The LuaTgX-ja package

The LuaTgX-ja project team

March 22, 2012

Contents

I User’s manuall

[L__Introduction|

2 Getting Started|

2.3 Using in plain TEX|
2.4 Using in INTpX]
2.5 Changing Fonts|

2.6 fontspecl

13 Changing Parameters|
3.1 Editing the range of JAchars|
13.2 kanjiskip and xkanjiskip|

13.3 Insertion Setting of xkanjiskip|
[3.4 Shifting Baseline|

3.5 Cropmarkl

(LI Reference

4 Font Metric and Japanese Font|

4.1 \jfont primitive]
4.2 Prefix psft|
4. r re of JEM filef.
4.4 Math Font Family|
4.5 Callbacksl

6 _Parameters|

.1 \ltjsetparameter primitive|

6 Other Primitives
6.1 Primitives for Compatibility| .
6.2 \inhibitglue primitive| . . .

|7 Control Sequences for IATEX 2¢|

8.1 1luatexja-fontspec.sty| . .
8.2 luatexja-otf.styl.

=R W w W

0o = O ot ot ot W

co Qo

12

12
12
13
13
15
15

16
16
16

18
18
18

18
18
20

(III Implementations| 20

19 Storing Parameters| 20
9.1 Used Dimensions, Attributes and whatsit nodes| 20
9.2 Stack System of LuaTgX-ja| L 21

[T0 Linebreak after Japanese Character] 22
[10.1 Reference: Behavior in pTEX| o 22
110.2 Behavior in LualpX-jal. 23

|11 Insertion of JFM glues, kanjiskip and xkanjiskip| 24
O T S P 24
1.2 definition of a ‘cluster’] 24
[11.3 OO /hbox OCICICICIEI| . .« v o o e e e e e e e e e e 26
1.4 OOOOO0O0C2 00000 A0 « 0 v v v v e e e e e e e e e 26
(L5 OO00000 . . . o o 28

12 psft 31

This documentation is far from complete. It may have many grammatical (and contex-
tual) errors.

Part 1
User’s manual

1 Introduction

The LuaTEX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese docu-
ments in TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents
without using very complicated macros. But this point is a mixed blessing: pTEX is left behind from
other extensions of TEX, especially e-TEX and pdfTEX, and from changes about Japanese processing in
computers (e.g., the UTF-8 encoding).

Recently extensions of pTEX, namely upTEX (Unicode-implementation of pTEX) and e-pTEX (merging
of pTEX and e-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users
can customize the internal processing of LuaTEX. So there is no need to modify sources of engines to
support Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTgX-ja package is under much influence of pTEX engine. The initial target of development
was to implement features of pTEX. However, LuaTgX-ja is not a just porting of pTEX; unnatural
specifications/behaviors of pTEX were not adopted.

The followings are major changes from pTEX:

o A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional
string called ‘variation’.

o In pTEX, a line break after Japanese character is ignored (and doesn’t yield a space), since line
breaks (in source files) are permitted almost everywhere in Japanese texts. However, LuaTEX-ja
doesn’t have this function completely, because of a specification of LuaTgX.

e The insertion process of glues/kerns between two Japanese characters and between a Japanese
character and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent liga-
tures), the insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in line break (e.g., \special
node) and kerns from italic correction are ignored in the insertion process.

— Caution: due to above two points, many methods which did the dividing the process of the
insertion of JAglue in pTEX are not effective anymore. In concrete terms, the following two
methods are not effective anymore:

oo{3on oo\/aa
If you want to do so, please put an empty hbox between it instead:
OO \hbox{} 1]

— In the process, two Japanese fonts which only differ in their ‘real’ fonts are identified.

o At the present, vertical typesetting (tategaki), is not supported in LuaTgX-ja.

For detailed information, see Part

1.3 Notations

In this document, the following terms and notations are used:

e Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other
punctuation marks for Japanese.

— ALchar: standing for all other characters like alphabets.
We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) means an internal parameter for Japanese type-
setting, and it is used as a key in \1tjsetparameter command.

e A word in typewriter font with underline (like fontspec) means a package or a class of KTEX.

e The word ‘primitive’ is used not only for primitives in LuaTgX, but also for control sequences that
defined in the core module of LuaTgX-ja.

e In this document, natural numbers start from O.

1.4 About the project

Project Wiki Project Wiki is under construction.

o http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage’,28eny29 (English)

e http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage (Japanese)

This project is hosted by SourceForge.JP.

Members
e Hironori KITAGAWA e Kazuki MAEDA e Takayuki YATO
e Yusuke KUROKI e Noriyuki ABE e Munehiro YAMAMOTO
e Tomoaki HONDA e Shuzaburo SAITO e MA Qiyuan

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage

2 Getting Started

2.1

Installation

To install the LuaTEX-ja package, you will need:

e LuaTgX (version 0.65.0-beta or later) and its supporting packages.

If you are using TEX Live 2011 or current W32TEX, you don’t have to worry.

e The source archive of LuaTgX-ja, of course:)

The installation methods are as follows:

1.

2.3

Download the source archive.

At the present, LuaTgX-ja has no official release, so you have to retrieve the archive from the
repository. You can retrieve the Git repository via

$ git clone git://git.sourceforge.jp/gitroot/luatex-ja/luatexja.git
or download the archive of HEAD in master branch from
http://git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgzl

Note that the forefront of development may not be in master branch.

. Extract the archive. You will see src/ and several other sub-directories.

. Copy all the contents of src/ into one of your TEXMF tree.

If mktexlsr is needed to update the file name database, make it so.

Cautions

The encoding of your source file must be UTF-8. No other encodings, such as EUC-JP or Shift-JIS,
are not supported.
May be conflict with other packages.

For example, the default setting of JAchar in the present version does not coexist with the
unicode-math package. Putting the following line in preamble makes that mathematical sym-
bols will be typeset correctly, but several Japanese characters will be treated as an ALchar as
side-effect:

\1tjsetparameter{jacharrange={-3, -8}}

Using in plain TEX

To use LuaTgX-ja in plain TEX, simply put the following at the beginning of the document:

\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

o The following 6 Japanese fonts are preloaded:

classification font name ‘10 pt’ ‘7 pt’ ‘5 pt’
mincho Ryumin-Light \tenmin \sevenmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— The ‘QOOLT is a unit used in Japanese phototypesetting, and 1 Q = 0.25 mm. This length is
stored in a dimension \jQ.

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

— It is widely accepted that the font ‘Ryumin-Light’” and ‘GothicBBB-Medium’ aren’t embedded
into PDF files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka
Mincho is used for Ryumin-Light in Adobe Reader). We adopt this custom to the default
setting.

— A character in an alphabetic font is generally smaller than a Japanese font in the same size.

So actual size specification of these Japanese fonts is in fact smaller than that of alphabetic
fonts, namely scaled by 0.962216.

¢ The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip)

is set to

(0.25 - 0.962216 - 10pt) | Py = 2.40554 pt] Py

2.4 Using in BTEX

IATEX 2¢ Using in I¥TEX 2¢ is basically same. To set up the minimal environment for Japanese, you
only have to load luatexja.sty:

\usepackage{luatexja}

It also does minimal settings (counterparts in pIATEX are plfonts.dtx and pldefs.ltx):

o JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical
fonts.

e Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.962216
gothic gt GothicBBB-Medium GothicBBB-Medium 0.962216

Remark that the bold series in both family are same as the medium series of gothic family. This is
a convention in pIATEX. This is a trace that there were only 2 fonts (these are Ryumin-Light and
GothicBBB-Medium) in early years of DTP.

o Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based
documents, you are better to use class files other than article.cls, book.cls, and so on. At the present,
we have the counterparts of jclasses (standard classes in pIATEX) and jsclasses (classes by Haruhiko
Okumura), namely, 1tjclasses and ltjsclasses.

\CID, \UTF and macros in OTF package Under pATEX, otf package (developed by Shuzaburo
Saito) is used for typesetting characters which is in Adobe-Japanl-6 CID but not in JIS X 0208. Since
this package is widely used, LuaTEX-ja supports some of functions in otf package. If you want to use
these functions, load luatexja-otf package.

1 O\UTF{9DD7} 00O O O\UTF{9592} (1 CI\UTF{9AD

grOOonodnoao
) } gobogooooogoogoodn

5 \CID{7652} (111\CID{13706} 11] nooooooonooooon
, 0000000

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math
mode, there are sources like the following;:

1$£_{000}$~($f_{\text{high temperature}}$). fon (fuign temperature)-

2\[y=(x-1)"2+2\quad JO00\quad y>0 \] 132

3$5\in [J:=\{\,p\in\mathbb N:\text{p is a y=(@-1)7+2 OO0 y>0
prime}\,\}$. 5€0:={peN:pisa prime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed

if and only if these are used as identifiers. In this point of view,

e Thelines 1 and 2 above are not correct, since ‘CJ[1" in above is used as a textual label, and ‘1
is used as a conjunction.

o However, the line 3 is correct, since ‘1’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1f_{OOO}~7% f Fui
2 ($f_{\text{high temperature}}$). 0o (high temperamre).

3\ [y=(x-1)"2+2\quad B 5
+ \mathrel{\text{CJJ[1}}\quad y>0 \] y=(@-1)"+2 DOOO y>0

5$5\in [J:=\{\,p\in\mathbb N:\text{p is a . o .
prime}\,\}$. 5€U0:={peN:pisaprime}.
We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to
change Japanese fonts in math mode in this chapter. For the method, please see Part

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see
Part [

NFSS2 For ITEX 2¢, LuaTEX-ja adopted most of the font selection system of pIATEX 2¢ (in plfonts.dtx).

¢ Two control sequences \mcdefault and \gtdefault are used to specify the default font families for
mancho and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change
attributes of Japanese fonts.

encoding family series shape selection

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape \useroman

Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape \usekanji
both — - \fontseries \fontshape —

auto select \fontencoding \fontfamily — — \usefont

\fontencoding{<encoding>} changes the encoding of alphabetic fonts or Japanese fonts depending
on the argument. For example, \fontencoding{JY3} changes the encoding of Japanese fonts to
JY3 and \fontencoding{T1} changes the encoding of alphabetic fonts to T1. \fontfamily also
changes the family of Japanese fonts, alphabetic fonts, or both. For detail, see Subsection

e For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.
However, in the present implementation, using \DeclareFontFamily doesn’t cause any problem.

2.6 fontspec

To coexist with the fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original
commands in the fontspec package:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

1 \fontspec [Numbers=01dStyle] {TeX Gyre Termes}
2\jfontspec{IPAexMincho}

3 JIS~X~0213:2004 - [JIS X 0213:2004 =it
4 JIS X 0208:1990 =it

s \addjfontfeatures{CJKShape=JIS1990}
6 JIS~X~0208:1990 - []

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that
nearly all Japanese glyphs have same widths. Also note that the kerning feature is set off by default in
these 7 commands, since this feature and JAglue will clash (see [4.1)).

Caution zxunicode package will be reloaded during the loading of luatexja-fontspec package. How-
ever, this reloading won’t work for the current version (2011/09/09, v0.981) of xunicode package. Hence
we have to patch it, using the following patch, for example:

--- xunicode.sty.orig 2011-09-12 08:31:47.000000000 +0900
+++ xunicode.sty 2011-11-16 22:06:17.061413113 +0900
@@ -1475,7 +1475,11 @@

\newtoks\tipasavetokens

\newtoks\tipachecktokens

+

+\fi

\newif\iftipaonetoken

+\expandafter\ifx\csname ReloadXunicode\endcsname\relax
+

\def\tipalasttoken{!@! do nothing with this !@!}
\def\tipacatchonechar#1{\begingroup
\def\textipa##1{##1}J, prevent recursion

3 Changing Parameters

There are many parameters in LuaTgX-ja. And due to the behavior of LuaTEX, most of them are not
stored as internal register of TEX, but as an original storage system in LuaTgX-ja. Hence, to assign or
acquire those parameters, you have to use commands \1tjsetparameter and \1tjgetparameter.

3.1 Editing the range of JAchars

To edit the range of JAchars, you have to assign a non-zero natural number which is less than 217 to
the character range first. This can be done by using \1tjdefcharrange primitive. For example, the next
line assigns whole characters in Supplementary Multilingual Plane and the character ‘1’ to the range
number 100.

\1tjdefcharrange{100}{"10000-"1FFFF, 1}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a
document.

If some character has been belonged to some non-zero numbered range, this will be overwritten by
the new setting. For example, whole SMP belong to the range 4 in the default setting of LuaTEX-ja, and
if you specify the above line, then SMP will belong to the range 100 and be removed from the range 4.

After assigning numbers to ranges, the jacharrange parameter can be used to customize which character
range will be treated as ranges of JAchars, as the following line (this is just the default setting of

LuaTgX-ja):
\1ltjsetparameter{jacharrange={-1, +2, +3, -4, -5, +6, +7, +8}}

The argument to jacharrange parameter is a list of integer. Negative integer —n in the list means that
‘the characters that belong to range n are treated as ALchar’, and positive integer +n means that ‘the
characters that belong to range n are treated as JAchar’.

Default Setting LuaTpgX-ja predefines eight character ranges for convenience. They are determined
from the following data:

e Blocks in Unicode 6.0.
e The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.
e The PXbase bundle for upTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J” or ‘A’ after the number shows whether characters
in the range is treated as JAchars or not by default. These settings are similar to the prefercjk settings
defined in PXbase bundle.

Range 8’ Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and
JIS X 0208 (a basic character set for Japanese). This character range consists of the following

characters:
o 8 (U+00A7, Section Sign) o ~ (U+00B4, Spacing acute)
e 7 (U+00A8, Diaeresis) e 9] (U+00B6, Paragraph sign)
e < (U+00BO, Degree sign) e > (U+00D7, Multiplication sign)
e = (U+00B1, Plus-minus sign) o =+ (U+00F7, Division Sign)

Range 1A Latin characters that some of them are included in Adobe-Japanl-6. This range consist of
the following Unicode ranges, except characters in the range 8 above:

e U+0080-U+0OFF: Latin-1 Supplement e U+0300-U+036F: Combining Diacritical
e U+0100-U+017F: Latin Extended-A Marks
 U+0180-U+024F: Latin Extended-B e U+1E00-U+1EFF: Latin Extended Addi-
o U+0250-U+02AF: IPA Extensions tional

e U+02BO-U+02FF: Spacing Modifier Letters

Range 27 Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these
characters.

e U+0370-U+03FF: Greek and Coptic e U+1F00-U+1FFF: Greek Extended
e U+0400-U+04FF: Cyrillic

Range 37 Punctuations and Miscellaneous symbols. The block list is indicated in Table

Range 4# Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks
which are not in other predefined ranges. Hence, instead of showing the block list, we put the
definition of this range itself:

U+2000-U+206F
U+20A0-U+20CF
U+2100-U+214F
U+2190-U+21FF
U+2300-U+23FF
U+2500-U+257F
U+25A0-U+25FF
U+2700-U+27BF
U+2980-U+29FF
U+EO00-U+F8FF

U+2460-U+24FF
U+3000-U+303F
U+30A0-U+30FF
U+31F0-U+31FF
U+3300-U+33FF
U+4E00-U+9FFF
U+FE10-U+FE1F
U+FE50-U+FE6F

U+1100-U+11FF
U+2FFO0—U+2FFF
U+3130-U+318F
U+31CO-U+31EF
U+A490-U+A4CF
U+ACO0-U+DT7AF

Table 1. Unicode blocks in predefined character range 3.

General Punctuation

Currency Symbols

Letterlike Symbols

Arrows

Miscellaneous Technical

Box Drawing

Geometric Shapes

Dingbats

Misc. Mathematical Symbols-B
Private Use Area

U+2070-U+209F
U+20D0-U+20FF
U+2150-U+218F
U+2200-U+22FF
U+2400-U+243F
U+2580-U+259F
U+2600-U+26FF
U+2900-U+297F
U+2B0O0-U+2BFF

Superscripts and Subscripts

Comb. Diacritical Marks for Symbols
Number Forms

Mathematical Operators

Control Pictures

Block Elements

Miscellaneous Symbols

Supplemental Arrows-B
Miscellaneous Symbols and Arrows

Table 2. Unicode blocks in predefined character range 6.

Enclosed Alphanumerics

CJK Symbols and Punctuation
Katakana

Katakana Phonetic Extensions
CJK Compatibility

CJK Unified Ideographs
Vertical Forms

Small Form Variants

U+2E80-U+2EFF
U+3040-U+309F
U+3190-U+319F
U+3200-U+32FF
U+3400-U+4DBF
U+F900-U+FAFF
U+FE30-U+FE4F

U+20000-U+2FFFF

CJK Radicals Supplement

Hiragana

Kanbun

Enclosed CJK Letters and Months
CJK Unified Ideographs Extension A
CJK Compatibility Ideographs

CJK Compatibility Forms
(Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

Hangul Jamo

Ideographic Description Characters

Hangul Compatibility Jamo
CJK Strokes

Yi Radicals

Hangul Syllables

U+2F00—-U+2FDF
U+3100-U+312F
U+31A0-U+31BF
U+A000-U+A48F
U+A830-U+A83F
U+D7BO-U+D7FF

Kangxi Radicals

Bopomofo

Bopomofo Extended

Yi Syllables

Common Indic Number Forms
Hangul Jamo Extended-B

\1tjdefcharrange{4}{%
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "FBOO-"FB4F, "10000-"1FFFF} % non-Japanese

Range 5 Surrogates and Supplementary Private Use Areas.
Range 67 Characters used in Japanese. The block list is indicated in Table

Range 77 Characters used in CJK languages, but not included in Adobe-Japanl-6. The block list is
indicated in Table [B

3.2 kanjiskip and xkanjiskip

JAglue is divided into the following three categories:

o Glues/kerns specified in JEM. If \inhibitglue is issued around a Japanese character, this glue
will be not inserted at the place.

e The default glue which inserted between two JAchars (kanjiskip).

o The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.
10

\1ltjsetparameter{kanjiskip={Opt plus 0.4pt minus O.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JEM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip”.
To use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted into every boundary between JAchars and ALchars. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘(0 and ‘([I’).
LuaTgX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

1\1tjsetparameter{jaxspmode={~[J,preonly},
alxspmode={"\!,postonly}} pOq O
2pllq OO

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but
not after’. the other possible values are postonly, allow and inhibit. ...

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to true / false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline
of one of the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero
length (the baseline of alphabetic fonts is shifted below). However, for documents whose main language
is not Japanese, it is good to shift the baseline of Japanese fonts, but not that of alphabetic fonts.
Because of this, LuaTEX-ja can independently set the shifting amount of the baseline of alphabetic fonts
(yalbaselineshift parameter) and that of Japanese fonts (yjabaselineshift parameter).

1\vrule width 150pt height 0.4pt depth Opt\

hskip-120pt
2\1ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=0Opt}tabc11[] MW
s3\1ltjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc]]

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a
line, by setting two parameters appropriately. The following is an example (beware the value is not well
tuned):

1xyzOO

2{\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}

s XyzOooooo

6 YabcJ

xyz OO XYz 0000 abe OO

3.5 Cropmark

Cropmark is a mark for indicating 4 corners and horizontal /vertical center of the paper. In Japanese, we
call cropmark as tombo(w). pIATEX and this LuaTEX-ja support ‘tombow’ by their kernel. The following
steps are needed to typeset cropmark:

1. First, define the banner which will be printed at the upper left of the paper. This is done by
assigning a token list to \@bannertoken.

For example, the following sets banner as ‘filename (YYYY-MM-DD hh:mm)’:
11

\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax
\minute\time \advance\minute-\@tempcnta
\@bannertoken{,
\jobname\space (\number\year-\two@digits\month-\two@digits\day
\space\two@digits\hour:\two@digits\minute)}%

Part 11
Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont
admits the same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so True-
Type/OpenType fonts with features can be used for Japanese fonts:

1\jfont\tradgt={file:ipaexg.ttf:script=latn;/

2 +trad;-kern;jfm=ujis} at 14pt %/%/%/E

s\tradgt {3000 0000

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font_def
token, hence the input like \fontname\tradgt causes a error. We denote control sequences which are
defined in \jfont by (jfont_cs).

JFM As noted in Introduction, a JEM has measurements of characters and glues/kerns that are auto-
matically inserted for Japanese typesetting. The structure of JEM will be described in the next subsection.
At the calling of \ jfont primitive, you must specify which JFM will be used for this font by the following
keys:

jfm=(name) Specify the name of JFM. If specified JFM has not been loaded, LuaTEX-ja search and
load a file named jfm-(name).lua.

The following JFMs are shipped with LuaTgX-ja:

jfm-ujis.lua A standard JFM in LuaTgEX-ja. This JEM is based on upnmlminr-h.tfm, a metric
for UTF/OTF package that is used in upTEX. When you use the luatexja-otf package,
you should use this JFM.

jfm-jis.lua A counterpart for jis.tfm, ‘JIS font metric’ which is widely used in pTEX. A
major difference of jfm-ujis.lua and this jfm-jis.lua is that most characters under
jfm-ujis.lua are square-shaped, while that under jfm-jis.lua are horizontal rectangles.

jfm-min.lua A counterpart for min10.tfm, which is one of the default Japanese font metric
shipped with pTEX. There are notable difference between this JEM and other 2 JFMs, as
shown in Table [4]

jfmvar=(string) Sometimes there is a need that ...

Hrom: 0O0O0, minl0 OOOOOOOO. http://argent.shinshu-u.ac.jp/ otobe/tex/files/min10.pdf.

12

Table 4. Differences between JFMs shipped with LuaTEX-ja

jfm-ujis.lua jfm-jis.lua jfm-min.lua

oD dobooodo oot
OdOOooOodo goodoony oo n
OOooooog OOoooood OOoodddd
OOoOoOoOooo oboodo oo oni
OO0 Lot Lot

Example 2 [ICICICIE] [HiNNINEn HiNENIEN
Bounding Box I:l I:I I:l

=

Example 1

Note: kern feature Some fonts have information for inter-glyph spacing. However, this information
is not well-compatible with LuaTgX-ja. More concretely, this kerning space from this information are
inserted before the insertion process of JAglue, and this causes incorrect spacing between two characters
when both a glue/kern from the data in the font and it from JFM are present.

¢ You should specify -kern in jfont primitive, when you want to use other font features, such as
script=....

o If you want to use Japanese fonts in proportional width, and use information from this font, use
jfm-prop.1lua for its JEM, and ...

TODO: kanjiskip?

4.2 Prefix psft

Besides file: and name: prefixes, one can use psft: prefix in \jfont (and \font) primitive, to specify
a ‘name-only’ Japanese font which will be not embedded to PDF. Typical use of this prefix is to specify
the ‘standard’ Japanese fonts, namely, ‘Ryumin-Light’ and ‘GothicBBB-Medium’. For kerning or other
information, that of Kozuka Mincho Pr6N Regular (this is a font by Adobe Inc., and included in Japanese
Font Packs for Adobe Reader) will be used.

cid key cid key, ...

4.3 Structure of JFM file
A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are
devoted to describe the structure of this table. Note that all lengths in a JFM file are floating-point
numbers in design-size unit.
dir=(direction) (required)
The direction of JEM. At the present, only 'yoko' is supported.
zw=(length) (required)
The amount of the length of the ‘full-width’.
zh=(length) (required)
The amount of the length of the ‘full-height’ (height + depth).

13

Consider a node containing Japanese character whose value of
Iy the align field is 'middle’.

1 e The black rectangle is a frame of the node. Its width,

height height and depth are specified by JFM.
e Since the align field is 'middle', the ‘real’ glyph is cen-
width | tered horizontally (the green rectangle).
down
ot :: depth e Furthermore, the glyph is shifted according to values of
T y fields 1left and down. The ultimate position of the real
0 glyph is indicated by the red rectangle.

Figure 1. The position of the ‘real’ glyph.

kanjiskip={(natural), (stretch), (shrink)} (optional)

This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection if the parameter
kanjiskip is \maxdimen, the value specified in this field is actually used (if this field is not specified
in JFM, it is regarded as 0 pt). Note that (stretch) and (shrink) fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.

Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The
table indexed by i € w stores information of ‘character class’ i. At least, the character class 0 is always
present, so each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index
is denoted by 7) has the following fields:

chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type 7. This field is not required if
i = 0, since all JAchar which are not in any character class other than 0 are in the character
class 0 (hence, the character class 0 contains most of JAchars). In the list, a character can be
specified by its code number, or by the character itself (as a string of length 1). Moreover, there
are ‘imaginary characters’ which specified in the list. We will describe these later.

width=(length), height=(length), depth=(length), italic=(length) (required)
Specify width of characters in character class 4, height, depth and the amount of italic correction.
All characters in character class i are regarded that its width, height and depth are as values of
these fields. But there is one exception: if 'prop' is specified in width field, width of a character
becomes that of its ‘real’ glyph

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are
'left', 'middle' and 'right'. If one of these 3 fields are omitted, left and down are treated
as 0, and align field is treated as 'left'. The effects of these 3 fields are indicated in Figure

In most cases, left and down fields are 0, while it is not uncommon that the align field is
'middle' or 'right'. For example, setting the align field to 'right' is practically needed
when the current character class is the class for opening delimiters’.

kern={[jl=(kern), ...}
glue={[jl1={(width)y, (stretch), (shrink)}, ...}

The followings are ‘imaginary characters’ which can be specified in chars field.

'lineend' An ending of a line.
'diffmet' Used at a boundary between two JAchars whose JFM or size is different.

'boxbdd' The beginning/ending of a horizontal box, and the beginning of a noindented paragraph.
14

Table 5. Primitives for Japanese math fonts.

Japanese fonts alphabetic fonts
font family \jfam € [0, 256) \fam
text size jatextfont ={(jfam) , (jfont_cs)} \textfont(fam)=(font_cs)
script size jascriptfont ={(jfam), (jfont_cs)} \scriptfont(fam)=(font_cs)

scriptscript size jascriptscriptfont ={{jfam) , (jfont _cs)} \scriptscriptfont(fam)=(font cs)

'parbdd' The beginning of an (indented) paragraph.
'jcharbdd' A boundary between JAchar and anything else (such as ALchar, kern, glue, ...).

—1 The left/right boundary of an inline math formula.

4.4 Math Font Family

TgX handles fonts in math formulas by 16 font familiesE]7 and each family has three fonts: \textfont,
\scriptfont and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table [5| shows counterparts to
TEX’s primitives for math font families. There is no relation between the value of \fam and that of \ jfam;
with appropriate settings, you can set both \fam and \jfam to the same value.

4.5 Callbacks

Like LuaTgX itself, LuaTEX-ja also has callbacks. These callbacks can be accessed via luatexbase.add_to_callback
function and so on, as other callbacks

luatexja.load_jfm callback With this callback you can overwrite JFMs. This callback is called when
a new JFM is loaded.

function (<table> jfm_info, <string> jfm_name)
return <table> new_jfm_info
end

The argument jfm_info contains a table similar to the table in a JFM file, except this argument
has chars field which contains character codes whose character class is not 0.

An example of this callback is the 1tjarticle class, with forcefully assigning character class 0 to
'parbdd' in the JFM jfm-min.lua. This callback doesn’t replace any code of LuaTEX-ja.

luatexja.define_font callback This callback and the next callback form a pair, and you can as-
sign letters which don’t have fixed code points in Unicode to non-zero character classes. This
luatexja.define_font callback is called just when new Japanese font is loaded.

function (<table> jfont_info, <number> font_number)
return <table> new_jfont_info
end

You may assume that jfont_info has the following fields:

jfm The index number of JFM.
size Font size in a scaled point (= 2716 pt).

var The value specified in jfmvar=... at a call of \jfont.

20mega, Aleph, LuaTEX and e-(u)pTiEXcan handles 256 families, but an external package is needed to support this in
plain TEX and IATEX.

15

The returned table new_jfont_info also should include these three fields. The font_number is a
font number.

A good example of this and the next callbacks is the luatexja-otf package, supporting "AJ1-xxx"
form for Adobe-Japanl CID characters in a JFM. This callback doesn’t replace any code of

LuaTgX-ja.

luatexja.find_char_class callback This callback is called just when LuaTEX-ja inready to determine
which character class a character chr_code belongs. A function used in this callback should be in
the following form:

function (<number> char_class, <table> jfont_info, <number> chr_code)
if char_class~=0 then return char_class
else

return (<number> new_char_class or 0)
end
end

N OO W N

The argument char_class is the result of LuaTEX-ja’s default routine or previous function calls in
this callback, hence this argument may not be 0. Moreover, the returned new_char_class should
be as same as char_class when char_class is not 0, otherwise you will overwrite the LuaTgX-ja’s
default routine.

This callback doesn’t replace any code of LuaTgX-ja.

luatexja.set_width callback This callback is called when LuaTEX-ja is trying to encapsule a JAchar
glyph__node, to adjust its dimension and position.

1 function (<table> shift_info, <table> jfont_info, <number> char_class)
2 return <table> new_shift_info
3 end

The argument shift_info and the returned new_shift_info have down and left fields, which are
the amount of shifting down/left the character in a scaled-point.

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \1tjsetparameter and \1tjgetparameter are primitives for accessing most parameters
of LuaTgX-ja. One of the main reason that LuaTEX-ja didn’t adopted the syntax similar to that of pTEX
(e.g., \prebreakpenalty [1=10000) is the position of hpack_filter callback in the source of LuaTgX,
see Section [0

\1tjsetparameter and \ltjglobalsetparameter are primitives for assigning parameters. These
take one argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The
difference between \ltjsetparameter and \ltjglobalsetparameter is only the scope of assignment;
\1ltjsetparameter does a local assignment and \1tjglobalsetparameter does a global one. They also
obey the value of \globaldefs, like other assignment.

\1tjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as
first argument, and also takes the additional argument—a character code, for example—in some cases.

1\1tjgetparameter{differentjfm},
2\1tjgetparameter{autospacing}, average, 1, 10000.
3\1tjgetparameter{prebreakpenalty}{ [}.

The return value of \1tjgetparameter is always a string. This is outputted by tex.write(), so any char-
acter other than space ¢ * (U+0020) has the category code 12 (other), while the space has 10 (space).

16

5.2 List of Parameters

The following is the list of parameters which can be specified by the \1tjsetparameter command. [\cs]
indicates the counterpart in pTEX, and symbols beside each parameter has the following meaning;:

o No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
e ‘«”: local parameters, which can change everywhere inside a paragraph/hbox.

e ‘’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty]
Penalty value for suppressing orphans. This penalty is inserted just after the last JAchar which
is not regarded as a (Japanese) punctuation mark.

kcatcode ={({chr_code) , (natural number)}

An additional attributes having each character whose character code is (chr_code). At the present
version, the lowermost bit of (natural number) indicates whether the character is considered as a
punctuation mark (see the description of jcharwidowpenalty above).

prebreakpenalty ={(chr__code), (penalty)} [\prebreakpenalty]
postbreakpenalty ={({chr_code) , (penalty)} [\postbreakpenalty]
jatextfont ={(jfam), (jfont_cs)} [\textfont in TEX]

jascriptfont ={ (jfam) , (jfont_cs)} [\scriptfont in TEX]
jascriptscriptfont ={(jfam) , (jfont_cs)} [\scriptscriptfont in TEX]
yjabaselineshift ={dimen)*

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={{chr__code) ,(mode)} Setting whether inserting xkanjiskip is allowed before/after a JAchar
whose character code is (chr__code). The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed before the character and after the character. This is

the default value.

This parameter is similar to the \inhibitxspcode primitive of pTEX, but not compatible with
\inhibitxspcode.
alxspmode ={(chr_code), (mode)} [\xspcode]
Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is
(chr_code). The followings are allowed for (mode):
0, inhibit Insertion of xkanjiskip is inhibited before the character, nor after the character.
1, preonly Insertion of xkanjiskip is allowed before the character, but not after.
2, postonly Insertion of xkanjiskip is allowed after the character, but not before.
3, allow Insertion of xkanjiskip is allowed both before the character and after the character. This

is the default value.

Note that parameters jaxspmode and alxspmode use a common table, hence these two parameters
are synonyms of each other.

autospacing =(bool)* [\autospacing)

autoxspacing =(bool)* [\autoxspacing]
17

kanjiskip =(skip) [\kanjiskip]
xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)! Specify how glues/kerns between two JAchars whose JFM (or size) are different.
The allowed arguments are the followings:

average
both
large

small
jacharrange =(ranges)*

kansujichar ={(digit), (chr_code)} [\kansujichar]

6 Other Primitives

6.1 Primitives for Compatibility
The following primitives are implemented for compatibility with pTEX:

\kuten
\jis
\euc
\sjis
\ucs

\kansuji

6.2 \inhibitglue primitive

The primitive \inhibitglue suppresses the insertion of JAglue. The following is an example, using a
special JEM that there will be a glue between the beginning of a box and ‘C1’, and also between ‘[’ and
‘.

1\jfont\g=psft:Ryumin-Light:jfm=test \g

2 \fbox{\hbox{(J[1[]\inhibitglue [I}} O Odd

3\inhibitglue\par\noindent [J1 O 1
4\par\inhibitglue\noindent []2

s \par\noindent\inhibitglue [13 E% g
6 \par\inhibitglue\hrule [] off\inhibitglue O office

ice

With the help of this example, we remark the specification of \inhibitglue:

o The call of \inhibitglue in the (internal) vertical mode is effective at the beginning of the next
paragraph. This is realized by hacking \everypar.

e The call of \inhibitglue in the (restricted) horizontal mode is only effective on the spot; does
not get over boundary of paragraphs. Moreover, \inhibitglue cancels ligatures and kernings, as
shown in line 4 of above example.

e The call of \inhibitglue in math mode is just ignored.

18

7 Control Sequences for INTEX 2¢

7.1 Patch for NFSS2

As described in Subsection LuaTEX-ja simply adopted plfonts.dtx in pETRX 2¢ for the Japanese
patch for NFSS2. For an convenience, we will describe commands which are not described in Subsec-
tion

\DeclareYokoKanjiEncoding{(encoding) }{ (text-settings)}{(math-settings)}

In NFSS2 under LuaTgX-ja, distinction between alphabetic font families and Japanese font families
is only made by its encoding. For example, encodings OT1 and T1 are for alphabetic font families,
and a Japanese font family cannot have these encodings. This command defines a new encoding
scheme for Japanese font family (in horizontal direction).

\DeclareKanjiEncodingDefaults{(text-settings) H (math-settings)}
\DeclareKanjiSubstitution{(encoding)}{ (family)}{(series)}{(shape)}
\DeclareErrorKanjiFont{({encoding) }H(family) }{(series)}{(shape) }{(size)}

The above 3 commands are just the counterparts for DeclareFontEncodingDefaults and others.

\reDeclareMathAlphabet{(unified-cmd)}{(al-cmd)}{ (ja-cmd)}

OO000
0000000000000 (a-emd O\mathrn DOO00000000000000000000
(ja-emd)T\mathme OO0 2 000000000000 (unified-cmd) 0000000000000
00 (unified-cmd) O (al-cmd) 0000000000000 03(al-cmd) 00000000000
D00000000000000

oood
(unified-cmd){{arg)} — ((al-emd) O 1 0000000 {(ja-cmd) O 1 0OO000O0O) {{arg)}}
OOooOoooooooogooooogoodgno

o (al-emd), (jo-emd) OODOODOODOOOOOOOOOOOO\reDeclareMathAlphabet OO OO
OoO00DgoodD{unified-emd) OODOOOOO0DOOOOOOO

o (al-emd), (ja-cmd) O\emathrm OO0 ¢ OO0 OOOO0OODOOOOOOOOOOOOOO

\DeclareRelationFont{(ja-encoding) }{(ja-family)}{(ja-series)}{ {ja-shape)}
{({al-encoding) }{ { al-family) }{{al-series) }{{al-shape) }
This command sets the ‘accompanied’ alphabetic font family (given by the latter 4 arguments) with
respect to a Japanese font family given by the former 4 arguments.

\SetRelationFont
This command is almost same as \DeclareRelationFont, except that this command does a local
assignment, where \DeclareRelationFont does a global assignment.

\userelfont

Change current alphabetic font encoding/family/... to the ‘accompanied’ alphabetic font family with
respect to current Japanese font family, which was set by \DeclareRelationFont or SetRelationFont.
Like \fontfamily, \selectfont is required to take an effect.

\adjustbaseline

\fontfamily{(family)}

As in TATEX 2¢, this command changes current font family (alphabetic, Japanese, or both) to {family).
Which family will be changed is determined as follows:

o Let current encoding scheme for Japanese fonts be (ja-enc). Current Japanese font family will be
changed to (family), if one of the following two conditions is met:

19

— The family (fam) under the encoding (ja-enc) is already defined by \DeclareKanijFamily.
— A font definition named (enc)(ja-enc).fd (the file name is all lowercase) exists.

o Let current encoding scheme for Japanese fonts be (al-enc). For alphabetic font family, the criterion
as above is used.

e There is a case which none of the above applies, that is, the font family named (family) doesn’t
seem to be defined neither under the encoding (ja-enc), nor under (al-enc).

In this case, the default family for font substitution is used for alphabetic and Japanese fonts. Note
that current encoding will not be set to (family), unlike the original implementation in KTEX.

As closing this subsection, we shall introduce an example of SetRelationFont and \userelfont:

1\gtfamily{} OO abc

2\SetRelationFont{JY3}{gt}{m}{n}{0T1}{pag}t{m
Hn}

3 \userelfont\selectfont{}[1[1[] abc

O0Oabe OOO abce

7.2 Cropmark/‘tombow’
8 Extensions

8.1 luatexja-fontspec.sty

8.2 luatexja-otf.sty

This optional package supports typesetting characters in Adobe-Japanl. luatexja-otf.sty offers the
following 2 low-level commands:

\CID{(number)} Typeset a character whose CID number is (number).

\UTF{(hex_number)} Typeset a character whose character code is (hex_number) (in hexadecimal).
This command is similar to \char"(hez_number), but please remind remarks below.

Remarks Characters by \CID and \UTF commands are different from ordinary characters in the fol-
lowing points:

e Always treated as JAchars.

e Processing codes for supporting OpenType features (e.g., glyph replacement and kerning) by the
luaotfload package is not performed to these characters.

Additionally Syntax of JFM 1luatexja-otf.sty extends the syntax of JFM; the entries of chars
table in JFM now allows a string in the form 'AJ1-xxx', which stands for the character whose CID
number in Adobe-Japanl is xxx.

Part III
Implementations

9 Storing Parameters

9.1 Used Dimensions, Attributes and whatsit nodes

Here the following is the list of dimensions and attributes which are used in LuaTEX-ja.

20

\jQ (dimension) As explained in Subsection \jQ is equal to 1Q = 0.25mm, where ‘Q’ (also
called ‘071’) is a unit used in Japanese phototypesetting. So one should not change the value of
this dimension.

\jH (dimension) There is also a unit called ‘]’ which equals to 0.25 mm and used in Japanese photo-
typesetting. This \jH is a synonym of \jQ.

\1tj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary
body and its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.
\1tj@curjfnt (attribute) The font index of current Japanese font.
\1tj@charclass (attribute) The character class of Japanese glyph_node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point
(27 pt).

\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point
(2719 pt).

\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.
\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1tj@icflag (attribute) An attribute for distinguishing ‘kinds’ of a node. One of the following value
is assigned to this attribute:

italic (1) Glues from an italic correction (\/). This distinction of origins of glues (from explicit
\kern, or from \/) is needed in the insertion process of xkanjiskip.

packed (2)

kinsoku (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).

from__jfm (4) Glues/kerns from JFM.

line__end (5) Kerns for ...

kanji__skip (6) Glues for kanjiskip.

xkangi__skip (7) Glues for xkanjiskip.

processed (8) Nodes which is already processed by ...

ic__processed (9) Glues from an italic correction, but also already processed.

boxbdd (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a para-
graph.

\1tj@kcati (attribute) Where ¢ is a natural number which is less than 7. These 7 attributes store
bit vectors indicating which character block is regarded as a block of JAchars.

Furthermore, LuaTgX-ja uses several ‘user-defined’ whatsit nodes for typesetting. All those nodes
store a natural number (hence the node’s type is 100).

30111 Nodes for indicating that \inhibitglue is specified. The value field of these nodes doesn’t

matter.

30112 Nodes for LuaTEX-ja’s stack system (see the next subsection). The value field of these nodes is
current group.

30113 Nodes for Japanese Characters which the callback process of luaotfload won’t be applied, and

the character code is stored in the value field. Each node having this user_id is converted to a
‘glyph_node’ after the callback process of luaotfload.

These whatsits will be removed during the process of inserting JAglues.

21

9.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgEX-ja are stored in
it. To clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following
source:

1\1tjsetparameter{kanjiskip=0pt}O .7

2 \setbox0=\hbox{\1t jsetparameter{kanjiskip=5
pt}OOogd}

3\box0. O O\par

good.oo 0o o 4g.ogoo

As described in Part the only effective value of kanjiskip in an hbox is the latest value, so the value
of kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of
LuaTgX, this ‘5 pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the
source of LuaTgX), there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave() ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1l), grp, saved_level(2));
subtype (cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed):
so ‘b pt’ in the above source is orphaned at +unsave+, and hence it can’t be accessed from hpack_filter
callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing listﬂ

These are two TEX count registers for maintaining information: \1tj@@stack for the stack level, and
\1tj@egroup@level for the TEX’s group level when the last assignment was done. Parameters are stored
in one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack
level i. If a new stack level is created by \1tjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTgX-ja uses another thing: When a new
stack level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined),
30112, and current group level respectively is appended to the current list (we refer this node by
stack_flag). This enables us to know whether assignment is done just inside a hbox. Suppose that
the stack level is s and the TEX’s group level is t just after the hbox group, then:

o If there is no stack_flag node in the list of hbox, then no assignment was occurred inside the hbox.
Hence values of parameters at the end of the hbox are stored in the stack level s.

o If there is a stack__flag node whose value is ¢ + 1, then an assignment was occurred just inside the
hbox group. Hence values of parameters at the end of the hbox are stored in the stack level s+ 1.

e If there are stack_flag nodes but all of their values are more than ¢ + 1, then an assignment was
occurred in the box, but it is done is ‘more internal’ group. Hence values of parameters at the end
of the hbox are stored in the stack level s.

Note that to work this trick correctly, assignments to \1tj@@stack and \1tj@@group@level have to be
local always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

3 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.
22

scan a cs

d:={3,4,6,7,8,11,12,13}, g¢:={1,2}, j:= (Japanese characters)
e Numbers represent category codes.

o Category codes 9 (ignored), 14 (comment) and 15 (invalid) are omitted in above diagram.
Figure 2. State transitions of pTEX’s input processor.

10 Linebreak after Japanese Character

10.1 Reference: Behavior in pTEX

In pTEX, a line break after a Japanese character doesn’t emit a space, since words are not separated
by spaces in Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the
specification of callbacks in LuaTgX. To clarify the difference between pTEX and LuaTgX, We briefly
describe the handling of a line break in pTEX, in this subsection.

pTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Sec-
tion 2.5 of [?]. The internal states are as follows:

e State N: new line
e State S: skipping spaces
e State M: middle of line

e State K: after a Japanese character

The first three states—N, S and M—are as same as TEX’s input processor. State K is similar to
state M, and is entered after Japanese characters. The diagram of state transitions are indicated in
Figure [2| Note that pTEX doesn’t leave state K after ‘beginning/ending of a group’ characters.

10.2 Behavior in LuaTgX-ja

States in the input processor of LuaTgX is the same as that of TEX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress
a space by a line break which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-

line) is converted into an space token in the input processor. So we can use only the process_input_buffer
callback. This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of an end-of-line in LuaTgX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended
to an input line, before LuaTgX actually process it, if and only if the following two conditions
are satisfied:

23

1. The category code of the character (return) (whose character code is 13) is 5 (end-of-
line).

2. The input line matches the following ‘regular expression’:

(any char)*(JAchar)({catcode = 1} U {catcode = 2})*

Remark The following example shows the major difference from the behavior of pTEX:

1\1ltjsetparameter{autoxspacing=false}
2\1tjsetparameter{jacharrange={-6}}x[]
3y\ltjsetparameter{jacharrange={+6}}z[]
au

xyzUl u

o There is no space between ‘x’ and ‘y’, since the line 2 ends with a JAchar ‘[’ (this ‘[’ considered
as an JAchar at the ending of line 1).

o There is no space between ‘L1’ (in the line 3) and ‘u’, since the line 3 ends with an ALchar (the
letter ‘01 considered as an ALchar at the ending of line 2).

11 Insertion of JFM glues, kanjiskip and xkanjiskip

11.1 Overview

LvaTEX-ja OOOOOOOO0DOOOOOO0DOOpIEX OOOOO0O0DOO0OOpTEX ODOOOOOOO
oooooo

« JFM OOOOOODOOOODOOOoooooooooonoooooodoodt{char_node) OO
ooooOooooOood

» xkanjiskip O OO OOhbox OOOOOOOOOOOOOOOOOOOO

o kanjiskip OOOOOOOOOOOOO0OOOOOO0ODOOOOOOODOOOOOOOOOOOO20O
O (char_node) OO OO kanjiskip OO OOOOOOOOOOO

OO0O00OLuaTeX-ja OO Ohbox OOOOOOOOOOOOOOOOOO JAglueOOO JFM OO OO
xkanjiskipClkanjiskip O 3 OO OOOOOOO0OOOOOOOOOOOOOOLTEX OOOOOOO0O0OO
ooOobooooobooooooobooooooooooooodn

LuaTeX-ja OOOO JAglue OO OO OOOOO0OOOOOOOOOOOODOOOOOOOOOOOO
OoOOooomoooooooboooooooooooooooooooooonO kern OOOOOOO
OoOoo0ooooooooozooo0oobooo0o0ooOoOohivadjust Owhatsit OO OOO0OO
oooooooooodno

11.2 definition of a ‘cluster’

Definition 1. A cluster is a list of consecutive nodes in one of the following forms, with the id of it:

1. Nodes whose value of \1tj@icflag is in [3,15). These nodes come from a hbox which is already
packaged, by unpackaging (\unhbox). The id is id_ pboz.

2. A inline math formula, including two math_nodes at the boundary of it. The id is id_ math.
3. A glyph_node p with nodes which relate with it:

(1) A kern for the italic correction of p.

(2) An accent attached to p by \accent.

24

(a)
glyph (b)

—
kern accent kern glyph kern
subtype = 2 — hhox — subtype = 2 — P — |italic corr.

accent (shifted vert.)

The id is id__jglyph or id__glyph, according to whether the glyph mnode represents a Japanese char-
acter or not.

4. An box-like node, that is, an hbox, a vbox, a rule (\vrule) and an unset_node. The id is id_ hlist
if the node is an hbox which is not shifted vertically, or id_boz like otherwise.

5. A glue, a kern whose subtype is not 2 (accent), and a discretionary break. The id is id_glue,
id__kern and id__disc, respectively.

We denote a cluster by Np, Ng and Nr.

coodood

id OO0 Npod OOODOOOOOOOOOOOOO0OOO0OO0OO glyph _node Np.head ODOOOOON
OO0 glyph_node Np.tadl OO OOO0OO0OOO0OOO00OO0OONp OO Np.head OO0 Np.tadl 10
0000000000000 000000000 Np.head, Np.tail OO O OOOO0O0O0O0C0OO00OOOO
O Lva OOOOC0OOOOOOOCOOOOOOOOOOOOOOOOO

td__jglyph OO0
Np.head, Np.tail OO O OOO0OOO0O0OOOO0OO glyph_node OO O OOOONO

id__glyph OOOOOOO0OOOOO glyph__node pd
OOoOoddop 00o0ooooooooooss 0O0O00O0o0Ooo0oOdnd glyph _node OO
O0O0O0000000000Np.head, Np.tail=p OO0OOOO0OO0OOO0OO

¢ Np.head 000000000000 -000 glyph_node 000 00000000000
0O00000000000000000 glyph_node OO0
. Np.last 0OOOO0O0-00-00000000000 glyph node D000

id_math OOOOOO0OO
OOO0OO0ONp.head, Np.tadl OOOOOOOOO -1 OO0OOOOOOCOOO

id__hlist OOOOOOO0OO0OOOO hboxO
OOOO0OONp.head, Np.tadl OOOOO p OOOOOOOOOO0OOOOOOOOOOOOOO

« OOOOOOOOTEX ooooood
\hbox{\hbox{abc}. . .\hbox{\loweript\hbox{xyz}}}

O0O0000p OOOO000O hbox OOOOOOCOOOOOOOOO0OOO0OOO0OOOOOOOO
Np.head, Np.tail OO OOOOO0O0O00O0O0O0O0OOOO hbox OOOOOOOOOOOOO
OO0000000O0O000OONp.heed OOO00000000000O0O0OO Np.tesl OOOOO
OO0O00000 hboxO\loweript\hbox{xyz} OO OOOOOOOOO

 JOD0OODOOOHOOONDOOOOOOOOOOoOOOoOooOOnoonD kern OOOOODOO
Uootodboboobdoooooooonooboboabdbodbooooooooooooonodn

. 00O0O00000000000000000 glyph _node 0000000000000 id_glyph
DO0000000000000000000

id__pbox OO OOOOODOOOOOOOOOODOOODOOOOOOODOOOOOOOOOOOO0O
O1000000000000g0Oogodned_klist DOOOOO Np.head, Np.tadl OOOOONO

id__disc discretionary break (\discretionary{pre}{post}{nobreak}).
id__hlist OO OO0 Np.head, Np.tadl OO OOOO0OO0OO 3 OO0 nobreak 1O 0O OO OOOMNO
OOoOOooooooooooodoooooooodooooooooooooooono

25

id__box_like id_hlist OO OO0 box OOruled
OOOOOONp.head, Np.tadl OOOOOOOOO0OOO0OO OOOOOOOOOOOOOOOOO
OOOO0OO0OONp.head, Np.tadl OO0 nil OOOOO

0O 00000« O00000Np.head, Np.tadl OOOOOOOO
Oooooooooo OoodJFM OOOOo0ooooooooooooooooob«(0oooooo
Ooooooooooooooooo 2 oooooooooooooooobooboooooooooon

OoOoooooooooooooooooooooooo Np O0O0DOooooooooooooooo o
OO000O00O0O0O0O0O0O0ooOoOOnd kead O lest OOOOOOOOOOOOOOOO

O0OA ODO0O0O0O0O0OO0O0O0OOoOoOoddid O id_jglyph OOO OO
id O id__pbox OO Np.head OO JAchar OO OOO

OOB OOOOOhbox OOO0O0OOOOOOOOOOOOOOOO A OOOOOOOOOOO JFM O
OO00O0000000000xkanjiskip, kanjiskip OO0 OOOO0O00O0O00
id O id__hlist O id__disc (OO Np.head (0 JAchar OO0

00 ODOOODodO/mhbox DOODOOOOOOOOODOODOOOO 3 000OOOOO

o id [id_glyph OO0
o idid math OOOO
o id [id_pbox 1 id_hlist (1 id_disc OO Np.head 0 ALchar(]

O boxOOOOOOOOOOOOOOOO 200000

o id [id_pbox I id_hlist O id_disc OO O OO Np.head O glyph__node OO
o idid box like OO0

11.3 0O0O/hbox DO OOOO

O00O00o0od DOood/hbox OOOODOOOOOOOO Np OOOOOOhbox DOOOOOOOOO
UOooobgoooooaooaooaooobooooooodgn

\parindent IO hbox (subtype = 3)000 subtype O 44 (user_defined) OO O OO0 whatsitO

OOOO\parindent OO0 hbox OO OOOOOOOOOOOOOOOOOOOO
OOONy OOO0O0O0 g OoOooooooog

1. OOOO0OoOoOogo Np OOOoAQ0OoO™d

2. OOOOOOO0OOOOO0OO0O0O0O\parindent OO0 hbox OOOOOOOOOOOO g OOOO
00O 'parbdd' OOOOO Np OOOOO glue/kern OOOO

3. OOO0O0O0OO0OOneindent OO0 OOOOOOOhboxOO 09 OO OOOO 'boxbdd ' OOOMOMO
Np OODO0O0O glue/kern OO OO

OOO000oO g Oglve OOOOOOOOOOOOOOO Ny OOOOOOOOOOOOOOOOOOOO
OOO00O0O0O0Oo0O0O0o0odg OOO0O\penalty10000 OOOOO0OO

 OOOoogoooooonoodn

o« NpOOOOOOoOOOOooOoodnog O glue

26

O0O0O00 OOoOoOoOoOobooOOoOoOobobooOodddbhbex OOOOOOOOODOOOOOOOOO
O00O0O0DO0odOodn Ng OOOOONg OOOOOOO "boxbdd' OOOODOOOONO glue/kern LI Ng
Ooooooooodoooog

OO0000ooooooOoooOOOoOOOOdd\penalty10000 O0\parfillskip OO OOO0OO0OO
OOOoO0oOoOooooOooooOonon Np OOO\parfillskip OO OOOOOO0OOO0O0OOOOOOOO
OO1 0000000 Ng OOoOono

1. OO N OOOOOOOOOOdline-end [E] OOOODOOOOOOOOOOO

2. OO oDOO00000Od + Dooooooooboooooooodcharwidowpenalty
oooobooooooobooooooooodan

OOoO0O0O0oooooooodhesd d JAchar OOOOOOOO0OO0OOO keatcode OO OO OOHONO
DDDDDDDDDDDDDDDDDDDDD@D
114 DOOOOOOOD200000AO0000

OOoO0O0000002 0000O00000000ONg O Np ODOOO00O0O000O\vadjustOwhatsit O
ooboooooboobooooooboonoooogoog

(@)

cluster N penalty N N whatsit N cluster
Nq P Np

OO0O00OO0O000Oono () OOOOOOO0OoOOoOOOoOoooooooooooooooooood
OOJFM DOO0O0O0oDoOoooo 2 00oooooooooooo

(a)

cluster kern penalty whatsit glue or kern cluster
Ng | |oog| " |ptz | " — | oog |T 7| Np

OOoOOO0O0O0OO000O0odOoOno NgO NpOOOOoOO AOOOOOooOooooooooooood
oOoOooooOoodn

ooooodnod gohmoododooobgoogooobooogoaoooo 2 obogoodn
Uoooouoodn

JFM OO [M] JFM OOOO0O0O00OO0ODOOODOoOoooooooooooooooogogog
OO0Oo0oOoooooooooOooOgod kanjiskip DO OOOOOOOOOOOOOO

1. OOOO00O0O00O\inhibitglue OO OOOOODOOOOOOO whatsit OO0 OO
OO00O0mMOOO0 kanjiskip OOOOOOOOOOOOOOO

2. NgO Np OOO JFMOOO jfmvar OOOO0O0OO0O0O0O0O0O0O0O0O0OOO00O0O0OOOOOO
OO0o0OOJFM OO0O0DOO0000O (glue or kern) OOOOOOOOOOOO

3. 1. 002 0000O0OO0OONgO Np OOO JFM/jfmvar/ 000 0000O000O0OOOO

gb:=(N¢ODOOOOOOO'diffmet' OOOOOOOOON glue/kern)
ga:=00000O0O0O'diffmet' OO0 OO Np OOODO OO glue/kern)

OOoOooOoOooooooadnO (glue/kern) OOOOOOO JFM OOOO0OO0OOge O gb O
)
DDDDDDDDDDDDDDDDDDDDEDDDDDDDDD

ooog

40000000Okeatcode OOODOOOO0 JAchar OO0DO0DO00O0O00O0O0OOkeatcode 00D OODOOON
jcharwidowpenalty OOOOOO0O0OO0OO0OO
Sdifferentjfm 0O 00000 000MOOOOIMNODO0O0NO0O00000000000OO

27

\jfont\foo=psft:Ryumin-Light:jfm=ujis
\jfont\bar=psft:GothicBBB-Medium: jfm=ujis
\jfont\baz=psft:GothicBBB-Medium: jfm=ujis;jfmvar=piyo

OoOo3ooooOodon
p q
—— — /—’TH
glyph glyph glyph
\foo, ‘[’ \bar, ‘[’ \baz, ‘[’

OoOgo3b0onoobooononooonobooooomooooty 0 ¢ OoO0ooooon
OO0OOOooOooogo (2) boooooodoog O - DOOO0O0DOoOooodooodjfmvar
OoOooooOooood (3) boogoog

kanjiskip [K] OO [M] ODOOOO0O0O0OOOOOOOOOOkanjiskip OOOOO0O0OOOOOOOQOd
O0OO000000O00O0O000dddnd\inhibitglue OOOOOOOOO0OOOOOOOO2O
O0O000O0oOooogogd glue/kern DOOOOOOOOOOO

1. OO0OOOO0O0000 Ng.taildNp.headO OO O OOOOOOOO OO autospacing OO0
OO0O0 false OOOOOOOOO 0 O glue OO0 O

2. OOOOOO0OO kanjiskip 000000000 \maxdimen = (230 — 1) sp OO OO Okanjiskip
OoOOoOoooddglve OOOOOO

3. 2.0000000Ng, Np ODOOOOO0O JFM OOOO0O0O00O kanjiskip OO OOOOOOO
OooOooooooooooooOooo ADOO sOOO0ooooooooooooooog
OJFM OOO00DOoooooooooooogooono JFM DO00oooogogoo M) 3.
Oooooooooooooodn

Ooooooooooooooon gomoobooooooboooogo

line-end [E] N¢ O Np OODOOOOOOOOOOOONODOOO0O0O0OO0OODOOOOOOOOOOOd
otoaooaooaooaoodaood
1. dOOO0OoOOOoOoOoo kern DOOOOOMOOOO0OOOOOOOO

2. OO0OO0O0O0Oglve OOOO0OOO 0O gluve OO OOOOOOOODOOOOO N¢ OOOODOO
O'lineend' OOOOOOOOOO kern OOOOJFM OOOOOOOO

3. 2. 000000000O00O0000cOO0Ooooooooooooooooooooodn
oood

Aooooooooono ood
a:= (NﬂDDDDDDD postbreakpenalty C107) + (NIEDDDDDDD prebreakpenalty [J1)
O0OO0Oo0oOoodogod [—10000,10000) DOOOOOOOOO £10000 COOOOOOOOOOOOO

OOoOoOoooOodn . oOoOoooooooooooOoonon
o JOOOOOO Ng O Np OOOOOOODOOOOOOOOOoOoogo

P-normal [PN] N¢O Np OO0 (a) OOOOOODOO (penalty_node) OO OOOOOODOOOOOO
Oddddddooooooooooo£io000 OOOoooddde Ot
DOOOO10000 + (—10000) = 0 000000

O0O0O00O0OO(G) OO0 Oo0o0ooooodd « 0o

OO0O0000000000 penalty_node JOOOODOOOOOOOOOOOOO Np OOOOOO
O..... Ooooooooobooooooooooooooogoon

« DOOO0O0kern OOOOOOOOOONg O Np OOOODOOOOOOOODOOOOOODOO
OO0O0O0O00OOoOdoobe # 0 000O000O0O0O0O0OO0OOOOOO

« OOO0O0OO0kern OOOODOOOOOODOOOOOOOOOOINOODOOOkern OOOOOO
OOoO0O00OO0O0O0oOoooOooooooObooooOodde = 0 OOOOO penalty_node
ooooooood

« JOO0OOOOOOOOOOe #0000 penalty _node OO OOOOOO

"00000000 Ng.taildNp.head
28

Table 6. Summary of JEM glues

Np L OoA OdB oo O glue kern
DoA : }i\f\l_}K _Icillb‘\lﬁK _(;AN_}X _PAOA _PNOA _PSOA
boB : ?’BA_}K — PS = = PS .

o0 |Egrex =

H : PA =

E Os

glue PN

kern EpisOB
Here * means that

1. To determine the ‘right-space’, LuaTEX-ja first attempts by the method ‘JFM-origin [M].
If this attempt fails, LuaTEX-ja use the method ‘kanjiskip [K].

2. The ‘left space’ between Ng and Np is determined by the method ‘line-end [E]".

3. LuaTgX-ja adopts the method ‘P-normal [PN]’ to adjust the penalty between two clusters
for kinsoku shori.

11.5 Uggoon

DDDDDDD@DDDDDDDD

OO0AOO0OOO NeOOOAOONyOOOOOOOJFM OOOO0O0COOO0O0OCOCO0OO0O0oood

« DOODOOOOOOO0O0OOOOOONOd Boundary-B [Og] OO OOOOOOODOOOOOOOO
OOO0OodOdOxkanjiskip [X] OOOOCOOOO

- DOODOOODOOOOOOOOOO line-end [E] OOOODDOOOOODOOOOOOOOOOOOO
ooog

« DOODOODOOOOOOoOoOoOd P-normal [PN] DODOOOOO

Boundary-B [Og] OOODOOOOOODODOOODOOOODOODOODODOOOOOOOOnog
OOoooOoooooooodooodoJrM-eorigin (M| OO0 OOOO0OOOOOOOOOOOOOO
OOoooOooooooooooooooooooooobooooOonod

1. OOO0OO00O00O0OO\inhibitglue OOOOOOOOO0OOO0OO0OOO whatsit OOOOOOO
oooomood

2. JOOOOOOONgOOOOOO0OO" jeharbdd' OOOOOOOOOO glue/kern OO0
oono

xkanjiskip [X] OOOOO0Ckanjiskip [K] 000000000 CKkanjiskip 0000000000000
0000000000000000\inhibitglue J000000000000000

1. OOOO0O000OO000OOxkanjiskip OO OOOOOOOOO0OOOOO0O0OOOOOOOOO
OOoOoOoooodgluve OOOOOO

- NOOOOOOOOOOOOOOOOOODODODOODOON autoxspacing OOOOOMOM false
oood

29

o NgOOOOOOOOOOOOOOnOOOO xkanjiskip OO OOOOOOOOOOOOOONO
jaxspmode (or alxspmode) OO OO0 2 OO0
o NpOOOOOOOOOOOOOmMOOOO xkanjiskip OO OOOOOOOOOOOOOONO
jaxspmode (or alxspmode) OO O OOOOON
2. OO0ODO0O0OOO xkanjiskip OO0O0O0OO0O0OOO \maxdimen = (230—1) sp OO OO Ckkanjiskip
OOOdOooOoodglve OO

3. 2. 000OO0O0O0O0ONg NpOOOA/O00B OO00000000000000 JFM 000000
OO xkanjiskip 00O O0O000

OO0O0O0O0A OO NeOOOOONy OOOAOCOOOJFM OOOOOOOCOOO0O0COOO0OOOOOO
OO000OAOOODOOOO0DOOO0O00OOO0Boundary-A [0 OOOOOOOOOO

0000000 0O00OodoOogOooOd Beundary-A [0, OOOOOOOOODOOOOOOOOOO
OOOOoOoOddOxkanjiskip [X] OOOOOOOO

NeOOOOOOOOomOoOoooooooooono
OoO00DoOgoooogogog P-normal [PN]ODOOOOOO

Boundary-A [O,] O0OOOOOOOOOOOOOOOODO0OODOODOOOODO0OOOOOOOOOOGd

OoOooooooooooogogoddrM-origin (M OOOODOODOOOOOOOOOOOOOO
otogoodnoodooanooobooobooooaooaoodaood

1. OOOO000O000O\inhibitglue OO OOOOODOOOOOOO whatsit OOOOOOO
OoooomOonood

2. JO0O0OOOOmMmOOOOOd: jcharbdd' OOOOO Np OOOODOO glue/kern OO OO
oono

OO0 A O0O0Ogluekern OO0 NgOOO A OONp OOOglueOkern OOOOOOOOOOOOOOO
OoOooooooJEM OO0OOoOoooooooooooooooooooooooooooooooan
OOoOoooooooooooooooooooooooooo

O00000000oOdoOoOoOd Boundary-B [Opg] DO OOODOODOOOOOODOOOOOO
Ooooomooooooooooon

O0OO0Oooogogoodod lire-end [E] DOODODOOODOODOOOOOOOOOOOO
oogoodon

OO0o0O0OoOooodooOooodOOo Np OO0O00O00000000d0Np.head OO OO0
OOO00O0O0Np.head OO0 prebreakpenalty OO OO0 0 DOOOOOOOCOOOOOO

a:= (N(ﬂDDDDDDD postbreakpenalty C100).

O Np OOOOO0000O000000000000000000000000\penalty10000
DO000000000000000000000000000000000000 P-allow [PA]
0 P-normal [PN] 00000000000

glue Np O glue OOODOOOOOOOOO P-normal [PN] DOODOO

kern Np O kern OOOOO0OO0O0OO0O0O0OO0OO0OCOOOO0OO0O0OO0OOOOO0OOOOOOO
O0O0oO0o0oooOo0oooooOo0ogoooogogogood P-suppress [PS] O
oo

OO4dO P-normal [PN]OP-allow [PA]OP-suppress [PS] OO OO ONg O Np ODOOODOOOO (a)
Ooooooooooogooooobooggooono

P-allow [PA] Ng¢O Np OO0 () 0000000000 000P-normal [PN] 000000000000

obooooooooodon « toooogood

(a) DOODODOOOO0OODOOO000dDOLuwaTEX-ja O Ng O Np OOOOO0OOOOOOQO
OO0O0000000O0000000 « OO0 penalty_node OO OOOOOOOOOOOOOOOO
Ny OOOOOOOOoO

30

. 000000 glue O0OOkern DOO0O00000000
« 000000 kern 0000000000000000
P-suppress [PS] Ng¢O Np 000 (a) 0000000000 000P-normal [PN] 0000000000
D0000000000000« 00000000

() DOOODOOOODOOOOOOOOONg O Np DOO0OOOooooooogooooono
OO0 TeX-ja OOOOOO0O0O0O0O0OOOOOO0O0O0O0O0OOOmOOoOoOoO glve OOOOO
OOO00O0O\penalty10000 OO OOOO

OOoMmOoooOod kernMOOOOOOOOO

Nq Np
— ~
glyph glue
3 D) H 1 pt

OOoO00O0O00o000oodddedOOOO0OOO postbreakpenalty OO OO OOOOOOOOOO 2 O
oooooooog

Ngq Np
— A~
glyph kern glue
‘O | [Oog| 7 it (1)

O000ec OOOODOOOO00O0000O00000000O0O0Opostbreakpenalty O0e OOOOOOO
Ooooboooooboooooooooon O

Nq Np
—~ ~ =
glyph penalty kern glue

‘O || « |~ |0O0o " |ipt

ODooooooooodbo

O0OgluelOkern OO0 A OO Np OOOgluekern OOOOO0OO0ONy OO0 A OOOOOOOOOOO
OONg O Np OOOOOOOOO0O0O0OOO0OooOooOooomooooooooooooooodn

- U000 0O0OOOOOOOOOd Boundary-A [0l DOOOODODOOOOOODOOOOOOO
Ooooomooooooooooon

« NeOOOOOODOomMmOooooooooooodo
 JOOOOOOOOOOOON OOO0O0OOOO0O0OONgtedl OOOOOOOO

a = (N{PDOOOOO0 prebreakpenalty CI0T).

O N¢gOOOOOdOOP-allow [PA] OOOOO
glue Nq U glue OOOOOP-normal [PN] OODOOO
kern Ng O kern OO OO OP-suppress [PS] OO OOO

OO0 AOO0OBOOO OOOOOOOOOOOBOhbox DOOOOOODor DOOOCOOOOOOO
OOoOooooooooboodoboooooooooooooobooo Aogooood

- DOBOOODONFM DOODODOOOODOOON JFM-origin [M]Boundary-A [Oa]Boundary-B [Og]O
OJOo0oooooomoooooooonooogoodgood

- 00000 ADOO00O00DO B OOOOOOOOOBoundary-A [Oa] OO0 Boundary-B [Og]
00000 O0DOooOododo kanjiskip (K] OOOOOOO
- 00OBO20000000000Okanjiskip K] DOOOOOOO

kern—glue 0 1 DOOODO00 (DDOOO0OD0OO0O0O00O0 0) 000000000 ¢ = 10000 OOOOOONg O Np OO
OOOoOoOooooooooooOoOn

31

« OO B OOOglveOkern OO OO OOOODOOOOOOOODOOOIOOOJFM ODOOOOOODOO
ooooooooono

- DOBOUODBOOOODBOOOODODODODOODODOOOOOOOOO P-suppress [PS]
ooooodno

« OB OOOOOMON prebreakpenalty, postbreakpenalty OO OOOOO0 OOOOOOOON

ooooooooao
10 C\inhibitglue A\\ OCA
2 \hbox{[J CJFA\\ OOA
s JOA OOA

o 1 000O\inhibitglue [0 Boundary-B [Og] OO OO OO OO OOOOOOOOOOAODDOOO
xkanjiskipO OO OOOOOOOOOOOO

« 200000 DODODIADOODIODODOOOODOOO BOOOOhbox DO OOOOOOOOOOO
0000000000040 Boundary-B [Og] DO OOOOOOOOOOOOxkanjiskip OO OOOO
oono

s 3000000000000 AOOOOOOoOoOooooooooooAOoOod
Boundary-B [Og] DO OO ODOOOOOOOOON

12 psft

32

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts
	fontspec

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	Cropmark

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Prefix psft
	Structure of JFM file
	Math Font Family
	Callbacks

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Primitives for Compatibility
	92 inhibitglue primitive

	Control Sequences for LaTeX2ε
	Patch for NFSS2
	Cropmark/`tombow'

	Extensions
	luatexja-fontspec.sty
	luatexja-otf.sty

	III Implementations
	Storing Parameters
	Used Dimensions, Attributes and whatsit nodes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip
	Overview
	definition of a `cluster'
	段落/hboxの先頭や末尾
	概観と典型例：2つの「和文A」の場合
	その他の場合

	psft

