OSDN Git Service

IRDA-2056: Minor cosmetic tweaks
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #include <fcntl.h>
8 #include <pthread.h>
9 #include <time.h>
10 #include <sys/epoll.h>
11 #include <sys/socket.h>
12 #include <utils/Log.h>
13 #include <hardware/sensors.h>
14 #include "control.h"
15 #include "enumeration.h"
16 #include "utils.h"
17 #include "transform.h"
18 #include "calibration.h"
19 #include "description.h"
20
21 /* Currently active sensors count, per device */
22 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
23 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
24
25 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
26
27 static int poll_fd; /* epoll instance covering all enabled sensors */
28
29 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
30
31 /* We use pthread condition variables to get worker threads out of sleep */
32 static pthread_condattr_t thread_cond_attr      [MAX_SENSORS];
33 static pthread_cond_t     thread_release_cond   [MAX_SENSORS];
34 static pthread_mutex_t    thread_release_mutex  [MAX_SENSORS];
35
36 /*
37  * We associate tags to each of our poll set entries. These tags have the
38  * following values:
39  * - a iio device number if the fd is a iio character device fd
40  * - THREAD_REPORT_TAG_BASE + sensor handle if the fd is the receiving end of a
41  *   pipe used by a sysfs data acquisition thread
42  *  */
43 #define THREAD_REPORT_TAG_BASE  0x00010000
44
45 #define ENABLE_BUFFER_RETRIES 10
46 #define ENABLE_BUFFER_RETRY_DELAY_MS 10
47
48 static int enable_buffer(int dev_num, int enabled)
49 {
50         char sysfs_path[PATH_MAX];
51         int ret, retries, millisec;
52         struct timespec req = {0};
53
54         retries = ENABLE_BUFFER_RETRIES;
55         millisec = ENABLE_BUFFER_RETRY_DELAY_MS;
56         req.tv_sec = 0;
57         req.tv_nsec = millisec * 1000000L;
58
59         sprintf(sysfs_path, ENABLE_PATH, dev_num);
60
61         while (retries--) {
62                 /* Low level, non-multiplexed, enable/disable routine */
63                 ret = sysfs_write_int(sysfs_path, enabled);
64                 if (ret > 0)
65                         break;
66
67                 ALOGE("Failed enabling buffer, retrying");
68                 nanosleep(&req, (struct timespec *)NULL);
69         }
70
71         if (ret < 0) {
72                 ALOGE("Could not enable buffer\n");
73                 return -EIO;
74         }
75
76         return 0;
77 }
78
79
80 static int setup_trigger (int s, const char* trigger_val)
81 {
82         char sysfs_path[PATH_MAX];
83         int ret = -1, attempts = 5;
84
85         sprintf(sysfs_path, TRIGGER_PATH, sensor_info[s].dev_num);
86
87         if (trigger_val[0] != '\n')
88                 ALOGI("Setting S%d (%s) trigger to %s\n", s,
89                         sensor_info[s].friendly_name, trigger_val);
90
91         while (ret == -1 && attempts) {
92                 ret = sysfs_write_str(sysfs_path, trigger_val);
93                 attempts--;
94         }
95
96         if (ret != -1)
97                 sensor_info[s].selected_trigger = trigger_val;
98         else
99                 ALOGE("Setting S%d (%s) trigger to %s FAILED.\n", s,
100                         sensor_info[s].friendly_name, trigger_val);
101         return ret;
102 }
103
104
105 void build_sensor_report_maps(int dev_num)
106 {
107         /*
108          * Read sysfs files from a iio device's scan_element directory, and
109          * build a couple of tables from that data. These tables will tell, for
110          * each sensor, where to gather relevant data in a device report, i.e.
111          * the structure that we read from the /dev/iio:deviceX file in order to
112          * sensor report, itself being the data that we return to Android when a
113          * sensor poll completes. The mapping should be straightforward in the
114          * case where we have a single sensor active per iio device but, this is
115          * not the general case. In general several sensors can be handled
116          * through a single iio device, and the _en, _index and _type syfs
117          * entries all concur to paint a picture of what the structure of the
118          * device report is.
119          */
120
121         int s;
122         int c;
123         int n;
124         int i;
125         int ch_index;
126         char* ch_spec;
127         char spec_buf[MAX_TYPE_SPEC_LEN];
128         struct datum_info_t* ch_info;
129         int size;
130         char sysfs_path[PATH_MAX];
131         int known_channels;
132         int offset;
133         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
134         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
135         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
136
137         known_channels = 0;
138
139         /* For each sensor that is linked to this device */
140         for (s=0; s<sensor_count; s++) {
141                 if (sensor_info[s].dev_num != dev_num)
142                         continue;
143
144                 i = sensor_info[s].catalog_index;
145
146                 /* Read channel details through sysfs attributes */
147                 for (c=0; c<sensor_info[s].num_channels; c++) {
148
149                         /* Read _type file */
150                         sprintf(sysfs_path, CHANNEL_PATH "%s",
151                                 sensor_info[s].dev_num,
152                                 sensor_catalog[i].channel[c].type_path);
153
154                         n = sysfs_read_str(sysfs_path, spec_buf, 
155                                                 sizeof(spec_buf));
156
157                         if (n == -1) {
158                                         ALOGW(  "Failed to read type: %s\n",
159                                         sysfs_path);
160                                         continue;
161                                 }
162
163                         ch_spec = sensor_info[s].channel[c].type_spec;
164
165                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
166
167                         ch_info = &sensor_info[s].channel[c].type_info;
168
169                         size = decode_type_spec(ch_spec, ch_info);
170
171                         /* Read _index file */
172                         sprintf(sysfs_path, CHANNEL_PATH "%s",
173                                 sensor_info[s].dev_num,
174                                 sensor_catalog[i].channel[c].index_path);
175
176                         n = sysfs_read_int(sysfs_path, &ch_index);
177
178                         if (n == -1) {
179                                         ALOGW(  "Failed to read index: %s\n",
180                                                 sysfs_path);
181                                         continue;
182                                 }
183
184                         if (ch_index >= MAX_SENSORS) {
185                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
186                                 continue;
187                         }
188
189                         /* Record what this index is about */
190
191                         sensor_handle_from_index [ch_index] = s;
192                         channel_number_from_index[ch_index] = c;
193                         channel_size_from_index  [ch_index] = size;
194
195                         known_channels++;
196                 }
197
198                 /* Stop sampling - if we are recovering from hal restart */
199                 enable_buffer(dev_num, 0);
200                 setup_trigger(s, "\n");
201
202                 /* Turn on channels we're aware of */
203                 for (c=0;c<sensor_info[s].num_channels; c++) {
204                         sprintf(sysfs_path, CHANNEL_PATH "%s",
205                                 sensor_info[s].dev_num,
206                                 sensor_catalog[i].channel[c].en_path);
207                         sysfs_write_int(sysfs_path, 1);
208                 }
209         }
210
211         ALOGI("Found %d channels on iio device %d\n", known_channels, dev_num);
212
213         /*
214          * Now that we know which channels are defined, their sizes and their
215          * ordering, update channels offsets within device report. Note: there
216          * is a possibility that several sensors share the same index, with
217          * their data fields being isolated by masking and shifting as specified
218          * through the real bits and shift values in type attributes. This case
219          * is not currently supported. Also, the code below assumes no hole in
220          * the sequence of indices, so it is dependent on discovery of all
221          * sensors.
222          */
223          offset = 0;
224          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
225                 s =     sensor_handle_from_index[i];
226                 c =     channel_number_from_index[i];
227                 size =  channel_size_from_index[i];
228
229                 if (!size)
230                         continue;
231
232                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
233                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
234
235                 sensor_info[s].channel[c].offset        = offset;
236                 sensor_info[s].channel[c].size          = size;
237
238                 offset += size;
239          }
240 }
241
242
243 int adjust_counters (int s, int enabled)
244 {
245         /*
246          * Adjust counters based on sensor enable action. Return values are:
247          * -1 if there's an inconsistency: abort action in this case
248          *  0 if the operation was completed and we're all set
249          *  1 if we toggled the state of the sensor and there's work left
250          */
251
252         int dev_num = sensor_info[s].dev_num;
253         int catalog_index = sensor_info[s].catalog_index;
254         int sensor_type = sensor_catalog[catalog_index].type;
255
256         /* Refcount per sensor, in terms of enable count */
257         if (enabled) {
258                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
259                         s, dev_num, sensor_info[s].friendly_name);
260
261                 sensor_info[s].enable_count++;
262
263                 if (sensor_info[s].enable_count > 1)
264                         return 0; /* The sensor was, and remains, in use */
265
266                 switch (sensor_type) {
267                         case SENSOR_TYPE_MAGNETIC_FIELD:
268                                 compass_read_data(&sensor_info[s]);
269                                 break;
270
271                         case SENSOR_TYPE_GYROSCOPE:
272                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
273                                 gyro_cal_init(&sensor_info[s]);
274                                 break;
275                 }
276         } else {
277                 if (sensor_info[s].enable_count == 0)
278                         return -1; /* Spurious disable call */
279
280                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
281                       sensor_info[s].friendly_name);
282
283                 sensor_info[s].enable_count--;
284
285                 if (sensor_info[s].enable_count > 0)
286                         return 0; /* The sensor was, and remains, in use */
287
288                 /* Sensor disabled, lower report available flag */
289                 sensor_info[s].report_pending = 0;
290
291                 if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
292                         compass_store_data(&sensor_info[s]);
293         }
294
295
296         /* If uncalibrated type and pair is already active don't adjust counters */
297         if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
298                 sensor_info[sensor_info[s].pair_idx].enable_count != 0)
299                         return 0;
300
301         /* We changed the state of a sensor - adjust per iio device counters */
302
303         /* If this is a regular event-driven sensor */
304         if (sensor_info[s].num_channels) {
305
306                         if (enabled)
307                                 trig_sensors_per_dev[dev_num]++;
308                         else
309                                 trig_sensors_per_dev[dev_num]--;
310
311                         return 1;
312                 }
313
314         if (enabled) {
315                 active_poll_sensors++;
316                 poll_sensors_per_dev[dev_num]++;
317                 return 1;
318         }
319
320         active_poll_sensors--;
321         poll_sensors_per_dev[dev_num]--;
322         return 1;
323 }
324
325
326 static int get_field_count (int s)
327 {
328         int catalog_index = sensor_info[s].catalog_index;
329         int sensor_type   = sensor_catalog[catalog_index].type;
330
331         switch (sensor_type) {
332                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
333                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
334                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
335                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
336                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
337                         return 3;
338
339                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
340                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
341                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
342                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
343                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
344                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
345                         return 1;
346
347                 case SENSOR_TYPE_ROTATION_VECTOR:
348                         return  4;
349
350                 default:
351                         ALOGE("Unknown sensor type!\n");
352                         return 0;                       /* Drop sample */
353         }
354 }
355
356
357
358 static void* acquisition_routine (void* param)
359 {
360         /*
361          * Data acquisition routine run in a dedicated thread, covering a single
362          * sensor. This loop will periodically retrieve sampling data through
363          * sysfs, then package it as a sample and transfer it to our master poll
364          * loop through a report fd. Checks for a cancellation signal quite
365          * frequently, as the thread may be disposed of at any time. Note that
366          * Bionic does not provide pthread_cancel / pthread_testcancel...
367          */
368
369         int s = (int) (size_t) param;
370         int num_fields, sample_size;
371         struct sensors_event_t data = {0};
372         int c;
373         int ret;
374         struct timespec target_time;
375         int64_t timestamp, period;
376
377         if (s < 0 || s >= sensor_count) {
378                 ALOGE("Invalid sensor handle!\n");
379                 return NULL;
380         }
381
382         ALOGI("Entering data acquisition thread S%d (%s): rate(%f), ts(%lld)\n", s,
383                 sensor_info[s].friendly_name, sensor_info[s].sampling_rate, sensor_info[s].report_ts);
384
385         if (sensor_info[s].sampling_rate <= 0) {
386                 ALOGE("Non-positive rate in acquisition routine for sensor %d: %f\n",
387                         s, sensor_info[s].sampling_rate);
388                 return NULL;
389         }
390
391         num_fields = get_field_count(s);
392         sample_size = num_fields * sizeof(float);
393
394         /*
395          * Each condition variable is associated to a mutex that has to be
396          * locked by the thread that's waiting on it. We use these condition
397          * variables to get the acquisition threads out of sleep quickly after
398          * the sampling rate is adjusted, or the sensor is disabled.
399          */
400         pthread_mutex_lock(&thread_release_mutex[s]);
401
402         /* Pinpoint the moment we start sampling */
403         timestamp = get_timestamp();
404
405         /* Check and honor termination requests */
406         while (sensor_info[s].thread_data_fd[1] != -1) {
407
408                 /* Read values through sysfs */
409                 for (c=0; c<num_fields; c++) {
410                         data.data[c] = acquire_immediate_value(s, c);
411                         /* Check and honor termination requests */
412                         if (sensor_info[s].thread_data_fd[1] == -1)
413                                 goto exit;
414                 }
415
416                 /* If the sample looks good */
417                 if (sensor_info[s].ops.finalize(s, &data)) {
418
419                         /* Pipe it for transmission to poll loop */
420                         ret = write(    sensor_info[s].thread_data_fd[1],
421                                         data.data, sample_size);
422                         if (ret != sample_size)
423                                 ALOGE("S%d acquisition thread: tried to write %d, ret: %d\n",
424                                         s, sample_size, ret);
425                 }
426
427                 /* Check and honor termination requests */
428                 if (sensor_info[s].thread_data_fd[1] == -1)
429                         goto exit;
430
431                 /* Recalculate period asumming sensor_info[s].sampling_rate
432                  * can be changed dynamically during the thread run */
433                 if (sensor_info[s].sampling_rate <= 0) {
434                         ALOGE("Non-positive rate in acquisition routine for sensor %d: %f\n",
435                                 s, sensor_info[s].sampling_rate);
436                         goto exit;
437                 }
438
439                 period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate);
440                 timestamp += period;
441                 set_timestamp(&target_time, timestamp);
442
443                 /*
444                  * Wait until the sampling time elapses, or a rate change is
445                  * signaled, or a thread exit is requested.
446                  */
447                 ret = pthread_cond_timedwait(   &thread_release_cond[s],
448                                                 &thread_release_mutex[s],
449                                                 &target_time);
450         }
451
452 exit:
453         ALOGV("Acquisition thread for S%d exiting\n", s);
454         pthread_mutex_unlock(&thread_release_mutex[s]);
455         pthread_exit(0);
456         return NULL;
457 }
458
459
460 static void start_acquisition_thread (int s)
461 {
462         int incoming_data_fd;
463         int ret;
464
465         struct epoll_event ev = {0};
466
467         ALOGV("Initializing acquisition context for sensor %d\n", s);
468
469         /* Create condition variable and mutex for quick thread release */
470         ret = pthread_condattr_init(&thread_cond_attr[s]);
471         ret = pthread_condattr_setclock(&thread_cond_attr[s], POLLING_CLOCK);
472         ret = pthread_cond_init(&thread_release_cond[s], &thread_cond_attr[s]);
473         ret = pthread_mutex_init(&thread_release_mutex[s], NULL);
474
475         /* Create a pipe for inter thread communication */
476         ret = pipe(sensor_info[s].thread_data_fd);
477
478         incoming_data_fd = sensor_info[s].thread_data_fd[0];
479
480         ev.events = EPOLLIN;
481         ev.data.u32 = THREAD_REPORT_TAG_BASE + s;
482
483         /* Add incoming side of pipe to our poll set, with a suitable tag */
484         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, incoming_data_fd , &ev);
485
486         /* Create and start worker thread */
487         ret = pthread_create(   &sensor_info[s].acquisition_thread,
488                                 NULL,
489                                 acquisition_routine,
490                                 (void*) (size_t) s);
491 }
492
493
494 static void stop_acquisition_thread (int s)
495 {
496         int incoming_data_fd = sensor_info[s].thread_data_fd[0];
497         int outgoing_data_fd = sensor_info[s].thread_data_fd[1];
498
499         ALOGV("Tearing down acquisition context for sensor %d\n", s);
500
501         /* Delete the incoming side of the pipe from our poll set */
502         epoll_ctl(poll_fd, EPOLL_CTL_DEL, incoming_data_fd, NULL);
503
504         /* Mark the pipe ends as invalid ; that's a cheap exit flag */
505         sensor_info[s].thread_data_fd[0] = -1;
506         sensor_info[s].thread_data_fd[1] = -1;
507
508         /* Close both sides of our pipe */
509         close(incoming_data_fd);
510         close(outgoing_data_fd);
511
512         /* Stop acquisition thread and clean up thread handle */
513         pthread_cond_signal(&thread_release_cond[s]);
514         pthread_join(sensor_info[s].acquisition_thread, NULL);
515
516         /* Clean up our sensor descriptor */
517         sensor_info[s].acquisition_thread = -1;
518
519         /* Delete condition variable and mutex */
520         pthread_cond_destroy(&thread_release_cond[s]);
521         pthread_mutex_destroy(&thread_release_mutex[s]);
522 }
523
524
525 int sensor_activate(int s, int enabled)
526 {
527         char device_name[PATH_MAX];
528         struct epoll_event ev = {0};
529         int dev_fd;
530         int ret;
531         int dev_num = sensor_info[s].dev_num;
532         int is_poll_sensor = !sensor_info[s].num_channels;
533
534         /* Prepare the report timestamp field for the first event, see set_report_ts method */
535         sensor_info[s].report_ts = 0;
536
537         /* If we want to activate gyro calibrated and gyro uncalibrated is activated
538          * Deactivate gyro uncalibrated - Uncalibrated releases handler
539          * Activate gyro calibrated     - Calibrated has handler
540          * Reactivate gyro uncalibrated - Uncalibrated gets data from calibrated */
541
542         /* If we want to deactivate gyro calibrated and gyro uncalibrated is active
543          * Deactivate gyro uncalibrated - Uncalibrated no longer gets data from handler
544          * Deactivate gyro calibrated   - Calibrated releases handler
545          * Reactivate gyro uncalibrated - Uncalibrated has handler */
546
547         if (sensor_catalog[sensor_info[s].catalog_index].type == SENSOR_TYPE_GYROSCOPE &&
548                 sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
549
550                                 sensor_activate(sensor_info[s].pair_idx, 0);
551                                 ret = sensor_activate(s, enabled);
552                                 sensor_activate(sensor_info[s].pair_idx, 1);
553                                 return ret;
554         }
555
556         ret = adjust_counters(s, enabled);
557
558         /* If the operation was neutral in terms of state, we're done */
559         if (ret <= 0)
560                 return ret;
561
562
563         if (!is_poll_sensor) {
564
565                 /* Stop sampling */
566                 enable_buffer(dev_num, 0);
567                 setup_trigger(s, "\n");
568
569                 /* If there's at least one sensor enabled on this iio device */
570                 if (trig_sensors_per_dev[dev_num]) {
571
572                         /* Start sampling */
573                         setup_trigger(s, sensor_info[s].init_trigger_name);
574                         enable_buffer(dev_num, 1);
575                 }
576         }
577
578         /*
579          * Make sure we have a fd on the character device ; conversely, close
580          * the fd if no one is using associated sensors anymore. The assumption
581          * here is that the underlying driver will power on the relevant
582          * hardware block while someone holds a fd on the device.
583          */
584         dev_fd = device_fd[dev_num];
585
586         if (!enabled) {
587                 if (is_poll_sensor)
588                         stop_acquisition_thread(s);
589
590                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
591                         !trig_sensors_per_dev[dev_num]) {
592                                 /*
593                                  * Stop watching this fd. This should be a no-op
594                                  * in case this fd was not in the poll set.
595                                  */
596                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
597
598                                 close(dev_fd);
599                                 device_fd[dev_num] = -1;
600                         }
601
602                 /* If we recorded a trail of samples for filtering, delete it */
603                 if (sensor_info[s].history) {
604                         free(sensor_info[s].history);
605                         sensor_info[s].history = NULL;
606                         sensor_info[s].history_size = 0;
607                         if (sensor_info[s].history_sum) {
608                                 free(sensor_info[s].history_sum);
609                                 sensor_info[s].history_sum = NULL;
610                         }
611                 }
612
613                 return 0;
614         }
615
616         if (dev_fd == -1) {
617                 /* First enabled sensor on this iio device */
618                 sprintf(device_name, DEV_FILE_PATH, dev_num);
619                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
620
621                 device_fd[dev_num] = dev_fd;
622
623                 if (dev_fd == -1) {
624                         ALOGE("Could not open fd on %s (%s)\n",
625                               device_name, strerror(errno));
626                         adjust_counters(s, 0);
627                         return -1;
628                 }
629
630                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
631
632                 if (!is_poll_sensor) {
633
634                         /* Add this iio device fd to the set of watched fds */
635                         ev.events = EPOLLIN;
636                         ev.data.u32 = dev_num;
637
638                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
639
640                         if (ret == -1) {
641                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
642                                         dev_fd, strerror(errno));
643                                 return -1;
644                         }
645
646                         /* Note: poll-mode fds are not readable */
647                 }
648         }
649
650         /* Ensure that on-change sensors send at least one event after enable */
651         sensor_info[s].prev_val = -1;
652
653         if (is_poll_sensor)
654                 start_acquisition_thread(s);
655
656         return 0;
657 }
658
659
660 static int is_fast_accelerometer (int s)
661 {
662         /*
663          * Some games don't react well to accelerometers using any-motion
664          * triggers. Even very low thresholds seem to trip them, and they tend
665          * to request fairly high event rates. Favor continuous triggers if the
666          * sensor is an accelerometer and uses a sampling rate of at least 25.
667          */
668         int catalog_index = sensor_info[s].catalog_index;
669
670         if (sensor_catalog[catalog_index].type != SENSOR_TYPE_ACCELEROMETER)
671                 return 0;
672
673         if (sensor_info[s].sampling_rate < 25)
674                 return 0;
675
676         return 1;
677 }
678
679
680 static void enable_motion_trigger (int dev_num)
681 {
682         /*
683          * In the ideal case, we enumerate two triggers per iio device ; the
684          * default (periodically firing) trigger, and another one (the motion
685          * trigger) that only fires up when motion is detected. This second one
686          * allows for lesser energy consumption, but requires periodic sample
687          * duplication at the HAL level for sensors that Android defines as
688          * continuous. This "duplicate last sample" logic can only be engaged
689          * once we got a first sample for the driver, so we start with the
690          * default trigger when an iio device is first opened, then adjust the
691          * trigger when we got events for all active sensors. Unfortunately in
692          * the general case several sensors can be associated to a given iio
693          * device, they can independently be controlled, and we have to adjust
694          * the trigger in use at the iio device level depending on whether or
695          * not appropriate conditions are met at the sensor level.
696          */
697
698         int s;
699         int i;
700         int active_sensors = trig_sensors_per_dev[dev_num];
701         int candidate[MAX_SENSORS];
702         int candidate_count = 0;
703
704         if  (!active_sensors)
705                 return;
706
707         /* Check that all active sensors are ready to switch */
708
709         for (s=0; s<MAX_SENSORS; s++)
710                 if (sensor_info[s].dev_num == dev_num &&
711                     sensor_info[s].enable_count &&
712                     sensor_info[s].num_channels &&
713                     (!sensor_info[s].motion_trigger_name[0] ||
714                      !sensor_info[s].report_initialized ||
715                      is_fast_accelerometer(s))
716                     )
717                         return; /* Nope */
718
719         /* Record which particular sensors need to switch */
720
721         for (s=0; s<MAX_SENSORS; s++)
722                 if (sensor_info[s].dev_num == dev_num &&
723                     sensor_info[s].enable_count &&
724                     sensor_info[s].num_channels &&
725                     !(sensor_info[s].quirks & QUIRK_CONTINUOUS_DRIVER) &&
726                     sensor_info[s].selected_trigger !=
727                         sensor_info[s].motion_trigger_name)
728                                 candidate[candidate_count++] = s;
729
730         if (!candidate_count)
731                 return;
732
733         /* Now engage the motion trigger for sensors which aren't using it */
734
735         enable_buffer(dev_num, 0);
736
737         for (i=0; i<candidate_count; i++) {
738                 s = candidate[i];
739                 setup_trigger(s, sensor_info[s].motion_trigger_name);
740         }
741
742         enable_buffer(dev_num, 1);
743 }
744
745 /* CTS acceptable thresholds:
746  *      EventGapVerification.java: (th <= 1.8)
747  *      FrequencyVerification.java: (0.9)*(expected freq) => (th <= 1.1111)
748  */
749 #define THRESHOLD 1.10
750 void set_report_ts(int s, int64_t ts)
751 {
752         int64_t maxTs, period;
753         int catalog_index = sensor_info[s].catalog_index;
754         int is_accel      = (sensor_catalog[catalog_index].type == SENSOR_TYPE_ACCELEROMETER);
755
756         /*
757         *  A bit of a hack to please a bunch of cts tests. They
758         *  expect the timestamp to be exacly according to the set-up
759         *  frequency but if we're simply getting the timestamp at hal level
760         *  this may not be the case. Perhaps we'll get rid of this when
761         *  we'll be reading the timestamp from the iio channel for all sensors
762         */
763         if (sensor_info[s].report_ts && sensor_info[s].sampling_rate &&
764                 REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE)
765         {
766                 period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate);
767                 maxTs = sensor_info[s].report_ts + (is_accel ? 1 : THRESHOLD) * period;
768                 sensor_info[s].report_ts = (ts < maxTs ? ts : maxTs);
769         } else {
770                 sensor_info[s].report_ts = ts;
771         }
772 }
773
774 static int integrate_device_report(int dev_num)
775 {
776         int len;
777         int s,c;
778         unsigned char buf[MAX_SENSOR_REPORT_SIZE] = { 0 };
779         int sr_offset;
780         unsigned char *target;
781         unsigned char *source;
782         int size;
783
784         /* There's an incoming report on the specified iio device char dev fd */
785
786         if (dev_num < 0 || dev_num >= MAX_DEVICES) {
787                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
788                 return -1;
789         }
790
791         if (device_fd[dev_num] == -1) {
792                 ALOGE("Ignoring stale report on iio device %d\n", dev_num);
793                 return -1;
794         }
795
796         len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
797
798         if (len == -1) {
799                 ALOGE("Could not read report from iio device %d (%s)\n",
800                       dev_num, strerror(errno));
801                 return -1;
802         }
803
804         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
805
806         /* Map device report to sensor reports */
807
808         for (s=0; s<MAX_SENSORS; s++)
809                 if (sensor_info[s].dev_num == dev_num &&
810                     sensor_info[s].enable_count) {
811
812                         sr_offset = 0;
813
814                         /* Copy data from device to sensor report buffer */
815                         for (c=0; c<sensor_info[s].num_channels; c++) {
816
817                                 target = sensor_info[s].report_buffer +
818                                         sr_offset;
819
820                                 source = buf + sensor_info[s].channel[c].offset;
821
822                                 size = sensor_info[s].channel[c].size;
823
824                                 memcpy(target, source, size);
825
826                                 sr_offset += size;
827                         }
828
829                         ALOGV("Sensor %d report available (%d bytes)\n", s,
830                               sr_offset);
831
832                         set_report_ts(s, get_timestamp());
833                         sensor_info[s].report_pending = 1;
834                         sensor_info[s].report_initialized = 1;
835                 }
836
837         /* Tentatively switch to an any-motion trigger if conditions are met */
838         enable_motion_trigger(dev_num);
839
840         return 0;
841 }
842
843
844 static int propagate_sensor_report(int s, struct sensors_event_t  *data)
845 {
846         /* There's a sensor report pending for this sensor ; transmit it */
847
848         int catalog_index = sensor_info[s].catalog_index;
849         int sensor_type   = sensor_catalog[catalog_index].type;
850         int num_fields    = get_field_count(s);
851         int c;
852         unsigned char* current_sample;
853
854         /* If there's nothing to return... we're done */
855         if (!num_fields)
856                 return 0;
857
858
859         /* Only return uncalibrated event if also gyro active */
860         if (sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
861                 sensor_info[sensor_info[s].pair_idx].enable_count != 0)
862                         return 0;
863
864         memset(data, 0, sizeof(sensors_event_t));
865
866         data->version   = sizeof(sensors_event_t);
867         data->sensor    = s;
868         data->type      = sensor_type;
869         data->timestamp = sensor_info[s].report_ts;
870
871         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
872
873         current_sample = sensor_info[s].report_buffer;
874
875         /* If this is a poll sensor */
876         if (!sensor_info[s].num_channels) {
877                 /* Use the data provided by the acquisition thread */
878                 ALOGV("Reporting data from worker thread for S%d\n", s);
879                 memcpy(data->data, current_sample, num_fields * sizeof(float));
880                 return 1;
881         }
882
883         /* Convert the data into the expected Android-level format */
884         for (c=0; c<num_fields; c++) {
885
886                 data->data[c] = sensor_info[s].ops.transform
887                                                         (s, c, current_sample);
888
889                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
890                 current_sample += sensor_info[s].channel[c].size;
891         }
892
893         /*
894          * The finalize routine, in addition to its late sample processing duty,
895          * has the final say on whether or not the sample gets sent to Android.
896          */
897         return sensor_info[s].ops.finalize(s, data);
898 }
899
900
901 static void synthetize_duplicate_samples (void)
902 {
903         /*
904          * Some sensor types (ex: gyroscope) are defined as continuously firing
905          * by Android, despite the fact that we can be dealing with iio drivers
906          * that only report events for new samples. For these we generate
907          * reports periodically, duplicating the last data we got from the
908          * driver. This is not necessary for polling sensors.
909          */
910
911         int s;
912         int64_t current_ts;
913         int64_t target_ts;
914         int64_t period;
915
916         for (s=0; s<sensor_count; s++) {
917
918                 /* Ignore disabled sensors */
919                 if (!sensor_info[s].enable_count)
920                         continue;
921
922                 /* If the sensor is continuously firing, leave it alone */
923                 if (sensor_info[s].selected_trigger !=
924                     sensor_info[s].motion_trigger_name)
925                         continue;
926
927                 /* If we haven't seen a sample, there's nothing to duplicate */
928                 if (!sensor_info[s].report_initialized)
929                         continue;
930
931                 /* If a sample was recently buffered, leave it alone too */
932                 if (sensor_info[s].report_pending)
933                         continue;
934
935                 /* We also need a valid sampling rate to be configured */
936                 if (!sensor_info[s].sampling_rate)
937                         continue;
938
939                 period = (int64_t) (1000000000.0/ sensor_info[s].sampling_rate);
940
941                 current_ts = get_timestamp();
942                 target_ts = sensor_info[s].report_ts + period;
943
944                 if (target_ts <= current_ts) {
945                         /* Mark the sensor for event generation */
946                         set_report_ts(s, current_ts);
947                         sensor_info[s].report_pending = 1;
948                 }
949         }
950 }
951
952
953 static void integrate_thread_report (uint32_t tag)
954 {
955         int s = tag - THREAD_REPORT_TAG_BASE;
956         int len;
957         int expected_len;
958
959         expected_len = get_field_count(s) * sizeof(float);
960
961         len = read(sensor_info[s].thread_data_fd[0],
962                    sensor_info[s].report_buffer,
963                    expected_len);
964
965         if (len == expected_len) {
966                 set_report_ts(s, get_timestamp());
967                 sensor_info[s].report_pending = 1;
968         }
969 }
970
971
972 static int get_poll_wait_timeout (void)
973 {
974         /*
975          * Compute an appropriate timeout value, in ms, for the epoll_wait
976          * call that's going to await for iio device reports and incoming
977          * reports from our sensor sysfs data reader threads.
978          */
979
980         int s;
981         int64_t target_ts = INT64_MAX;
982         int64_t ms_to_wait;
983         int64_t period;
984
985         /*
986          * Check if we're dealing with a driver that only send events when
987          * there is motion, despite the fact that the associated Android sensor
988          * type is continuous rather than on-change. In that case we have to
989          * duplicate events. Check deadline for the nearest upcoming event.
990          */
991         for (s=0; s<sensor_count; s++)
992                 if (sensor_info[s].enable_count &&
993                     sensor_info[s].selected_trigger ==
994                     sensor_info[s].motion_trigger_name &&
995                     sensor_info[s].sampling_rate) {
996                         period = (int64_t) (1000000000.0 /
997                                                 sensor_info[s].sampling_rate);
998
999                         if (sensor_info[s].report_ts + period < target_ts)
1000                                 target_ts = sensor_info[s].report_ts + period;
1001                 }
1002
1003         /* If we don't have such a driver to deal with */
1004         if (target_ts == INT64_MAX)
1005                 return -1; /* Infinite wait */
1006
1007         ms_to_wait = (target_ts - get_timestamp()) / 1000000;
1008
1009         /* If the target timestamp is already behind us, don't wait */
1010         if (ms_to_wait < 1)
1011                 return 0;
1012
1013         return ms_to_wait;
1014 }
1015
1016
1017 int sensor_poll(struct sensors_event_t* data, int count)
1018 {
1019         int s;
1020         int i;
1021         int nfds;
1022         struct epoll_event ev[MAX_DEVICES];
1023         int returned_events;
1024         int event_count;
1025         int uncal_start;
1026
1027         /* Get one or more events from our collection of sensors */
1028
1029 return_available_sensor_reports:
1030
1031         /* Synthetize duplicate samples if needed */
1032         synthetize_duplicate_samples();
1033
1034         returned_events = 0;
1035
1036         /* Check our sensor collection for available reports */
1037         for (s=0; s<sensor_count && returned_events < count; s++) {
1038                 if (sensor_info[s].report_pending) {
1039                         event_count = 0;
1040                         /* Lower flag */
1041                         sensor_info[s].report_pending = 0;
1042
1043                         /* Report this event if it looks OK */
1044                         event_count = propagate_sensor_report(s, &data[returned_events]);
1045
1046                         /* Duplicate only if both cal & uncal are active */
1047                         if (sensor_catalog[sensor_info[s].catalog_index].type == SENSOR_TYPE_GYROSCOPE &&
1048                                         sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
1049                                         struct gyro_cal* gyro_data = (struct gyro_cal*) sensor_info[s].cal_data;
1050
1051                                         memcpy(&data[returned_events + event_count], &data[returned_events],
1052                                                         sizeof(struct sensors_event_t) * event_count);
1053
1054                                         uncal_start = returned_events + event_count;
1055                                         for (i = 0; i < event_count; i++) {
1056                                                 data[uncal_start + i].type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
1057                                                 data[uncal_start + i].sensor = sensor_info[s].pair_idx;
1058
1059                                                 data[uncal_start + i].data[0] = data[returned_events + i].data[0] + gyro_data->bias_x;
1060                                                 data[uncal_start + i].data[1] = data[returned_events + i].data[1] + gyro_data->bias_y;
1061                                                 data[uncal_start + i].data[2] = data[returned_events + i].data[2] + gyro_data->bias_z;
1062
1063                                                 data[uncal_start + i].uncalibrated_gyro.bias[0] = gyro_data->bias_x;
1064                                                 data[uncal_start + i].uncalibrated_gyro.bias[1] = gyro_data->bias_y;
1065                                                 data[uncal_start + i].uncalibrated_gyro.bias[2] = gyro_data->bias_z;
1066                                         }
1067                                         event_count <<= 1;
1068                         }
1069                         sensor_info[sensor_info[s].pair_idx].report_pending = 0;
1070                         returned_events += event_count;
1071                         /*
1072                          * If the sample was deemed invalid or unreportable,
1073                          * e.g. had the same value as the previously reported
1074                          * value for a 'on change' sensor, silently drop it.
1075                          */
1076                 }
1077                 while (sensor_info[s].meta_data_pending) {
1078                         /* See sensors.h on these */
1079                         data[returned_events].version = META_DATA_VERSION;
1080                         data[returned_events].sensor = 0;
1081                         data[returned_events].type = SENSOR_TYPE_META_DATA;
1082                         data[returned_events].reserved0 = 0;
1083                         data[returned_events].timestamp = 0;
1084                         data[returned_events].meta_data.sensor = s;
1085                         data[returned_events].meta_data.what = META_DATA_FLUSH_COMPLETE;
1086                         returned_events++;
1087                         sensor_info[s].meta_data_pending--;
1088                 }
1089         }
1090         if (returned_events)
1091                 return returned_events;
1092
1093 await_event:
1094
1095         ALOGV("Awaiting sensor data\n");
1096
1097         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_wait_timeout());
1098
1099         if (nfds == -1) {
1100                 ALOGE("epoll_wait returned -1 (%s)\n", strerror(errno));
1101                 goto await_event;
1102         }
1103
1104         ALOGV("%d fds signalled\n", nfds);
1105
1106         /* For each of the signalled sources */
1107         for (i=0; i<nfds; i++)
1108                 if (ev[i].events == EPOLLIN)
1109                         switch (ev[i].data.u32) {
1110                                 case 0 ... MAX_DEVICES-1:
1111                                         /* Read report from iio char dev fd */
1112                                         integrate_device_report(ev[i].data.u32);
1113                                         break;
1114
1115                                 case THREAD_REPORT_TAG_BASE ...
1116                                      THREAD_REPORT_TAG_BASE + MAX_SENSORS-1:
1117                                         /* Get report from acquisition thread */
1118                                         integrate_thread_report(ev[i].data.u32);
1119                                         break;
1120
1121                                 default:
1122                                         ALOGW("Unexpected event source!\n");
1123                                         break;
1124                         }
1125
1126         goto return_available_sensor_reports;
1127 }
1128
1129
1130 int sensor_set_delay(int s, int64_t ns)
1131 {
1132         /* Set the rate at which a specific sensor should report events */
1133
1134         /* See Android sensors.h for indication on sensor trigger modes */
1135
1136         char sysfs_path[PATH_MAX];
1137         char avail_sysfs_path[PATH_MAX];
1138         int dev_num             =       sensor_info[s].dev_num;
1139         int i                   =       sensor_info[s].catalog_index;
1140         const char *prefix      =       sensor_catalog[i].tag;
1141         float new_sampling_rate; /* Granted sampling rate after arbitration   */
1142         float cur_sampling_rate; /* Currently used sampling rate              */
1143         int per_sensor_sampling_rate;
1144         int per_device_sampling_rate;
1145         int32_t min_delay_us = sensor_desc[s].minDelay;
1146         max_delay_t max_delay_us = sensor_desc[s].maxDelay;
1147         float min_supported_rate = max_delay_us ? (1000000.0f / max_delay_us) : 1;
1148         float max_supported_rate = 
1149                 (min_delay_us && min_delay_us != -1) ? (1000000.0f / min_delay_us) : 0;
1150         char freqs_buf[100];
1151         char* cursor;
1152         int n;
1153         float sr;
1154
1155         if (ns <= 0) {
1156                 ALOGE("Rejecting non-positive delay request on sensor %d, required delay: %lld\n", s, ns);
1157                 return -EINVAL;
1158         }
1159
1160         new_sampling_rate = 1000000000LL/ns;
1161
1162         ALOGV("Entering set delay S%d (%s): old rate(%f), new rate(%f)\n",
1163                 s, sensor_info[s].friendly_name, sensor_info[s].sampling_rate,
1164                 new_sampling_rate);
1165
1166         /*
1167          * Artificially limit ourselves to 1 Hz or higher. This is mostly to
1168          * avoid setting up the stage for divisions by zero.
1169          */
1170         if (new_sampling_rate < min_supported_rate)
1171                 new_sampling_rate = min_supported_rate;
1172
1173         if (max_supported_rate &&
1174                 new_sampling_rate > max_supported_rate) {
1175                 new_sampling_rate = max_supported_rate;
1176         }
1177
1178         sensor_info[s].sampling_rate = new_sampling_rate;
1179
1180         /* If we're dealing with a poll-mode sensor */
1181         if (!sensor_info[s].num_channels) {
1182                 /* Interrupt current sleep so the new sampling gets used */
1183                 pthread_cond_signal(&thread_release_cond[s]);
1184                 return 0;
1185         }
1186
1187         sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
1188
1189         if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) {
1190                 per_sensor_sampling_rate = 1;
1191                 per_device_sampling_rate = 0;
1192         } else {
1193                 per_sensor_sampling_rate = 0;
1194
1195                 sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
1196
1197                 if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1)
1198                         per_device_sampling_rate = 1;
1199                 else
1200                         per_device_sampling_rate = 0;
1201         }
1202
1203         if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
1204                 ALOGE("No way to adjust sampling rate on sensor %d\n", s);
1205                 return -ENOSYS;
1206         }
1207
1208         /* Coordinate with others active sensors on the same device, if any */
1209         if (per_device_sampling_rate)
1210                 for (n=0; n<sensor_count; n++)
1211                         if (n != s && sensor_info[n].dev_num == dev_num &&
1212                             sensor_info[n].num_channels &&
1213                             sensor_info[n].enable_count &&
1214                             sensor_info[n].sampling_rate > new_sampling_rate)
1215                                 new_sampling_rate= sensor_info[n].sampling_rate;
1216
1217         /* Check if we have contraints on allowed sampling rates */
1218
1219         sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
1220
1221         if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
1222                 cursor = freqs_buf;
1223
1224                 /* Decode allowed sampling rates string, ex: "10 20 50 100" */
1225
1226                 /* While we're not at the end of the string */
1227                 while (*cursor && cursor[0]) {
1228
1229                         /* Decode a single value */
1230                         sr = strtod(cursor, NULL);
1231
1232                         /* If this matches the selected rate, we're happy */
1233                         if (new_sampling_rate == sr)
1234                                 break;
1235
1236                         /*
1237                          * If we reached a higher value than the desired rate,
1238                          * adjust selected rate so it matches the first higher
1239                          * available one and stop parsing - this makes the
1240                          * assumption that rates are sorted by increasing value
1241                          * in the allowed frequencies string.
1242                          */
1243                         if (sr > new_sampling_rate) {
1244                                 new_sampling_rate = sr;
1245                                 break;
1246                         }
1247
1248                         /* Skip digits */
1249                         while (cursor[0] && !isspace(cursor[0]))
1250                                 cursor++;
1251
1252                         /* Skip spaces */
1253                         while (cursor[0] && isspace(cursor[0]))
1254                                         cursor++;
1255                 }
1256         }
1257
1258
1259         if (max_supported_rate &&
1260                 new_sampling_rate > max_supported_rate) {
1261                 new_sampling_rate = max_supported_rate;
1262         }
1263
1264
1265         /* If the desired rate is already active we're all set */
1266         if (new_sampling_rate == cur_sampling_rate)
1267                 return 0;
1268
1269         ALOGI("Sensor %d sampling rate set to %g\n", s, new_sampling_rate);
1270
1271         if (trig_sensors_per_dev[dev_num])
1272                 enable_buffer(dev_num, 0);
1273
1274         sysfs_write_float(sysfs_path, new_sampling_rate);
1275
1276         /* Switch back to continuous sampling for accelerometer based games */
1277         if (is_fast_accelerometer(s) && sensor_info[s].selected_trigger !=
1278                                         sensor_info[s].init_trigger_name)
1279                 setup_trigger(s, sensor_info[s].init_trigger_name);
1280
1281         if (trig_sensors_per_dev[dev_num])
1282                 enable_buffer(dev_num, 1);
1283
1284         return 0;
1285 }
1286
1287 int sensor_flush (int s)
1288 {
1289         /* If one shot or not enabled return -EINVAL */
1290         if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE ||
1291                 sensor_info[s].enable_count == 0)
1292                 return -EINVAL;
1293
1294         sensor_info[s].meta_data_pending++;
1295         return 0;
1296 }
1297
1298 int allocate_control_data (void)
1299 {
1300         int i;
1301
1302         for (i=0; i<MAX_DEVICES; i++)
1303                 device_fd[i] = -1;
1304
1305         poll_fd = epoll_create(MAX_DEVICES);
1306
1307         if (poll_fd == -1) {
1308                 ALOGE("Can't create epoll instance for iio sensors!\n");
1309                 return -1;
1310         }
1311
1312         return poll_fd;
1313 }
1314
1315
1316 void delete_control_data (void)
1317 {
1318 }