OSDN Git Service

Sync with 2.0.4
[git-core/git.git] / cache-tree.c
1 #include "cache.h"
2 #include "tree.h"
3 #include "tree-walk.h"
4 #include "cache-tree.h"
5
6 #ifndef DEBUG
7 #define DEBUG 0
8 #endif
9
10 struct cache_tree *cache_tree(void)
11 {
12         struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
13         it->entry_count = -1;
14         return it;
15 }
16
17 void cache_tree_free(struct cache_tree **it_p)
18 {
19         int i;
20         struct cache_tree *it = *it_p;
21
22         if (!it)
23                 return;
24         for (i = 0; i < it->subtree_nr; i++)
25                 if (it->down[i]) {
26                         cache_tree_free(&it->down[i]->cache_tree);
27                         free(it->down[i]);
28                 }
29         free(it->down);
30         free(it);
31         *it_p = NULL;
32 }
33
34 static int subtree_name_cmp(const char *one, int onelen,
35                             const char *two, int twolen)
36 {
37         if (onelen < twolen)
38                 return -1;
39         if (twolen < onelen)
40                 return 1;
41         return memcmp(one, two, onelen);
42 }
43
44 static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
45 {
46         struct cache_tree_sub **down = it->down;
47         int lo, hi;
48         lo = 0;
49         hi = it->subtree_nr;
50         while (lo < hi) {
51                 int mi = (lo + hi) / 2;
52                 struct cache_tree_sub *mdl = down[mi];
53                 int cmp = subtree_name_cmp(path, pathlen,
54                                            mdl->name, mdl->namelen);
55                 if (!cmp)
56                         return mi;
57                 if (cmp < 0)
58                         hi = mi;
59                 else
60                         lo = mi + 1;
61         }
62         return -lo-1;
63 }
64
65 static struct cache_tree_sub *find_subtree(struct cache_tree *it,
66                                            const char *path,
67                                            int pathlen,
68                                            int create)
69 {
70         struct cache_tree_sub *down;
71         int pos = subtree_pos(it, path, pathlen);
72         if (0 <= pos)
73                 return it->down[pos];
74         if (!create)
75                 return NULL;
76
77         pos = -pos-1;
78         ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
79         it->subtree_nr++;
80
81         down = xmalloc(sizeof(*down) + pathlen + 1);
82         down->cache_tree = NULL;
83         down->namelen = pathlen;
84         memcpy(down->name, path, pathlen);
85         down->name[pathlen] = 0;
86
87         if (pos < it->subtree_nr)
88                 memmove(it->down + pos + 1,
89                         it->down + pos,
90                         sizeof(down) * (it->subtree_nr - pos - 1));
91         it->down[pos] = down;
92         return down;
93 }
94
95 struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
96 {
97         int pathlen = strlen(path);
98         return find_subtree(it, path, pathlen, 1);
99 }
100
101 static int do_invalidate_path(struct cache_tree *it, const char *path)
102 {
103         /* a/b/c
104          * ==> invalidate self
105          * ==> find "a", have it invalidate "b/c"
106          * a
107          * ==> invalidate self
108          * ==> if "a" exists as a subtree, remove it.
109          */
110         const char *slash;
111         int namelen;
112         struct cache_tree_sub *down;
113
114 #if DEBUG
115         fprintf(stderr, "cache-tree invalidate <%s>\n", path);
116 #endif
117
118         if (!it)
119                 return 0;
120         slash = strchrnul(path, '/');
121         namelen = slash - path;
122         it->entry_count = -1;
123         if (!*slash) {
124                 int pos;
125                 pos = subtree_pos(it, path, namelen);
126                 if (0 <= pos) {
127                         cache_tree_free(&it->down[pos]->cache_tree);
128                         free(it->down[pos]);
129                         /* 0 1 2 3 4 5
130                          *       ^     ^subtree_nr = 6
131                          *       pos
132                          * move 4 and 5 up one place (2 entries)
133                          * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
134                          */
135                         memmove(it->down+pos, it->down+pos+1,
136                                 sizeof(struct cache_tree_sub *) *
137                                 (it->subtree_nr - pos - 1));
138                         it->subtree_nr--;
139                 }
140                 return 1;
141         }
142         down = find_subtree(it, path, namelen, 0);
143         if (down)
144                 do_invalidate_path(down->cache_tree, slash + 1);
145         return 1;
146 }
147
148 void cache_tree_invalidate_path(struct index_state *istate, const char *path)
149 {
150         if (do_invalidate_path(istate->cache_tree, path))
151                 istate->cache_changed |= CACHE_TREE_CHANGED;
152 }
153
154 static int verify_cache(struct cache_entry **cache,
155                         int entries, int flags)
156 {
157         int i, funny;
158         int silent = flags & WRITE_TREE_SILENT;
159
160         /* Verify that the tree is merged */
161         funny = 0;
162         for (i = 0; i < entries; i++) {
163                 const struct cache_entry *ce = cache[i];
164                 if (ce_stage(ce)) {
165                         if (silent)
166                                 return -1;
167                         if (10 < ++funny) {
168                                 fprintf(stderr, "...\n");
169                                 break;
170                         }
171                         fprintf(stderr, "%s: unmerged (%s)\n",
172                                 ce->name, sha1_to_hex(ce->sha1));
173                 }
174         }
175         if (funny)
176                 return -1;
177
178         /* Also verify that the cache does not have path and path/file
179          * at the same time.  At this point we know the cache has only
180          * stage 0 entries.
181          */
182         funny = 0;
183         for (i = 0; i < entries - 1; i++) {
184                 /* path/file always comes after path because of the way
185                  * the cache is sorted.  Also path can appear only once,
186                  * which means conflicting one would immediately follow.
187                  */
188                 const char *this_name = cache[i]->name;
189                 const char *next_name = cache[i+1]->name;
190                 int this_len = strlen(this_name);
191                 if (this_len < strlen(next_name) &&
192                     strncmp(this_name, next_name, this_len) == 0 &&
193                     next_name[this_len] == '/') {
194                         if (10 < ++funny) {
195                                 fprintf(stderr, "...\n");
196                                 break;
197                         }
198                         fprintf(stderr, "You have both %s and %s\n",
199                                 this_name, next_name);
200                 }
201         }
202         if (funny)
203                 return -1;
204         return 0;
205 }
206
207 static void discard_unused_subtrees(struct cache_tree *it)
208 {
209         struct cache_tree_sub **down = it->down;
210         int nr = it->subtree_nr;
211         int dst, src;
212         for (dst = src = 0; src < nr; src++) {
213                 struct cache_tree_sub *s = down[src];
214                 if (s->used)
215                         down[dst++] = s;
216                 else {
217                         cache_tree_free(&s->cache_tree);
218                         free(s);
219                         it->subtree_nr--;
220                 }
221         }
222 }
223
224 int cache_tree_fully_valid(struct cache_tree *it)
225 {
226         int i;
227         if (!it)
228                 return 0;
229         if (it->entry_count < 0 || !has_sha1_file(it->sha1))
230                 return 0;
231         for (i = 0; i < it->subtree_nr; i++) {
232                 if (!cache_tree_fully_valid(it->down[i]->cache_tree))
233                         return 0;
234         }
235         return 1;
236 }
237
238 static int update_one(struct cache_tree *it,
239                       struct cache_entry **cache,
240                       int entries,
241                       const char *base,
242                       int baselen,
243                       int *skip_count,
244                       int flags)
245 {
246         struct strbuf buffer;
247         int missing_ok = flags & WRITE_TREE_MISSING_OK;
248         int dryrun = flags & WRITE_TREE_DRY_RUN;
249         int to_invalidate = 0;
250         int i;
251
252         *skip_count = 0;
253
254         if (0 <= it->entry_count && has_sha1_file(it->sha1))
255                 return it->entry_count;
256
257         /*
258          * We first scan for subtrees and update them; we start by
259          * marking existing subtrees -- the ones that are unmarked
260          * should not be in the result.
261          */
262         for (i = 0; i < it->subtree_nr; i++)
263                 it->down[i]->used = 0;
264
265         /*
266          * Find the subtrees and update them.
267          */
268         i = 0;
269         while (i < entries) {
270                 const struct cache_entry *ce = cache[i];
271                 struct cache_tree_sub *sub;
272                 const char *path, *slash;
273                 int pathlen, sublen, subcnt, subskip;
274
275                 path = ce->name;
276                 pathlen = ce_namelen(ce);
277                 if (pathlen <= baselen || memcmp(base, path, baselen))
278                         break; /* at the end of this level */
279
280                 slash = strchr(path + baselen, '/');
281                 if (!slash) {
282                         i++;
283                         continue;
284                 }
285                 /*
286                  * a/bbb/c (base = a/, slash = /c)
287                  * ==>
288                  * path+baselen = bbb/c, sublen = 3
289                  */
290                 sublen = slash - (path + baselen);
291                 sub = find_subtree(it, path + baselen, sublen, 1);
292                 if (!sub->cache_tree)
293                         sub->cache_tree = cache_tree();
294                 subcnt = update_one(sub->cache_tree,
295                                     cache + i, entries - i,
296                                     path,
297                                     baselen + sublen + 1,
298                                     &subskip,
299                                     flags);
300                 if (subcnt < 0)
301                         return subcnt;
302                 i += subcnt;
303                 sub->count = subcnt; /* to be used in the next loop */
304                 *skip_count += subskip;
305                 sub->used = 1;
306         }
307
308         discard_unused_subtrees(it);
309
310         /*
311          * Then write out the tree object for this level.
312          */
313         strbuf_init(&buffer, 8192);
314
315         i = 0;
316         while (i < entries) {
317                 const struct cache_entry *ce = cache[i];
318                 struct cache_tree_sub *sub;
319                 const char *path, *slash;
320                 int pathlen, entlen;
321                 const unsigned char *sha1;
322                 unsigned mode;
323
324                 path = ce->name;
325                 pathlen = ce_namelen(ce);
326                 if (pathlen <= baselen || memcmp(base, path, baselen))
327                         break; /* at the end of this level */
328
329                 slash = strchr(path + baselen, '/');
330                 if (slash) {
331                         entlen = slash - (path + baselen);
332                         sub = find_subtree(it, path + baselen, entlen, 0);
333                         if (!sub)
334                                 die("cache-tree.c: '%.*s' in '%s' not found",
335                                     entlen, path + baselen, path);
336                         i += sub->count;
337                         sha1 = sub->cache_tree->sha1;
338                         mode = S_IFDIR;
339                         if (sub->cache_tree->entry_count < 0)
340                                 to_invalidate = 1;
341                 }
342                 else {
343                         sha1 = ce->sha1;
344                         mode = ce->ce_mode;
345                         entlen = pathlen - baselen;
346                         i++;
347                 }
348                 if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
349                         strbuf_release(&buffer);
350                         return error("invalid object %06o %s for '%.*s'",
351                                 mode, sha1_to_hex(sha1), entlen+baselen, path);
352                 }
353
354                 /*
355                  * CE_REMOVE entries are removed before the index is
356                  * written to disk. Skip them to remain consistent
357                  * with the future on-disk index.
358                  */
359                 if (ce->ce_flags & CE_REMOVE) {
360                         *skip_count = *skip_count + 1;
361                         continue;
362                 }
363
364                 /*
365                  * CE_INTENT_TO_ADD entries exist on on-disk index but
366                  * they are not part of generated trees. Invalidate up
367                  * to root to force cache-tree users to read elsewhere.
368                  */
369                 if (ce->ce_flags & CE_INTENT_TO_ADD) {
370                         to_invalidate = 1;
371                         continue;
372                 }
373
374                 strbuf_grow(&buffer, entlen + 100);
375                 strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
376                 strbuf_add(&buffer, sha1, 20);
377
378 #if DEBUG
379                 fprintf(stderr, "cache-tree update-one %o %.*s\n",
380                         mode, entlen, path + baselen);
381 #endif
382         }
383
384         if (dryrun)
385                 hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
386         else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
387                 strbuf_release(&buffer);
388                 return -1;
389         }
390
391         strbuf_release(&buffer);
392         it->entry_count = to_invalidate ? -1 : i - *skip_count;
393 #if DEBUG
394         fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
395                 it->entry_count, it->subtree_nr,
396                 sha1_to_hex(it->sha1));
397 #endif
398         return i;
399 }
400
401 int cache_tree_update(struct index_state *istate, int flags)
402 {
403         struct cache_tree *it = istate->cache_tree;
404         struct cache_entry **cache = istate->cache;
405         int entries = istate->cache_nr;
406         int skip, i = verify_cache(cache, entries, flags);
407
408         if (i)
409                 return i;
410         i = update_one(it, cache, entries, "", 0, &skip, flags);
411         if (i < 0)
412                 return i;
413         istate->cache_changed |= CACHE_TREE_CHANGED;
414         return 0;
415 }
416
417 static void write_one(struct strbuf *buffer, struct cache_tree *it,
418                       const char *path, int pathlen)
419 {
420         int i;
421
422         /* One "cache-tree" entry consists of the following:
423          * path (NUL terminated)
424          * entry_count, subtree_nr ("%d %d\n")
425          * tree-sha1 (missing if invalid)
426          * subtree_nr "cache-tree" entries for subtrees.
427          */
428         strbuf_grow(buffer, pathlen + 100);
429         strbuf_add(buffer, path, pathlen);
430         strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
431
432 #if DEBUG
433         if (0 <= it->entry_count)
434                 fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
435                         pathlen, path, it->entry_count, it->subtree_nr,
436                         sha1_to_hex(it->sha1));
437         else
438                 fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
439                         pathlen, path, it->subtree_nr);
440 #endif
441
442         if (0 <= it->entry_count) {
443                 strbuf_add(buffer, it->sha1, 20);
444         }
445         for (i = 0; i < it->subtree_nr; i++) {
446                 struct cache_tree_sub *down = it->down[i];
447                 if (i) {
448                         struct cache_tree_sub *prev = it->down[i-1];
449                         if (subtree_name_cmp(down->name, down->namelen,
450                                              prev->name, prev->namelen) <= 0)
451                                 die("fatal - unsorted cache subtree");
452                 }
453                 write_one(buffer, down->cache_tree, down->name, down->namelen);
454         }
455 }
456
457 void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
458 {
459         write_one(sb, root, "", 0);
460 }
461
462 static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
463 {
464         const char *buf = *buffer;
465         unsigned long size = *size_p;
466         const char *cp;
467         char *ep;
468         struct cache_tree *it;
469         int i, subtree_nr;
470
471         it = NULL;
472         /* skip name, but make sure name exists */
473         while (size && *buf) {
474                 size--;
475                 buf++;
476         }
477         if (!size)
478                 goto free_return;
479         buf++; size--;
480         it = cache_tree();
481
482         cp = buf;
483         it->entry_count = strtol(cp, &ep, 10);
484         if (cp == ep)
485                 goto free_return;
486         cp = ep;
487         subtree_nr = strtol(cp, &ep, 10);
488         if (cp == ep)
489                 goto free_return;
490         while (size && *buf && *buf != '\n') {
491                 size--;
492                 buf++;
493         }
494         if (!size)
495                 goto free_return;
496         buf++; size--;
497         if (0 <= it->entry_count) {
498                 if (size < 20)
499                         goto free_return;
500                 hashcpy(it->sha1, (const unsigned char*)buf);
501                 buf += 20;
502                 size -= 20;
503         }
504
505 #if DEBUG
506         if (0 <= it->entry_count)
507                 fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
508                         *buffer, it->entry_count, subtree_nr,
509                         sha1_to_hex(it->sha1));
510         else
511                 fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
512                         *buffer, subtree_nr);
513 #endif
514
515         /*
516          * Just a heuristic -- we do not add directories that often but
517          * we do not want to have to extend it immediately when we do,
518          * hence +2.
519          */
520         it->subtree_alloc = subtree_nr + 2;
521         it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
522         for (i = 0; i < subtree_nr; i++) {
523                 /* read each subtree */
524                 struct cache_tree *sub;
525                 struct cache_tree_sub *subtree;
526                 const char *name = buf;
527
528                 sub = read_one(&buf, &size);
529                 if (!sub)
530                         goto free_return;
531                 subtree = cache_tree_sub(it, name);
532                 subtree->cache_tree = sub;
533         }
534         if (subtree_nr != it->subtree_nr)
535                 die("cache-tree: internal error");
536         *buffer = buf;
537         *size_p = size;
538         return it;
539
540  free_return:
541         cache_tree_free(&it);
542         return NULL;
543 }
544
545 struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
546 {
547         if (buffer[0])
548                 return NULL; /* not the whole tree */
549         return read_one(&buffer, &size);
550 }
551
552 static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
553 {
554         if (!it)
555                 return NULL;
556         while (*path) {
557                 const char *slash;
558                 struct cache_tree_sub *sub;
559
560                 slash = strchrnul(path, '/');
561                 /*
562                  * Between path and slash is the name of the subtree
563                  * to look for.
564                  */
565                 sub = find_subtree(it, path, slash - path, 0);
566                 if (!sub)
567                         return NULL;
568                 it = sub->cache_tree;
569
570                 path = slash;
571                 while (*path == '/')
572                         path++;
573         }
574         return it;
575 }
576
577 int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
578 {
579         int entries, was_valid, newfd;
580         struct lock_file *lock_file;
581
582         /*
583          * We can't free this memory, it becomes part of a linked list
584          * parsed atexit()
585          */
586         lock_file = xcalloc(1, sizeof(struct lock_file));
587
588         newfd = hold_locked_index(lock_file, 1);
589
590         entries = read_cache();
591         if (entries < 0)
592                 return WRITE_TREE_UNREADABLE_INDEX;
593         if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
594                 cache_tree_free(&(active_cache_tree));
595
596         if (!active_cache_tree)
597                 active_cache_tree = cache_tree();
598
599         was_valid = cache_tree_fully_valid(active_cache_tree);
600         if (!was_valid) {
601                 if (cache_tree_update(&the_index, flags) < 0)
602                         return WRITE_TREE_UNMERGED_INDEX;
603                 if (0 <= newfd) {
604                         if (!write_locked_index(&the_index, lock_file, COMMIT_LOCK))
605                                 newfd = -1;
606                 }
607                 /* Not being able to write is fine -- we are only interested
608                  * in updating the cache-tree part, and if the next caller
609                  * ends up using the old index with unupdated cache-tree part
610                  * it misses the work we did here, but that is just a
611                  * performance penalty and not a big deal.
612                  */
613         }
614
615         if (prefix) {
616                 struct cache_tree *subtree =
617                         cache_tree_find(active_cache_tree, prefix);
618                 if (!subtree)
619                         return WRITE_TREE_PREFIX_ERROR;
620                 hashcpy(sha1, subtree->sha1);
621         }
622         else
623                 hashcpy(sha1, active_cache_tree->sha1);
624
625         if (0 <= newfd)
626                 rollback_lock_file(lock_file);
627
628         return 0;
629 }
630
631 static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
632 {
633         struct tree_desc desc;
634         struct name_entry entry;
635         int cnt;
636
637         hashcpy(it->sha1, tree->object.sha1);
638         init_tree_desc(&desc, tree->buffer, tree->size);
639         cnt = 0;
640         while (tree_entry(&desc, &entry)) {
641                 if (!S_ISDIR(entry.mode))
642                         cnt++;
643                 else {
644                         struct cache_tree_sub *sub;
645                         struct tree *subtree = lookup_tree(entry.sha1);
646                         if (!subtree->object.parsed)
647                                 parse_tree(subtree);
648                         sub = cache_tree_sub(it, entry.path);
649                         sub->cache_tree = cache_tree();
650                         prime_cache_tree_rec(sub->cache_tree, subtree);
651                         cnt += sub->cache_tree->entry_count;
652                 }
653         }
654         it->entry_count = cnt;
655 }
656
657 void prime_cache_tree(struct index_state *istate, struct tree *tree)
658 {
659         cache_tree_free(&istate->cache_tree);
660         istate->cache_tree = cache_tree();
661         prime_cache_tree_rec(istate->cache_tree, tree);
662         istate->cache_changed |= CACHE_TREE_CHANGED;
663 }
664
665 /*
666  * find the cache_tree that corresponds to the current level without
667  * exploding the full path into textual form.  The root of the
668  * cache tree is given as "root", and our current level is "info".
669  * (1) When at root level, info->prev is NULL, so it is "root" itself.
670  * (2) Otherwise, find the cache_tree that corresponds to one level
671  *     above us, and find ourselves in there.
672  */
673 static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
674                                                          struct traverse_info *info)
675 {
676         struct cache_tree *our_parent;
677
678         if (!info->prev)
679                 return root;
680         our_parent = find_cache_tree_from_traversal(root, info->prev);
681         return cache_tree_find(our_parent, info->name.path);
682 }
683
684 int cache_tree_matches_traversal(struct cache_tree *root,
685                                  struct name_entry *ent,
686                                  struct traverse_info *info)
687 {
688         struct cache_tree *it;
689
690         it = find_cache_tree_from_traversal(root, info);
691         it = cache_tree_find(it, ent->path);
692         if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
693                 return it->entry_count;
694         return 0;
695 }
696
697 int update_main_cache_tree(int flags)
698 {
699         if (!the_index.cache_tree)
700                 the_index.cache_tree = cache_tree();
701         return cache_tree_update(&the_index, flags);
702 }