The LuaTgX-ja package

The LuaTgX-ja project team

September 20, 2011

Contents

[User’s manual 3
1 Introductionl 3
I1.1 Backgrounds| e 3
1.2 Major Changes from pIEX|. o . o 3
C3TNOEATIONS -« « ¢ v v e o e e e e 3
[1.4 About the project] 4
27 Getting Started| 5
RI Tnstallationl 5
2 Cantiond o o 5
2.3 Using in plain TEX]| oo o 5
2.4 Using i IXTRX] . . . o 0 o 0 6
2.5 Changing Fonts| 6
13 Changing Parameters| 7
3.1 Editing the range of JAchars|. 7
3.2 kanjiskip and xkanjiskip| L. L 8
3.3 Insertion Setting of xkanjiskip| L 10
3.4 Shifting Baseline| 10
3.5 Cropmark] e e 10
I _Referencel 11
4 Font Metric and Japanese Font| 11
4.1 \jfont primitive] L e e 11
4.2 Structure of JEM filel 11
4.3 Math Font Family| 12
6_Parameters| 13
b.1 \ltjsetparameter primitive] Lo e e 13
0.2 List of Parameters] 13
6Ot Primitives 14
6.1 Compatibility with pTEX| 14
|7 Control Sequences for EXITEX 2¢| 14
7.1 Patch for NESS2 o o e 14
(7.2 Cropmark/‘tombow’| 15
(III Implementations| 15
I8 Storing Parameters| 15
8.1 Used Dimensions and Attributes| 15
8.2 Stack System of LuaTpX-jal 16
19 Linebreak after Japanese Character| 17
9.1 Reference: Behavior in pTEX| oo o 17
9.2 Behavior in LuaTgX-jal.o o 17

[10 Insertion of JEM glues, kanjiskip and xkanjiskip| 18

This documentation is far from complete. It may have many gram-
matical (and contextual) errors.

Part 1
User’s manual

1 Introduction

The LuaTgX-ja package is a macro package for typesetting high-quality Japanese documents when using
LuaTgX.

1.1 Backgrounds

Traditionally, ASCII pTEX, an extension of TEX, and its derivatives are used to typeset Japanese documents in
TEX. pTEX is an engine extension of TEX: so it can produce high-quality Japanese documents without using
very complicated macros. But this point is a mixed blessing: pTEX is left behind from other extensions of
TEX, especially e-TEX and pdfTEX, and from changes about Japanese processing in computers (e.g., the UTF-8
encoding).

Recently extensions of pTEX, namely pTEX (Unicode-implementation of pTEX) and e-pTEX (merging of pTEX
and e-TEX extension), have developed to fill those gaps to some extent, but gaps still exist.

However, the appearance of LuaTgX changed the whole situation. With using Lua ‘callbacks’, users can
customize the internal processing of LuaTEX. So there is no need to modify sources of engines to support
Japanese typesetting: to do this, we only have to write Lua scripts for appropriate callbacks.

1.2 Major Changes from pTEX

The LuaTgX-ja package is under much influence of pTEX engine. The initial target of development was to im-
plement features of pTEX. However, LuaTgX-ja is not a just porting of pTEX; unnatural specifications/behaviors
of pTgX were not adopted.

The followings are major changes from pTEX:

e A Japanese font is a tuple of a ‘real’ font, a Japanese font metric (JFM, for short), and an optional string
called ‘variation’.

e In pTEX, a linebreak after Japanese character is ignored (and doesn’t yield a space), since linebreaks (in
source files) are permitted almost everywhere in Japanese texts. However, LuaTgX-ja doesn’t have this
function completely, because of a specification of LuaTEX.

e The insertion process of glues/kerns between two Japanese characters and between a Japanese character
and other characters (we refer these glues/kerns as JAglue) is rewritten from scratch.

— As LuaTgX’s internal character handling is ‘node-based’ (e.g., of{}fice doesn’t prevent ligatures),
the insertion process of JAglue is now ‘node-based’.

— Furthermore, nodes between two characters which have no effects in linebreak (e.g., \special node)
are ignored in the insertion process.

— In the process, two Japanese fonts which differ in their ‘real’ fonts only are identified.
e At the present, vertical typesetting (tategaki), is not supported in LuaTgX-ja.

For detailed information, see Part

1.3 Notations
In this document, the following terms and notations are used:

e Characters are divided into two types:

— JAchar: standing for Japanese characters such as Hiragana, Katakana, Kanji and other punctuation
marks for Japanese.

— ALchar: standing for all other characters like alphabets.

We say ‘alphabetic fonts’ for fonts used in ALchar, and ‘Japanese fonts’ for fonts used in JAchar.

e A word in a sans-serif font (like prebreakpenalty) represents an internal parameter for Japanese typesetting,
and it is used as a key in \1tjsetparameter command.

e The word ‘primitive’ is used not only for primitives in LuaTgX, but also for control sequences that defined
in the core module of LuaTEX-ja.

e In this document, natural numbers start from O.

1.4 About the project

Project Wiki Project Wiki is under construction.

e http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage’28en%29 (English)

e http://sourceforge. jp/projects/luatex-ja/wiki/FrontPage (Japanese)

This project is hosted by SourceForge.JP.

Members

http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage%28en%29
http://sourceforge.jp/projects/luatex-ja/wiki/FrontPage

2 Getting Started

2.1 Installation
To install the LuaTgX-ja package, you will need:

e LuaTgX (version 0.65.0-beta or later) and its supporting packages.
If you are using TEX Live 2011 or current W32TEX, you don’t have to worry.

e The source archive of LuaTgX-ja, of course:)
The installation methods are as follows:

1. Download the source archive.

At the present, LuaTgX-ja has no official release, so you have to retrieve the archive from the repository.
You can retrieve the Git repository via

$ git clone git://git.sourceforge. jp/gitroot/luatex-ja/luatexja.git

or download the archive of HEAD in master branch from

http://git.sourceforge. jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz.
2. Extract the archive. You will see src/ and several other sub-directories.

3. Copy all the contents of src/ into one of your TEXMF tree.

4. If mktexlsr is needed to update the filename database, make it so.

2.2 Cautions

e The encoding of your source file must be UTF-8.

e Not well-tested. In particular, the default setting of the range of JAchar in the present version does not
coexist with other packages which use Unicode fonts.

2.3 Using in plain TgX
To use LuaTgX-ja in plain TEX, simply put the following at the beginning of the document:
\input luatexja.sty

This does minimal settings (like ptex.tex) for typesetting Japanese documents:

e The following 6 Japanese fonts are preloaded:

classification font name 13.5Q 9.5Q 7Q
mincho Ryumin-Light \tenmin \sevemnmin \fivemin
gothic GothicBBB-Medium \tengt \sevengt \fivegt

— The ‘Q’ is a unit used in Japanese phototypesetting, and 1 Q = 0.25 mm. This length is stored in a
dimension \jQ.

— It is widely accepted that the font ‘Ryumin-Light” and ‘GothicBBB-Medium’ aren’t embedded into
PDF files, and PDF reader substitute them by some external Japanese fonts (e.g., Kozuka Mincho
is used for Ryumin-Light in Adobe Reader). We adopt this custom to the default setting.

— You may notice that size of above fonts is slightly smaller than their alphabetic counterparts: for
example, the size \texmin is 13.5Q ~ 9.60444 pt. This is intensional: ...

e The amount of glue that are inserted between a JAchar and an ALchar (the parameter xkanjiskip) is set

to
27
+1pt +1pt
0.25 \zw_lgt = 32 m'; gr
Here \zw is the counterpart of em for Japanese fonts, that is, the length of ‘full-width’ in current Japanese
font.

http://git.sourceforge.jp/view?p=luatex-ja/luatexja.git;a=snapshot;h=HEAD;sf=tgz

2.4 Using in BTEX

ETEX 2¢ Using in I'TEX 2¢ is basically same. To set up the minimal environment for Japanese, you only have
to load luatexja.sty:

\usepackage{luatexja}
It also does minimal settings (counterparts in plATEX are plfonts.dtx and pldefs.1ltx):

e JY3 is the font encoding for Japanese fonts (in horizontal direction).
When vertical typesetting is supported by LuaTgX-ja in the future, JT3 will be used for vertical fonts.

e Two font families mc and gt are defined:

classification family \mdseries \bfseries scale
mincho mc Ryumin-Light GothicBBB-Medium 0.960444
gothic gt GothicBBB-Medium GothicBBB-Medium 0.960444

Note on fonts in bold series

e Japanese characters in math mode are typeset by the font family mc.

However, above settings are not sufficient for Japanese-based documents. To typeset Japanese-based doc-
uments, You are better to use class files other than article.cls, book.cls, At the present, BXjscls
(bxjsarticle.cls and bxjsbook.cls, by Takayuki Yato) are better alternative. It is not determined whether
LuaTgX-ja will develop and contain counterparts of major classes used in pTEX (including jsclasses by Haruhiko
Okumura).

2.5 Changing Fonts

Remark: Japanese Characters in Math Mode Since pTEX supports Japanese characters in math mode,
there are sources like the following;:

1 $£_ {00038~ ($f_{\text{high temperature}}$). fon (fnigh temperature).
2 \[y=(x-1)"2+2\quad{} 0 0 O\ quad y>0 \] o 1\2
5 $5\in{} (1:=\{\, p\in\mathbb N:\text{p is a y=(-1)7+2 OO0 y>0

prime}\,\}$. 5¢:={peN:pisa prime}.

We (the project members of LuaTgX-ja) think that using Japanese characters in math mode are allowed if
and only if these are used as identifiers. In this point of view,

e The lines 1 and 2 above are not correct, since ‘][]’ in above is used as a textual label, and ‘IO is
used as a conjunction.

e However, the line 3 is correct, since ‘C1’ is used as an identifier.

Hence, in our opinion, the above input should be corrected as:

1f_{OOOI}~ % foo (fai)

2 ($f_{\text{high temperature}}$). 00 \Jhigh temperature -

3\ [y=(x-1)"2+2\quad o 1)2

4 \mathrel{\text{OJ O O}}\quad y>0 \] y=@-1)7+2 DOO y>0
5 $5\in{}0:=\{\,p\in\mathbb N:\text{p is a . Lo .
prime}\,\}$. 5€0:={peN:pisa prime}.
We also believe that using Japanese characters as identifiers is rare, hence we don’t describe how to change
Japanese fonts in math mode in this chapter. For the method, please see Part [[I}

plain TEX To change Japanese fonts in plain TEX, you must use the primitive \jfont. So please see Part [}

NFSS2 For ITEX 2¢, LuaTEX-ja simply adopted the font selection system from that of plATEX 2¢ (in plfonts.dtx).

e Two control sequences \mcdefault and \gtdefault are used to specify the default font families for mincho
and gothic, respectively. Default values: mc for \mcdefault and gt for \gtdefault.

e Commands \fontfamily, \fontseries, \fontshape and \selectfont can be used to change attributes
of Japanese fonts.

encoding family series shape

alphabetic fonts \romanencoding \romanfamily \romanseries \romanshape
Japanese fonts \kanjiencoding \kanjifamily \kanjiseries \kanjishape
both — - \fontseries \fontshape

auto select \fontencoding \fontfamily — —

e For defining a Japanese font family, use \DeclareKanjiFamily instead of \DeclareFontFamily.

fontspec To coexist with fontspec package, it is needed to load luatexja-fontspec package in the preamble.
This additional package automatically loads luatexja and fontspec package, if needed.

In luatexja-fontspec package, the following 7 commands are defined as counterparts of original commands
in fontspec:

Japanese fonts \jfontspec \setmainjfont \setsansjfont \newjfontfamily
alphabetic fonts \fontspec \setmainfont \setsansfont \newfontfamily

Japanese fonts \newjfontface \defaultjfontfeatures \addjfontfeatures
alphabetic fonts \newfontface \defaultfontfeatures \addfontfeatures

oono

Note that there is no command named \setmonojfont, since it is popular for Japanese fonts that nearly all
Japanese glyphs have same widths.

3 Changing Parameters

There are many parameters in LuaTgX-ja. And due to the behavior of LuaTgEX, most of them are not stored
as internal register of TEX, but as an original storage system in LuaTgX-ja. Hence, to assign or acquire those
parameters, you have to use commands \1tjsetparameter and \1tjgetparameter.

3.1 Editing the range of JAchars

To edit the range of JAchars, You have to assign a non-zero natural number which is less than 217 to the
character range first. This can be done by using \1tjdefcharrange primitive. For example, the next line
assigns whole characters in Supplementary Multilingual Plane and the character ‘[’ to the range number 100.

\1tjdefcharrange{100}{"10000-"1FFFF, ‘[1}

This assignment of numbers to ranges are always global, so you should not do this in the middle of a document.
oon

After assigning numbers to ranges, ...

Default Setting LuaTgX-ja predefines eight character ranges for convinience. They are determined from the
following data:

e Blocks in Unicode 6.0.
e The Adobe-Japan1-UCS2 mapping between a CID Adobe-Japanl-6 and Unicode.
e The PXbase bundle for pTEX by Takayuki Yato.

Now we describe these eight ranges. The alphabet ‘J’ or ‘A’ after the number shows whether characters in
the range is treated as JAchars or not by default. These settings are similar to prefercjk ...

Range 87 Symbols in the intersection of the upper half of ISO 8859-1 (Latin-1 Supplement) and JIS X 0208
(a basic character set for Japanese). This character range consists of the following charatcers:

e 8§ (U+00A7, Section Sign) e ~ (U+00B4, Spacing acute)

e ~ 7 (U+00A8, Umlaut or diaeresis) e 9] (U+00B6, Paragraph sign)

e < (U+00BO, Degree sign) e > (U+00D7, Multiplication sign)
e —+ (U+00B1, Plus-minus sign) e —= (U+00F7, Division Sign)

Range 14 Latin characters that some of them are included in Adobe-Japanl-6. This range consist of the
following Unicode ranges, except characters in the range 8 above:

e U+0080-U+0OFF: Latin-1 Supplement e U+02BO-U+02FF: Spacing Modifier Letters
e U+0100-U+017F: Latin Extended-A e U+0300-U+036F: Combining Diacritical Marks
e U+0180-U+024F: Latin Extended-B e U+1EQ0-U+1EFF: Latin Extended Additional

U+0250-U+02AF: IPA Extensions

Range 27 Greek and Cyrillic letters. JIS X 0208 (hence most of Japanese fonts) has some of these characters.

e U+0370-U+03FF: Greek and Coptic e U+1FO00-U+1FFF: Greek Extended
e U+0400-U+04FF: Cyrillic

Range 37 Punctuations and Miscellaneous symbols. The block list is indicated in Table

Range 4* Characters usually not in Japanese fonts. This range consists of almost all Unicode blocks which
are not in other predefined ranges. Hence, instead of showing the block list, we put the definition of this
range itself:

\1tjdefcharrange{4}{/
"500-"10FF, "1200-"1DFF, "2440-"245F, "27C0-"28FF, "2A00-"2AFF,
"2C00-"2E7F, "4DCO-"4DFF, "A4DO-"A82F, "A840-"ABFF, "FB50-"FEOF,
"FE20-"FE2F, "FE70-"FEFF, "10000-"1FFFF} J, non-Japanese

Range 5% Surrogates and Supplementary Private Use Areas.
Range 67 Characters used in Japanese. The block list is indicated in Table

Range 77 Characters used in CJK languages, but not included in Adobe-Japanl-6. The block list is indicated
in Table 3

3.2 kanjiskip and xkanjiskip
JAglue is divided into the following three categories:

e Glues/kerns specified in JFM. If \inhibitglue is issued around a Japanese character, this glue will be
not inserted at the place.

e The default glue which inserted between two JAchars (kanjiskip).
e The default glue which inserted between a JAchar and an ALchar (xkanjiskip).

The value (a skip) of kanjiskip or xkanjiskip can be changed as the following.

\1ltjsetparameter{kanjiskip={Opt plus 0.4pt minus 0.4pt},
xkanjiskip={0.25\zw plus 1pt minus 1pt}}

It may occur that JFM contains the data of ‘ideal width of kanjiskip’ and/or ‘ideal width of xkanjiskip’. To
use these data from JFM, set the value of kanjiskip or xkanjiskip to \maxdimen.

Table 1. Unicode blocks in predefined character range 3.

U+2000-U+206F
U+2070-U+209F
U+20A0-U+20CF
U+20D0-U+20FF
U+2100-U+214F
U+2150-U+218F
U+2190-U+21FF
U+2200-U+22FF
U+2300-U+23FF
U+2400-U+243F
U+2500-U+257F
U+2580-U+259F
U+25A0-U+25FF
U+2600-U+26FF
U+2700-U+27BF
U+2900-U+297F
U+2980-U+29FF
U+2B00-U+2BFF
U+EO000-U+F8FF
U+FBOO-U+FB4F

General Punctuation

Superscripts and Subscripts

Currency Symbols

Combining Diacritical Marks for Symbols
Letterlike Symbols

Number Forms

Arrows

Mathematical Operators

Miscellaneous Technical

Control Pictures

Box Drawing

Block Elements

Geometric Shapes

Miscellaneous Symbols

Dingbats

Supplemental Arrows-B

Miscellaneous Mathematical Symbols-B
Miscellaneous Symbols and Arrows
Private Use Area

Alphabetic Presentation Forms

Table 2. Unicode blocks in predefined character range 6.

U+2460-U+24FF
U+2E80-U+2EFF
U+3000-U+303F
U+3040-U+309F
U+30A0-U+30FF
U+3190-U+319F
U+31F0-U+31FF
U+3200-U+32FF
U+3300-U+33FF
U+3400-U+4DBF
U+4E00-U+9FFF
U+F900-U+FAFF
U+FE10-U+FE1F
U+FE30-U+FE4F
U+FE50-U+FE6F

U+20000-U+2FFFF

Enclosed Alphanumerics

CJK Radicals Supplement

CJK Symbols and Punctuation
Hiragana

Katakana

Kanbun

Katakana Phonetic Extensions
Enclosed CJK Letters and Months
CJK Compeatibility

CJK Unified Ideographs Extension A
CJK Unified Ideographs

CJK Compeatibility Ideographs
Vertical Forms

CJK Compatibility Forms

Small Form Variants
(Supplementary Ideographic Plane)

Table 3. Unicode blocks in predefined character range 7.

U+1100-U+11FF
U+2F00-U+2FDF
U+2FF0-U+2FFF
U+3100-U+312F
U+3130-U+318F
U+31A0-U+31BF
U+31CO-U+31EF
U+AO000-U+A48F
U+A490-U+A4CF
U+A830-U+A83F
U+ACO0-U+D7AF
U+D7BO-U+D7FF

Hangul Jamo

Kangxi Radicals

Ideographic Description Characters
Bopomofo

Hangul Compatibility Jamo
Bopomofo Extended

CJK Strokes

Yi Syllables

Yi Radicals

Common Indic Number Forms
Hangul Syllables

Hangul Jamo Extended-B

3.3 Insertion Setting of xkanjiskip

It is not desirable that xkanjiskip is inserted between every boundary between JAchars and ALchars. For
example, xkanjiskip should not be inserted after opening parenthesis (e.g., compare ‘([1’ and ‘([I7).

LuaTgX-ja can control whether xkanjiskip can be inserted before/after a character, by changing jaxspmode
for JAchars and alxspmode parameters ALchars respectively.

1 \1tjsetparameter{jaxspmode={‘], preonly},
alxspmode={‘\!,postonly}} pOq!O
2pUq !0

The second argument preonly means ‘the insertion of xkanjiskip is allowed before this character, but not
after’. the other possible values are postonly, allow and inhibit. For the compatibility with pTEX, natural
numbers between 0 and 3 are also allowed as the second argumemﬂ

If you want to enable/disable all insertions of kanjiskip and xkanjiskip, set autospacing and autoxspacing
parameters to false, respectively.

3.4 Shifting Baseline

To make a match between a Japanese font and an alphabetic font, sometimes shifting of the baseline of one of
the pair is needed. In pTEX, this is achieved by setting \ybaselineshift to a non-zero length (the baseline
of alphabetic fonts is shifted below). However, for documents whose main language is not Japanese, it is
good to shift the baseline of Japanese fonts, but not that of alphabetic fonts. Because of this, LuaTgX-ja can
independently set the shifting amount of the baseline of alphabetic fonts (yalbaselineshift parameter) and that
of Japanese fonts (yjabaselineshift parameter).

1\vrule width 150pt height 0.4pt depth Opt\hskip

-120pt
2 \1ltjsetparameter{yjabaselineshift=0pt,

yalbaselineshift=Opt}abc (111 MW
3 \1tjsetparameter{yjabaselineshift=5pt,

yalbaselineshift=2pt}abc (11

Here the horizontal line in above is the baseline of a line.

There is an interesting side-effect: characters in different size can be vertically aligned center in a line, by
setting two parameters appropriately. The following is an example (beware the value is not well tuned):

1xyz 0O

2{\scriptsize

3 \ltjsetparameter{yjabaselineshift=-1pt,
4 yalbaselineshift=-1pt}

s XyzOOOOd

6 tabc OO

xyz OO XYz 0000 abe OO

3.5 Cropmark

Cropmark is a mark for indicating 4 corners and horizontal /vertical center of the paper. In Japanese, we call
cropmark as tombo(w). pETEX and this LuaTgX-ja support ‘tombow’ by their kernel. The following steps are
needed to typeset cropmark:

1. First, define the banner which will be printed at the upper left of the paper. This is done by assigning a
token list to \@bannertoken.

For example, the following sets banner as ‘filename (2012-01-01 17:01)":
\makeatletter

\hour\time \divide\hour by 60 \@tempcnta\hour \multiply\@tempcnta 60\relax
\minute\time \advance\minute-\@tempcnta
\@bannertoken{’,
\jobname\space (\number\year-\two@digits\month-\two@digits\day
\space\two@digits\hour:\two@digits\minute)}%

1But we don’t recommend this: since numbers 1 and 2 have opposite meanings in jaxspmode and alxspmode.

10

Part 11
Reference

4 Font Metric and Japanese Font

4.1 \jfont primitive

To load a font as a Japanese font, you must use the \jfont primitive instead of \font, while \jfont admits
the same syntax used in \font. LuaTgX-ja automatically loads luaotfload package, so TrueType/OpenType
fonts with features can be used for Japanese fonts:

1 \jfont\tradgt={file:ipaexg.ttf:script=latn;/

2 +trad;jfm=ujis} at 14pt %/.&%/%/E
s\tradgt{}0 000000

Note that the defined control sequence (\tradgt in the example above) using \jfont is not a font_def token,
hence the input like \fontname\tradgt causes a error. We denote control sequences which are defined in \ jfont

by (jfont_cs).

Prefix Besides file: and name: prefixes, psft: can be used a prefix in \jfont (and \font) primitive. Using
this prefix, you can specify a font that has its name only and is not related to any real font.

Mainly, use of this psft: prefix is for using non-embedding ‘standard’ Japanese fonts (Ryumin-Light and
GothicBBB-Medium). OO

Features jfm, jfmvar

4.2 Structure of JFM file
A JFM file is a Lua script which has only one function call:
luatexja.jfont.define_jfm { ... }

Real data are stored in the table which indicated above by { ... }. So, the rest of this subsection are devoted to
describe the structure of this table. Note that all lengths in a JFM file are floating-point numbers in design-size
unit.

dir=(direction) (required)

The direction of JEM. At the present, only ’yoko’ is supported.

zw=(length) (required)
The amount of the length of the ‘full-width’.

zh=(length) (required)

kanjiskip={(natural), (stretch), (shrink)} (optional)

This field specifies the ‘ideal’ amount of kanjiskip. As noted in Subsection if the parameter kanjiskip
is \maxdimen, the value specified in this field is actually used (if this field is not specified in JFM, it is
regarded as 0pt). Note that (stretch) and (shrink) fields are in design-size unit too.

xkanjiskip={(natural), (stretch), (shrink)} (optional)
Like the kanjiskip field, this field specifies the ‘ideal’ amount of xkanjiskip.
Besides from above fields, a JFM file have several sub-tables those indices are natural numbers. The table
indexed by i € w stores informations of ‘character class’ i. At least, the character class 0 is always present, so

each JFM file must have a sub-table whose index is [0]. Each sub-table (its numerical index is denoted by 1)
has the following fields:

11

Consider a node containing Japanese character whose value of the

A
i align field is *middle’.
1 ; e The black rectangle is a frame of the node. Its width, height
heighy and depth are specified by JFM.
e Since the align field is *middle’, the ‘real’ glyph is centered
width | horizontally (the green rectangle).
down
“ort :: depth e Furthermore, the glyph is shifted according to values of fields
I Y left and down. The ultimate position of the real glyph is
] indicated by the red rectangle.
Figure 1. The position of the ‘real’ glyph.
Table 4. Primitives for Japanese math fonts.
Japanese fonts alphabetic fonts
font family \jfam € [0, 256) \fam
text size jatextfont ={(jfam) , (jfont_cs)} \textfont(fam)=(font_cs)
script size jascriptfont ={ {jfam) , (jfont_cs)} \scriptfont(fam)=(font_cs)

scriptscript size jascriptscriptfont ={{jfam), (jfont_cs)} \scriptscriptfont(fam)=(font_cs)

chars={(character), ...} (required except character class 0)

This field is a list of characters which are in this character type 7. This field is not required if ¢ = 0, since
all JAchar which are not in any character class other than 0 (hence, the character class 0 contains most
of JAchars). In the list, a character can be specified by its code number, or by the character itself (as a
string of length 1).

In addition to those ‘real’ characters, the following ‘imaginary characters’ can be specified in the list:

width=(length), height=(length), depth=(length), italic=(length) (required)

Specify width of characters in character class ¢, height, depth and the amount of italic correction. All
characters in character class i are regarded that its width, height and depth are as values of these fields.
But there is one exception: if ’prop’ is specified in width field, width of a character becomes that of its
‘real” glyph

left=(length), down=(length), align=(align)

These fields are for adjusting the position of the ‘real’ glyph. Legal values of align field are ’left’,
’middle’ and ’right’. If one of these 3 fields are omitted, left and down are treated as 0, and align
field is treated as >1left’. The effects of these 3 fields are indicated in Figure[I}

In most cases, left and down fields are 0, while it is not uncommon that the align field is ’middle’ or
’right’. For example, setting the align field to *right’ is practically needed when the current character
class is the class for opening delimiters’.

kern={[jl=(kern), ...}
glue={ [j]1={(width)y, (stretch), (shrink)}, ...}

4.3 Math Font Family

TEX handles fonts in math formulas by 16 font familiesEI7 and each family has three fonts: \textfont, \scriptfont
and \scriptscriptfont.

LuaTgX-ja’s handling of Japanese fonts in math formulas is similar; Table shows counterparts to TEX’s
primitives for math font families.

20mega, Aleph, LuaTEX and e-(u)pTEXcan handles 256 families, but an external package is needed to support this in plain TEX
and INTREX.

12

5 Parameters

5.1 \ltjsetparameter primitive

As noted before, \1tjsetparameter and \ltjgetparameter are primitives for accessing most parameters
of LuaTEX-ja. One of the main reason that LuaTgX-ja didn’t adopted the syntax similar to that of pTEX
(e.g., \prebreakpenalty‘[J=10000) is the position of hpack_filter callback in the source of LuaTgX, see
Section [8

\1ltjsetparameter and \ltjglobalsetparameter are primitives for assigning parameters. These take one
argument which is a (key)=(value) list. Allowed keys are described in the next subsection. The difference between
\1ltjsetparameter and \1ltjglobalsetparameter is only the scope of assignment; \1tjsetparameter does a
local assignment and \1tjglobalsetparameter does a global one. They also obey the value of \globaldefs,
like other assignment.

\1tjgetparameter is the primitive for acquiring parameters. It always takes a parameter name as first
argument, and also takes the additional argument—a character code, for example—in some cases.

1\1tjgetparameter{differentjfm},
2 \1tjgetparameter{autospacing}, average, 1, 10000.
3 \1tjgetparameter{prebreakpenalty}{‘}.

The return value of \1tjgetparameter is always a string. This is outputted by tex.write(), so any character
other than space ‘,’ (U+0020) has the category code 12 (other), while the space has 10 (space).

5.2 List of Parameters

In the following list of parameters, [\cs] indicates the counterpart in pTEX, and each symbol has the following
meaning:

e No mark: values at the end of the paragraph or the hbox are adopted in the whole paragraph/hbox.
e ‘«’: local parameters, which can change everywhere inside a paragraph/hbox.
e ‘’: assignments are always global.

jcharwidowpenalty =(penalty) [\jcharwidowpenalty]

Penalty value for supressing orphans. This penalty is inserted just after the last JAchar which is not
regarded as a (Japanese) punctuation mark.

kcatcode ={(chr_code) , (natural number)}

An additional attributes having each character whose character code is (chr_code). At the present version,
the lowermost bit of (natural number) indicates whether the character is considered as a punctuation mark
(see the description of jcharwidowpenalty above).

prebreakpenalty ={(chr_code) , (penalty)} [\prebreakpenalty]
postbreakpenalty ={{chr_code) , (penalty)} [\postbreakpenalty]
jatextfont ={(jfam) , (jfont_cs)} [\textfont in TEX]

jascriptfont ={ (jfam) , (jfont_-cs)} [\scriptfont in TEX]
jascriptscriptfont ={{jfam) , (jfont_cs)} [\scriptscriptfont in TEX]
yjabaselineshift =(dimen)*

yalbaselineshift =(dimen)* [\ybaselineshift]

jaxspmode ={{chr_code) ,(mode)} [\inhibitxspcode]

Setting whether inserting xkanjiskip is allowed before/after a JAchar whose character code is (chr_code).
The followings are allowed for (mode):

0, inhibit Insertion of xkanjiskip is inhibited before the charater, nor after the charater.

2, preonly Insertion of xkanjiskip is allowed before the charater, but not after.

13

1, postonly Insertion of xkanjiskip is allowed after the charater, but not before.

3, allow Insertion of xkanjiskip is allowed before the charater and after the charater. This is the default
value.

alxspmode ={{chr_code) , (mode)} [\xspcode]

Setting whether inserting xkanjiskip is allowed before/after a ALchar whose character code is (chr_code).
The followings are allowed for (mode):

0, inhibit Insertion of xkanjiskip is inhibited before the charater, nor after the charater.
1 preonly Insertion of xkanjiskip is allowed before the charater, but not after.
2 postonly Insertion of xkanjiskip is allowed after the charater, but not before.

3, allow Insertion of xkanjiskip is allowed before the charater and after the charater. This is the default
value.

Note that parameters jaxspmode and alxspmode use a common table.
autospacing =(bool)* [\autospacing]
autoxspacing =(bool)* [\autoxspacing]
kanjiskip =(skip) [\kanjiskip]
xkanjiskip =(skip) [\xkanjiskip]

differentjfm =(mode)’ Specify how glues/kerns between two JAchars whose JFM (or size) are different. The
allowed arguments are the followings:

average
both
large

small
jacharrange =(ranges)*

kansujichar ={(digit), (chr_code)} [\kansujichar]

6 Other Primitives

6.1 Compatibility with pTEX
\kuten

\jis

\euc

\sjis

\ucs

\kansuji

7 Control Sequences for BETEX 2¢

7.1 Patch for NFSS2

As described in Subsection LuaTgX-ja simply adopted plfonts.dtx in pIATEX 2¢ for the Japanese patch
for NFSS2.

14

7.2 Cropmark/‘tombow’

Part 111
Implementations

8 Storing Parameters

8.1 Used Dimensions and Attributes

Here the following is the list of dimension and attributes which are used in LuaTgX-ja.

\jQ (dimension) As explained in Subsection \jQ is equal to 1 Q = 0.25mm, where ‘Q’ (also called ‘0J’) is
a unit used in Japanese phototypesetting. So one should not change the value of this dimension.

\jH (dimension) There is also a unit called ‘]’ which equals to 0.25 mm and used in Japanese phototypesetting.
The dimension \jH stores this length, similar to \jQ.

\1tj@zw (dimension) A temporal register for the ‘full-width’ of current Japanese font.

\1tj@zh (dimension) A temporal register for the ‘full-height’ (usually the sum of height of imaginary body and
its depth) of current Japanese font.

\jfam (attribute) Current number of Japanese font family for math formulas.

\1tj@curjfnt (attribute) The font index of current Japanese font.

\1tj@charclass (attribute) The character class of Japanese glyph_node.

\1tj@yablshift (attribute) The amount of shifting the baseline of alphabetic fonts in scaled point (271¢ pt).
\1tj@ykblshift (attribute) The amount of shifting the baseline of Japanese fonts in scaled point (2716 pt).
\1tj@autospc (attribute) Whether the auto insertion of kanjiskip is allowed at the node.

\1tj@autoxspc (attribute) Whether the auto insertion of xkanjiskip is allowed at the node.

\1tj@icflag (attribute) For distinguishing ‘kinds’ of the node. To this attribute, one of the following value is
assigned:
ITALIC (1) Glues from an itaric correction (\/). This distinction of origins of glues (from explicit
\kern, or from \/) is needed in the insertion process of xkanjiskip.
PACKED (2)
KINSOKU (3) Penalties inserted for the word-wrapping process of Japanese characters (kinsoku).
FROM_JFM (4) Glues/kerns from JEM.
LINE_END (5) Keruns for ...
KANJI_SKIP (6) Glues for kanjiskip.
XKANJI_SKIP (7) Glues for xkanjiskip.
PROCESSED (8) Nodes which is already processed by ...
IC_PROCESSED (9) Glues from an itaric correction, but also already processed.
BOXBDD (15) Glues/kerns that inserted just the beginning or the ending of an hbox or a paragraph.

\1tj@kcati (attribute) Where 4 is a natural number which is less than 7. These 7 attributes store bit vectors
indicating which character block is regarded as a block of JAchars.

15

8.2 Stack System of LuaTgX-ja

Background LuaTgX-ja has its own stack system, and most parameters of LuaTgX-ja are stored in it. To
clarify the reason, imagine the parameter kanjiskip is stored by a skip, and consider the following source:

1\1tjsetparameter{kanjiskip=Opt}1 00 00. 7

2 \setboxO=\hbox{\1tjsetparameter{kanjiskip=5pt}
oooo:

3 \box0. OO O\par

oood.0o o o o.oodoo

As described in Part [[} the only effective value of kanjiskip in an hbox is the latest value, so the value of
kanjiskip which applied in the entire hbox should be 5 pt. However, by the implementation method of LuaTgX,
this ‘5pt’ cannot be known from any callbacks. In the tex/packaging.w (which is a file in the source of
LuaTEX), there are the following codes:

void package(int c)

{
scaled h; /* height of box */
halfword p; /* first node in a box */
scaled d; /* max depth */
int grp;

grp = cur_group;
d = box_max_depth;
unsave () ;
save_ptr -= 4;
if (cur_list.mode_field == -hmode) {
cur_box = filtered_hpack(cur_list.head_field,
cur_list.tail_field, saved_value(1),
saved_level(1), grp, saved_level(2));
subtype (cur_box) = HLIST_SUBTYPE_HBOX;

Notice that unsave is executed before filtered_hpack (this is where hpack_filter callback is executed): so
‘5 pt’ in the above source is orphaned at +unsave+, and hence it can’t be accessed from hpack_filter callback.

The method The code of stack system is based on that in a post of Dev-luatex mailing lisﬂ

These are two TEX count registers for maintaining informations: \1tj@@stack for the stack level, and
\1tj@egroup@level for the TEX’s group level when the last assignment was done. Parameters are stored in
one big table named charprop_stack_table, where charprop_stack_table[i] stores data of stack level i. If a
new stack level is created by \1tjsetparameter, all data of the previous level is copied.

To resolve the problem mentioned in ‘Background’ above, LuaTEX-ja uses another thing: When a new stack
level is about to be created, a whatsit node whose type, subtype and value are 44 (user_defined), 30112, and
current group level respectively is appended to the current list (we refer this node by stack_flag). This enables
us to know whether assignment is done just inside a hbox. Suppose that the stack level is s and the TEX’s
group level is ¢ just after the hbox group, then:

e If there is no stack_flag node in the list of hbox, then no assignment was occurred inside the hbox. Hence
values of parameters at the end of the hbox are stored in the stack level s.

e If there is a stack_flag node whose value is ¢ 4+ 1, then an assignment was occurred just inside the hbox
group. Hence values of parameters at the end of the hbox are stored in the stack level s + 1.

e If there are stack_flag nodes but all of their values are more than ¢ 4+ 1, then an assignment was occurred
in the box, but it is done is ‘more internal’ group. Hence values of parameters at the end of the hbox are
stored in the stack level s.

Note that to work this trick correctly, assignments to \1tj@@stack and \1tj@@group@level have to be local
always, regardless the value of \globaldefs. This problem is resolved by using \directlua{tex.globaldefs=0}
(this assignment is local).

3 [Dev-luatex] tex.currentgrouplevel, a post at 2008/8/19 by Jonathan Sauer.

16

scan a Cs

d:=1{3,4,6,7,8,11,12,13}, g¢:={1,2}, j:= (Japanese characters)
e Numbers represent category codes.

e Category codes 9 (ignored), 14 (comment) and 15 (invalid) are omitted in above diagram.

Figure 2. State transitions of pTEX’s input processor.

9 Linebreak after Japanese Character

9.1 Reference: Behavior in pTEX

(NOT COMPLETED)

In pTEX, a linebreak after a Japanese character doesn’t emit a space, since words are not separated by spaces
in Japanese writings. However, this feature isn’t fully implemented in LuaTgX-ja due to the specification of
callbacks in LuaTgX. To clarify the difference between pTEX and LuaTgX, We briefly describe the handling of
a linebreak in pTEX, in this subsection.

PTEX’s input processor can be described in terms of a finite state automaton, as that of TEX in Section 2.5
of [?]. The internal states are as follows:

e State N: new line
e State S: skipping spaces
e State M: middle of line

e State K: after a Japanese character

The first three states—N, S and M—are as same as TEX’s input processor. State K is similar to state M, and
is entered after Japanese characters. The diagram of state transitions are indicated in Figure Note that
PTEX doesn’t leave state K after ‘beginning/ending of a group’ characters.

9.2 Behavior in LuaTgX-ja

States in the input processoe of LuaTgEX is the same as that of TgX, and they can’t be customized by any
callbacks. Hence, we can only use process_input_buffer and token_filter callbacks for to suppress a space
by a linebreak which is after Japanese characters.

However, token_filter callback cannot be used either, since a character in category code 5 (end-of-line) is
converted into an space token in the input processor. So we can use only the process_input_buffer callback.
This means that suppressing a space must be done just before an input line is read.

Considering these situations, handling of a end-of-line in LuaTgEX-ja are as follows:

A character U+FFFFF (its category code is set to 14 (comment) by LuaTgX-ja) is appended to an
input line, before LuaTgEX actually process it, if and only if the following two conditions are satisfied:

1. The category code of the character (return) (whose character code is 13) is 5 (end-of-line).

17

2. The input line matches the following ‘regular expression’:

(any char)*(JAchar)({catcode = 1} U {catcode = 2})"

10 Insertion of JFM glues, kanjiskip and xkanjiskip

This is the longest section of the document.
jfmglue.tex OOOOOOOOOO

18

	I User's manual
	Introduction
	Backgrounds
	Major Changes from pTeX
	Notations
	About the project

	Getting Started
	Installation
	Cautions
	Using in plain TeX
	Using in LaTeX
	Changing Fonts

	Changing Parameters
	Editing the range of JAchars
	kanjiskip and xkanjiskip
	Insertion Setting of xkanjiskip
	Shifting Baseline
	Cropmark

	II Reference
	Font Metric and Japanese Font
	92jfont primitive
	Structure of JFM file
	Math Font Family

	Parameters
	92 ltjsetparameter primitive
	List of Parameters

	Other Primitives
	Compatibility with pTeX

	Control Sequences for LaTeX2ε
	Patch for NFSS2
	Cropmark/`tombow'

	III Implementations
	Storing Parameters
	Used Dimensions and Attributes
	Stack System of LuaTeX-ja

	Linebreak after Japanese Character
	Reference: Behavior in pTeX
	Behavior in LuaTeX-ja

	Insertion of JFM glues, kanjiskip and xkanjiskip

