OSDN Git Service

Fix initialization points for event_count and meta_data_pending
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <ctype.h>
7 #include <fcntl.h>
8 #include <pthread.h>
9 #include <time.h>
10 #include <sys/epoll.h>
11 #include <sys/socket.h>
12 #include <utils/Log.h>
13 #include <hardware/sensors.h>
14 #include "control.h"
15 #include "enumeration.h"
16 #include "utils.h"
17 #include "transform.h"
18 #include "calibration.h"
19 #include "description.h"
20
21 /* Currently active sensors count, per device */
22 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
23 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
24
25 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
26
27 static int poll_fd; /* epoll instance covering all enabled sensors */
28
29 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
30
31 int64_t ts_delta; /* delta between SystemClock.getNanos and our timestamp */
32
33 /* We use pthread condition variables to get worker threads out of sleep */
34 static pthread_condattr_t thread_cond_attr      [MAX_SENSORS];
35 static pthread_cond_t     thread_release_cond   [MAX_SENSORS];
36 static pthread_mutex_t    thread_release_mutex  [MAX_SENSORS];
37
38 /*
39  * We associate tags to each of our poll set entries. These tags have the
40  * following values:
41  * - a iio device number if the fd is a iio character device fd
42  * - THREAD_REPORT_TAG_BASE + sensor handle if the fd is the receiving end of a
43  *   pipe used by a sysfs data acquisition thread
44  *  */
45 #define THREAD_REPORT_TAG_BASE  0x00010000
46
47 #define ENABLE_BUFFER_RETRIES 10
48 #define ENABLE_BUFFER_RETRY_DELAY_MS 10
49
50 static int enable_buffer(int dev_num, int enabled)
51 {
52         char sysfs_path[PATH_MAX];
53         int ret, retries, millisec;
54         struct timespec req = {0};
55
56         retries = ENABLE_BUFFER_RETRIES;
57         millisec = ENABLE_BUFFER_RETRY_DELAY_MS;
58         req.tv_sec = 0;
59         req.tv_nsec = millisec * 1000000L;
60
61         sprintf(sysfs_path, ENABLE_PATH, dev_num);
62
63         while (retries--) {
64                 /* Low level, non-multiplexed, enable/disable routine */
65                 ret = sysfs_write_int(sysfs_path, enabled);
66                 if (ret > 0)
67                         break;
68
69                 ALOGE("Failed enabling buffer, retrying");
70                 nanosleep(&req, (struct timespec *)NULL);
71         }
72
73         if (ret < 0) {
74                 ALOGE("Could not enable buffer\n");
75                 return -EIO;
76         }
77
78         return 0;
79 }
80
81
82 static int setup_trigger (int s, const char* trigger_val)
83 {
84         char sysfs_path[PATH_MAX];
85         int ret = -1, attempts = 5;
86
87         sprintf(sysfs_path, TRIGGER_PATH, sensor_info[s].dev_num);
88
89         if (trigger_val[0] != '\n')
90                 ALOGI("Setting S%d (%s) trigger to %s\n", s,
91                         sensor_info[s].friendly_name, trigger_val);
92
93         while (ret == -1 && attempts) {
94                 ret = sysfs_write_str(sysfs_path, trigger_val);
95                 attempts--;
96         }
97
98         if (ret != -1)
99                 sensor_info[s].selected_trigger = trigger_val;
100         else
101                 ALOGE("Setting S%d (%s) trigger to %s FAILED.\n", s,
102                         sensor_info[s].friendly_name, trigger_val);
103         return ret;
104 }
105
106
107 void build_sensor_report_maps(int dev_num)
108 {
109         /*
110          * Read sysfs files from a iio device's scan_element directory, and
111          * build a couple of tables from that data. These tables will tell, for
112          * each sensor, where to gather relevant data in a device report, i.e.
113          * the structure that we read from the /dev/iio:deviceX file in order to
114          * sensor report, itself being the data that we return to Android when a
115          * sensor poll completes. The mapping should be straightforward in the
116          * case where we have a single sensor active per iio device but, this is
117          * not the general case. In general several sensors can be handled
118          * through a single iio device, and the _en, _index and _type syfs
119          * entries all concur to paint a picture of what the structure of the
120          * device report is.
121          */
122
123         int s;
124         int c;
125         int n;
126         int i;
127         int ch_index;
128         char* ch_spec;
129         char spec_buf[MAX_TYPE_SPEC_LEN];
130         struct datum_info_t* ch_info;
131         int size;
132         char sysfs_path[PATH_MAX];
133         int known_channels;
134         int offset;
135         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
136         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
137         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
138
139         known_channels = 0;
140
141         /* For each sensor that is linked to this device */
142         for (s=0; s<sensor_count; s++) {
143                 if (sensor_info[s].dev_num != dev_num)
144                         continue;
145
146                 i = sensor_info[s].catalog_index;
147
148                 /* Read channel details through sysfs attributes */
149                 for (c=0; c<sensor_info[s].num_channels; c++) {
150
151                         /* Read _type file */
152                         sprintf(sysfs_path, CHANNEL_PATH "%s",
153                                 sensor_info[s].dev_num,
154                                 sensor_catalog[i].channel[c].type_path);
155
156                         n = sysfs_read_str(sysfs_path, spec_buf, 
157                                                 sizeof(spec_buf));
158
159                         if (n == -1) {
160                                         ALOGW(  "Failed to read type: %s\n",
161                                         sysfs_path);
162                                         continue;
163                                 }
164
165                         ch_spec = sensor_info[s].channel[c].type_spec;
166
167                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
168
169                         ch_info = &sensor_info[s].channel[c].type_info;
170
171                         size = decode_type_spec(ch_spec, ch_info);
172
173                         /* Read _index file */
174                         sprintf(sysfs_path, CHANNEL_PATH "%s",
175                                 sensor_info[s].dev_num,
176                                 sensor_catalog[i].channel[c].index_path);
177
178                         n = sysfs_read_int(sysfs_path, &ch_index);
179
180                         if (n == -1) {
181                                         ALOGW(  "Failed to read index: %s\n",
182                                                 sysfs_path);
183                                         continue;
184                                 }
185
186                         if (ch_index >= MAX_SENSORS) {
187                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
188                                 continue;
189                         }
190
191                         /* Record what this index is about */
192
193                         sensor_handle_from_index [ch_index] = s;
194                         channel_number_from_index[ch_index] = c;
195                         channel_size_from_index  [ch_index] = size;
196
197                         known_channels++;
198                 }
199
200                 /* Stop sampling - if we are recovering from hal restart */
201                 enable_buffer(dev_num, 0);
202                 setup_trigger(s, "\n");
203
204                 /* Turn on channels we're aware of */
205                 for (c=0;c<sensor_info[s].num_channels; c++) {
206                         sprintf(sysfs_path, CHANNEL_PATH "%s",
207                                 sensor_info[s].dev_num,
208                                 sensor_catalog[i].channel[c].en_path);
209                         sysfs_write_int(sysfs_path, 1);
210                 }
211         }
212
213         ALOGI("Found %d channels on iio device %d\n", known_channels, dev_num);
214
215         /*
216          * Now that we know which channels are defined, their sizes and their
217          * ordering, update channels offsets within device report. Note: there
218          * is a possibility that several sensors share the same index, with
219          * their data fields being isolated by masking and shifting as specified
220          * through the real bits and shift values in type attributes. This case
221          * is not currently supported. Also, the code below assumes no hole in
222          * the sequence of indices, so it is dependent on discovery of all
223          * sensors.
224          */
225          offset = 0;
226          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
227                 s =     sensor_handle_from_index[i];
228                 c =     channel_number_from_index[i];
229                 size =  channel_size_from_index[i];
230
231                 if (!size)
232                         continue;
233
234                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
235                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
236
237                 sensor_info[s].channel[c].offset        = offset;
238                 sensor_info[s].channel[c].size          = size;
239
240                 offset += size;
241          }
242 }
243
244
245 int adjust_counters (int s, int enabled)
246 {
247         /*
248          * Adjust counters based on sensor enable action. Return values are:
249          * -1 if there's an inconsistency: abort action in this case
250          *  0 if the operation was completed and we're all set
251          *  1 if we toggled the state of the sensor and there's work left
252          */
253
254         int dev_num = sensor_info[s].dev_num;
255
256         /* Refcount per sensor, in terms of enable count */
257         if (enabled) {
258                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
259                         s, dev_num, sensor_info[s].friendly_name);
260
261                 sensor_info[s].enable_count++;
262
263                 if (sensor_info[s].enable_count > 1)
264                         return 0; /* The sensor was, and remains, in use */
265
266                 switch (sensor_info[s].type) {
267                         case SENSOR_TYPE_MAGNETIC_FIELD:
268                                 compass_read_data(&sensor_info[s]);
269                                 break;
270
271                         case SENSOR_TYPE_GYROSCOPE:
272                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
273                                 gyro_cal_init(&sensor_info[s]);
274                                 break;
275                 }
276         } else {
277                 if (sensor_info[s].enable_count == 0)
278                         return -1; /* Spurious disable call */
279
280                 ALOGI("Disabling sensor %d (iio device %d: %s)\n", s, dev_num,
281                       sensor_info[s].friendly_name);
282
283                 sensor_info[s].enable_count--;
284
285                 if (sensor_info[s].enable_count > 0)
286                         return 0; /* The sensor was, and remains, in use */
287
288                 /* Sensor disabled, lower report available flag */
289                 sensor_info[s].report_pending = 0;
290
291                 if (sensor_info[s].type == SENSOR_TYPE_MAGNETIC_FIELD)
292                         compass_store_data(&sensor_info[s]);
293
294                 if(sensor_info[s].type == SENSOR_TYPE_GYROSCOPE ||
295                         sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
296                         gyro_store_data(&sensor_info[s]);
297         }
298
299
300         /* If uncalibrated type and pair is already active don't adjust counters */
301         if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
302                 sensor_info[sensor_info[s].pair_idx].enable_count != 0)
303                         return 0;
304
305         /* We changed the state of a sensor - adjust per iio device counters */
306
307         /* If this is a regular event-driven sensor */
308         if (sensor_info[s].num_channels) {
309
310                         if (enabled)
311                                 trig_sensors_per_dev[dev_num]++;
312                         else
313                                 trig_sensors_per_dev[dev_num]--;
314
315                         return 1;
316                 }
317
318         if (enabled) {
319                 active_poll_sensors++;
320                 poll_sensors_per_dev[dev_num]++;
321                 return 1;
322         }
323
324         active_poll_sensors--;
325         poll_sensors_per_dev[dev_num]--;
326         return 1;
327 }
328
329
330 static int get_field_count (int s)
331 {
332         switch (sensor_info[s].type) {
333                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
334                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
335                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
336                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
337                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
338                         return 3;
339
340                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
341                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* Â°C          */
342                 case SENSOR_TYPE_TEMPERATURE:           /* Â°C          */
343                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
344                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
345                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
346                         return 1;
347
348                 case SENSOR_TYPE_ROTATION_VECTOR:
349                         return  4;
350
351                 default:
352                         ALOGE("Unknown sensor type!\n");
353                         return 0;                       /* Drop sample */
354         }
355 }
356
357
358 static void* acquisition_routine (void* param)
359 {
360         /*
361          * Data acquisition routine run in a dedicated thread, covering a single
362          * sensor. This loop will periodically retrieve sampling data through
363          * sysfs, then package it as a sample and transfer it to our master poll
364          * loop through a report fd. Checks for a cancellation signal quite
365          * frequently, as the thread may be disposed of at any time. Note that
366          * Bionic does not provide pthread_cancel / pthread_testcancel...
367          */
368
369         int s = (int) (size_t) param;
370         int num_fields, sample_size;
371         struct sensors_event_t data = {0};
372         int c;
373         int ret;
374         struct timespec target_time;
375         int64_t timestamp, period;
376
377         if (s < 0 || s >= sensor_count) {
378                 ALOGE("Invalid sensor handle!\n");
379                 return NULL;
380         }
381
382         ALOGI("Entering data acquisition thread S%d (%s): rate(%f), ts(%lld)\n", s,
383                 sensor_info[s].friendly_name, sensor_info[s].sampling_rate, sensor_info[s].report_ts);
384
385         if (sensor_info[s].sampling_rate <= 0) {
386                 ALOGE("Non-positive rate in acquisition routine for sensor %d: %f\n",
387                         s, sensor_info[s].sampling_rate);
388                 return NULL;
389         }
390
391         num_fields = get_field_count(s);
392         sample_size = num_fields * sizeof(float);
393
394         /*
395          * Each condition variable is associated to a mutex that has to be
396          * locked by the thread that's waiting on it. We use these condition
397          * variables to get the acquisition threads out of sleep quickly after
398          * the sampling rate is adjusted, or the sensor is disabled.
399          */
400         pthread_mutex_lock(&thread_release_mutex[s]);
401
402         /* Pinpoint the moment we start sampling */
403         timestamp = get_timestamp_monotonic();
404
405         /* Check and honor termination requests */
406         while (sensor_info[s].thread_data_fd[1] != -1) {
407
408                 /* Read values through sysfs */
409                 for (c=0; c<num_fields; c++) {
410                         data.data[c] = acquire_immediate_value(s, c);
411                         /* Check and honor termination requests */
412                         if (sensor_info[s].thread_data_fd[1] == -1)
413                                 goto exit;
414                 }
415
416                 /* If the sample looks good */
417                 if (sensor_info[s].ops.finalize(s, &data)) {
418
419                         /* Pipe it for transmission to poll loop */
420                         ret = write(    sensor_info[s].thread_data_fd[1],
421                                         data.data, sample_size);
422                         if (ret != sample_size)
423                                 ALOGE("S%d acquisition thread: tried to write %d, ret: %d\n",
424                                         s, sample_size, ret);
425                 }
426
427                 /* Check and honor termination requests */
428                 if (sensor_info[s].thread_data_fd[1] == -1)
429                         goto exit;
430
431                 /* Recalculate period asumming sensor_info[s].sampling_rate
432                  * can be changed dynamically during the thread run */
433                 if (sensor_info[s].sampling_rate <= 0) {
434                         ALOGE("Non-positive rate in acquisition routine for sensor %d: %f\n",
435                                 s, sensor_info[s].sampling_rate);
436                         goto exit;
437                 }
438
439                 period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate);
440                 timestamp += period;
441                 set_timestamp(&target_time, timestamp);
442
443                 /*
444                  * Wait until the sampling time elapses, or a rate change is
445                  * signaled, or a thread exit is requested.
446                  */
447                 ret = pthread_cond_timedwait(   &thread_release_cond[s],
448                                                 &thread_release_mutex[s],
449                                                 &target_time);
450         }
451
452 exit:
453         ALOGV("Acquisition thread for S%d exiting\n", s);
454         pthread_mutex_unlock(&thread_release_mutex[s]);
455         pthread_exit(0);
456         return NULL;
457 }
458
459
460 static void start_acquisition_thread (int s)
461 {
462         int incoming_data_fd;
463         int ret;
464
465         struct epoll_event ev = {0};
466
467         ALOGV("Initializing acquisition context for sensor %d\n", s);
468
469         /* Create condition variable and mutex for quick thread release */
470         ret = pthread_condattr_init(&thread_cond_attr[s]);
471         ret = pthread_condattr_setclock(&thread_cond_attr[s], CLOCK_MONOTONIC);
472         ret = pthread_cond_init(&thread_release_cond[s], &thread_cond_attr[s]);
473         ret = pthread_mutex_init(&thread_release_mutex[s], NULL);
474
475         /* Create a pipe for inter thread communication */
476         ret = pipe(sensor_info[s].thread_data_fd);
477
478         incoming_data_fd = sensor_info[s].thread_data_fd[0];
479
480         ev.events = EPOLLIN;
481         ev.data.u32 = THREAD_REPORT_TAG_BASE + s;
482
483         /* Add incoming side of pipe to our poll set, with a suitable tag */
484         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, incoming_data_fd , &ev);
485
486         /* Create and start worker thread */
487         ret = pthread_create(   &sensor_info[s].acquisition_thread,
488                                 NULL,
489                                 acquisition_routine,
490                                 (void*) (size_t) s);
491 }
492
493
494 static void stop_acquisition_thread (int s)
495 {
496         int incoming_data_fd = sensor_info[s].thread_data_fd[0];
497         int outgoing_data_fd = sensor_info[s].thread_data_fd[1];
498
499         ALOGV("Tearing down acquisition context for sensor %d\n", s);
500
501         /* Delete the incoming side of the pipe from our poll set */
502         epoll_ctl(poll_fd, EPOLL_CTL_DEL, incoming_data_fd, NULL);
503
504         /* Mark the pipe ends as invalid ; that's a cheap exit flag */
505         sensor_info[s].thread_data_fd[0] = -1;
506         sensor_info[s].thread_data_fd[1] = -1;
507
508         /* Close both sides of our pipe */
509         close(incoming_data_fd);
510         close(outgoing_data_fd);
511
512         /* Stop acquisition thread and clean up thread handle */
513         pthread_cond_signal(&thread_release_cond[s]);
514         pthread_join(sensor_info[s].acquisition_thread, NULL);
515
516         /* Clean up our sensor descriptor */
517         sensor_info[s].acquisition_thread = -1;
518
519         /* Delete condition variable and mutex */
520         pthread_cond_destroy(&thread_release_cond[s]);
521         pthread_mutex_destroy(&thread_release_mutex[s]);
522 }
523
524
525 int sensor_activate(int s, int enabled)
526 {
527         char device_name[PATH_MAX];
528         struct epoll_event ev = {0};
529         int dev_fd;
530         int ret;
531         int dev_num = sensor_info[s].dev_num;
532         int is_poll_sensor = !sensor_info[s].num_channels;
533
534         /* Prepare the report timestamp field for the first event, see set_report_ts method */
535         sensor_info[s].report_ts = 0;
536         ts_delta = load_timestamp_sys_clock() - get_timestamp_monotonic();
537
538
539         /* If we want to activate gyro calibrated and gyro uncalibrated is activated
540          * Deactivate gyro uncalibrated - Uncalibrated releases handler
541          * Activate gyro calibrated     - Calibrated has handler
542          * Reactivate gyro uncalibrated - Uncalibrated gets data from calibrated */
543
544         /* If we want to deactivate gyro calibrated and gyro uncalibrated is active
545          * Deactivate gyro uncalibrated - Uncalibrated no longer gets data from handler
546          * Deactivate gyro calibrated   - Calibrated releases handler
547          * Reactivate gyro uncalibrated - Uncalibrated has handler */
548
549         if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE &&
550                 sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
551
552                                 sensor_activate(sensor_info[s].pair_idx, 0);
553                                 ret = sensor_activate(s, enabled);
554                                 sensor_activate(sensor_info[s].pair_idx, 1);
555                                 return ret;
556         }
557
558         ret = adjust_counters(s, enabled);
559
560         /* If the operation was neutral in terms of state, we're done */
561         if (ret <= 0)
562                 return ret;
563
564         sensor_info[s].event_count = 0;
565         sensor_info[s].meta_data_pending = 0;
566
567         if (!is_poll_sensor) {
568
569                 /* Stop sampling */
570                 enable_buffer(dev_num, 0);
571                 setup_trigger(s, "\n");
572
573                 /* If there's at least one sensor enabled on this iio device */
574                 if (trig_sensors_per_dev[dev_num]) {
575
576                         /* Start sampling */
577                         setup_trigger(s, sensor_info[s].init_trigger_name);
578                         enable_buffer(dev_num, 1);
579                 }
580         }
581
582         /*
583          * Make sure we have a fd on the character device ; conversely, close
584          * the fd if no one is using associated sensors anymore. The assumption
585          * here is that the underlying driver will power on the relevant
586          * hardware block while someone holds a fd on the device.
587          */
588         dev_fd = device_fd[dev_num];
589
590         if (!enabled) {
591                 if (is_poll_sensor)
592                         stop_acquisition_thread(s);
593
594                 if (dev_fd != -1 && !poll_sensors_per_dev[dev_num] &&
595                         !trig_sensors_per_dev[dev_num]) {
596                                 /*
597                                  * Stop watching this fd. This should be a no-op
598                                  * in case this fd was not in the poll set.
599                                  */
600                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
601
602                                 close(dev_fd);
603                                 device_fd[dev_num] = -1;
604                         }
605
606                 /* If we recorded a trail of samples for filtering, delete it */
607                 if (sensor_info[s].history) {
608                         free(sensor_info[s].history);
609                         sensor_info[s].history = NULL;
610                         sensor_info[s].history_size = 0;
611                         if (sensor_info[s].history_sum) {
612                                 free(sensor_info[s].history_sum);
613                                 sensor_info[s].history_sum = NULL;
614                         }
615                 }
616
617                 return 0;
618         }
619
620         if (dev_fd == -1) {
621                 /* First enabled sensor on this iio device */
622                 sprintf(device_name, DEV_FILE_PATH, dev_num);
623                 dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
624
625                 device_fd[dev_num] = dev_fd;
626
627                 if (dev_fd == -1) {
628                         ALOGE("Could not open fd on %s (%s)\n",
629                               device_name, strerror(errno));
630                         adjust_counters(s, 0);
631                         return -1;
632                 }
633
634                 ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
635
636                 if (!is_poll_sensor) {
637
638                         /* Add this iio device fd to the set of watched fds */
639                         ev.events = EPOLLIN;
640                         ev.data.u32 = dev_num;
641
642                         ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
643
644                         if (ret == -1) {
645                                 ALOGE(  "Failed adding %d to poll set (%s)\n",
646                                         dev_fd, strerror(errno));
647                                 return -1;
648                         }
649
650                         /* Note: poll-mode fds are not readable */
651                 }
652         }
653
654         /* Ensure that on-change sensors send at least one event after enable */
655         sensor_info[s].prev_val = -1;
656
657         if (is_poll_sensor)
658                 start_acquisition_thread(s);
659
660         return 0;
661 }
662
663
664 static int is_fast_accelerometer (int s)
665 {
666         /*
667          * Some games don't react well to accelerometers using any-motion
668          * triggers. Even very low thresholds seem to trip them, and they tend
669          * to request fairly high event rates. Favor continuous triggers if the
670          * sensor is an accelerometer and uses a sampling rate of at least 25.
671          */
672
673         if (sensor_info[s].type != SENSOR_TYPE_ACCELEROMETER)
674                 return 0;
675
676         if (sensor_info[s].sampling_rate < 25)
677                 return 0;
678
679         return 1;
680 }
681
682
683 static void enable_motion_trigger (int dev_num)
684 {
685         /*
686          * In the ideal case, we enumerate two triggers per iio device ; the
687          * default (periodically firing) trigger, and another one (the motion
688          * trigger) that only fires up when motion is detected. This second one
689          * allows for lesser energy consumption, but requires periodic sample
690          * duplication at the HAL level for sensors that Android defines as
691          * continuous. This "duplicate last sample" logic can only be engaged
692          * once we got a first sample for the driver, so we start with the
693          * default trigger when an iio device is first opened, then adjust the
694          * trigger when we got events for all active sensors. Unfortunately in
695          * the general case several sensors can be associated to a given iio
696          * device, they can independently be controlled, and we have to adjust
697          * the trigger in use at the iio device level depending on whether or
698          * not appropriate conditions are met at the sensor level.
699          */
700
701         int s;
702         int i;
703         int active_sensors = trig_sensors_per_dev[dev_num];
704         int candidate[MAX_SENSORS];
705         int candidate_count = 0;
706
707         if  (!active_sensors)
708                 return;
709
710         /* Check that all active sensors are ready to switch */
711
712         for (s=0; s<MAX_SENSORS; s++)
713                 if (sensor_info[s].dev_num == dev_num &&
714                     sensor_info[s].enable_count &&
715                     sensor_info[s].num_channels &&
716                     (!sensor_info[s].motion_trigger_name[0] ||
717                      !sensor_info[s].report_initialized ||
718                      is_fast_accelerometer(s) ||
719                      (sensor_info[s].quirks & QUIRK_FORCE_CONTINUOUS))
720                     )
721                         return; /* Nope */
722
723         /* Record which particular sensors need to switch */
724
725         for (s=0; s<MAX_SENSORS; s++)
726                 if (sensor_info[s].dev_num == dev_num &&
727                     sensor_info[s].enable_count &&
728                     sensor_info[s].num_channels &&
729                     sensor_info[s].selected_trigger !=
730                         sensor_info[s].motion_trigger_name)
731                                 candidate[candidate_count++] = s;
732
733         if (!candidate_count)
734                 return;
735
736         /* Now engage the motion trigger for sensors which aren't using it */
737
738         enable_buffer(dev_num, 0);
739
740         for (i=0; i<candidate_count; i++) {
741                 s = candidate[i];
742                 setup_trigger(s, sensor_info[s].motion_trigger_name);
743         }
744
745         enable_buffer(dev_num, 1);
746 }
747
748 /* CTS acceptable thresholds:
749  *      EventGapVerification.java: (th <= 1.8)
750  *      FrequencyVerification.java: (0.9)*(expected freq) => (th <= 1.1111)
751  */
752 #define THRESHOLD 1.10
753 void set_report_ts(int s, int64_t ts)
754 {
755         int64_t maxTs, period;
756         int catalog_index = sensor_info[s].catalog_index;
757         int is_accel      = (sensor_catalog[catalog_index].type == SENSOR_TYPE_ACCELEROMETER);
758
759         /*
760         *  A bit of a hack to please a bunch of cts tests. They
761         *  expect the timestamp to be exacly according to the set-up
762         *  frequency but if we're simply getting the timestamp at hal level
763         *  this may not be the case. Perhaps we'll get rid of this when
764         *  we'll be reading the timestamp from the iio channel for all sensors
765         */
766         if (sensor_info[s].report_ts && sensor_info[s].sampling_rate &&
767                 REPORTING_MODE(sensor_desc[s].flags) == SENSOR_FLAG_CONTINUOUS_MODE)
768         {
769                 period = (int64_t) (1000000000LL / sensor_info[s].sampling_rate);
770                 maxTs = sensor_info[s].report_ts + (is_accel ? 1 : THRESHOLD) * period;
771                 sensor_info[s].report_ts = (ts < maxTs ? ts : maxTs);
772         } else {
773                 sensor_info[s].report_ts = ts;
774         }
775 }
776
777 static int integrate_device_report (int dev_num)
778 {
779         int len;
780         int s,c;
781         unsigned char buf[MAX_SENSOR_REPORT_SIZE] = { 0 };
782         int sr_offset;
783         unsigned char *target;
784         unsigned char *source;
785         int size;
786
787         /* There's an incoming report on the specified iio device char dev fd */
788
789         if (dev_num < 0 || dev_num >= MAX_DEVICES) {
790                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
791                 return -1;
792         }
793
794         if (device_fd[dev_num] == -1) {
795                 ALOGE("Ignoring stale report on iio device %d\n", dev_num);
796                 return -1;
797         }
798
799
800
801         len = read(device_fd[dev_num], buf, MAX_SENSOR_REPORT_SIZE);
802
803         if (len == -1) {
804                 ALOGE("Could not read report from iio device %d (%s)\n",
805                       dev_num, strerror(errno));
806                 return -1;
807         }
808
809         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
810
811         /* Map device report to sensor reports */
812
813         for (s=0; s<MAX_SENSORS; s++)
814                 if (sensor_info[s].dev_num == dev_num &&
815                     sensor_info[s].enable_count) {
816
817                         sr_offset = 0;
818
819                         /* Copy data from device to sensor report buffer */
820                         for (c=0; c<sensor_info[s].num_channels; c++) {
821
822                                 target = sensor_info[s].report_buffer +
823                                         sr_offset;
824
825                                 source = buf + sensor_info[s].channel[c].offset;
826
827                                 size = sensor_info[s].channel[c].size;
828
829                                 memcpy(target, source, size);
830
831                                 sr_offset += size;
832                         }
833
834                         ALOGV("Sensor %d report available (%d bytes)\n", s,
835                               sr_offset);
836
837                         set_report_ts(s, get_timestamp());
838                         sensor_info[s].report_pending = DATA_TRIGGER;
839                         sensor_info[s].report_initialized = 1;
840                 }
841
842         /* Tentatively switch to an any-motion trigger if conditions are met */
843         enable_motion_trigger(dev_num);
844
845         return 0;
846 }
847
848
849 static int propagate_sensor_report (int s, struct sensors_event_t  *data)
850 {
851         /* There's a sensor report pending for this sensor ; transmit it */
852
853         int num_fields    = get_field_count(s);
854         int c;
855         unsigned char* current_sample;
856
857         /* If there's nothing to return... we're done */
858         if (!num_fields)
859                 return 0;
860
861
862         /* Only return uncalibrated event if also gyro active */
863         if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED &&
864                 sensor_info[sensor_info[s].pair_idx].enable_count != 0)
865                         return 0;
866
867         memset(data, 0, sizeof(sensors_event_t));
868
869         data->version   = sizeof(sensors_event_t);
870         data->sensor    = s;
871         data->type      = sensor_info[s].type;
872         data->timestamp = sensor_info[s].report_ts;
873
874         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_info[s].type);
875
876         current_sample = sensor_info[s].report_buffer;
877
878         /* If this is a poll sensor */
879         if (!sensor_info[s].num_channels) {
880                 /* Use the data provided by the acquisition thread */
881                 ALOGV("Reporting data from worker thread for S%d\n", s);
882                 memcpy(data->data, current_sample, num_fields * sizeof(float));
883                 return 1;
884         }
885
886         /* Convert the data into the expected Android-level format */
887         for (c=0; c<num_fields; c++) {
888
889                 data->data[c] = sensor_info[s].ops.transform
890                                                         (s, c, current_sample);
891
892                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
893                 current_sample += sensor_info[s].channel[c].size;
894         }
895
896         /*
897          * The finalize routine, in addition to its late sample processing duty,
898          * has the final say on whether or not the sample gets sent to Android.
899          */
900         return sensor_info[s].ops.finalize(s, data);
901 }
902
903
904 static void synthetize_duplicate_samples (void)
905 {
906         /*
907          * Some sensor types (ex: gyroscope) are defined as continuously firing
908          * by Android, despite the fact that we can be dealing with iio drivers
909          * that only report events for new samples. For these we generate
910          * reports periodically, duplicating the last data we got from the
911          * driver. This is not necessary for polling sensors.
912          */
913
914         int s;
915         int64_t current_ts;
916         int64_t target_ts;
917         int64_t period;
918
919         for (s=0; s<sensor_count; s++) {
920
921                 /* Ignore disabled sensors */
922                 if (!sensor_info[s].enable_count)
923                         continue;
924
925                 /* If the sensor is continuously firing, leave it alone */
926                 if (sensor_info[s].selected_trigger !=
927                     sensor_info[s].motion_trigger_name)
928                         continue;
929
930                 /* If we haven't seen a sample, there's nothing to duplicate */
931                 if (!sensor_info[s].report_initialized)
932                         continue;
933
934                 /* If a sample was recently buffered, leave it alone too */
935                 if (sensor_info[s].report_pending)
936                         continue;
937
938                 /* We also need a valid sampling rate to be configured */
939                 if (!sensor_info[s].sampling_rate)
940                         continue;
941
942                 period = (int64_t) (1000000000.0/ sensor_info[s].sampling_rate);
943
944                 current_ts = get_timestamp();
945                 target_ts = sensor_info[s].report_ts + period;
946
947                 if (target_ts <= current_ts) {
948                         /* Mark the sensor for event generation */
949                         set_report_ts(s, current_ts);
950                         sensor_info[s].report_pending = DATA_DUPLICATE;
951                 }
952         }
953 }
954
955
956 static void integrate_thread_report (uint32_t tag)
957 {
958         int s = tag - THREAD_REPORT_TAG_BASE;
959         int len;
960         int expected_len;
961
962         expected_len = get_field_count(s) * sizeof(float);
963
964         len = read(sensor_info[s].thread_data_fd[0],
965                    sensor_info[s].report_buffer,
966                    expected_len);
967
968         if (len == expected_len) {
969                 set_report_ts(s, get_timestamp());
970                 sensor_info[s].report_pending = DATA_SYSFS;
971         }
972 }
973
974
975 static int get_poll_wait_timeout (void)
976 {
977         /*
978          * Compute an appropriate timeout value, in ms, for the epoll_wait
979          * call that's going to await for iio device reports and incoming
980          * reports from our sensor sysfs data reader threads.
981          */
982
983         int s;
984         int64_t target_ts = INT64_MAX;
985         int64_t ms_to_wait;
986         int64_t period;
987
988         /*
989          * Check if we're dealing with a driver that only send events when
990          * there is motion, despite the fact that the associated Android sensor
991          * type is continuous rather than on-change. In that case we have to
992          * duplicate events. Check deadline for the nearest upcoming event.
993          */
994         for (s=0; s<sensor_count; s++)
995                 if (sensor_info[s].enable_count &&
996                     sensor_info[s].selected_trigger ==
997                     sensor_info[s].motion_trigger_name &&
998                     sensor_info[s].sampling_rate) {
999                         period = (int64_t) (1000000000.0 /
1000                                                 sensor_info[s].sampling_rate);
1001
1002                         if (sensor_info[s].report_ts + period < target_ts)
1003                                 target_ts = sensor_info[s].report_ts + period;
1004                 }
1005
1006         /* If we don't have such a driver to deal with */
1007         if (target_ts == INT64_MAX)
1008                 return -1; /* Infinite wait */
1009
1010         ms_to_wait = (target_ts - get_timestamp()) / 1000000;
1011
1012         /* If the target timestamp is already behind us, don't wait */
1013         if (ms_to_wait < 1)
1014                 return 0;
1015
1016         return ms_to_wait;
1017 }
1018
1019
1020 int sensor_poll(struct sensors_event_t* data, int count)
1021 {
1022         int s;
1023         int i;
1024         int nfds;
1025         struct epoll_event ev[MAX_DEVICES];
1026         int returned_events;
1027         int event_count;
1028         int uncal_start;
1029
1030         /* Get one or more events from our collection of sensors */
1031
1032 return_available_sensor_reports:
1033
1034         /* Synthetize duplicate samples if needed */
1035         synthetize_duplicate_samples();
1036
1037         returned_events = 0;
1038
1039         /* Check our sensor collection for available reports */
1040         for (s=0; s<sensor_count && returned_events < count; s++) {
1041                 if (sensor_info[s].report_pending) {
1042                         event_count = 0;
1043
1044                         /* Report this event if it looks OK */
1045                         event_count = propagate_sensor_report(s, &data[returned_events]);
1046
1047                         /* Lower flag */
1048                         sensor_info[s].report_pending = 0;
1049
1050                         /* Duplicate only if both cal & uncal are active */
1051                         if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE &&
1052                                         sensor_info[s].pair_idx && sensor_info[sensor_info[s].pair_idx].enable_count != 0) {
1053                                         struct gyro_cal* gyro_data = (struct gyro_cal*) sensor_info[s].cal_data;
1054
1055                                         memcpy(&data[returned_events + event_count], &data[returned_events],
1056                                                         sizeof(struct sensors_event_t) * event_count);
1057
1058                                         uncal_start = returned_events + event_count;
1059                                         for (i = 0; i < event_count; i++) {
1060                                                 data[uncal_start + i].type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
1061                                                 data[uncal_start + i].sensor = sensor_info[s].pair_idx;
1062
1063                                                 data[uncal_start + i].data[0] = data[returned_events + i].data[0] + gyro_data->bias_x;
1064                                                 data[uncal_start + i].data[1] = data[returned_events + i].data[1] + gyro_data->bias_y;
1065                                                 data[uncal_start + i].data[2] = data[returned_events + i].data[2] + gyro_data->bias_z;
1066
1067                                                 data[uncal_start + i].uncalibrated_gyro.bias[0] = gyro_data->bias_x;
1068                                                 data[uncal_start + i].uncalibrated_gyro.bias[1] = gyro_data->bias_y;
1069                                                 data[uncal_start + i].uncalibrated_gyro.bias[2] = gyro_data->bias_z;
1070                                         }
1071                                         event_count <<= 1;
1072                         }
1073                         sensor_info[sensor_info[s].pair_idx].report_pending = 0;
1074                         returned_events += event_count;
1075                         /*
1076                          * If the sample was deemed invalid or unreportable,
1077                          * e.g. had the same value as the previously reported
1078                          * value for a 'on change' sensor, silently drop it.
1079                          */
1080                 }
1081                 while (sensor_info[s].meta_data_pending) {
1082                         /* See sensors.h on these */
1083                         data[returned_events].version = META_DATA_VERSION;
1084                         data[returned_events].sensor = 0;
1085                         data[returned_events].type = SENSOR_TYPE_META_DATA;
1086                         data[returned_events].reserved0 = 0;
1087                         data[returned_events].timestamp = 0;
1088                         data[returned_events].meta_data.sensor = s;
1089                         data[returned_events].meta_data.what = META_DATA_FLUSH_COMPLETE;
1090                         returned_events++;
1091                         sensor_info[s].meta_data_pending--;
1092                 }
1093         }
1094         if (returned_events)
1095                 return returned_events;
1096
1097 await_event:
1098
1099         ALOGV("Awaiting sensor data\n");
1100
1101         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_wait_timeout());
1102
1103         if (nfds == -1) {
1104                 ALOGE("epoll_wait returned -1 (%s)\n", strerror(errno));
1105                 goto await_event;
1106         }
1107
1108         ALOGV("%d fds signalled\n", nfds);
1109
1110         /* For each of the signalled sources */
1111         for (i=0; i<nfds; i++)
1112                 if (ev[i].events == EPOLLIN)
1113                         switch (ev[i].data.u32) {
1114                                 case 0 ... MAX_DEVICES-1:
1115                                         /* Read report from iio char dev fd */
1116                                         integrate_device_report(ev[i].data.u32);
1117                                         break;
1118
1119                                 case THREAD_REPORT_TAG_BASE ...
1120                                      THREAD_REPORT_TAG_BASE + MAX_SENSORS-1:
1121                                         /* Get report from acquisition thread */
1122                                         integrate_thread_report(ev[i].data.u32);
1123                                         break;
1124
1125                                 default:
1126                                         ALOGW("Unexpected event source!\n");
1127                                         break;
1128                         }
1129
1130         goto return_available_sensor_reports;
1131 }
1132
1133
1134 static void tentative_switch_trigger (int s)
1135 {
1136         /*
1137          * Under certain situations it may be beneficial to use an alternate
1138          * trigger:
1139          *
1140          * - for applications using the accelerometer with high sampling rates,
1141          *   prefer the continuous trigger over the any-motion one, to avoid
1142          *   jumps related to motion thresholds
1143          */
1144
1145         if (is_fast_accelerometer(s) &&
1146                 !(sensor_info[s].quirks & QUIRK_TERSE_DRIVER) &&
1147                         sensor_info[s].selected_trigger ==
1148                                 sensor_info[s].motion_trigger_name)
1149                 setup_trigger(s, sensor_info[s].init_trigger_name);
1150 }
1151
1152
1153 int sensor_set_delay(int s, int64_t ns)
1154 {
1155         /* Set the rate at which a specific sensor should report events */
1156
1157         /* See Android sensors.h for indication on sensor trigger modes */
1158
1159         char sysfs_path[PATH_MAX];
1160         char avail_sysfs_path[PATH_MAX];
1161         int dev_num             =       sensor_info[s].dev_num;
1162         int i                   =       sensor_info[s].catalog_index;
1163         const char *prefix      =       sensor_catalog[i].tag;
1164         float new_sampling_rate; /* Granted sampling rate after arbitration   */
1165         float cur_sampling_rate; /* Currently used sampling rate              */
1166         int per_sensor_sampling_rate;
1167         int per_device_sampling_rate;
1168         int32_t min_delay_us = sensor_desc[s].minDelay;
1169         max_delay_t max_delay_us = sensor_desc[s].maxDelay;
1170         float min_supported_rate = max_delay_us ? (1000000.0f / max_delay_us) : 1;
1171         float max_supported_rate = 
1172                 (min_delay_us && min_delay_us != -1) ? (1000000.0f / min_delay_us) : 0;
1173         char freqs_buf[100];
1174         char* cursor;
1175         int n;
1176         float sr;
1177
1178         if (ns <= 0) {
1179                 ALOGE("Rejecting non-positive delay request on sensor %d, required delay: %lld\n", s, ns);
1180                 return -EINVAL;
1181         }
1182
1183         new_sampling_rate = 1000000000LL/ns;
1184
1185         ALOGV("Entering set delay S%d (%s): old rate(%f), new rate(%f)\n",
1186                 s, sensor_info[s].friendly_name, sensor_info[s].sampling_rate,
1187                 new_sampling_rate);
1188
1189         /*
1190          * Artificially limit ourselves to 1 Hz or higher. This is mostly to
1191          * avoid setting up the stage for divisions by zero.
1192          */
1193         if (new_sampling_rate < min_supported_rate)
1194                 new_sampling_rate = min_supported_rate;
1195
1196         if (max_supported_rate &&
1197                 new_sampling_rate > max_supported_rate) {
1198                 new_sampling_rate = max_supported_rate;
1199         }
1200
1201         sensor_info[s].sampling_rate = new_sampling_rate;
1202
1203         /* If we're dealing with a poll-mode sensor */
1204         if (!sensor_info[s].num_channels) {
1205                 /* Interrupt current sleep so the new sampling gets used */
1206                 pthread_cond_signal(&thread_release_cond[s]);
1207                 return 0;
1208         }
1209
1210         sprintf(sysfs_path, SENSOR_SAMPLING_PATH, dev_num, prefix);
1211
1212         if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1) {
1213                 per_sensor_sampling_rate = 1;
1214                 per_device_sampling_rate = 0;
1215         } else {
1216                 per_sensor_sampling_rate = 0;
1217
1218                 sprintf(sysfs_path, DEVICE_SAMPLING_PATH, dev_num);
1219
1220                 if (sysfs_read_float(sysfs_path, &cur_sampling_rate) != -1)
1221                         per_device_sampling_rate = 1;
1222                 else
1223                         per_device_sampling_rate = 0;
1224         }
1225
1226         if (!per_sensor_sampling_rate && !per_device_sampling_rate) {
1227                 ALOGE("No way to adjust sampling rate on sensor %d\n", s);
1228                 return -ENOSYS;
1229         }
1230
1231         /* Coordinate with others active sensors on the same device, if any */
1232         if (per_device_sampling_rate)
1233                 for (n=0; n<sensor_count; n++)
1234                         if (n != s && sensor_info[n].dev_num == dev_num &&
1235                             sensor_info[n].num_channels &&
1236                             sensor_info[n].enable_count &&
1237                             sensor_info[n].sampling_rate > new_sampling_rate)
1238                                 new_sampling_rate= sensor_info[n].sampling_rate;
1239
1240         /* Check if we have contraints on allowed sampling rates */
1241
1242         sprintf(avail_sysfs_path, DEVICE_AVAIL_FREQ_PATH, dev_num);
1243
1244         if (sysfs_read_str(avail_sysfs_path, freqs_buf, sizeof(freqs_buf)) > 0){
1245                 cursor = freqs_buf;
1246
1247                 /* Decode allowed sampling rates string, ex: "10 20 50 100" */
1248
1249                 /* While we're not at the end of the string */
1250                 while (*cursor && cursor[0]) {
1251
1252                         /* Decode a single value */
1253                         sr = strtod(cursor, NULL);
1254
1255                         /* If this matches the selected rate, we're happy */
1256                         if (new_sampling_rate == sr)
1257                                 break;
1258
1259                         /*
1260                          * If we reached a higher value than the desired rate,
1261                          * adjust selected rate so it matches the first higher
1262                          * available one and stop parsing - this makes the
1263                          * assumption that rates are sorted by increasing value
1264                          * in the allowed frequencies string.
1265                          */
1266                         if (sr > new_sampling_rate) {
1267                                 new_sampling_rate = sr;
1268                                 break;
1269                         }
1270
1271                         /* Skip digits */
1272                         while (cursor[0] && !isspace(cursor[0]))
1273                                 cursor++;
1274
1275                         /* Skip spaces */
1276                         while (cursor[0] && isspace(cursor[0]))
1277                                         cursor++;
1278                 }
1279         }
1280
1281         if (max_supported_rate &&
1282                 new_sampling_rate > max_supported_rate) {
1283                 new_sampling_rate = max_supported_rate;
1284         }
1285
1286         /* If the desired rate is already active we're all set */
1287         if (new_sampling_rate == cur_sampling_rate)
1288                 return 0;
1289
1290         ALOGI("Sensor %d sampling rate set to %g\n", s, new_sampling_rate);
1291
1292         if (trig_sensors_per_dev[dev_num])
1293                 enable_buffer(dev_num, 0);
1294
1295         sysfs_write_float(sysfs_path, new_sampling_rate);
1296
1297         /* Check if it makes sense to use an alternate trigger */
1298         tentative_switch_trigger(s);
1299
1300         if (trig_sensors_per_dev[dev_num])
1301                 enable_buffer(dev_num, 1);
1302
1303         return 0;
1304 }
1305
1306 int sensor_flush (int s)
1307 {
1308         /* If one shot or not enabled return -EINVAL */
1309         if (sensor_desc[s].flags & SENSOR_FLAG_ONE_SHOT_MODE ||
1310                 sensor_info[s].enable_count == 0)
1311                 return -EINVAL;
1312
1313         sensor_info[s].meta_data_pending++;
1314         return 0;
1315 }
1316
1317 int allocate_control_data (void)
1318 {
1319         int i;
1320
1321         for (i=0; i<MAX_DEVICES; i++)
1322                 device_fd[i] = -1;
1323
1324         poll_fd = epoll_create(MAX_DEVICES);
1325
1326         if (poll_fd == -1) {
1327                 ALOGE("Can't create epoll instance for iio sensors!\n");
1328                 return -1;
1329         }
1330
1331         return poll_fd;
1332 }
1333
1334
1335 void delete_control_data (void)
1336 {
1337 }