OSDN Git Service

STPK-1429 Revisit handling of stale incoming data notifications
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #include <fcntl.h>
8 #include <sys/epoll.h>
9 #include <sys/socket.h>
10 #include <utils/Log.h>
11 #include <hardware/sensors.h>
12 #include "control.h"
13 #include "enumeration.h"
14 #include "utils.h"
15 #include "transform.h"
16
17 /* Currently active sensors count, per device */
18 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
19 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
20
21 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
22
23 static int poll_fd; /* epoll instance covering all enabled sensors */
24
25 static int poll_socket_pair[2]; /* used to unblock the poll loop */
26
27 /* Timestamp for the moment when we last exited a poll operation */
28 static int64_t last_poll_exit_ts;
29
30 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
31
32 /* Cap the time between poll operations to this, to counter runaway polls */
33 #define POLL_MIN_INTERVAL 1000 /* uS */
34
35 #define INVALID_DEV_NUM ((uint32_t) -1)
36
37
38 static int enable_buffer(int dev_num, int enabled)
39 {
40         char sysfs_path[PATH_MAX];
41
42         sprintf(sysfs_path, ENABLE_PATH, dev_num);
43
44         /* Low level, non-multiplexed, enable/disable routine */
45         return sysfs_write_int(sysfs_path, enabled);
46 }
47
48
49 static int setup_trigger(int dev_num, const char* trigger_val)
50 {
51         char sysfs_path[PATH_MAX];
52
53         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
54
55         return sysfs_write_str(sysfs_path, trigger_val);
56 }
57
58
59 static void refresh_sensor_report_maps(int dev_num)
60 {
61         /*
62          * Read sysfs files from a iio device's scan_element directory, and
63          * build a couple of tables from that data. These tables will tell, for
64          * each sensor, where to gather relevant data in a device report, i.e.
65          * the structure that we read from the /dev/iio:deviceX file in order to
66          * sensor report, itself being the data that we return to Android when a
67          * sensor poll completes. The mapping should be straightforward in the
68          * case where we have a single sensor active per iio device but, this is
69          * not the general case. In general several sensors can be handled
70          * through a single iio device, and the _en, _index and _type syfs
71          * entries all concur to paint a picture of what the structure of the
72          * device report is.
73          */
74
75         int s;
76         int c;
77         int n;
78         int i;
79         int ch_enabled;
80         int ch_index;
81         char* ch_spec;
82         char spec_buf[MAX_TYPE_SPEC_LEN];
83         struct datum_info_t* ch_info;
84         int size;
85         char sysfs_path[PATH_MAX];
86         int active_channels;
87         int offset;
88         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
89         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
90         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
91
92         active_channels = 0;
93
94         /* For each sensor that is linked to this device */
95         for (s=0; s<sensor_count; s++) {
96                 if (sensor_info[s].dev_num != dev_num)
97                         continue;
98
99                 i = sensor_info[s].catalog_index;
100
101                 /* Read channel status through syfs attributes */
102                 for (c=0; c<sensor_info[s].num_channels; c++) {
103
104                         /* Read _en file */
105                         sprintf(sysfs_path, CHANNEL_PATH "%s",
106                                 sensor_info[s].dev_num,
107                                 sensor_catalog[i].channel[c].en_path);
108
109                         n = sysfs_read_int(sysfs_path, &ch_enabled);
110
111                         if (n == -1) {
112                                 ALOGW(  "Failed to read _en flag: %s\n",
113                                 sysfs_path);
114                                 continue;
115                         }
116
117                         if (!ch_enabled != 1) {
118                                 sensor_info[s].channel[c].size = 0;
119                         }
120
121                         /* Read _type file */
122                         sprintf(sysfs_path, CHANNEL_PATH "%s",
123                                 sensor_info[s].dev_num,
124                                 sensor_catalog[i].channel[c].type_path);
125
126                         n = sysfs_read_str(sysfs_path, spec_buf, 
127                                                 sizeof(spec_buf));
128
129                         if (n == -1) {
130                                         ALOGW(  "Failed to read type: %s\n",
131                                         sysfs_path);
132                                         continue;
133                                 }
134
135                         ch_spec = sensor_info[s].channel[c].type_spec;
136
137                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
138
139                         ch_info = &sensor_info[s].channel[c].type_info;
140
141                         size = decode_type_spec(ch_spec, ch_info);
142
143                         /* Read _index file */
144                         sprintf(sysfs_path, CHANNEL_PATH "%s",
145                                 sensor_info[s].dev_num,
146                                 sensor_catalog[i].channel[c].index_path);
147
148                         n = sysfs_read_int(sysfs_path, &ch_index);
149
150                         if (n == -1) {
151                                         ALOGW(  "Failed to read index: %s\n",
152                                                 sysfs_path);
153                                         continue;
154                                 }
155
156                         if (ch_index >= MAX_SENSORS) {
157                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
158                                 continue;
159                         }
160
161                         /* Record what this index is about */
162
163                         sensor_handle_from_index [ch_index] = s;
164                         channel_number_from_index[ch_index] = c;
165                         channel_size_from_index  [ch_index] = size;
166
167                         active_channels++;
168                 }
169         }
170
171         ALOGI("Found %d enabled channels for iio device %d\n", active_channels,
172                 dev_num);
173
174         /*
175          * Now that we know which channels are enabled, their sizes and their
176          * ordering, update channels offsets within device report. Note: there
177          * is a possibility that several sensors share the same index, with
178          * their data fields being isolated by masking and shifting as specified
179          * through the real bits and shift values in type attributes. This case
180          * is not currently supported. Also, the code below assumes no hole in
181          * the sequence of indices, so it is dependent on discovery of all
182          * sensors.
183          */
184          offset = 0;
185          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
186                 s =     sensor_handle_from_index[i];
187                 c =     channel_number_from_index[i];
188                 size =  channel_size_from_index[i];
189
190                 if (!size)
191                         continue;
192
193                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
194                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
195
196                 sensor_info[s].channel[c].offset        = offset;
197                 sensor_info[s].channel[c].size          = size;
198
199                 offset += size;
200          }
201 }
202
203
204 int adjust_counters (int s, int enabled)
205 {
206         /*
207          * Adjust counters based on sensor enable action. Return values are:
208          * -1 if there's an inconsistency: abort action in this case
209          *  0 if the operation was completed and we're all set
210          *  1 if we toggled the state of the sensor and there's work left
211          */
212
213         int dev_num = sensor_info[s].dev_num;
214
215         /* Refcount per sensor, in terms of enable count */
216         if (enabled) {
217                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
218                         s, dev_num, sensor_info[s].friendly_name);
219
220                 sensor_info[s].enable_count++;
221
222                 if (sensor_info[s].enable_count != 1)
223                         return 0; /* The sensor was, and remains, in use */
224         } else {
225                 if (sensor_info[s].enable_count == 0)
226                         return -1; /* Spurious disable call */
227
228                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
229                       sensor_info[s].friendly_name);
230
231                 sensor_info[s].enable_count--;
232
233                 if (sensor_info[s].enable_count > 0)
234                         return 0; /* The sensor was, and remains, in use */
235
236                 /* Sensor disabled, lower report available flag */
237                 sensor_info[s].report_pending = 0;
238         }
239
240         /* We changed the state of a sensor - adjust per iio device counters */
241
242         /* If this is a regular event-driven sensor */
243         if (sensor_info[s].num_channels) {
244
245                         if (enabled)
246                                 trig_sensors_per_dev[dev_num]++;
247                         else
248                                 trig_sensors_per_dev[dev_num]--;
249
250                         return 1;
251                 }
252
253         if (enabled) {
254                 active_poll_sensors++;
255                 poll_sensors_per_dev[dev_num]++;
256                 return 1;
257         }
258
259         active_poll_sensors--;
260         poll_sensors_per_dev[dev_num]--;
261         return 1;
262 }
263
264
265 int sensor_activate(int s, int enabled)
266 {
267         char sysfs_path[PATH_MAX];
268         char device_name[PATH_MAX];
269         char trigger_name[MAX_NAME_SIZE + 16];
270         int c;
271         struct epoll_event ev = {0};
272         int dev_fd;
273         int ret;
274         int dev_num = sensor_info[s].dev_num;
275         int i = sensor_info[s].catalog_index;
276         int is_poll_sensor = !sensor_info[s].num_channels;
277
278         ret = adjust_counters(s, enabled);
279
280         /* If the operation was neutral in terms of state, we're done */
281         if (ret <= 0)
282                 return ret;
283
284         if (!is_poll_sensor) {
285                 /* Changes have to be made while the buffer is turned off */
286                 enable_buffer(dev_num, 0);
287
288                 /* Configure trigger */
289                 switch (trig_sensors_per_dev[dev_num]) {
290                         case 0:
291                                 setup_trigger(dev_num, "none");
292                                 break;
293
294                         case 1:
295                                 sprintf(trigger_name, "%s-dev%d",
296                                         sensor_info[s].internal_name, dev_num);
297
298                                 setup_trigger(dev_num, trigger_name);
299                                 break;
300
301                         default:
302                                 /* The trigger is already set */
303                                 break;
304                 }
305
306                 /*
307                  * Turn channels associated to this sensor on or off, and update
308                  * the channels maps for all sensors associated to this device.
309                  */
310                 for (c=0;c<sensor_info[s].num_channels; c++) {
311                         sprintf(sysfs_path, CHANNEL_PATH "%s",
312                                 sensor_info[s].dev_num,
313                                 sensor_catalog[i].channel[c].en_path);
314
315                         sysfs_write_int(sysfs_path, enabled);
316                 }
317
318                 /* If there's at least one sensor left */
319                 if (trig_sensors_per_dev[dev_num]) {
320                         refresh_sensor_report_maps(dev_num);
321                         enable_buffer(dev_num, 1);
322                 }
323         }
324
325         /*
326          * Make sure we have a fd on the character device ; conversely, close
327          * the fd if no one is using associated sensor anymore. The assumption
328          * here is that the underlying driver will power on the relevant
329          * hardware block while someone hold a fd on the device.
330          */
331         dev_fd = device_fd[dev_num];
332
333         if (!enabled) {
334                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
335                         !trig_sensors_per_dev[dev_num]) {
336                                 /*
337                                  * Stop watching this fd. This should be a no-op
338                                  * in case this fd was not in the poll set.
339                                  */
340                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
341
342                                 close(dev_fd);
343                                 device_fd[dev_num] = -1;
344                         }
345                 return 0;
346         }
347
348         if (dev_fd == -1) {
349                 /* First enabled sensor on this iio device */
350                 sprintf(device_name, DEV_FILE_PATH, dev_num);
351                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
352
353                 device_fd[dev_num] = dev_fd;
354
355                 if (dev_fd == -1) {
356                         ALOGE("Could not open fd on %s (%s)\n",
357                               device_name, strerror(errno));
358                         adjust_counters(s, 0);
359                         return -1;
360                 }
361
362                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
363
364                 if (!is_poll_sensor) {
365
366                         /* Add this iio device fd to the set of watched fds */
367                         ev.events = EPOLLIN;
368                         ev.data.u32 = dev_num;
369
370                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
371
372                         if (ret == -1) {
373                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
374                                         dev_fd, strerror(errno));
375                                 return -1;
376                         }
377
378                         /* Note: poll-mode fds are not readable */
379                 }
380         }
381
382         /* Release the polling loop so an updated timeout gets used */
383         write(poll_socket_pair[1], "", 1);
384
385         return 0;
386 }
387
388
389 static int integrate_device_report(int dev_num)
390 {
391         int len;
392         int s,c;
393         unsigned char buf[MAX_SENSOR_REPORT_SIZE * MAX_SENSORS] = { 0 };
394         int sr_offset;
395         unsigned char *target;
396         unsigned char *source;
397         int size;
398         int expected_size = 0;
399
400         /* There's an incoming report on the specified fd */
401
402         if (dev_num < 0 || dev_num >= MAX_DEVICES) {
403                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
404                 return -1;
405         }
406
407         if (device_fd[dev_num] == -1) {
408                 ALOGE("Ignoring stale report on iio device %d\n", dev_num);
409                 return -1;
410         }
411
412         for (s=0; s<MAX_SENSORS; s++)
413                 if (sensor_info[s].dev_num == dev_num)
414                         for (c=0; c<sensor_info[s].num_channels; c++)
415                                 expected_size += sensor_info[s].channel[c].size;
416
417         len = read(device_fd[dev_num], buf, expected_size);
418
419         if (len == -1) {
420                 ALOGE("Could not read report from iio device %d (%s)\n",
421                       dev_num, strerror(errno));
422                 return -1;
423         }
424
425         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
426
427         for (s=0; s<MAX_SENSORS; s++)
428                 if (sensor_info[s].dev_num == dev_num &&
429                     sensor_info[s].enable_count) {
430
431                         sr_offset = 0;
432
433                         /* Copy data from device to sensor report buffer */
434                         for (c=0; c<sensor_info[s].num_channels; c++) {
435
436                                 target = sensor_info[s].report_buffer +
437                                         sr_offset;
438
439                                 source = buf + sensor_info[s].channel[c].offset;
440
441                                 size = sensor_info[s].channel[c].size;
442
443                                 memcpy(target, source, size);
444
445                                 sr_offset += size;
446                         }
447
448                         ALOGV("Sensor %d report available (%d bytes)\n", s,
449                               sr_offset);
450
451                         sensor_info[s].report_pending = 1;
452                 }
453
454         return 0;
455 }
456
457
458 static void propagate_sensor_report(int s, struct sensors_event_t* data)
459 {
460         /* There's a sensor report pending for this sensor ; transmit it */
461
462         int catalog_index = sensor_info[s].catalog_index;
463         int sensor_type = sensor_catalog[catalog_index].type;
464         int num_fields;
465         int c;
466         unsigned char* current_sample;
467
468         memset(data, 0, sizeof(sensors_event_t));
469
470         data->version = sizeof(sensors_event_t);
471         data->sensor = s;
472         data->type = sensor_type;
473         data->timestamp = get_timestamp();
474
475         switch (sensor_type) {
476                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
477                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
478                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
479                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
480                         num_fields = 3;
481                         break;
482
483                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
484                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
485                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
486                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
487                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
488                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
489                         num_fields = 1;
490                         break;
491
492                 case SENSOR_TYPE_ROTATION_VECTOR:
493                         num_fields = 4;
494                         break;
495
496                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
497                         num_fields = 0;
498                         break;
499
500                 default:
501                         ALOGE("Unknown sensor type!\n");
502                         num_fields = 0;
503                         break;
504         }
505
506         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
507
508         /* Take note of current time counter value for rate control purposes */
509         sensor_info[s].last_integration_ts = get_timestamp();
510
511         /* If we're dealing with a poll-mode sensor */
512         if (!sensor_info[s].num_channels) {
513
514                 /* Read values through sysfs rather than from a report buffer */
515                 for (c=0; c<num_fields; c++) {
516
517                         data->data[c] = acquire_immediate_value(s, c);
518
519                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
520                 }
521
522                 sensor_info[s].ops.finalize(s, data);
523                 return;
524         }
525
526         /* Convert the data into the expected Android-level format */
527
528         current_sample = sensor_info[s].report_buffer;
529
530         for (c=0; c<num_fields; c++) {
531
532                 data->data[c] = sensor_info[s].ops.transform
533                                                         (s, c, current_sample);
534
535                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
536                 current_sample += sensor_info[s].channel[c].size;
537         }
538
539         sensor_info[s].ops.finalize(s, data);
540 }
541
542
543 static int get_poll_time (void)
544 {
545         int64_t target_ts;
546         int64_t lowest_target_ts;
547         int64_t current_ts;
548         int s;
549
550         if (!active_poll_sensors)
551                 return -1;      /* Infinite wait */
552
553         /* Check if we should schedule a poll-mode sensor event delivery */
554
555         lowest_target_ts = INT64_MAX;
556
557         for (s=0; s<sensor_count; s++)
558                 if (sensor_info[s].enable_count &&
559                     sensor_info[s].sampling_rate &&
560                     !sensor_info[s].num_channels) {
561                                 target_ts = sensor_info[s].last_integration_ts +
562                                       1000000000LL/sensor_info[s].sampling_rate;
563
564                                 if (target_ts < lowest_target_ts)
565                                         lowest_target_ts = target_ts;
566                         }
567
568         if (lowest_target_ts == INT64_MAX)
569                 return -1;
570
571         current_ts = get_timestamp();
572
573         if (lowest_target_ts <= current_ts)
574                 return 0;
575
576         return (lowest_target_ts - current_ts)/1000000; /* ms */
577 }
578
579
580 static void acknowledge_release (void)
581 {
582         /* A write to our socket circuit was performed to release epoll */
583         char buf;
584         read(poll_socket_pair[0], &buf, 1);
585 }
586
587
588 int sensor_poll(struct sensors_event_t* data, int count)
589 {
590         int s;
591         int i;
592         int nfds;
593         int delta;
594         struct epoll_event ev[MAX_DEVICES];
595
596         /* Get one or more events from our collection of sensors */
597
598 return_first_available_sensor_report:
599
600         /* If there's at least one available report */
601         for (s=0; s<sensor_count; s++)
602                 if (sensor_info[s].report_pending) {
603
604                         /* Return that up */
605                         propagate_sensor_report(s, data);
606                         sensor_info[s].report_pending = 0;
607                         ALOGV("Report on sensor %d\n", s);
608                         return 1;
609                 }
610 await_event:
611
612         /* Keep a minimum time interval between poll operations */
613         delta = (get_timestamp() - last_poll_exit_ts)/1000;
614
615         if (delta > 0 && delta < POLL_MIN_INTERVAL)
616                 usleep(POLL_MIN_INTERVAL - delta);
617
618         ALOGV("Awaiting sensor data\n");
619
620         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
621
622         last_poll_exit_ts = get_timestamp();
623
624         if (nfds == -1) {
625                 ALOGI("epoll_wait returned -1 (%s)\n", strerror(errno));
626                 goto await_event;
627         }
628
629         ALOGV("%d fds signalled\n", nfds);
630
631         /* For each of the devices for which a report is available */
632         for (i=0; i<nfds; i++)
633                 if (ev[i].events == EPOLLIN) {
634                         if (ev[i].data.u32 == INVALID_DEV_NUM) {
635                                 acknowledge_release();
636                                 goto await_event;
637                         } else
638                                 /* Read report */
639                                 integrate_device_report(ev[i].data.u32);
640                 }
641
642         /* It's a good time to invalidate poll-mode sensor values */
643         if (active_poll_sensors)
644                 for (s=0; s<sensor_count; s++)
645                         if (sensor_info[s].enable_count &&
646                                 !sensor_info[s].num_channels)
647                                         sensor_info[s].report_pending = 1;
648
649         goto return_first_available_sensor_report;
650 }
651
652
653 int sensor_set_delay(int s, int64_t ns)
654 {
655         /* Set the rate at which a specific sensor should report events */
656
657         /* See Android sensors.h for indication on sensor trigger modes */
658
659         char sysfs_path[PATH_MAX];
660         char avail_sysfs_path[PATH_MAX];
661         int dev_num             =       sensor_info[s].dev_num;
662         int i                   =       sensor_info[s].catalog_index;
663         const char *prefix      =       sensor_catalog[i].tag;
664         int new_sampling_rate;  /* Granted sampling rate after arbitration   */
665         int cur_sampling_rate;  /* Currently used sampling rate              */
666         int req_sampling_rate;  /* Requested ; may be different from granted */
667         int per_sensor_sampling_rate;
668         int per_device_sampling_rate;
669         int max_supported_rate = 0;
670         int limit;
671         char freqs_buf[100];
672         char* cursor;
673         int n;
674
675         if (!ns) {
676                 ALOGE("Rejecting zero delay request on sensor %d\n", s);
677                 return -EINVAL;
678         }
679
680         new_sampling_rate = req_sampling_rate = (int) (1000000000L/ns);
681
682         if (!new_sampling_rate) {
683                 ALOGI("Sub-HZ sampling rate requested on on sensor %d\n", s);
684                 new_sampling_rate = 1;
685         }
686
687         sensor_info[s].sampling_rate = new_sampling_rate;
688
689         /* If we're dealing with a poll-mode sensor, release poll and return */
690         if (!sensor_info[s].num_channels)
691                 goto exit;
692
693         sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
694
695         if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1) {
696                 per_sensor_sampling_rate = 1;
697                 per_device_sampling_rate = 0;
698         } else {
699                 per_sensor_sampling_rate = 0;
700
701                 sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
702
703                 if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1)
704                         per_device_sampling_rate = 1;
705                 else
706                         per_device_sampling_rate = 0;
707         }
708
709         if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
710                 ALOGE("No way to adjust sampling rate on sensor %d\n", s);
711                 return -ENOSYS;
712         }
713
714         /* Coordinate with others active sensors on the same device, if any */
715         if (per_device_sampling_rate)
716                 for (n=0; n<sensor_count; n++)
717                         if (n != s && sensor_info[n].dev_num == dev_num &&
718                             sensor_info[n].num_channels &&
719                             sensor_info[n].enable_count &&
720                             sensor_info[n].sampling_rate > new_sampling_rate)
721                                 new_sampling_rate= sensor_info[n].sampling_rate;
722
723         /* Check if we have contraints on allowed sampling rates */
724
725         sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
726
727         if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
728                 cursor = freqs_buf;
729
730                 /* Decode allowed sampling rates string, ex: "10 20 50 100" */
731
732                 /* While we're not at the end of the string */
733                 while (*cursor && cursor[0]) {
734
735                         /* Decode a single integer value */
736                         n = atoi(cursor);
737
738                         if (n > max_supported_rate)
739                                 max_supported_rate = n;
740
741                         /* If this matches the selected rate, we're happy */
742                         if (new_sampling_rate == n)
743                                 break;
744
745                         /*
746                          * If we reached a higher value than the desired rate,
747                          * adjust selected rate so it matches the first higher
748                          * available one and stop parsing - this makes the
749                          * assumption that rates are sorted by increasing value
750                          * in the allowed frequencies string.
751                          */
752                         if (n > new_sampling_rate) {
753                                 ALOGI(
754                         "Increasing sampling rate on sensor %d from %d to %d\n",
755                                 s, req_sampling_rate, n);
756
757                                 new_sampling_rate = n;
758                                 break;
759                         }
760
761                         /* Skip digits */
762                         while (cursor[0] && !isspace(cursor[0]))
763                                 cursor++;
764
765                         /* Skip spaces */
766                         while (cursor[0] && isspace(cursor[0]))
767                                         cursor++;
768                 }
769         }
770
771         /* Cap sampling rate */
772
773         limit = 1000000/POLL_MIN_INTERVAL;
774
775         if (max_supported_rate && new_sampling_rate > max_supported_rate)
776                 limit = max_supported_rate;
777
778         if (new_sampling_rate > limit) {
779
780                 new_sampling_rate = limit;
781
782                 ALOGI(  "Can't support %d sampling rate, lowering to %d\n",
783                         req_sampling_rate, new_sampling_rate);
784         }
785
786         /* If the desired rate is already active we're all set */
787         if (new_sampling_rate == cur_sampling_rate)
788                 return 0;
789
790         ALOGI("Sensor %d sampling rate switched to %d\n", s, new_sampling_rate);
791
792         if (trig_sensors_per_dev[dev_num])
793                 enable_buffer(dev_num, 0);
794
795         sysfs_write_int(sysfs_path, new_sampling_rate);
796
797         if (trig_sensors_per_dev[dev_num])
798                 enable_buffer(dev_num, 1);
799
800 exit:
801         /* Release the polling loop so an updated timeout value gets used */
802         write(poll_socket_pair[1], "", 1);
803
804         return 0;
805 }
806
807
808
809 int allocate_control_data (void)
810 {
811         int i;
812         struct epoll_event ev = {0};
813
814         for (i=0; i<MAX_DEVICES; i++)
815                 device_fd[i] = -1;
816
817         poll_fd = epoll_create(MAX_DEVICES);
818
819         if (poll_fd == -1) {
820                 ALOGE("Can't create epoll instance for iio sensors!\n");
821                 return -1;
822         }
823
824         /* Create and add "unblocking" fd to the set of watched fds */
825
826         if (socketpair(AF_UNIX, SOCK_STREAM, 0, poll_socket_pair) == -1) {
827                 ALOGE("Can't create socket pair for iio sensors!\n");
828                 close(poll_fd);
829                 return -1;
830         }
831
832         ev.events = EPOLLIN;
833         ev.data.u32 = INVALID_DEV_NUM;
834
835         epoll_ctl(poll_fd, EPOLL_CTL_ADD, poll_socket_pair[0], &ev);
836
837         return poll_fd;
838 }
839
840
841 void delete_control_data (void)
842 {
843 }