OSDN Git Service

Fix sampling frequency cap
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #include <fcntl.h>
8 #include <sys/epoll.h>
9 #include <sys/socket.h>
10 #include <utils/Log.h>
11 #include <hardware/sensors.h>
12 #include "control.h"
13 #include "enumeration.h"
14 #include "utils.h"
15 #include "transform.h"
16 #include "calibration.h"
17
18 /* Currently active sensors count, per device */
19 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
20 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
21
22 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
23
24 static int poll_fd; /* epoll instance covering all enabled sensors */
25
26 static int poll_socket_pair[2]; /* used to unblock the poll loop */
27
28 /* Timestamp for the moment when we last exited a poll operation */
29 static int64_t last_poll_exit_ts;
30
31 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
32
33 #define INVALID_DEV_NUM ((uint32_t) -1)
34
35
36 static int enable_buffer(int dev_num, int enabled)
37 {
38         char sysfs_path[PATH_MAX];
39
40         sprintf(sysfs_path, ENABLE_PATH, dev_num);
41
42         /* Low level, non-multiplexed, enable/disable routine */
43         return sysfs_write_int(sysfs_path, enabled);
44 }
45
46
47 static int setup_trigger(int dev_num, const char* trigger_val)
48 {
49         char sysfs_path[PATH_MAX];
50
51         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
52
53         return sysfs_write_str(sysfs_path, trigger_val);
54 }
55
56
57 void build_sensor_report_maps(int dev_num)
58 {
59         /*
60          * Read sysfs files from a iio device's scan_element directory, and
61          * build a couple of tables from that data. These tables will tell, for
62          * each sensor, where to gather relevant data in a device report, i.e.
63          * the structure that we read from the /dev/iio:deviceX file in order to
64          * sensor report, itself being the data that we return to Android when a
65          * sensor poll completes. The mapping should be straightforward in the
66          * case where we have a single sensor active per iio device but, this is
67          * not the general case. In general several sensors can be handled
68          * through a single iio device, and the _en, _index and _type syfs
69          * entries all concur to paint a picture of what the structure of the
70          * device report is.
71          */
72
73         int s;
74         int c;
75         int n;
76         int i;
77         int ch_index;
78         char* ch_spec;
79         char spec_buf[MAX_TYPE_SPEC_LEN];
80         struct datum_info_t* ch_info;
81         int size;
82         char sysfs_path[PATH_MAX];
83         int known_channels;
84         int offset;
85         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
86         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
87         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
88
89         known_channels = 0;
90
91         /* For each sensor that is linked to this device */
92         for (s=0; s<sensor_count; s++) {
93                 if (sensor_info[s].dev_num != dev_num)
94                         continue;
95
96                 i = sensor_info[s].catalog_index;
97
98                 /* Read channel details through sysfs attributes */
99                 for (c=0; c<sensor_info[s].num_channels; c++) {
100
101                         /* Read _type file */
102                         sprintf(sysfs_path, CHANNEL_PATH "%s",
103                                 sensor_info[s].dev_num,
104                                 sensor_catalog[i].channel[c].type_path);
105
106                         n = sysfs_read_str(sysfs_path, spec_buf, 
107                                                 sizeof(spec_buf));
108
109                         if (n == -1) {
110                                         ALOGW(  "Failed to read type: %s\n",
111                                         sysfs_path);
112                                         continue;
113                                 }
114
115                         ch_spec = sensor_info[s].channel[c].type_spec;
116
117                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
118
119                         ch_info = &sensor_info[s].channel[c].type_info;
120
121                         size = decode_type_spec(ch_spec, ch_info);
122
123                         /* Read _index file */
124                         sprintf(sysfs_path, CHANNEL_PATH "%s",
125                                 sensor_info[s].dev_num,
126                                 sensor_catalog[i].channel[c].index_path);
127
128                         n = sysfs_read_int(sysfs_path, &ch_index);
129
130                         if (n == -1) {
131                                         ALOGW(  "Failed to read index: %s\n",
132                                                 sysfs_path);
133                                         continue;
134                                 }
135
136                         if (ch_index >= MAX_SENSORS) {
137                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
138                                 continue;
139                         }
140
141                         /* Record what this index is about */
142
143                         sensor_handle_from_index [ch_index] = s;
144                         channel_number_from_index[ch_index] = c;
145                         channel_size_from_index  [ch_index] = size;
146
147                         known_channels++;
148                 }
149
150                 /* Turn on channels we're aware of */
151                 for (c=0;c<sensor_info[s].num_channels; c++) {
152                         sprintf(sysfs_path, CHANNEL_PATH "%s",
153                                 sensor_info[s].dev_num,
154                                 sensor_catalog[i].channel[c].en_path);
155
156                         sysfs_write_int(sysfs_path, 1);
157                 }
158         }
159
160         ALOGI("Found %d channels on iio device %d\n", known_channels, dev_num);
161
162         /*
163          * Now that we know which channels are defined, their sizes and their
164          * ordering, update channels offsets within device report. Note: there
165          * is a possibility that several sensors share the same index, with
166          * their data fields being isolated by masking and shifting as specified
167          * through the real bits and shift values in type attributes. This case
168          * is not currently supported. Also, the code below assumes no hole in
169          * the sequence of indices, so it is dependent on discovery of all
170          * sensors.
171          */
172          offset = 0;
173          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
174                 s =     sensor_handle_from_index[i];
175                 c =     channel_number_from_index[i];
176                 size =  channel_size_from_index[i];
177
178                 if (!size)
179                         continue;
180
181                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
182                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
183
184                 sensor_info[s].channel[c].offset        = offset;
185                 sensor_info[s].channel[c].size          = size;
186
187                 offset += size;
188          }
189 }
190
191
192 int adjust_counters (int s, int enabled)
193 {
194         /*
195          * Adjust counters based on sensor enable action. Return values are:
196          * -1 if there's an inconsistency: abort action in this case
197          *  0 if the operation was completed and we're all set
198          *  1 if we toggled the state of the sensor and there's work left
199          */
200
201         int dev_num = sensor_info[s].dev_num;
202         int catalog_index = sensor_info[s].catalog_index;
203         int sensor_type = sensor_catalog[catalog_index].type;
204
205         /* Refcount per sensor, in terms of enable count */
206         if (enabled) {
207                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
208                         s, dev_num, sensor_info[s].friendly_name);
209
210                 sensor_info[s].enable_count++;
211
212                 if (sensor_info[s].enable_count != 1) {
213                         return 0; /* The sensor was, and remains, in use */
214                 } else {
215                         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
216                                 compass_read_data(COMPASS_CALIBRATION_PATH);
217
218                         if (sensor_type == SENSOR_TYPE_GYROSCOPE)
219                                 gyro_cal_init(&sensor_info[s]);
220                 }
221         } else {
222                 if (sensor_info[s].enable_count == 0)
223                         return -1; /* Spurious disable call */
224
225                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
226                       sensor_info[s].friendly_name);
227
228                 if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
229                         compass_store_data(COMPASS_CALIBRATION_PATH);
230
231                 sensor_info[s].enable_count--;
232
233                 if (sensor_info[s].enable_count > 0)
234                         return 0; /* The sensor was, and remains, in use */
235
236                 /* Sensor disabled, lower report available flag */
237                 sensor_info[s].report_pending = 0;
238         }
239
240         /* We changed the state of a sensor - adjust per iio device counters */
241
242         /* If this is a regular event-driven sensor */
243         if (sensor_info[s].num_channels) {
244
245                         if (enabled)
246                                 trig_sensors_per_dev[dev_num]++;
247                         else
248                                 trig_sensors_per_dev[dev_num]--;
249
250                         return 1;
251                 }
252
253         if (enabled) {
254                 active_poll_sensors++;
255                 poll_sensors_per_dev[dev_num]++;
256                 return 1;
257         }
258
259         active_poll_sensors--;
260         poll_sensors_per_dev[dev_num]--;
261         return 1;
262 }
263
264
265 int sensor_activate(int s, int enabled)
266 {
267         char device_name[PATH_MAX];
268         char trigger_name[MAX_NAME_SIZE + 16];
269         int c;
270         struct epoll_event ev = {0};
271         int dev_fd;
272         int ret;
273         int dev_num = sensor_info[s].dev_num;
274         int i = sensor_info[s].catalog_index;
275         int is_poll_sensor = !sensor_info[s].num_channels;
276
277         ret = adjust_counters(s, enabled);
278
279         /* If the operation was neutral in terms of state, we're done */
280         if (ret <= 0)
281                 return ret;
282
283         if (!is_poll_sensor) {
284
285                 /* Stop sampling */
286                 enable_buffer(dev_num, 0);
287                 setup_trigger(dev_num, "\n");
288
289                 /* If there's at least one sensor enabled on this iio device */
290                 if (trig_sensors_per_dev[dev_num]) {
291                         sprintf(trigger_name, "%s-dev%d",
292                                         sensor_info[s].internal_name, dev_num);
293
294                         /* Start sampling */
295                         setup_trigger(dev_num, trigger_name);
296                         enable_buffer(dev_num, 1);
297                 }
298         }
299
300         /*
301          * Make sure we have a fd on the character device ; conversely, close
302          * the fd if no one is using associated sensor anymore. The assumption
303          * here is that the underlying driver will power on the relevant
304          * hardware block while someone hold a fd on the device.
305          */
306         dev_fd = device_fd[dev_num];
307
308         if (!enabled) {
309                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
310                         !trig_sensors_per_dev[dev_num]) {
311                                 /*
312                                  * Stop watching this fd. This should be a no-op
313                                  * in case this fd was not in the poll set.
314                                  */
315                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
316
317                                 close(dev_fd);
318                                 device_fd[dev_num] = -1;
319                         }
320                 return 0;
321         }
322
323         if (dev_fd == -1) {
324                 /* First enabled sensor on this iio device */
325                 sprintf(device_name, DEV_FILE_PATH, dev_num);
326                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
327
328                 device_fd[dev_num] = dev_fd;
329
330                 if (dev_fd == -1) {
331                         ALOGE("Could not open fd on %s (%s)\n",
332                               device_name, strerror(errno));
333                         adjust_counters(s, 0);
334                         return -1;
335                 }
336
337                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
338
339                 if (!is_poll_sensor) {
340
341                         /* Add this iio device fd to the set of watched fds */
342                         ev.events = EPOLLIN;
343                         ev.data.u32 = dev_num;
344
345                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
346
347                         if (ret == -1) {
348                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
349                                         dev_fd, strerror(errno));
350                                 return -1;
351                         }
352
353                         /* Note: poll-mode fds are not readable */
354                 }
355         }
356
357         /* Release the polling loop so an updated timeout gets used */
358         write(poll_socket_pair[1], "", 1);
359
360         return 0;
361 }
362
363
364 static int integrate_device_report(int dev_num)
365 {
366         int len;
367         int s,c;
368         unsigned char buf[MAX_SENSOR_REPORT_SIZE] = { 0 };
369         int sr_offset;
370         unsigned char *target;
371         unsigned char *source;
372         int size;
373         int ts;
374
375         /* There's an incoming report on the specified fd */
376
377         if (dev_num < 0 || dev_num >= MAX_DEVICES) {
378                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
379                 return -1;
380         }
381
382         if (device_fd[dev_num] == -1) {
383                 ALOGE("Ignoring stale report on iio device %d\n", dev_num);
384                 return -1;
385         }
386
387         ts = get_timestamp();
388
389         len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
390
391         if (len == -1) {
392                 ALOGE("Could not read report from iio device %d (%s)\n",
393                       dev_num, strerror(errno));
394                 return -1;
395         }
396
397         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
398
399         for (s=0; s<MAX_SENSORS; s++)
400                 if (sensor_info[s].dev_num == dev_num &&
401                     sensor_info[s].enable_count) {
402
403                         sr_offset = 0;
404
405                         /* Copy data from device to sensor report buffer */
406                         for (c=0; c<sensor_info[s].num_channels; c++) {
407
408                                 target = sensor_info[s].report_buffer +
409                                         sr_offset;
410
411                                 source = buf + sensor_info[s].channel[c].offset;
412
413                                 size = sensor_info[s].channel[c].size;
414
415                                 memcpy(target, source, size);
416
417                                 sr_offset += size;
418                         }
419
420                         ALOGV("Sensor %d report available (%d bytes)\n", s,
421                               sr_offset);
422
423                         sensor_info[s].report_ts = ts;
424                         sensor_info[s].report_pending = 1;
425                 }
426
427         return 0;
428 }
429
430
431 static void propagate_sensor_report(int s, struct sensors_event_t* data)
432 {
433         /* There's a sensor report pending for this sensor ; transmit it */
434
435         int catalog_index = sensor_info[s].catalog_index;
436         int sensor_type = sensor_catalog[catalog_index].type;
437         int num_fields;
438         int c;
439         unsigned char* current_sample;
440         int64_t current_ts = get_timestamp();
441
442         memset(data, 0, sizeof(sensors_event_t));
443
444         data->version = sizeof(sensors_event_t);
445         data->sensor = s;
446         data->type = sensor_type;
447
448         if (sensor_info[s].report_ts)
449                 data->timestamp = sensor_info[s].report_ts;
450         else
451                 data->timestamp = current_ts;
452
453         switch (sensor_type) {
454                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
455                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
456                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
457                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
458                         num_fields = 3;
459                         break;
460
461                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
462                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
463                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
464                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
465                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
466                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
467                         num_fields = 1;
468                         break;
469
470                 case SENSOR_TYPE_ROTATION_VECTOR:
471                         num_fields = 4;
472                         break;
473
474                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
475                         num_fields = 0;
476                         break;
477
478                 default:
479                         ALOGE("Unknown sensor type!\n");
480                         num_fields = 0;
481                         break;
482         }
483
484         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
485
486         /* Take note of current time counter value for rate control purposes */
487         sensor_info[s].last_integration_ts = current_ts;
488
489         /* If we're dealing with a poll-mode sensor */
490         if (!sensor_info[s].num_channels) {
491
492                 /* Read values through sysfs rather than from a report buffer */
493                 for (c=0; c<num_fields; c++) {
494
495                         data->data[c] = acquire_immediate_value(s, c);
496
497                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
498                 }
499
500                 sensor_info[s].ops.finalize(s, data);
501                 return;
502         }
503
504         /* Convert the data into the expected Android-level format */
505
506         current_sample = sensor_info[s].report_buffer;
507
508         for (c=0; c<num_fields; c++) {
509
510                 data->data[c] = sensor_info[s].ops.transform
511                                                         (s, c, current_sample);
512
513                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
514                 current_sample += sensor_info[s].channel[c].size;
515         }
516
517         sensor_info[s].ops.finalize(s, data);
518 }
519
520
521 static int get_poll_time (void)
522 {
523         int64_t target_ts;
524         int64_t lowest_target_ts;
525         int64_t current_ts;
526         int s;
527
528         if (!active_poll_sensors)
529                 return -1;      /* Infinite wait */
530
531         /* Check if we should schedule a poll-mode sensor event delivery */
532
533         lowest_target_ts = INT64_MAX;
534
535         for (s=0; s<sensor_count; s++)
536                 if (sensor_info[s].enable_count &&
537                     sensor_info[s].sampling_rate &&
538                     !sensor_info[s].num_channels) {
539                                 target_ts = sensor_info[s].last_integration_ts +
540                                       1000000000LL/sensor_info[s].sampling_rate;
541
542                                 if (target_ts < lowest_target_ts)
543                                         lowest_target_ts = target_ts;
544                         }
545
546         if (lowest_target_ts == INT64_MAX)
547                 return -1;
548
549         current_ts = get_timestamp();
550
551         if (lowest_target_ts <= current_ts)
552                 return 0;
553
554         return (lowest_target_ts - current_ts)/1000000; /* ms */
555 }
556
557
558 static void acknowledge_release (void)
559 {
560         /* A write to our socket circuit was performed to release epoll */
561         char buf;
562         read(poll_socket_pair[0], &buf, 1);
563 }
564
565
566 int sensor_poll(struct sensors_event_t* data, int count)
567 {
568         int s;
569         int i;
570         int nfds;
571         int delta;
572         struct epoll_event ev[MAX_DEVICES];
573         int64_t target_ts;
574
575         /* Get one or more events from our collection of sensors */
576
577 return_first_available_sensor_report:
578
579         /* If there's at least one available report */
580         for (s=0; s<sensor_count; s++)
581                 if (sensor_info[s].report_pending) {
582
583                         /* Return that up */
584                         propagate_sensor_report(s, data);
585                         sensor_info[s].report_pending = 0;
586                         ALOGV("Report on sensor %d\n", s);
587                         return 1;
588                 }
589 await_event:
590
591         ALOGV("Awaiting sensor data\n");
592
593         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
594
595         last_poll_exit_ts = get_timestamp();
596
597         if (nfds == -1) {
598                 ALOGI("epoll_wait returned -1 (%s)\n", strerror(errno));
599                 goto await_event;
600         }
601
602         ALOGV("%d fds signalled\n", nfds);
603
604         /* For each of the devices for which a report is available */
605         for (i=0; i<nfds; i++)
606                 if (ev[i].events == EPOLLIN) {
607                         if (ev[i].data.u32 == INVALID_DEV_NUM) {
608                                 acknowledge_release();
609                                 goto await_event;
610                         } else
611                                 /* Read report */
612                                 integrate_device_report(ev[i].data.u32);
613                 }
614
615         /* Check poll-mode sensors and fire up an event if it's time to do so */
616         if (active_poll_sensors)
617                 for (s=0; s<sensor_count; s++)
618                         if (sensor_info[s].enable_count &&
619                             !sensor_info[s].num_channels &&
620                             sensor_info[s].sampling_rate) {
621                                 target_ts = sensor_info[s].last_integration_ts +
622                                       1000000000LL/sensor_info[s].sampling_rate;
623
624                                 if (last_poll_exit_ts >= target_ts)
625                                         sensor_info[s].report_pending = 1;
626                         }
627
628         goto return_first_available_sensor_report;
629 }
630
631
632 int sensor_set_delay(int s, int64_t ns)
633 {
634         /* Set the rate at which a specific sensor should report events */
635
636         /* See Android sensors.h for indication on sensor trigger modes */
637
638         char sysfs_path[PATH_MAX];
639         char avail_sysfs_path[PATH_MAX];
640         int dev_num             =       sensor_info[s].dev_num;
641         int i                   =       sensor_info[s].catalog_index;
642         const char *prefix      =       sensor_catalog[i].tag;
643         int new_sampling_rate;  /* Granted sampling rate after arbitration   */
644         int cur_sampling_rate;  /* Currently used sampling rate              */
645         int req_sampling_rate;  /* Requested ; may be different from granted */
646         int per_sensor_sampling_rate;
647         int per_device_sampling_rate;
648         int max_supported_rate = 0;
649         char freqs_buf[100];
650         char* cursor;
651         int n;
652
653         if (!ns) {
654                 ALOGE("Rejecting zero delay request on sensor %d\n", s);
655                 return -EINVAL;
656         }
657
658         new_sampling_rate = req_sampling_rate = (int) (1000000000L/ns);
659
660         if (!new_sampling_rate) {
661                 ALOGI("Sub-HZ sampling rate requested on on sensor %d\n", s);
662                 new_sampling_rate = 1;
663         }
664
665         sensor_info[s].sampling_rate = new_sampling_rate;
666
667         /* If we're dealing with a poll-mode sensor, release poll and return */
668         if (!sensor_info[s].num_channels)
669                 goto exit;
670
671         sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
672
673         if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1) {
674                 per_sensor_sampling_rate = 1;
675                 per_device_sampling_rate = 0;
676         } else {
677                 per_sensor_sampling_rate = 0;
678
679                 sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
680
681                 if (sysfs_read_int(sysfs_path, &cur_sampling_rate) != -1)
682                         per_device_sampling_rate = 1;
683                 else
684                         per_device_sampling_rate = 0;
685         }
686
687         if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
688                 ALOGE("No way to adjust sampling rate on sensor %d\n", s);
689                 return -ENOSYS;
690         }
691
692         /* Coordinate with others active sensors on the same device, if any */
693         if (per_device_sampling_rate)
694                 for (n=0; n<sensor_count; n++)
695                         if (n != s && sensor_info[n].dev_num == dev_num &&
696                             sensor_info[n].num_channels &&
697                             sensor_info[n].enable_count &&
698                             sensor_info[n].sampling_rate > new_sampling_rate)
699                                 new_sampling_rate= sensor_info[n].sampling_rate;
700
701         /* Check if we have contraints on allowed sampling rates */
702
703         sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
704
705         if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
706                 cursor = freqs_buf;
707
708                 /* Decode allowed sampling rates string, ex: "10 20 50 100" */
709
710                 /* While we're not at the end of the string */
711                 while (*cursor && cursor[0]) {
712
713                         /* Decode a single integer value */
714                         n = atoi(cursor);
715
716                         /* Cap sampling rate to CAP_SENSOR_MAX_FREQUENCY*/
717                         if(n > CAP_SENSOR_MAX_FREQUENCY)
718                                  break;
719
720                         if (n > max_supported_rate)
721                                 max_supported_rate = n;
722
723                         /* If this matches the selected rate, we're happy */
724                         if (new_sampling_rate == n)
725                                 break;
726
727                         /*
728                          * If we reached a higher value than the desired rate,
729                          * adjust selected rate so it matches the first higher
730                          * available one and stop parsing - this makes the
731                          * assumption that rates are sorted by increasing value
732                          * in the allowed frequencies string.
733                          */
734                         if (n > new_sampling_rate) {
735                                 ALOGI(
736                         "Increasing sampling rate on sensor %d from %d to %d\n",
737                                 s, req_sampling_rate, n);
738
739                                 new_sampling_rate = n;
740                                 break;
741                         }
742
743                         /* Skip digits */
744                         while (cursor[0] && !isspace(cursor[0]))
745                                 cursor++;
746
747                         /* Skip spaces */
748                         while (cursor[0] && isspace(cursor[0]))
749                                         cursor++;
750                 }
751         }
752
753
754         if (max_supported_rate &&
755                 new_sampling_rate > max_supported_rate) {
756                 new_sampling_rate = max_supported_rate;
757                 ALOGI(  "Can't support %d sampling rate, lowering to %d\n",
758                         req_sampling_rate, new_sampling_rate);
759         }
760
761
762         /* If the desired rate is already active we're all set */
763         if (new_sampling_rate == cur_sampling_rate)
764                 return 0;
765
766         ALOGI("Sensor %d sampling rate switched to %d\n", s, new_sampling_rate);
767
768         if (trig_sensors_per_dev[dev_num])
769                 enable_buffer(dev_num, 0);
770
771         sysfs_write_int(sysfs_path, new_sampling_rate);
772
773         if (trig_sensors_per_dev[dev_num])
774                 enable_buffer(dev_num, 1);
775
776 exit:
777         /* Release the polling loop so an updated timeout value gets used */
778         write(poll_socket_pair[1], "", 1);
779
780         return 0;
781 }
782
783
784
785 int allocate_control_data (void)
786 {
787         int i;
788         struct epoll_event ev = {0};
789
790         for (i=0; i<MAX_DEVICES; i++)
791                 device_fd[i] = -1;
792
793         poll_fd = epoll_create(MAX_DEVICES);
794
795         if (poll_fd == -1) {
796                 ALOGE("Can't create epoll instance for iio sensors!\n");
797                 return -1;
798         }
799
800         /* Create and add "unblocking" fd to the set of watched fds */
801
802         if (socketpair(AF_UNIX, SOCK_STREAM, 0, poll_socket_pair) == -1) {
803                 ALOGE("Can't create socket pair for iio sensors!\n");
804                 close(poll_fd);
805                 return -1;
806         }
807
808         ev.events = EPOLLIN;
809         ev.data.u32 = INVALID_DEV_NUM;
810
811         epoll_ctl(poll_fd, EPOLL_CTL_ADD, poll_socket_pair[0], &ev);
812
813         return poll_fd;
814 }
815
816
817 void delete_control_data (void)
818 {
819 }