OSDN Git Service

iio_sensors: Add Light sensor sysfs interface and transformation
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #include <fcntl.h>
8 #include <sys/epoll.h>
9 #include <sys/socket.h>
10 #include <utils/Log.h>
11 #include <hardware/sensors.h>
12 #include "control.h"
13 #include "enumeration.h"
14 #include "utils.h"
15 #include "transform.h"
16 #include "calibration.h"
17
18 /* Currently active sensors count, per device */
19 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
20 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
21
22 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
23
24 static int poll_fd; /* epoll instance covering all enabled sensors */
25
26 static int poll_socket_pair[2]; /* used to unblock the poll loop */
27
28 /* Timestamp for the moment when we last exited a poll operation */
29 static int64_t last_poll_exit_ts;
30
31 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
32
33 #define INVALID_DEV_NUM ((uint32_t) -1)
34
35
36 static int enable_buffer(int dev_num, int enabled)
37 {
38         char sysfs_path[PATH_MAX];
39
40         sprintf(sysfs_path, ENABLE_PATH, dev_num);
41
42         /* Low level, non-multiplexed, enable/disable routine */
43         return sysfs_write_int(sysfs_path, enabled);
44 }
45
46
47 static int setup_trigger(int dev_num, const char* trigger_val)
48 {
49         char sysfs_path[PATH_MAX];
50
51         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
52
53         return sysfs_write_str(sysfs_path, trigger_val);
54 }
55
56
57 void build_sensor_report_maps(int dev_num)
58 {
59         /*
60          * Read sysfs files from a iio device's scan_element directory, and
61          * build a couple of tables from that data. These tables will tell, for
62          * each sensor, where to gather relevant data in a device report, i.e.
63          * the structure that we read from the /dev/iio:deviceX file in order to
64          * sensor report, itself being the data that we return to Android when a
65          * sensor poll completes. The mapping should be straightforward in the
66          * case where we have a single sensor active per iio device but, this is
67          * not the general case. In general several sensors can be handled
68          * through a single iio device, and the _en, _index and _type syfs
69          * entries all concur to paint a picture of what the structure of the
70          * device report is.
71          */
72
73         int s;
74         int c;
75         int n;
76         int i;
77         int ch_index;
78         char* ch_spec;
79         char spec_buf[MAX_TYPE_SPEC_LEN];
80         struct datum_info_t* ch_info;
81         int size;
82         char sysfs_path[PATH_MAX];
83         int known_channels;
84         int offset;
85         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
86         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
87         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
88
89         known_channels = 0;
90
91         /* For each sensor that is linked to this device */
92         for (s=0; s<sensor_count; s++) {
93                 if (sensor_info[s].dev_num != dev_num)
94                         continue;
95
96                 i = sensor_info[s].catalog_index;
97
98                 /* Read channel details through sysfs attributes */
99                 for (c=0; c<sensor_info[s].num_channels; c++) {
100
101                         /* Read _type file */
102                         sprintf(sysfs_path, CHANNEL_PATH "%s",
103                                 sensor_info[s].dev_num,
104                                 sensor_catalog[i].channel[c].type_path);
105
106                         n = sysfs_read_str(sysfs_path, spec_buf, 
107                                                 sizeof(spec_buf));
108
109                         if (n == -1) {
110                                         ALOGW(  "Failed to read type: %s\n",
111                                         sysfs_path);
112                                         continue;
113                                 }
114
115                         ch_spec = sensor_info[s].channel[c].type_spec;
116
117                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
118
119                         ch_info = &sensor_info[s].channel[c].type_info;
120
121                         size = decode_type_spec(ch_spec, ch_info);
122
123                         /* Read _index file */
124                         sprintf(sysfs_path, CHANNEL_PATH "%s",
125                                 sensor_info[s].dev_num,
126                                 sensor_catalog[i].channel[c].index_path);
127
128                         n = sysfs_read_int(sysfs_path, &ch_index);
129
130                         if (n == -1) {
131                                         ALOGW(  "Failed to read index: %s\n",
132                                                 sysfs_path);
133                                         continue;
134                                 }
135
136                         if (ch_index >= MAX_SENSORS) {
137                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
138                                 continue;
139                         }
140
141                         /* Record what this index is about */
142
143                         sensor_handle_from_index [ch_index] = s;
144                         channel_number_from_index[ch_index] = c;
145                         channel_size_from_index  [ch_index] = size;
146
147                         known_channels++;
148                 }
149
150                 /* Turn on channels we're aware of */
151                 for (c=0;c<sensor_info[s].num_channels; c++) {
152                         sprintf(sysfs_path, CHANNEL_PATH "%s",
153                                 sensor_info[s].dev_num,
154                                 sensor_catalog[i].channel[c].en_path);
155
156                         sysfs_write_int(sysfs_path, 1);
157                 }
158         }
159
160         ALOGI("Found %d channels on iio device %d\n", known_channels, dev_num);
161
162         /*
163          * Now that we know which channels are defined, their sizes and their
164          * ordering, update channels offsets within device report. Note: there
165          * is a possibility that several sensors share the same index, with
166          * their data fields being isolated by masking and shifting as specified
167          * through the real bits and shift values in type attributes. This case
168          * is not currently supported. Also, the code below assumes no hole in
169          * the sequence of indices, so it is dependent on discovery of all
170          * sensors.
171          */
172          offset = 0;
173          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
174                 s =     sensor_handle_from_index[i];
175                 c =     channel_number_from_index[i];
176                 size =  channel_size_from_index[i];
177
178                 if (!size)
179                         continue;
180
181                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
182                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
183
184                 sensor_info[s].channel[c].offset        = offset;
185                 sensor_info[s].channel[c].size          = size;
186
187                 offset += size;
188          }
189 }
190
191
192 int adjust_counters (int s, int enabled)
193 {
194         /*
195          * Adjust counters based on sensor enable action. Return values are:
196          * -1 if there's an inconsistency: abort action in this case
197          *  0 if the operation was completed and we're all set
198          *  1 if we toggled the state of the sensor and there's work left
199          */
200
201         int dev_num = sensor_info[s].dev_num;
202         int catalog_index = sensor_info[s].catalog_index;
203         int sensor_type = sensor_catalog[catalog_index].type;
204
205         /* Refcount per sensor, in terms of enable count */
206         if (enabled) {
207                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
208                         s, dev_num, sensor_info[s].friendly_name);
209
210                 sensor_info[s].enable_count++;
211
212                 if (sensor_info[s].enable_count != 1) {
213                         return 0; /* The sensor was, and remains, in use */
214                 } else {
215                         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
216                                 compass_read_data(COMPASS_CALIBRATION_PATH);
217                 }
218         } else {
219                 if (sensor_info[s].enable_count == 0)
220                         return -1; /* Spurious disable call */
221
222                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
223                       sensor_info[s].friendly_name);
224
225                 if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
226                         compass_store_data(COMPASS_CALIBRATION_PATH);
227
228                 sensor_info[s].enable_count--;
229
230                 if (sensor_info[s].enable_count > 0)
231                         return 0; /* The sensor was, and remains, in use */
232
233                 /* Sensor disabled, lower report available flag */
234                 sensor_info[s].report_pending = 0;
235         }
236
237         /* We changed the state of a sensor - adjust per iio device counters */
238
239         /* If this is a regular event-driven sensor */
240         if (sensor_info[s].num_channels) {
241
242                         if (enabled)
243                                 trig_sensors_per_dev[dev_num]++;
244                         else
245                                 trig_sensors_per_dev[dev_num]--;
246
247                         return 1;
248                 }
249
250         if (enabled) {
251                 active_poll_sensors++;
252                 poll_sensors_per_dev[dev_num]++;
253                 return 1;
254         }
255
256         active_poll_sensors--;
257         poll_sensors_per_dev[dev_num]--;
258         return 1;
259 }
260
261
262 int sensor_activate(int s, int enabled)
263 {
264         char device_name[PATH_MAX];
265         char trigger_name[MAX_NAME_SIZE + 16];
266         int c;
267         struct epoll_event ev = {0};
268         int dev_fd;
269         int ret;
270         int dev_num = sensor_info[s].dev_num;
271         int i = sensor_info[s].catalog_index;
272         int is_poll_sensor = !sensor_info[s].num_channels;
273
274         ret = adjust_counters(s, enabled);
275
276         /* If the operation was neutral in terms of state, we're done */
277         if (ret <= 0)
278                 return ret;
279
280         if (!is_poll_sensor) {
281
282                 /* Stop sampling */
283                 enable_buffer(dev_num, 0);
284                 setup_trigger(dev_num, "\n");
285
286                 /* If there's at least one sensor enabled on this iio device */
287                 if (trig_sensors_per_dev[dev_num]) {
288                         sprintf(trigger_name, "%s-dev%d",
289                                         sensor_info[s].internal_name, dev_num);
290
291                         /* Start sampling */
292                         setup_trigger(dev_num, trigger_name);
293                         enable_buffer(dev_num, 1);
294                 }
295         }
296
297         /*
298          * Make sure we have a fd on the character device ; conversely, close
299          * the fd if no one is using associated sensor anymore. The assumption
300          * here is that the underlying driver will power on the relevant
301          * hardware block while someone hold a fd on the device.
302          */
303         dev_fd = device_fd[dev_num];
304
305         if (!enabled) {
306                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
307                         !trig_sensors_per_dev[dev_num]) {
308                                 /*
309                                  * Stop watching this fd. This should be a no-op
310                                  * in case this fd was not in the poll set.
311                                  */
312                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
313
314                                 close(dev_fd);
315                                 device_fd[dev_num] = -1;
316                         }
317                 return 0;
318         }
319
320         if (dev_fd == -1) {
321                 /* First enabled sensor on this iio device */
322                 sprintf(device_name, DEV_FILE_PATH, dev_num);
323                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
324
325                 device_fd[dev_num] = dev_fd;
326
327                 if (dev_fd == -1) {
328                         ALOGE("Could not open fd on %s (%s)\n",
329                               device_name, strerror(errno));
330                         adjust_counters(s, 0);
331                         return -1;
332                 }
333
334                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
335
336                 if (!is_poll_sensor) {
337
338                         /* Add this iio device fd to the set of watched fds */
339                         ev.events = EPOLLIN;
340                         ev.data.u32 = dev_num;
341
342                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
343
344                         if (ret == -1) {
345                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
346                                         dev_fd, strerror(errno));
347                                 return -1;
348                         }
349
350                         /* Note: poll-mode fds are not readable */
351                 }
352         }
353
354         /* Release the polling loop so an updated timeout gets used */
355         write(poll_socket_pair[1], "", 1);
356
357         return 0;
358 }
359
360
361 static int integrate_device_report(int dev_num)
362 {
363         int len;
364         int s,c;
365         unsigned char buf[MAX_SENSOR_REPORT_SIZE] = { 0 };
366         int sr_offset;
367         unsigned char *target;
368         unsigned char *source;
369         int size;
370         int ts;
371
372         /* There's an incoming report on the specified fd */
373
374         if (dev_num < 0 || dev_num >= MAX_DEVICES) {
375                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
376                 return -1;
377         }
378
379         if (device_fd[dev_num] == -1) {
380                 ALOGE("Ignoring stale report on iio device %d\n", dev_num);
381                 return -1;
382         }
383
384         ts = get_timestamp();
385
386         len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
387
388         if (len == -1) {
389                 ALOGE("Could not read report from iio device %d (%s)\n",
390                       dev_num, strerror(errno));
391                 return -1;
392         }
393
394         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
395
396         for (s=0; s<MAX_SENSORS; s++)
397                 if (sensor_info[s].dev_num == dev_num &&
398                     sensor_info[s].enable_count) {
399
400                         sr_offset = 0;
401
402                         /* Copy data from device to sensor report buffer */
403                         for (c=0; c<sensor_info[s].num_channels; c++) {
404
405                                 target = sensor_info[s].report_buffer +
406                                         sr_offset;
407
408                                 source = buf + sensor_info[s].channel[c].offset;
409
410                                 size = sensor_info[s].channel[c].size;
411
412                                 memcpy(target, source, size);
413
414                                 sr_offset += size;
415                         }
416
417                         ALOGV("Sensor %d report available (%d bytes)\n", s,
418                               sr_offset);
419
420                         sensor_info[s].report_ts = ts;
421                         sensor_info[s].report_pending = 1;
422                 }
423
424         return 0;
425 }
426
427
428 static void propagate_sensor_report(int s, struct sensors_event_t* data)
429 {
430         /* There's a sensor report pending for this sensor ; transmit it */
431
432         int catalog_index = sensor_info[s].catalog_index;
433         int sensor_type = sensor_catalog[catalog_index].type;
434         int num_fields;
435         int c;
436         unsigned char* current_sample;
437         int64_t current_ts = get_timestamp();
438
439         memset(data, 0, sizeof(sensors_event_t));
440
441         data->version = sizeof(sensors_event_t);
442         data->sensor = s;
443         data->type = sensor_type;
444
445         if (sensor_info[s].report_ts)
446                 data->timestamp = sensor_info[s].report_ts;
447         else
448                 data->timestamp = current_ts;
449
450         switch (sensor_type) {
451                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
452                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
453                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
454                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
455                         num_fields = 3;
456                         break;
457
458                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
459                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
460                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
461                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
462                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
463                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
464                         num_fields = 1;
465                         break;
466
467                 case SENSOR_TYPE_ROTATION_VECTOR:
468                         num_fields = 4;
469                         break;
470
471                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
472                         num_fields = 0;
473                         break;
474
475                 default:
476                         ALOGE("Unknown sensor type!\n");
477                         num_fields = 0;
478                         break;
479         }
480
481         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
482
483         /* Take note of current time counter value for rate control purposes */
484         sensor_info[s].last_integration_ts = current_ts;
485
486         /* If we're dealing with a poll-mode sensor */
487         if (!sensor_info[s].num_channels) {
488
489                 /* Read values through sysfs rather than from a report buffer */
490                 for (c=0; c<num_fields; c++) {
491
492                         data->data[c] = acquire_immediate_value(s, c);
493
494                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
495                 }
496
497                 sensor_info[s].ops.finalize(s, data);
498                 return;
499         }
500
501         /* Convert the data into the expected Android-level format */
502
503         current_sample = sensor_info[s].report_buffer;
504
505         for (c=0; c<num_fields; c++) {
506
507                 data->data[c] = sensor_info[s].ops.transform
508                                                         (s, c, current_sample);
509
510                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
511                 current_sample += sensor_info[s].channel[c].size;
512         }
513
514         sensor_info[s].ops.finalize(s, data);
515 }
516
517
518 static int get_poll_time (void)
519 {
520         int64_t target_ts;
521         int64_t lowest_target_ts;
522         int64_t current_ts;
523         int s;
524
525         if (!active_poll_sensors)
526                 return -1;      /* Infinite wait */
527
528         /* Check if we should schedule a poll-mode sensor event delivery */
529
530         lowest_target_ts = INT64_MAX;
531
532         for (s=0; s<sensor_count; s++)
533                 if (sensor_info[s].enable_count &&
534                     sensor_info[s].sampling_rate &&
535                     !sensor_info[s].num_channels) {
536                                 target_ts = sensor_info[s].last_integration_ts +
537                                       1000000000LL/sensor_info[s].sampling_rate;
538
539                                 if (target_ts < lowest_target_ts)
540                                         lowest_target_ts = target_ts;
541                         }
542
543         if (lowest_target_ts == INT64_MAX)
544                 return -1;
545
546         current_ts = get_timestamp();
547
548         if (lowest_target_ts <= current_ts)
549                 return 0;
550
551         return (lowest_target_ts - current_ts)/1000000; /* ms */
552 }
553
554
555 static void acknowledge_release (void)
556 {
557         /* A write to our socket circuit was performed to release epoll */
558         char buf;
559         read(poll_socket_pair[0], &buf, 1);
560 }
561
562
563 int sensor_poll(struct sensors_event_t* data, int count)
564 {
565         int s;
566         int i;
567         int nfds;
568         int delta;
569         struct epoll_event ev[MAX_DEVICES];
570         int64_t target_ts;
571
572         /* Get one or more events from our collection of sensors */
573
574 return_first_available_sensor_report:
575
576         /* If there's at least one available report */
577         for (s=0; s<sensor_count; s++)
578                 if (sensor_info[s].report_pending) {
579
580                         /* Return that up */
581                         propagate_sensor_report(s, data);
582                         sensor_info[s].report_pending = 0;
583                         ALOGV("Report on sensor %d\n", s);
584                         return 1;
585                 }
586 await_event:
587
588         ALOGV("Awaiting sensor data\n");
589
590         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
591
592         last_poll_exit_ts = get_timestamp();
593
594         if (nfds == -1) {
595                 ALOGI("epoll_wait returned -1 (%s)\n", strerror(errno));
596                 goto await_event;
597         }
598
599         ALOGV("%d fds signalled\n", nfds);
600
601         /* For each of the devices for which a report is available */
602         for (i=0; i<nfds; i++)
603                 if (ev[i].events == EPOLLIN) {
604                         if (ev[i].data.u32 == INVALID_DEV_NUM) {
605                                 acknowledge_release();
606                                 goto await_event;
607                         } else
608                                 /* Read report */
609                                 integrate_device_report(ev[i].data.u32);
610                 }
611
612         /* Check poll-mode sensors and fire up an event if it's time to do so */
613         if (active_poll_sensors)
614                 for (s=0; s<sensor_count; s++)
615                         if (sensor_info[s].enable_count &&
616                             !sensor_info[s].num_channels &&
617                             sensor_info[s].sampling_rate) {
618                                 target_ts = sensor_info[s].last_integration_ts +
619                                       1000000000LL/sensor_info[s].sampling_rate;
620
621                                 if (last_poll_exit_ts >= target_ts)
622                                         sensor_info[s].report_pending = 1;
623                         }
624
625         goto return_first_available_sensor_report;
626 }
627
628
629 int sensor_set_delay(int s, int64_t ns)
630 {
631         /* Set the rate at which a specific sensor should report events */
632
633         /* See Android sensors.h for indication on sensor trigger modes */
634
635         char sysfs_path[PATH_MAX];
636         char avail_sysfs_path[PATH_MAX];
637         int dev_num             =       sensor_info[s].dev_num;
638         int i                   =       sensor_info[s].catalog_index;
639         const char *prefix      =       sensor_catalog[i].tag;
640         int new_sampling_rate;  /* Granted sampling rate after arbitration   */
641         int cur_sampling_rate;  /* Currently used sampling rate              */
642         int req_sampling_rate;  /* Requested ; may be different from granted */
643         int per_sensor_sampling_rate;
644         int per_device_sampling_rate;
645         int max_supported_rate = 0;
646         int limit;
647         char freqs_buf[100];
648         char* cursor;
649         int n;
650
651         if (!ns) {
652                 ALOGE("Rejecting zero delay request on sensor %d\n", s);
653                 return -EINVAL;
654         }
655
656         new_sampling_rate = req_sampling_rate = (int) (1000000000L/ns);
657
658         if (!new_sampling_rate) {
659                 ALOGI("Sub-HZ sampling rate requested on on sensor %d\n", s);
660                 new_sampling_rate = 1;
661         }
662
663         sensor_info[s].sampling_rate = new_sampling_rate;
664
665         /* If we're dealing with a poll-mode sensor, release poll and return */
666         if (!sensor_info[s].num_channels)
667                 goto exit;
668
669         sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
670
671         if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1) {
672                 per_sensor_sampling_rate = 1;
673                 per_device_sampling_rate = 0;
674         } else {
675                 per_sensor_sampling_rate = 0;
676
677                 sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
678
679                 if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1)
680                         per_device_sampling_rate = 1;
681                 else
682                         per_device_sampling_rate = 0;
683         }
684
685         if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
686                 ALOGE("No way to adjust sampling rate on sensor %d\n", s);
687                 return -ENOSYS;
688         }
689
690         /* Coordinate with others active sensors on the same device, if any */
691         if (per_device_sampling_rate)
692                 for (n=0; n<sensor_count; n++)
693                         if (n != s && sensor_info[n].dev_num == dev_num &&
694                             sensor_info[n].num_channels &&
695                             sensor_info[n].enable_count &&
696                             sensor_info[n].sampling_rate > new_sampling_rate)
697                                 new_sampling_rate= sensor_info[n].sampling_rate;
698
699         /* Check if we have contraints on allowed sampling rates */
700
701         sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
702
703         if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
704                 cursor = freqs_buf;
705
706                 /* Decode allowed sampling rates string, ex: "10 20 50 100" */
707
708                 /* While we're not at the end of the string */
709                 while (*cursor && cursor[0]) {
710
711                         /* Decode a single integer value */
712                         n = atoi(cursor);
713
714                         if (n > max_supported_rate)
715                                 max_supported_rate = n;
716
717                         /* If this matches the selected rate, we're happy */
718                         if (new_sampling_rate == n)
719                                 break;
720
721                         /*
722                          * If we reached a higher value than the desired rate,
723                          * adjust selected rate so it matches the first higher
724                          * available one and stop parsing - this makes the
725                          * assumption that rates are sorted by increasing value
726                          * in the allowed frequencies string.
727                          */
728                         if (n > new_sampling_rate) {
729                                 ALOGI(
730                         "Increasing sampling rate on sensor %d from %d to %d\n",
731                                 s, req_sampling_rate, n);
732
733                                 new_sampling_rate = n;
734                                 break;
735                         }
736
737                         /* Skip digits */
738                         while (cursor[0] && !isspace(cursor[0]))
739                                 cursor++;
740
741                         /* Skip spaces */
742                         while (cursor[0] && isspace(cursor[0]))
743                                         cursor++;
744                 }
745         }
746
747         /* Cap sampling rate at 1000 events per second for now*/
748
749         limit = 1000;
750
751         if (max_supported_rate && new_sampling_rate > max_supported_rate)
752                 limit = max_supported_rate;
753
754         if (new_sampling_rate > limit) {
755
756                 new_sampling_rate = limit;
757
758                 ALOGI(  "Can't support %d sampling rate, lowering to %d\n",
759                         req_sampling_rate, new_sampling_rate);
760         }
761
762         /* If the desired rate is already active we're all set */
763         if (new_sampling_rate == cur_sampling_rate)
764                 return 0;
765
766         ALOGI("Sensor %d sampling rate switched to %d\n", s, new_sampling_rate);
767
768         if (trig_sensors_per_dev[dev_num])
769                 enable_buffer(dev_num, 0);
770
771         sysfs_write_int(sysfs_path, new_sampling_rate);
772
773         if (trig_sensors_per_dev[dev_num])
774                 enable_buffer(dev_num, 1);
775
776 exit:
777         /* Release the polling loop so an updated timeout value gets used */
778         write(poll_socket_pair[1], "", 1);
779
780         return 0;
781 }
782
783
784
785 int allocate_control_data (void)
786 {
787         int i;
788         struct epoll_event ev = {0};
789
790         for (i=0; i<MAX_DEVICES; i++)
791                 device_fd[i] = -1;
792
793         poll_fd = epoll_create(MAX_DEVICES);
794
795         if (poll_fd == -1) {
796                 ALOGE("Can't create epoll instance for iio sensors!\n");
797                 return -1;
798         }
799
800         /* Create and add "unblocking" fd to the set of watched fds */
801
802         if (socketpair(AF_UNIX, SOCK_STREAM, 0, poll_socket_pair) == -1) {
803                 ALOGE("Can't create socket pair for iio sensors!\n");
804                 close(poll_fd);
805                 return -1;
806         }
807
808         ev.events = EPOLLIN;
809         ev.data.u32 = INVALID_DEV_NUM;
810
811         epoll_ctl(poll_fd, EPOLL_CTL_ADD, poll_socket_pair[0], &ev);
812
813         return poll_fd;
814 }
815
816
817 void delete_control_data (void)
818 {
819 }