OSDN Git Service

STPK-1429 Improve a couple of important traces
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <fcntl.h>
6 #include <sys/epoll.h>
7 #include <sys/socket.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "control.h"
11 #include "enumeration.h"
12 #include "utils.h"
13 #include "transform.h"
14
15 /* Currently active sensors count, per device */
16 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
17 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
18
19 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
20
21 static int poll_fd; /* epoll instance covering all enabled sensors */
22
23 static int poll_socket_pair[2]; /* used to unblock the poll loop */
24
25 /* Timestamp for the moment when we last exited a poll operation */
26 static int64_t last_poll_exit_ts;
27
28 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
29
30 /* Cap the time between poll operations to this, to counter runaway polls */
31 #define POLL_MIN_INTERVAL 10000 /* uS */
32
33 #define INVALID_DEV_NUM ((uint32_t) -1)
34
35
36 static int enable_buffer(int dev_num, int enabled)
37 {
38         char sysfs_path[PATH_MAX];
39
40         sprintf(sysfs_path, ENABLE_PATH, dev_num);
41
42         /* Low level, non-multiplexed, enable/disable routine */
43         return sysfs_write_int(sysfs_path, enabled);
44 }
45
46
47 static int setup_trigger(int dev_num, const char* trigger_val)
48 {
49         char sysfs_path[PATH_MAX];
50
51         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
52
53         return sysfs_write_str(sysfs_path, trigger_val);
54 }
55
56
57 static void refresh_sensor_report_maps(int dev_num)
58 {
59         /*
60          * Read sysfs files from a iio device's scan_element directory, and
61          * build a couple of tables from that data. These tables will tell, for
62          * each sensor, where to gather relevant data in a device report, i.e.
63          * the structure that we read from the /dev/iio:deviceX file in order to
64          * sensor report, itself being the data that we return to Android when a
65          * sensor poll completes. The mapping should be straightforward in the
66          * case where we have a single sensor active per iio device but, this is
67          * not the general case. In general several sensors can be handled
68          * through a single iio device, and the _en, _index and _type syfs
69          * entries all concur to paint a picture of what the structure of the
70          * device report is.
71          */
72
73         int s;
74         int c;
75         int n;
76         int i;
77         int ch_enabled;
78         int ch_index;
79         char* ch_spec;
80         char spec_buf[MAX_TYPE_SPEC_LEN];
81         struct datum_info_t* ch_info;
82         int size;
83         char sysfs_path[PATH_MAX];
84         int active_channels;
85         int offset;
86         int channel_count;
87         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
88         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
89         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
90
91         active_channels = 0;
92
93         /* For each sensor that is linked to this device */
94         for (s=0; s<sensor_count; s++) {
95                 if (sensor_info[s].dev_num != dev_num)
96                         continue;
97
98                 i = sensor_info[s].catalog_index;
99
100                 /* Read channel status through syfs attributes */
101                 for (c=0; c<sensor_info[s].num_channels; c++) {
102
103                         /* Read _en file */
104                         sprintf(sysfs_path, CHANNEL_PATH "%s",
105                                 sensor_info[s].dev_num,
106                                 sensor_catalog[i].channel[c].en_path);
107
108                         n = sysfs_read_int(sysfs_path, &ch_enabled);
109
110                         if (n == -1) {
111                                 ALOGW(  "Failed to read _en flag: %s\n",
112                                 sysfs_path);
113                                 continue;
114                         }
115
116                         if (!ch_enabled != 1) {
117                                 sensor_info[s].channel[c].size = 0;
118                         }
119
120                         /* Read _type file */
121                         sprintf(sysfs_path, CHANNEL_PATH "%s",
122                                 sensor_info[s].dev_num,
123                                 sensor_catalog[i].channel[c].type_path);
124
125                         n = sysfs_read_str(sysfs_path, spec_buf, 
126                                                 sizeof(spec_buf));
127
128                         if (n == -1) {
129                                         ALOGW(  "Failed to read type: %s\n",
130                                         sysfs_path);
131                                         continue;
132                                 }
133
134                         ch_spec = sensor_info[s].channel[c].type_spec;
135
136                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
137
138                         ch_info = &sensor_info[s].channel[c].type_info;
139
140                         size = decode_type_spec(ch_spec, ch_info);
141
142                         /* Read _index file */
143                         sprintf(sysfs_path, CHANNEL_PATH "%s",
144                                 sensor_info[s].dev_num,
145                                 sensor_catalog[i].channel[c].index_path);
146
147                         n = sysfs_read_int(sysfs_path, &ch_index);
148
149                         if (n == -1) {
150                                         ALOGW(  "Failed to read index: %s\n",
151                                                 sysfs_path);
152                                         continue;
153                                 }
154
155                         if (ch_index >= MAX_SENSORS) {
156                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
157                                 continue;
158                         }
159
160                         /* Record what this index is about */
161
162                         sensor_handle_from_index [ch_index] = s;
163                         channel_number_from_index[ch_index] = c;
164                         channel_size_from_index  [ch_index] = size;
165
166                         active_channels++;
167                 }
168         }
169
170         ALOGI("Found %d enabled channels for iio device %d\n", active_channels,
171                 dev_num);
172
173         /*
174          * Now that we know which channels are enabled, their sizes and their
175          * ordering, update channels offsets within device report. Note: there
176          * is a possibility that several sensors share the same index, with
177          * their data fields being isolated by masking and shifting as specified
178          * through the real bits and shift values in type attributes. This case
179          * is not currently supported. Also, the code below assumes no hole in
180          * the sequence of indices, so it is dependent on discovery of all
181          * sensors.
182          */
183          offset = 0;
184          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
185                 s =     sensor_handle_from_index[i];
186                 c =     channel_number_from_index[i];
187                 size =  channel_size_from_index[i];
188
189                 if (!size)
190                         continue;
191
192                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
193                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
194
195                 sensor_info[s].channel[c].offset        = offset;
196                 sensor_info[s].channel[c].size          = size;
197
198                 offset += size;
199          }
200 }
201
202
203 int adjust_counters (int s, int enabled)
204 {
205         /*
206          * Adjust counters based on sensor enable action. Return values are:
207          * -1 if there's an inconsistency: abort action in this case
208          *  0 if the operation was completed and we're all set
209          *  1 if we toggled the state of the sensor and there's work left
210          */
211
212         int dev_num = sensor_info[s].dev_num;
213
214         /* Refcount per sensor, in terms of enable count */
215         if (enabled) {
216                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
217                         s, dev_num, sensor_info[s].friendly_name);
218
219                 sensor_info[s].enable_count++;
220
221                 if (sensor_info[s].enable_count != 1)
222                         return 0; /* The sensor was, and remains, in use */
223         } else {
224                 if (sensor_info[s].enable_count == 0)
225                         return -1; /* Spurious disable call */
226
227                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
228                       sensor_info[s].friendly_name);
229
230                 sensor_info[s].enable_count--;
231
232                 if (sensor_info[s].enable_count > 0)
233                         return 0; /* The sensor was, and remains, in use */
234
235                 /* Sensor disabled, clear up pending data */
236
237                 sensor_info[s].report_pending = 0;
238                 memset(sensor_info[s].report_buffer, 0, MAX_SENSOR_REPORT_SIZE);
239         }
240
241         /* We changed the state of a sensor - adjust per iio device counters */
242
243         /* If this is a regular event-driven sensor */
244         if (sensor_info[s].num_channels) {
245
246                         if (enabled)
247                                 trig_sensors_per_dev[dev_num]++;
248                         else
249                                 trig_sensors_per_dev[dev_num]--;
250
251                         return 1;
252                 }
253
254         if (enabled) {
255                 active_poll_sensors++;
256                 poll_sensors_per_dev[dev_num]++;
257                 return 1;
258         }
259
260         active_poll_sensors--;
261         poll_sensors_per_dev[dev_num]--;
262         return 1;
263 }
264
265
266 int sensor_activate(int s, int enabled)
267 {
268         char sysfs_path[PATH_MAX];
269         char device_name[PATH_MAX];
270         char trigger_name[MAX_NAME_SIZE + 16];
271         int c;
272         struct epoll_event ev = {0};
273         int dev_fd;
274         int ret;
275         int dev_num = sensor_info[s].dev_num;
276         int i = sensor_info[s].catalog_index;
277         int is_poll_sensor = !sensor_info[s].num_channels;
278
279         ret = adjust_counters(s, enabled);
280
281         /* If the operation was neutral in terms of state, we're done */
282         if (ret <= 0)
283                 return ret;
284
285         if (!is_poll_sensor) {
286                 /* Changes have to be made while the buffer is turned off */
287                 enable_buffer(dev_num, 0);
288
289                 /* Configure trigger */
290                 switch (trig_sensors_per_dev[dev_num]) {
291                         case 0:
292                                 setup_trigger(dev_num, "none");
293                                 break;
294
295                         case 1:
296                                 sprintf(trigger_name, "%s-dev%d",
297                                         sensor_info[s].internal_name, dev_num);
298
299                                 setup_trigger(dev_num, trigger_name);
300                                 break;
301
302                         default:
303                                 /* The trigger is already set */
304                                 break;
305                 }
306
307                 /*
308                  * Turn channels associated to this sensor on or off, and update
309                  * the channels maps for all sensors associated to this device.
310                  */
311                 for (c=0;c<sensor_info[s].num_channels; c++) {
312                         sprintf(sysfs_path, CHANNEL_PATH "%s",
313                                 sensor_info[s].dev_num,
314                                 sensor_catalog[i].channel[c].en_path);
315
316                         sysfs_write_int(sysfs_path, enabled);
317                 }
318
319                 /* If there's at least one sensor left */
320                 if (trig_sensors_per_dev[dev_num]) {
321                         refresh_sensor_report_maps(dev_num);
322                         enable_buffer(dev_num, 1);
323                 }
324         }
325
326         /*
327          * Make sure we have a fd on the character device ; conversely, close
328          * the fd if no one is using associated sensor anymore. The assumption
329          * here is that the underlying driver will power on the relevant
330          * hardware block while someone hold a fd on the device.
331          */
332         dev_fd = device_fd[dev_num];
333
334         if (!enabled) {
335                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
336                         !trig_sensors_per_dev[dev_num]) {
337                                 /*
338                                  * Stop watching this fd. This should be a no-op
339                                  * in case this fd was not in the poll set.
340                                  */
341                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
342
343                                 close(dev_fd);
344                                 device_fd[dev_num] = -1;
345                         }
346                 return 0;
347         }
348
349         if (dev_fd == -1) {
350                 /* First enabled sensor on this iio device */
351                 sprintf(device_name, DEV_FILE_PATH, dev_num);
352                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
353
354                 device_fd[dev_num] = dev_fd;
355
356                 if (dev_fd == -1) {
357                         ALOGE("Could not open fd on %s (%s)\n",
358                               device_name, strerror(errno));
359                         adjust_counters(s, 0);
360                         return -1;
361                 }
362
363                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
364
365                 if (!is_poll_sensor) {
366
367                         /* Add this iio device fd to the set of watched fds */
368                         ev.events = EPOLLIN;
369                         ev.data.u32 = dev_num;
370
371                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
372
373                         if (ret == -1) {
374                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
375                                         dev_fd, strerror(errno));
376                                 return -1;
377                         }
378
379                         /* Note: poll-mode fds are not readable */
380                 }
381         }
382
383         /* Release the polling loop so an updated timeout gets used */
384         write(poll_socket_pair[1], "", 1);
385
386         return 0;
387 }
388
389
390 static int integrate_device_report(int dev_num)
391 {
392         int len;
393         int s,c;
394         unsigned char buf[MAX_SENSOR_REPORT_SIZE * MAX_SENSORS] = { 0 };
395         int sr_offset;
396         unsigned char *target;
397         unsigned char *source;
398         int size;
399         int expected_size = 0;
400
401         /* There's an incoming report on the specified fd */
402
403         if (dev_num < 0 || dev_num >= MAX_DEVICES ||
404                 !trig_sensors_per_dev[dev_num]) {
405                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
406                 return -1;
407         }
408
409         for (s=0; s<MAX_SENSORS; s++)
410                 if (sensor_info[s].dev_num == dev_num)
411                         for (c=0; c<sensor_info[s].num_channels; c++)
412                                 expected_size += sensor_info[s].channel[c].size;
413
414         len = read(device_fd[dev_num], buf, expected_size);
415
416         if (len == -1) {
417                 ALOGE("Could not read report from iio device %d (%s)\n",
418                       dev_num, strerror(errno));
419                 return -1;
420         }
421
422         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
423
424         for (s=0; s<MAX_SENSORS; s++)
425                 if (sensor_info[s].dev_num == dev_num) {
426                         sr_offset = 0;
427
428                         /* Copy data from device to sensor report buffer */
429                         for (c=0; c<sensor_info[s].num_channels; c++) {
430
431                                 target = sensor_info[s].report_buffer +
432                                         sr_offset;
433
434                                 source = buf + sensor_info[s].channel[c].offset;
435
436                                 size = sensor_info[s].channel[c].size;
437
438                                 memcpy(target, source, size);
439
440                                 sr_offset += size;
441                         }
442
443                         if (sensor_info[s].enable_count) {
444                                 ALOGV("Sensor %d report available (%d bytes)\n",
445                                       s, sr_offset);
446
447                                 sensor_info[s].report_pending = 1;
448                         }
449                 }
450
451         return 0;
452 }
453
454
455 static float acquire_immediate_value(int s, int c)
456 {
457         char sysfs_path[PATH_MAX];
458         float val;
459         int ret;
460         int dev_num = sensor_info[s].dev_num;
461         int i = sensor_info[s].catalog_index;
462         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
463         const char* input_path = sensor_catalog[i].channel[c].input_path;
464         float scale = sensor_info[s].scale;
465         float offset = sensor_info[s].offset;
466
467         /* Acquire a sample value for sensor s / channel c through sysfs */
468
469         if (input_path[0]) {
470                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
471                 ret = sysfs_read_float(sysfs_path, &val);
472
473                 if (!ret) {
474                         return val;
475                 }
476         };
477
478         if (!raw_path[0])
479                 return 0;
480
481         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
482         ret = sysfs_read_float(sysfs_path, &val);
483
484         if (ret == -1)
485                 return 0;
486
487         return (val + offset) * scale;
488 }
489
490
491 static void propagate_sensor_report(int s, struct sensors_event_t* data)
492 {
493         /* There's a sensor report pending for this sensor ; transmit it */
494
495         int catalog_index = sensor_info[s].catalog_index;
496         int sensor_type = sensor_catalog[catalog_index].type;
497         int num_fields;
498         int c;
499         unsigned char* current_sample;
500
501         memset(data, 0, sizeof(sensors_event_t));
502
503         data->version = sizeof(sensors_event_t);
504         data->sensor = s;
505         data->type = sensor_type;
506         data->timestamp = get_timestamp();
507
508         switch (sensor_type) {
509                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
510                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
511                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
512                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
513                         num_fields = 3;
514                         break;
515
516                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
517                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
518                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
519                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
520                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
521                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
522                         num_fields = 1;
523                         break;
524
525                 case SENSOR_TYPE_ROTATION_VECTOR:
526                         num_fields = 4;
527                         break;
528
529                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
530                         num_fields = 0;
531                         break;
532
533                 default:
534                         ALOGE("Unknown sensor type!\n");
535                         num_fields = 0;
536                         break;
537         }
538
539         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
540
541         /* Take note of current time counter value for rate control purposes */
542         sensor_info[s].last_integration_ts = get_timestamp();
543
544         /* If we're dealing with a poll-mode sensor */
545         if (!sensor_info[s].num_channels) {
546
547                 /* Read values through sysfs rather than from a report buffer */
548                 for (c=0; c<num_fields; c++) {
549
550                         data->data[c] = acquire_immediate_value(s, c);
551
552                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
553                 }
554
555                 finalize_sample(s, data);
556                 return;
557         }
558
559         /* Convert the data into the expected Android-level format */
560
561         current_sample = sensor_info[s].report_buffer;
562
563         for (c=0; c<num_fields; c++) {
564
565                 data->data[c] = transform_sample(s, c, current_sample);
566
567                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
568                 current_sample += sensor_info[s].channel[c].size;
569         }
570
571         finalize_sample(s, data);
572 }
573
574
575 static int get_poll_time (void)
576 {
577         int64_t target_ts;
578         int64_t lowest_target_ts;
579         int64_t current_ts;
580         int s;
581
582         if (!active_poll_sensors)
583                 return -1;      /* Infinite wait */
584
585         /* Check if we should schedule a poll-mode sensor event delivery */
586
587         lowest_target_ts = INT64_MAX;
588
589         for (s=0; s<sensor_count; s++)
590                 if (sensor_info[s].enable_count &&
591                     sensor_info[s].sampling_rate &&
592                     !sensor_info[s].num_channels) {
593                                 target_ts = sensor_info[s].last_integration_ts +
594                                       1000000000LL/sensor_info[s].sampling_rate;
595
596                                 if (target_ts < lowest_target_ts)
597                                         lowest_target_ts = target_ts;
598                         }
599
600         if (lowest_target_ts == INT64_MAX)
601                 return -1;
602
603         current_ts = get_timestamp();
604
605         if (lowest_target_ts <= current_ts)
606                 return 0;
607
608         return (lowest_target_ts - current_ts)/1000000; /* ms */
609 }
610
611
612 static void acknowledge_release (void)
613 {
614         /* A write to our socket circuit was performed to release epoll */
615         char buf;
616         read(poll_socket_pair[0], &buf, 1);
617 }
618
619
620 int sensor_poll(struct sensors_event_t* data, int count)
621 {
622         int s;
623         int i;
624         int nfds;
625         int delta;
626         struct epoll_event ev[MAX_DEVICES];
627
628         /* Get one or more events from our collection of sensors */
629
630 return_first_available_sensor_report:
631
632         /* If there's at least one available report */
633         for (s=0; s<sensor_count; s++)
634                 if (sensor_info[s].report_pending) {
635
636                         /* Return that up */
637                         propagate_sensor_report(s, data);
638                         sensor_info[s].report_pending = 0;
639                         ALOGV("Report on sensor %d\n", s);
640                         return 1;
641                 }
642 await_event:
643
644         /* Keep a minimum time interval between poll operations */
645         delta = (get_timestamp() - last_poll_exit_ts)/1000;
646
647         if (delta > 0 && delta < POLL_MIN_INTERVAL)
648                 usleep(POLL_MIN_INTERVAL - delta);
649
650         ALOGV("Awaiting sensor data\n");
651
652         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
653
654         last_poll_exit_ts = get_timestamp();
655
656         if (nfds == -1) {
657                 ALOGI("epoll_wait returned -1 (%s)\n", strerror(errno));
658                 goto await_event;
659         }
660
661         ALOGV("%d fds signalled\n", nfds);
662
663         /* For each of the devices for which a report is available */
664         for (i=0; i<nfds; i++)
665                 if (ev[i].events == EPOLLIN) {
666                         if (ev[i].data.u32 == INVALID_DEV_NUM) {
667                                 acknowledge_release();
668                                 goto await_event;
669                         } else
670                                 /* Read report */
671                                 integrate_device_report(ev[i].data.u32);
672                 }
673
674         /* It's a good time to invalidate poll-mode sensor values */
675         if (active_poll_sensors)
676                 for (s=0; s<sensor_count; s++)
677                         if (sensor_info[s].enable_count &&
678                                 !sensor_info[s].num_channels)
679                                         sensor_info[s].report_pending = 1;
680
681         goto return_first_available_sensor_report;
682 }
683
684
685 int sensor_set_delay(int s, int64_t ns)
686 {
687         /* Set the rate at which a specific sensor should report events */
688
689         /* See Android sensors.h for indication on sensor trigger modes */
690
691         char sysfs_path[PATH_MAX];
692         int dev_num             =       sensor_info[s].dev_num;
693         int i                   =       sensor_info[s].catalog_index;
694         const char *prefix      =       sensor_catalog[i].tag;
695         int new_sampling_rate;
696         int cur_sampling_rate;
697
698         if (!ns) {
699                 ALOGE("Rejecting zero delay request on sensor %d\n", s);
700                 return -EINVAL;
701         }
702
703         new_sampling_rate = (int) (1000000000L/ns);
704
705         if (!new_sampling_rate) {
706                 ALOGI("Sub-HZ sampling rate requested on on sensor %d\n", s);
707                 new_sampling_rate = 1;
708         }
709
710         sprintf(sysfs_path, COMMON_SAMPLING_PATH, dev_num, prefix);
711
712         if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1)
713                 if (new_sampling_rate != cur_sampling_rate) {
714                         ALOGI(  "Sensor %d sampling rate set to %d\n",
715                                 s, new_sampling_rate);
716
717                         if (trig_sensors_per_dev[dev_num])
718                                 enable_buffer(dev_num, 0);
719
720                         sysfs_write_int(sysfs_path, new_sampling_rate);
721
722                         if (trig_sensors_per_dev[dev_num])
723                                 enable_buffer(dev_num, 1);
724         }
725
726         sensor_info[s].sampling_rate = new_sampling_rate;
727
728         /* Release the polling loop so an updated timeout value gets used */
729         write(poll_socket_pair[1], "", 1);
730
731         return 0;
732 }
733
734
735 int allocate_control_data (void)
736 {
737         int i;
738         struct epoll_event ev = {0};
739
740         for (i=0; i<MAX_DEVICES; i++)
741                 device_fd[i] = -1;
742
743         poll_fd = epoll_create(MAX_DEVICES);
744
745         if (poll_fd == -1) {
746                 ALOGE("Can't create epoll instance for iio sensors!\n");
747                 return -1;
748         }
749
750         /* Create and add "unblocking" fd to the set of watched fds */
751
752         if (socketpair(AF_UNIX, SOCK_STREAM, 0, poll_socket_pair) == -1) {
753                 ALOGE("Can't create socket pair for iio sensors!\n");
754                 close(poll_fd);
755                 return -1;
756         }
757
758         ev.events = EPOLLIN;
759         ev.data.u32 = INVALID_DEV_NUM;
760
761         epoll_ctl(poll_fd, EPOLL_CTL_ADD, poll_socket_pair[0], &ev);
762
763         return poll_fd;
764 }
765
766
767 void delete_control_data (void)
768 {
769 }