_rcu(&part->rcu_head, delete_partition_rcu_cb);
253 }
254
255 /*
256  * Must be called either with bd_mutex held, before a disk can be opened or
257  * after all disk users are gone.
258  */
259 void delete_partition(struct gendisk *disk, int partno)
260 {
261         struct disk_part_tbl *ptbl =
262                 rcu_dereference_protected(disk->part_tbl, 1);
263         struct hd_struct *part;
264
265         if (partno >= ptbl->len)
266                 return;
267
268         part = rcu_dereference_protected(ptbl->part[partno], 1);
269         if (!part)
270                 return;
271
272         rcu_assign_pointer(ptbl->part[partno], NULL);
273         rcu_assign_pointer(ptbl->last_lookup, NULL);
274         kobject_put(part->holder_dir);
275         device_del(part_to_dev(part));
276
277         hd_struct_kill(part);
278 }
279
280 static ssize_t whole_disk_show(struct device *dev,
281                                struct device_attribute *attr, char *buf)
282 {
283         return 0;
284 }
285 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
286                    whole_disk_show, NULL);
287
288 /*
289  * Must be called either with bd_mutex held, before a disk can be opened or
290  * after all disk users are gone.
291  */
292 struct hd_struct *add_partition(struct gendisk *disk, int partno,
293                                 sector_t start, sector_t len, int flags,
294                                 struct partition_meta_info *info)
295 {
296         struct hd_struct *p;
297         dev_t devt = MKDEV(0, 0);
298         struct device *ddev = disk_to_dev(disk);
299         struct device *pdev;
300         struct disk_part_tbl *ptbl;
301         const char *dname;
302         int err;
303
304         err = disk_expand_part_tbl(disk, partno);
305         if (err)
306                 return ERR_PTR(err);
307         ptbl = rcu_dereference_protected(disk->part_tbl, 1);
308
309         if (ptbl->part[partno])
310                 return ERR_PTR(-EBUSY);
311
312         p = kzalloc(sizeof(*p), GFP_KERNEL);
313         if (!p)
314                 return ERR_PTR(-EBUSY);
315
316         if (!init_part_stats(p)) {
317                 err = -ENOMEM;
318                 goto out_free;
319         }
320
321         seqcount_init(&p->nr_sects_seq);
322         pdev = part_to_dev(p);
323
324         p->start_sect = start;
325         p->alignment_offset =
326                 queue_limit_alignment_offset(&disk->queue->limits, start);
327         p->discard_alignment =
328                 queue_limit_discard_alignment(&disk->queue->limits, start);
329         p->nr_sects = len;
330         p->partno = partno;
331         p->policy = get_disk_ro(disk);
332
333         if (info) {
334                 struct partition_meta_info *pinfo = alloc_part_info(disk);
335                 if (!pinfo) {
336                         err = -ENOMEM;
337                         goto out_free_stats;
338                 }
339                 memcpy(pinfo, info, sizeof(*info));
340                 p->info = pinfo;
341         }
342
343         dname = dev_name(ddev);
344         if (isdigit(dname[strlen(dname) - 1]))
345                 dev_set_name(pdev, "%sp%d", dname, partno);
346         else
347                 dev_set_name(pdev, "%s%d", dname, partno);
348
349         device_initialize(pdev);
350         pdev->class = &block_class;
351         pdev->type = &part_type;
352         pdev->parent = ddev;
353
354         err = blk_alloc_devt(p, &devt);
355         if (err)
356                 goto out_free_info;
357         pdev->devt = devt;
358
359         /* delay uevent until 'holders' subdir is created */
360         dev_set_uevent_suppress(pdev, 1);
361         err = device_add(pdev);
362         if (err)
363                 goto out_put;
364
365         err = -ENOMEM;
366         p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
367         if (!p->holder_dir)
368                 goto out_del;
369
370         dev_set_uevent_suppress(pdev, 0);
371         if (flags & ADDPART_FLAG_WHOLEDISK) {
372                 err = device_create_file(pdev, &dev_attr_whole_disk);
373                 if (err)
374                         goto out_del;
375         }
376
377         err = hd_ref_init(p);
378         if (err) {
379                 if (flags & ADDPART_FLAG_WHOLEDISK)
380                         goto out_remove_file;
381                 goto out_del;
382         }
383
384         /* everything is up and running, commence */
385         rcu_assign_pointer(ptbl->part[partno], p);
386
387         /* suppress uevent if the disk suppresses it */
388         if (!dev_get_uevent_suppress(ddev))
389                 kobject_uevent(&pdev->kobj, KOBJ_ADD);
390         return p;
391
392 out_free_info:
393         free_part_info(p);
394 out_free_stats:
395         free_part_stats(p);
396 out_free:
397         kfree(p);
398         return ERR_PTR(err);
399 out_remove_file:
400         device_remove_file(pdev, &dev_attr_whole_disk);
401 out_del:
402         kobject_put(p->holder_dir);
403         device_del(pdev);
404 out_put:
405         put_device(pdev);
406         return ERR_PTR(err);
407 }
408
409 static bool disk_unlock_native_capacity(struct gendisk *disk)
410 {
411         const struct block_device_operations *bdops = disk->fops;
412
413         if (bdops->unlock_native_capacity &&
414             !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
415                 printk(KERN_CONT "enabling native capacity\n");
416                 bdops->unlock_native_capacity(disk);
417                 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
418                 return true;
419         } else {
420                 printk(KERN_CONT "truncated\n");
421                 return false;
422         }
423 }
424
425 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
426 {
427         struct disk_part_iter piter;
428         struct hd_struct *part;
429         int res;
430
431         if (bdev->bd_part_count || bdev->bd_super)
432                 return -EBUSY;
433         res = invalidate_partition(disk, 0);
434         if (res)
435                 return res;
436
437         disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
438         while ((part = disk_part_iter_next(&piter)))
439                 delete_partition(disk, part->partno);
440         disk_part_iter_exit(&piter);
441
442         return 0;
443 }
444
445 static bool part_zone_aligned(struct gendisk *disk,
446                               struct block_device *bdev,
447                               sector_t from, sector_t size)
448 {
449         unsigned int zone_sectors = bdev_zone_sectors(bdev);
450
451         /*
452          * If this function is called, then the disk is a zoned block device
453          * (host-aware or host-managed). This can be detected even if the
454          * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
455          * set). In this case, however, only host-aware devices will be seen
456          * as a block device is not created for host-managed devices. Without
457          * zoned block device support, host-aware drives can still be used as
458          * regular block devices (no zone operation) and their zone size will
459          * be reported as 0. Allow this case.
460          */
461         if (!zone_sectors)
462                 return true;
463
464         /*
465          * Check partition start and size alignement. If the drive has a
466          * smaller last runt zone, ignore it and allow the partition to
467          * use it. Check the zone size too: it should be a power of 2 number
468          * of sectors.
469          */
470         if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
471                 u32 rem;
472
473                 div_u64_rem(from, zone_sectors, &rem);
474                 if (rem)
475                         return false;
476                 if ((from + size) < get_capacity(disk)) {
477                         div_u64_rem(size, zone_sectors, &rem);
478                         if (rem)
479                                 return false;
480                 }
481
482         } else {
483
484                 if (from & (zone_sectors - 1))
485                         return false;
486                 if ((from + size) < get_capacity(disk) &&
487                     (size & (zone_sectors - 1)))
488                         return false;
489
490         }
491
492         return true;
493 }
494
495 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
496 {
497         struct parsed_partitions *state = NULL;
498         struct hd_struct *part;
499         int p, highest, res;
500 rescan:
501         if (state && !IS_ERR(state)) {
502                 free_partitions(state);
503                 state = NULL;
504         }
505
506         res = drop_partitions(disk, bdev);
507         if (res)
508                 return res;
509
510         if (disk->fops->revalidate_disk)
511                 disk->fops->revalidate_disk(disk);
512         check_disk_size_change(disk, bdev);
513         bdev->bd_invalidated = 0;
514         if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
515                 return 0;
516         if (IS_ERR(state)) {
517                 /*
518                  * I/O error reading the partition table.  If any
519                  * partition code tried to read beyond EOD, retry
520                  * after unlocking native capacity.
521                  */
522                 if (PTR_ERR(state) == -ENOSPC) {
523                         printk(KERN_WARNING "%s: partition table beyond EOD, ",
524                                disk->disk_name);
525                         if (disk_unlock_native_capacity(disk))
526                                 goto rescan;
527                 }
528                 return -EIO;
529         }
530         /*
531          * If any partition code tried to read beyond EOD, try
532          * unlocking native capacity even if partition table is
533          * successfully read as we could be missing some partitions.
534          */
535         if (state->access_beyond_eod) {
536                 printk(KERN_WARNING
537                        "%s: partition table partially beyond EOD, ",
538                        disk->disk_name);
539                 if (disk_unlock_native_capacity(disk))
540                         goto rescan;
541         }
542
543         /* tell userspace that the media / partition table may have changed */
544         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
545
546         /* Detect the highest partition number and preallocate
547          * disk->part_tbl.  This is an optimization and not strictly
548          * necessary.
549          */
550         for (p = 1, highest = 0; p < state->limit; p++)
551                 if (state->parts[p].size)
552                         highest = p;
553
554         disk_expand_part_tbl(disk, highest);
555
556         /* add partitions */
557         for (p = 1; p < state->limit; p++) {
558                 sector_t size, from;
559
560                 size = state->parts[p].size;
561                 if (!size)
562                         continue;
563
564                 from = state->parts[p].from;
565                 if (from >= get_capacity(disk)) {
566                         printk(KERN_WARNING
567                                "%s: p%d start %llu is beyond EOD, ",
568                                disk->disk_name, p, (unsigned long long) from);
569                         if (disk_unlock_native_capacity(disk))
570                                 goto rescan;
571                         continue;
572                 }
573
574                 if (from + size > get_capacity(disk)) {
575                         printk(KERN_WARNING
576                                "%s: p%d size %llu extends beyond EOD, ",
577                                disk->disk_name, p, (unsigned long long) size);
578
579                         if (disk_unlock_native_capacity(disk)) {
580                                 /* free state and restart */
581                                 goto rescan;
582                         } else {
583                                 /*
584                                  * we can not ignore partitions of broken tables
585                                  * created by for example camera firmware, but
586                                  * we limit them to the end of the disk to avoid
587                                  * creating invalid block devices
588                                  */
589                                 size = get_capacity(disk) - from;
590                         }
591                 }
592
593                 /*
594                  * On a zoned block device, partitions should be aligned on the
595                  * device zone size (i.e. zone boundary crossing not allowed).
596                  * Otherwise, resetting the write pointer of the last zone of
597                  * one partition may impact the following partition.
598                  */
599                 if (bdev_is_zoned(bdev) &&
600                     !part_zone_aligned(disk, bdev, from, size)) {
601                         printk(KERN_WARNING
602                                "%s: p%d start %llu+%llu is not zone aligned\n",
603                                disk->disk_name, p, (unsigned long long) from,
604                                (unsigned long long) size);
605                         continue;
606                 }
607
608                 part = add_partition(disk, p, from, size,
609                                      state->parts[p].flags,
610                                      &state->parts[p].info);
611                 if (IS_ERR(part)) {
612                         printk(KERN_ERR " %s: p%d could not be added: %ld\n",
613                                disk->disk_name, p, -PTR_ERR(part));
614                         continue;
615                 }
616 #ifdef CONFIG_BLK_DEV_MD
617                 if (state->parts[p].flags & ADDPART_FLAG_RAID)
618                         md_autodetect_dev(part_to_dev(part)->devt);
619 #endif
620         }
621         free_partitions(state);
622         return 0;
623 }
624
625 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
626 {
627         int res;
628
629         if (!bdev->bd_invalidated)
630                 return 0;
631
632         res = drop_partitions(disk, bdev);
633         if (res)
634                 return res;
635
636         set_capacity(disk, 0);
637         check_disk_size_change(disk, bdev);
638         bdev->bd_invalidated = 0;
639         /* tell userspace that the media / partition table may have changed */
640         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
641
642         return 0;
643 }
644
645 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
646 {
647         struct address_space *mapping = bdev->bd_inode->i_mapping;
648         struct page *page;
649
650         page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
651         if (!IS_ERR(page)) {
652                 if (PageError(page))
653                         goto fail;
654                 p->v = page;
655                 return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
656 fail:
657                 put_page(page);
658         }
659         p->v = NULL;
660         return NULL;
661 }
662
663 EXPORT_SYMBOL(read_dev_sector);